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C∗-algebras arising from a matched pair of locally compact groupoids

Moto O’uchi
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Abstract. We introduce a notion of a matched pair of locally compact groupoids
and construct several C∗-algebras from a matched pair of locally compact groupoids
without assuming the existence of quasi-invariant measures on the unit space. We
also show that there exist natural representations of the above C∗-algebras when there
exists an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of operator
algebras. S. Majid studied bicrossed product Hopf-von Neumann algebras constructed
from a matched pair of locally compact groups in [4]. T. Yamanouchi studied W ∗-quantum
groups arising from matched pairs of locally compact groups in [13]. S. Baaj, G. Skandalis
and S. Vaes studied C∗-algebraic quantum groups obtained through the bicrossed product
construction from a matched pair of locally compact groups in [1]. We remark that the
definition of a matched pair of locally compact groups by Baaj, Skandalis and Vaes is
different from the definition by Majid and Yamanouchi. The author studied C∗-algebras
arising from a mathced pair of r-discrete groupoids in [7]. Recently J.-M. Vallin studied
measured quantum groupoids associated with matched pairs of locally compact groupoids
in the setting of von Neumann algebras in [12].

In [7], we assume the existence of an invariant measure on the unit space of groupoids.
In this paper, we construct several C∗-algebras from a matched pair of locally compact
groupoids without assuming the existence of quasi-invariant measures on the unit space.
We also show that there exist natural representations of the C∗-algebras when there exists
an invarianat measure.

We do not know yet how to formulate structures of quantum groupoids on these C∗-
algebras. As for quantum groupoids in the setting of C∗-algebras, there are works by T.
Timmermann [10, 11].

The paper is organized as follows: In Section 2, we introduce a notion of a matched
pair (G1, G2) of locally compact groupoids where G1 and G2 are subgroupoids of a locally
compact groupoids G and we also introduce two conditions for Harr systems. We prove
that these conditions are satisfied if G is r-discrete in Proposition 2.6. In the previous
paper [7], we did not know this fact and assumed that these conditions are satisfied for a
matched pair of r-discrete groupoids. We also introduce a groupoid T which is isomorphic
to G. In Section 3, we describe several representations of groupoid C∗-algebras on Hilbert
C∗-modules. In Section 4, we study six Hilbert C∗-modules associated with T , which are
isomorphic with each other, and representations on these Hilbert C∗-modules. In Section 5,
we introduce two C∗-algebras B and B̂ associated with T . In Section 6, we introduce four
C∗-algebras C∗

r (G1) ./ C∗
r (G2), C∗

r (G2) ./ C∗
r (G1), C∗

r (G1)nC0(G2) and C∗
r (G2)nC0(G1)
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and study representations of these C∗-algebras on Hilbert C∗-modules associated with T .
By construction, C∗

r (G1) ./ C∗
r (G2) and C∗

r (G2) ./ C∗
r (G1) are isomorphic to C∗

r (G), which
is isomorphic to C∗

r (T ), C∗
r (G1) n C0(G2) is isomorphic to B and C∗

r (G2) n C0(G1) is
isomorphic to B̂. In Section 7, we assume that there exists a G1- and G2-invariant measure
µ on the unit space G(0). Then we show that there exist natural representations of the above
C∗-algebras on a Hilbert space H in Theorem 7.2. In Section 8, we give two examples of
actions of matched pairs.

2 A matched pair of locally compact groupoids Let G be a second countable locally
compact Hausdorff groupoid. We denote by rG (resp. sG) the range (resp. source) map of
G, by G(0) the unit space of G and by G(2) the set of composable pairs. The map rG (resp.
sG) is also denoted by r (resp. s) to simplify a notation. For details of groupoids, we refer
the reader to [8] and [9].

Definition 2.1. Let G1 and G2 be closed subgroupoids of G. A pair (G1, G2) is called a
matched pair if G1G2 = G, G1 ∩ G2 = G(0) and there exist continuous maps p1 : G → G1

and p2 : G → G2 such that g = p1(g)p2(g) for all g ∈ G.

Let (G1, G2) be a matched pair. For i = 1, 2, set Gi,x = s−1(x)∩Gi and Gx
i = r−1(x)∩Gi

for x ∈ G(0). For (g2, g1) ∈ G(2) ∩ (G2 × G1), set g2 . g1 = p1(g2g1) and g2 / g1 = p2(g2g1).
Note that we have r(g2 . g1) = r(g2), s(g2 / g1) = s(g1) and s(g2 . g1) = r(g2 / g1). As in
the group case, we have the following lemma (cf [2],[6]).

Lemma 2.2. The following equations hold:
(1) h2 . (g2 . g1) = (h2g2) . g1 (g1 ∈ G1, g2 ∈ G2,r(g1), h2 ∈ G2,r(g2)).
(2) (g2 / g1) / h1 = g2 / (g1h1) (g2 ∈ G2, g1 ∈ G

s(g2)
1 , h1 ∈ G

s(g1)
1 ).

(3) g2 . (g1h1) = (g2 . g1)((g2 / g1) . h1)) (g2 ∈ G2, g1 ∈ G
s(g2)
1 , h1 ∈ G

s(g1)
1 ).

(4) (h2g2) / g1 = (h2 / (g2 . g1))(g2 / g1) (g1 ∈ G1, g2 ∈ G2,r(g1), h2 ∈ G2,r(g2)).

Let T be the fibered product

G1 s×s G2 = {(g1, g2) ∈ G1 × G2; s(g1) = s(g2)}.

Define maps κ, κ1 and κ2 : T → T by κ(g1, g2) = (g2 . g−1
1 , (g2 / g−1

1 )−1), κ1(g1, g2) =
(g−1

1 , g2 / g−1
1 ) and κ2(g1, g2) = ((g2 . g−1

1 )−1, g−1
2 ) respectively. Then κ2, κ2

1 and κ2
2 are

the identity map, in particular, κ, κ1 and κ2 are homeomorphisms. Note that we have κ =
κ1κ2 = κ2κ1. Define a homeomorphism ω : G −→ T by ω(g) = (p1(g−1), p2(g−1)−1). Then
we have ω−1(g1, g2) = g2g

−1
1 . We introduce a structure of groupoid into T as follows: Let

T (0) be the set {(x, x);x ∈ G(0)}, which we identify with G(0). The range and source maps
rT , sT : T −→ G(0) is defined by rT (g1, g2) = r(g2) and sT (g1, g2) = r(g1) respectively.
The product is defined by

(g1, g2)(h1, h2) = (h1(h−1
2 . g1), g2(h−1

2 / g1)−1)

for ((g1, g2), (h1, h2)) ∈ T (2). The inverse is defined by (g1, g2)−1 = κ(g1, g2). Then ω is an
isomorphism of groupoids.

We suppose that there exists a right Haar system {λi,x; x ∈ G(0)} on Gi for i = 1, 2. We
denote by R>0 the multiplicative group of positive real numbers. Suppose that there exists
a continuos homomorphism ∆2 : G2 −→ R>0 such that∫

G1

ξ ◦ κ(g1, g2) dλ1,s(g2)(g1)(C1)

=
∫

G1

ξ ◦ κ1(g1, g
−1
2 )∆2(g2) dλ1,r(g2)(g1)
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for every g2 ∈ G2 and every positive Borel function ξ on T . Suppsoe that there exists a
continuos homomorphism ∆1 : G1 −→ R>0 such that∫

G2

ξ ◦ κ(g1, g2) dλ2,s(g1)(g2)(C2)

=
∫

G2

ξ ◦ κ2(g−1
1 , g2)∆1(g1)−1 dλ2,r(g1)(g2)

for every g1 ∈ G1 and every positive Borel function ξ on T . Note that equations (C1) and
(C2) imply the following equations (D1) and (D2) respectively:

(D1)
∫

G1

ξ(g2 . g−1
1 ) dλ1,s(g2)(g1) =

∫
G1

ξ(g−1
1 )∆2(g2) dλ1,r(g2)(g1)

for every g2 ∈ G2 and every positive Borel function ξ on G1 and

(D2)
∫

G2

ξ(g2 / g1) dλ2,r(g1)(g2) =
∫

G2

ξ(g2)∆1(g1) dλ2,s(g1)(g2)

for every g1 ∈ G1 and every positive Borel function ξ on G2.
If G is an r-discrete groupoid, then the equations (C1) and (C2) hold for ∆1 = ∆2 = 1

(Proposition 2.6). If G is a groupoid arising from an action of a semidirect product group
on a topological space, then the equations (C1) and (C2) hold for ∆1 = 1 (see §8).

Lemma 2.3. The following equations hold:
(1) ∆1(g2 . g1) = ∆1(g1),
(2) ∆2(g2 / g1) = ∆2(g2),
for (g2, g1) ∈ G(2) ∩ (G2 × G1).

Proof. (1) For ξ ∈ Cc(G2) and (g2, g1) ∈ G(2) ∩ (G2 × G1), we have∫
G2

ξ(h2)∆1(g2 . g1) dλ2,s(g2.g1)(h2)

=
∫

G2

ξ(h2 / (g2 . g1)) dλ2,r(g2.g1)(h2) by (D2)

=
∫

G2

ξ(((h2g2) / g1)(g2 / g1)−1) dλ2,r(g2)(h2) by Lemma2.2(4)

=
∫

G2

ξ((h2 / g1)(g2 / g1)−1) dλ2,r(g1)(h2)

=
∫

G2

ξ(h2(g2 / g1)−1)∆1(g1) dλ2,s(g1)(h2) by (D2)

=
∫

G2

ξ(h2)∆1(g1) dλ2,s(g2.g1)(h2),

where the last equation follows from the fact that r(g2 / g1) = s(g2 . g1). The statement (2)
is proved similarly.

Using the equation (D2), we can prove the following:
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Theorem 2.4. There exists a right Haar system {νx; x ∈ G(0)} of T such that∫
T

f(u) dνx(u)

=
∫

G2

∫
G1

f ◦ κ(g1, g
−1
2 )∆1(g1) dλ1,r(g2)(g1)dλ2,x(g2)

for f ∈ Cc(T ) and x ∈ G(0).

Proof. We define measures {νx ; x ∈ G(0)} by the equation in the theorem. We will show
that the right invariance of {νx}. For f ∈ Cc(T ) and u = (g1, g2) ∈ T , we have∫

T
f(vu)dνrT (u)(v)

=
∫∫

f(g1((h2g2)−1 . h−1
1 ), ((h2g2)−1 / h−1

1 )−1)∆1(h1) dλ1,r(h2)(h1)dλ2,r(g2)(h2)

=
∫∫

f(g1((h−1
2 . h−1

1 ), (h−1
2 / h−1

1 )−1)∆1(h1) dλ1,r(h2)(h1)dλ2,s(g1)(h2). (∗)

Since we have

g1(h−1
2 . h−1

1 ) = p1({h1(h2 . g−1
1 )(h2 / g−1

1 )}−1),

h−1
2 / h−1

1 = p2({h1(h2 . g−1
1 )(h2 / g−1

1 )}−1),

the equation (∗) is equal to∫∫
f(p1({h1(h2 / g−1

1 )}−1), p2({h1(h2 / g−1
1 }−1)−1)∆1(h1g1)

× dλ1,r(h2/g−1
1 )(h1)dλ2,r(g1)(h2)

=
∫∫

f(p1({h1h2}−1), p2({h1h2}−1)−1)

× ∆1(h1) dλ1,r(h2)(h1)dλ2,r(g1)(h2) by (D2)

=
∫
T

f(v) dνsT (u)(v).

Corollary 2.5. There exists a right Haar system {λx;x ∈ G(0)} of G such that∫
G

f(g) dλx(g) =
∫

G2

∫
G1

f(g1g2)∆1(g1) dλ1,r(g2)(g1)dλ2,x(g2)

for f ∈ Cc(G) and x ∈ G(0).

Proof. Let {λx} be the image of {νx} by ω. Then {λx} has the desired property.

As for an r-discrete groupoid, we have the following results:

Proposition 2.6. Suppose that (G1, G2) is a matched pair of an r-discrete groupoid G.
(1) Gi is r-discrete (i = 1, 2).
(2) If each of G1 and G2 has a right Haar system, then the equations (C1) and (C2)

are hold with ∆1 = ∆2 = 1.
(3) If each of G1 and G2 has a right Haar system, then Gi is open (i = 1, 2).
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Proof. (1) The groupoid G is said to be r-discrete if G(0) is open in G ([9], p.18, Definition
2.6, see also [8], p.44). Since we have G

(0)
i = G(0), Gi is r-discrete.

(2) If Gi has a right Haar system, then it is essentially the counting measure system
([9], p.18, Lemma 2.7). It follows from Lemma 2.2 that, for every g2 ∈ G2, the map
g1 ∈ G

s(g2)
1 7→ g2 . g1 ∈ G

r(g2)
1 is a bijection. This implies that the equation (C1) holds. It

follows from Lemma 2.2 that, for every g1 ∈ G1, the map g2 ∈ G2,r(g1) 7→ g2 / g1 ∈ G2,s(g1)

is a bijection. This implies that the equation (C2) holds.
(3) It follows from the above (2) and Corollary 2.5 that G has a right Haar system. For

every subset U of G, we donte by r|U (resp. s|U) the restriction of r (resp. s) to U . We
denote by U ∈ Gop when U is an open set of G and r|U and s|U are homeomorphisms
from U into G. Then Gop is a basis for the toplogy of G ([9], p.19, Proposition 2.8 and
[8], p.44). Similary Gop

i is a basis for the topology of Gi. For every gi ∈ Gi, there exist
U ∈ Gop

i and V ∈ Gop such that gi ∈ U ∩V . Since U ∩V ∈ Gop
i , r(U ∩V ) is open in G. Set

W = r−1(r(U ∩ V )) ∩ V , which is an open neighborhood of gi in G. Since r is one-to-one
on V , W is a subset of Gi. Therefore Gi is open in G.

3 Representations of groupoid C∗-algebras We denote by Cc(G) the set of complex
valued continuous functions on G with compact supports. Then, Cc(G) is a ∗-algebra with
the following product and involution:

(ab)(g) =
∫

G

a(gh−1)b(h) dλs(g)(h),

a∗(g) = a(g−1)

for a, b ∈ Cc(G) and g ∈ G. For x ∈ G(0), let EG,x be the Hilbert space L2(G,λx), where
we assume that the inner product is linear in the second variable. Define a ∗-representation
πG,x : Cc(G) → L(EG,x) by

(πG,x(a)ξ)(g) =
∫

G

a(gh−1)ξ(h) dλx(h)

for a ∈ Cc(G), ξ ∈ EG,x and g ∈ Gx. Define the reduced norm ‖a‖ by

‖a‖ = sup{‖πG,x(a)‖ ; x ∈ G(0)}.

The reduced groupoid C∗-algebra C∗
r (G) is the completion of Cc(G) by the reduced norm.

We can extend πG,x to the ∗-representation of C∗
r (G) on EG,x, which we denote again by

πG,x.
We denote by C0(G(0)) the commutative C∗-algebra of complex valued continuous func-

tions on G(0) vanishing at infinity. Set A0 = C0(G(0)). Let EG be a Hilbert A0-module
obtained by the completion of a pre-Hilbert A0-module Cc(G) with the following structure:

(ξa0)(g) = ξ(g)a0(s(g)),

〈ξ, η〉(x) =
∫

G

ξ(g)η(g) dλx(g)

for ξ, η ∈ Cc(G), a0 ∈ A0, g ∈ G and x ∈ G(0). We denote by LA0(EG) be the C∗-algebra
of bounded adjointable operators from EG to itself. Define an injective ∗-representation
πG : C∗

r (G) → LA0(EG) by

(πG(a)ξ)(g) =
∫

G

a(gh−1)ξ(h) dλs(g)(h)
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for a ∈ Cc(G) ⊂ C∗
r (G), ξ ∈ Cc(G) ⊂ EG and g ∈ G. We can similarly define a represen-

tation (πGi , EGi) of C∗
r (Gi) with respect to {λi,x} (i = 1, 2) and a representation (πT , ET )

of C∗
r (T ) with respect to {νx}.

Lemma 3.1. For a, ξ ∈ Cc(T ) and (g1, g2) ∈ T , the following equation holds:

(πT (a)ξ)(g1, g2)

=
∫∫

a(h1, h
−1
2 )ξ(p1(g1g

−1
2 (h1h2)−1), p2(g1g

−1
2 (h1h2)−1)−1)

× ∆1(h1) dλ1,r(h2)(h1)dλ2,r(g2)(h2).

Proof. It follows from Theorem 2.4 that we have

(πT (a)ξ)(g1, g2)

=
∫

a((h1, h2)−1)ξ((h1, h2)(g1, g2)) dνrT (g1,g2)(h1, h2)

=
∫∫

a ◦ κ2(h1, h
−1
2 )ξ(κ(h1, h

−1
2 )(g1, g2))

× ∆1(h1) dλ1,r(h2)(h1)dλ2,r(g2)(h2).

It follows from Lemma 2.2 (1) and (4) that we have

κ(h1, h
−1
2 )(g1, g2)

= (g1(g−1
2 . (h−1

2 . h−1
1 )), (h−1

2 / h−1
1 )−1{g−1

2 / (h−1
2 . h−1

1 )}−1)

= (g1((h2g2)−1 . h−1
1 ), ((h2g2)−1 / h−1

1 )−1)

= (p1(g1g
−1
2 (h1h2)−1), p2(g1g

−1
2 (h1h2)−1).

Let ẼG be a Hilbert A0-module obtained by the completion of a pre-Hilbert A0-module
Cc(G) with the following structure:

(ξa0)(g) = ξ(g)a0(r(g)),

〈ξ, η〉(x) =
∫

G

ξ(g−1)η(g−1) dλx(g)

for ξ, η ∈ Cc(G), a0 ∈ A0, g ∈ G and x ∈ G(0). Define an isomorphism JG : EG → ẼG

by (JGξ)(g) = ξ(g−1) for ξ ∈ Cc(G) ⊂ EG and g ∈ G. Define an injective ∗-representaion
π̃G : C∗

r (G) → LA0(ẼG) by π̃G(a) = JGπG(a)J∗
G. We can similarly define a representation

(π̃Gi , ẼGi) of C∗
r (Gi) (i = 1, 2) and a representation (π̃T , ẼT ) of C∗

r (T ).
Define a ∗-homomorphism φ : A0 → LA0(EG2) by φ(a0)ξ = ξa0 for a0 ∈ A0 and ξ ∈ EG2 .

We denote by E the interior tensor product EG1 ⊗φ EG2 (cf. [3]). Note that A0-valued
inner product of E is given by

〈ξ, η〉(x) =
∫

G2

∫
G1

ξ(g1, g2)η(g1, g2) dλ1,x(g1)dλ2,x(g2)

for ξ, η ∈ Cc(T ) ⊂ E and x ∈ G(0). Define an injective ∗-homomorphism πG1 ⊗ ι :
C∗

r (G1) → LA0(E) by (πG1 ⊗ ι)(a) = πG1(a) ⊗φ IEG2
for a ∈ C∗

r (G1). Since φ and πG2

commute, we can define an injective ∗-homomorphism ι ⊗ πG2 : C∗
r (G2) → LA0(E) by

(ι ⊗ πG2)(a) = IEG1
⊗φ πG2(a) for a ∈ C∗

r (G2).
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Define an injective ∗-homomorphism ρG : C0(G) → LA0(EG) by (ρG(a)ξ)(g) = a(g)ξ(g).
We can define an injective ∗-homomorphism ρG1 ⊗ ι : C0(G1) → LA0(E) by (ρG1 ⊗ ι)(a) =
ρG1(a) ⊗φ IEG2

and an injective ∗-homomorphism ι ⊗ ρG2 : C0(G2) → LA0(E) by (ι ⊗
ρG2)(a) = IEG1

⊗φ ρG2(a).

4 Hilbert A0-modules associated with T In this section, we introduce several Hilbert
A0-modules which are completion of Cc(T ). We have already introduced ET , ẼT and E in
Section 3. In the following, let ξ, η ∈ Cc(T ), a ∈ A0, (g1, g2) ∈ T and x ∈ G(0).

The Hilbert A0-module E is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(s(g1))

〈ξ, η〉(x) =
∫∫

ξ(g1, g2)η(g1, g2) dλ1,x(g1)dλ2,x(g2).

The Hilbert A0-module E1 is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(r(g1))

〈ξ, η〉(x) =
∫∫

ξ(g−1
1 , g2)η(g−1

1 , g2) dλ2,r(g1)(g2)dλ1,x(g1).

The Hilbert A0-module E2 is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(r(g2))

〈ξ, η〉(x) =
∫∫

ξ(g1, g
−1
2 )η(g1, g

−1
2 ) dλ1,r(g2)(g1)dλ2,x(g2).

The Hilbert A0-module Ẽ is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(s(g2 . g−1
1 ))

〈ξ, η〉(x) =
∫∫

ξ ◦ κ2(g−1
1 , g2)η ◦ κ2(g−1

1 , g2) dλ2,r(g1)(g2)dλ1,x(g1).

The Hilbert A0-module ET is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(r(g1))

〈ξ, η〉(x) =
∫∫

ξ ◦ κ(g1, g
−1
2 )η ◦ κ(g1, g

−1
2 )∆1(g1) dλ1,r(g2)(g1)dλ2,x(g2).

The Hilbert A0-module ẼT is the completion of Cc(T ) with the following structure:

(ξa)(g1, g2) = ξ(g1, g2)a(r(g2))

〈ξ, η〉(x) =
∫∫

ξ(g1, g
−1
2 )η(g1, g

−1
2 )∆1(g1) dλ1,r(g2)(g1)dλ2,x(g2).

Using the equations (C1), (C2) and (D2), we have the following equations:

〈ξ, η〉Ẽ(x) =
∫∫

ξ ◦ κ(g1, g2)η ◦ κ(g1, g2)∆1(g1) dλ1,x(g1)dλ2,x(g2),

〈ξ, η〉ET (x) =
∫∫

ξ(g−1
1 , g2)η(g−1

1 , g2)∆2(g2)−1 dλ2,r(g1)(g2)dλ1,x(g1).
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There exist the following isomorphisms between Hilbert A0-modules:

T : E2 −→ ET defined by (Tξ)(g1, g2) = ∆1(g1)1/2ξ ◦ κ(g1, g2),

T1 : E −→ ET defined by (T1ξ)(g1, g2) = ∆1(g1)1/2∆2(g2)1/2ξ ◦ κ1(g1, g2),

T2 : E −→ ẼT defined by (T2ξ)(g1, g2) = ∆1(g1)−1/2∆2(g2)−1/2ξ ◦ κ2(g1, g2),

T̃2 : Ẽ −→ ET defined by (T̃2ξ)(g1, g2) = ∆2(g2)1/2ξ ◦ κ2(g1, g2).

We also have the following isomorphisms between Hilbert A0-modules:

S1 : E1 −→ ET defined by (S1ξ)(g1, g2) = ∆2(g2)1/2ξ(g1, g2),

S2 : E2 −→ ẼT defined by (S2ξ)(g1, g2) = ∆1(g1)−1/2ξ(g1, g2).

Therefore the above Hilbert A0-modules are isomorphic with each other.

Theorem 4.1. The following equations hold:

(T̃ ∗
2 πT (a)T̃2ξ)(g1, g2)(1)

=
∫

G2

∫
G1

a(h1, h
−1
2 )ξ(θ(g1, g2; h1, h2))

× ∆1(h1)∆2(h2)1/2 dλ1,r(h2)(h1)dλ2,s(g1)(h2)

for a ∈ Cc(T ) ⊂ C∗
r (T ), ξ ∈ Cc(T ) ⊂ Ẽ and (g1, g2) ∈ T , where

θ(g1, g2;h1, h2) = (p1(h1h2g
−1
1 )−1, p2(g2(h1h2)−1)).

(T1(πG1 ⊗ ι)(a)T ∗
1 ξ)(g1, g2)(2)

=
∫

G1

a(h−1
1 )ξ(g1h

−1
1 , g2 / h−1

1 )∆1(h1)1/2 dλ1,s(g1)(h1)

for a ∈ Cc(G1) ⊂ C∗
r (G1), ξ ∈ Cc(T ) ⊂ ET and (g1, g2) ∈ T .

(T2(ι ⊗ πG2)(a)T ∗
2 ξ)(g1, g2)(3)

=
∫

G2

a(h−1
2 )ξ((h2 . g−1

1 )−1, g2h
−1
2 )∆2(h2)−1/2 dλ2,s(g1)(h2)

for a ∈ Cc(G2) ⊂ C∗
r (G2), ξ ∈ Cc(T ) ⊂ ẼT and (g1, g2) ∈ T .

Proof. (1) Note that we have (T̃ ∗
2 ξ)(g1, g2) = ∆2(g2)1/2 ξ◦κ2(g1, g2). Put γ(g1, g2; h1, h2) =

p1(g2g
−1
1 )−1g2(h1h2)−1. It follows from Lemma 3.1 that we have

(T̃2
∗
πT (a)T̃2ξ)(g1, g2)

= ∆2(g2)1/2

∫∫
a(h1, h

−1
2 )∆2(p2(γ(g1, g2; h1, h2))−1)1/2

× ξ ◦ κ2(p1(γ(g1, g2; h1, h2)), p2(γ(g1, g2;h1, h2))−1)
× ∆1(h1) dλ1,r(h2)(h1)dλ2,s(g2)(h2).

Since we have

p1[p2{g−1
2 (h1h2)−1}p1{h1h2p1(g2g

−1
1 )}]−1 = p1(g1g

−1
2 (h1h2)−1),
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we have

(p1(g1g
−1
2 (h1h2)−1), p2(g1g

−1
2 (h1h2)−1)−1)

= κ2(p1(h1h2p1(g2g
−1
1 ))−1, p2(g−1

2 (h1h2)−1)).

By substituting g1 for p1(g2g
−1
1 )−1 and g2 for g−1

2 in the above equation, we have

(p1(γ(g1, g2; h1, h2)), p2(γ(g1, g2; h1, h2))−1) = κ2(θ(g1, g2; h1, h2))).

Since we have p2(γ(g1, g2; h1, h2)) = (g2h
−1
2 ) / h−1

1 , we have, by Lemma 2.3,

∆2(p2(γ(g1, g2; h1, h2))−1) = ∆2(g2)−1∆2(h2).

(2) Note that we have (T ∗
1 ξ)(g1, g2) = ∆1(g1)1/2∆2(g2)−1/2 ξ ◦ κ1(g1, g2). The equation

is an immediate consequence of the formula

((πG1 ⊗ ι)(a)ξ)(g1, g2) =
∫

G1

a(h−1
1 )ξ(h1g1, g2) dλ1,r(g1)(h1).

(3) Note that we have (T ∗
2 ξ)(g1, g2) = ∆1(g1)1/2∆2(g2)−1/2 ξ ◦ κ2(g1, g2). The equation

is an immediate consequence of the formula

((ι ⊗ πG2)(a)ξ)(g1, g2) =
∫

G2

a(h−1
2 )ξ(g1, h2g2) dλ2,r(g2)(h2).

5 C∗-algebras associated with T For a, b ∈ Cc(T ), define a product a]b and an
involution a◦ as follows:

(a]b)(g1, g2) =
∫

G1

a(h−1
1 , g2 / (h1g1)−1)b(h1g1, g2) dλ1,r(g1)(h1),

a◦ = a ◦ κ1.

For a, b ∈ Cc(T ), define a product a[b and an involution a♦ as follows:

(a[b)(g1, g2) =
∫

G2

a(((h2g2) . g−1
1 )−1, h−1

2 )b(g1, h2g2) dλ2,r(g2)(h2),

a♦ = a ◦ κ2.

Then (Cc(T ), ], ◦) and (Cc(T ), [,♦) are ∗-algebras.
For x ∈ G(0), define measures xm and mx on T as follows:∫

T
f(u) dxm(u) =

∫∫
f(g−1

1 , g2) dλ2,r(g1)(g2)dλ1,x(g1),∫
T

f(u) dmx(u) =
∫∫

f(g1, g
−1
2 ) dλ1,r(g2)(g1)dλ2,x(g2)

for f ∈ Cc(T ). The support of xm is xT = {(g1, g2) ∈ T ; rG(g1) = x} and the support of
mx is T x = {(g1, g2) ∈ T ; rG(g2) = x}. Put xH = L2(T , xm) and Hx = L2(T ,mx), which
are Hilbert spaces whose inner products are linear in the second variables. For a, ξ ∈ Cc(T ),
define an element xρ̃(a)ξ of Cc(T ) by

(xρ̃(a)ξ)(g1, g2) =
∫

a(h−1
1 , g2 / h−1

1 )ξ(g1h
−1
1 , g2 / h−1

1 )∆(h1)1/2 dλ1,s(g1)(h1)
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and define an element ˜̂ρx(a)ξ of Cc(T ) by

(˜̂ρx(a)ξ)(g1, g2)

=
∫

a((h2 . g−1
1 )−1, h−1

2 )ξ((h2 . g−1
1 )−1, g2h

−1
2 )∆2(h2)−1/2 dλ2,s(g2)(h2).

We denote by L(xH) the ∗-alegebra of bounded linear operators on xH for each x. Then
we have the following theorem.

Proposition 5.1. (1) For every a ∈ Cc(T ), xρ̃(a) is an element of L(xH). The map xρ̃ is
a ∗-represetation of (Cc(T ), ], ◦) on xH.

(2) For every a ∈ Cc(T ), ˜̂ρx(a) is an element of L(Hx). The map ˜̂ρx is a ∗-representation
of (Cc(T ), [,♦) on Hx.

Proof. Let K be a support of a. For i = 1, 2, let Ki be the set of gi ∈ Gi with (g1, g2) ∈ K.
Put Mi(Ki) = sup{λi,x(Ki);x ∈ G(0)}. We denote by χK the characteristic function of K.

(1) For (g1, g2) ∈ T with rG(g1) = x, we have

‖xρ̃(a)ξ‖2
xH

≤ ‖a‖2
∞

∫∫ {∫
χK(h−1

1 , g2 / h−1
1 )|ξ(g−1

1 h−1
1 , g2 / h−1

1 )|∆1(h1)1/2 dλ1,r(g1)(h1)
}2

× dλ2,r(g1)(g2)dλ1,x(g1)

≤ ‖a‖2
∞

∫∫ {∫
χK(h−1

1 , g2 / h−1
1 ) dλ1,r(g1)(h1)

}
×

{∫
χK(h−1

1 , g2 / h−1
1 )|ξ(g−1

1 h−1
1 , g2 / h−1

1 )|2∆1(h1) dλ1,r(g1)(h1)
}

× dλ2,r(g1)(g2)dλ1,x(g1)

≤ M1(K−1
1 )‖a‖2

∞

∫∫∫
χK1(h

−1
1 )|ξ(g−1

1 h−1
1 , g2 / h−1

1 )|2∆1(h1)

× dλ1,r(g1)(h1)dλ2,r(g1)(g2)dλ1,x(g1)

= M1(K−1
1 )‖a‖2

∞

×
∫∫∫

χK1(h
−1
1 )|ξ(g−1

1 h−1
1 , g2)|2 dλ2,r(h1)(g1)dλ1,r(g1)(h1)dλ1,x(g1) by (D2)

= M1(K−1
1 )‖a‖2

∞

×
∫∫∫

χK1(g1h
−1
1 )|ξ(h−1

1 , g2)|2 dλ2,r(h1)(g2)dλ1,s(g1)(h1)dλ1,x(g1)

= M1(K−1
1 )‖a‖2

∞

∫∫∫
χK1(g1)|ξ(h−1

1 , g2)|2 dλ1,r(h1)(g1)dλ2,s(h1)(g2)dλ1,x(h1)

≤ M1(K1)M1(K−1
1 )‖a‖2

∞‖ξ‖2
xH .

Therefore we can extend xρ̃(a) to a bounded operator on xH, which we denote again by
xρ̃(a). Note that we have ‖xρ̃(a)‖ ≤ M‖a‖∞, where we have M = (M1(K1)M1(K−1

1 ))1/2.
By a straightforward calculation, we can show that xρ̃(a]b)ξ = xρ̃(a)xρ̃(b)ξ for a, b, ξ ∈
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Cc(T ). We will show that xρ̃(a◦) = xρ̃(a)∗. For a, ξ, η ∈ Cc(T ), we have

〈ξ, xρ̃(a)η〉xH

=
∫∫∫

ξ̄(g−1
1 , (g2 / h−1

1 ) / h1)a(h−1
1 , g2 / h−1

1 )η(g−1
1 h−1

1 , g2 / h−1
1 )

× ∆1(h1)1/2dλ2,s(h1)(g2)dλ1,r(g1)(h1)dλ1,x(g1)

=
∫∫∫

ξ̄(g−1
1 , g2 / h1)a(h−1

1 , g2)η(g−1
1 h−1

1 , g2)

× ∆1(h1)−1/2dλ2,r(h1)(g2)dλ1,r(g1)(h1)dλ1,x(g1) by (D2)

=
∫∫∫

ξ̄(g−1
1 , g2 / (h1g

−1
1 ))a(g1h

−1
1 , g2)η(h−1

1 , g2)

× ∆1(h1g
−1
1 )−1/2dλ2,r(h1)(g2)dλ1,s(g1)(h1)dλ1,x(g1)

=
∫∫∫

ξ̄(h−1
1 g−1

1 , g2 / g−1
1 )a(g1, g2)η(h−1

1 , g2)

× ∆1(g−1
1 )−1/2dλ2,r(h1)(g2)dλ1,r(h1)(g1)dλ1,x(h1)

= 〈xρ̃(a◦)ξ, η〉xH ,

where the last equation follows from the fact that a ◦ κ1(g−1
1 , g2 / g−1

1 ) = a ◦ κ2
1(g1, g2) =

a(g1, g2).
(2) We can prove the statement as in (1). Especially we have ‖ ˜̂ρ(a)‖ ≤ M ′‖a‖∞, where

M ′ = (M2(K2)M2(K−1
2 ))1/2.

Lemma 5.2. (1) For a ∈ Cc(T ), if xρ̃(a) = 0 for every x ∈ G(0), then a = 0.
(2) For a ∈ Cc(T ), if ˜̂ρx(a) = 0 for every x ∈ G(0), then a = 0.

Proof. (1) We have, for ξ ∈ Cc(T ) and (g1, g2) ∈ T ,

(xρ̃(a)ξ)(g1, g2)

=
∫

a ◦ κ1(h1, g2)ξ ◦ κ1(h1g
−1
1 , g2 / g−1

1 )∆1(h1)1/2 dλ1,s(g1)(h1).

For ξi ∈ Cc(Gi) (i = 1, 2), put ξ = (ξ1 ⊗ ξ2) ◦ κ1. Then we have, for (g1, g2) ∈ xT ,

0 = (xρ̃(a)ξ)(g1, g2)

= ξ2(g2 / g−1
1 )

∫
a ◦ κ1(h1, g2)ξ1(h1g

−1
1 )∆1(h1)1/2 dλ1,s(g1)(h1).

This implies that a ◦ κ1(h1, g2) = 0 for h1 ∈ G1,s(g1). Especially we have a ◦ κ1(g1, g2) = 0
for (g1, g2) ∈ xT . Since x is an arbitrary element of G0, we have a = 0.

(2) We have, for ξ ∈ Cc(T ) and (g1, g2) ∈ T ,

( ˜̂ρ(a)ξ)(g1, g2)

=
∫

a ◦ κ2(g1, h2)ξ ◦ κ2((g2 . g−1
1 )−1, h2g

−1
2 )∆2(h2)−1/2 dλ2,s(g1)(h2).

We can prove the statement as in (1).

We introduce a norm on (Cc(T ), #, ◦) by ‖a‖ = sup{‖xρ̃(a)‖; x ∈ G(0)}. We denote
by B the completion of (Cc(T ), ], ◦) with respect to this norm. We can extend xρ̃ to
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the ∗-representation of B on xH, which we denote again by xρ̃. There exists an injective
∗-homomorphism ρ̃E1 : B −→ LA0(E1) such that

(ρ̃E1(a)ξ)(g1, g2) =
∫

a(h−1
1 , g2 / h−1

1 )ξ(g1h
−1
1 , g2 / h−1

1 )∆1(h1)1/2 dλ1,s(g1)(h1)

for a ∈ Cc(T ), ξ ∈ Cc(T ) ⊂ E1 and (g1, g2) ∈ T . We introduce a norm on (Cc(T ), [,♦)
by ‖a‖ = sup{‖ ˜̂ρx(a)‖; x ∈ G(0)}. We denote by B̂ the completion of (Cc(T ), [,♦) with
respect to this norm. We can extend ˜̂ρx to the ∗-representation of B̂ on Hx, which we
denote again by ˜̂ρx. There exists an injective ∗-homomorphism ˜̂ρE2 : B̂ −→ LA0(E2) such
that

(˜̂ρE2(a)ξ)(g1, g2)

=
∫

a((h2 . g−1
1 )−1, h−1

2 )ξ((h2 . g−1
1 )−1, g2h

−1
2 )∆2(h2)−1/2 dλ2,s(g2)(h2)

for a ∈ Cc(T ), ξ ∈ Cc(T ) ⊂ E2 and (g1, g2) ∈ T .

6 C∗-algebras arising from a matched pair of groupoids Let T1 be the fibered
product G1 s×r G2 = {(g1, g2) ∈ G1 × G2; s(g1) = r(g2)} and let T2 be the fibered product
G2 s×r G1 = {(g2, g1) ∈ G2 ×G1; s(g2) = r(g1)}. Define homeomorphisms ϕ1 : T → T1 and
ϕ2 : T → T2 by ϕ1(g1, g2) = (g1, g

−1
2 ) and ϕ2(g1, g2) = (g2, g

−1
1 ) respectively.

Define a bijection Φ1 : Cc(T1) → Cc(T ) by

Φ1(a)(g1, g2) = ∆1(g1)1/2∆2(g2)−1/2(a ◦ ϕ1 ◦ κ)(g1, g2).

Since Cc(T ) is a dense ∗-subalgebra of the C∗-algebra C∗
r (T ), we have a ∗-algebraic structure

and a C∗-norm on Cc(T1) induced by Φ1. We denote by C∗
r (G1) ./ C∗

r (G2) the C∗-algebra
that is the completion of Cc(T1) with respect to this norm. We can extend Φ1 to an
isomorphism of C∗

r (G1) ./ C∗
r (G2) onto C∗

r (T ), which is denoted again by Φ1. Define a
bijection Φ2 : Cc(T2) → Cc(T ) by

Φ2(a)(g1, g2) = ∆1(g1)−1/2∆2(g2)1/2(a ◦ ϕ2)(g1, g2).

Then we have a ∗-algebraic structure and a C∗-norm on Cc(T2) induced by Φ2. We denote
by C∗

r (G2) ./ C∗
r (G1) the C∗-algebra that is the completion of Cc(T2) with respect to this

norm. We can extend Φ2 to an isomorphism of C∗
r (G2) ./ C∗

r (G1) onto C∗
r (T ), which is

denoted again by Φ2. By the construction, we have

C∗
r (G1) ./ C∗

r (G2) ∼= C∗
r (G2) ./ C∗

r (G1) ∼= C∗
r (T ) ∼= C∗

r (G).

Then we have the following injective ∗-homomorphisms:

Ad T̃ ∗
2 ◦ πT ◦ Φ1 : C∗

r (G1) ./ C∗
r (G2) −→ LA0(Ẽ),

Ad T̃ ∗
2 ◦ πT ◦ Φ2 : C∗

r (G2) ./ C∗
r (G1) −→ LA0(Ẽ),

where Ad T̃ ∗
2 ◦ πT (a) = T̃ ∗

2 πT (a)T̃2 for a ∈ C∗
r (T ).

Define a bijection ϕ1∗ : Cc(T1) → Cc(T ) by ϕ1∗(a) = a ◦ ϕ1. Since (Cc(T ), ], ◦) is a
dense ∗-subalgebra of the C∗-algebra B, we have a ∗-algebraic structure and a C∗-norm
on Cc(T1) induced by ϕ1∗. We denote by C∗

r (G1) n C0(G2) the C∗-algebra that is the
completion of Cc(T1) with respect to this norm. We can extend ϕ1∗ to an isomorphism of
C∗

r (G1)nC0(G2) onto B, which is denoted again by ϕ1∗. We define a ∗-representation xρ of
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C∗
r (G1)nC0(G2) on xH by xρ(a) = xρ̃(ϕ1∗(a)). We also define an injective ∗-homomorphism

ρE1 : C∗
r (G1) n C0(G2) −→ LA0(E1) by ρE1 = ρ̃E1 ◦ ϕ1∗.

Define a bijection ϕ2∗ : Cc(T2) → Cc(T ) by ϕ2∗(a) = a ◦ ϕ2. Since (Cc(T ), [,♦) is a
dense ∗-subalgebra of the C∗-algebra B̂, we have a ∗-algebraic structure and a C∗-norm
on Cc(T2) induced by ϕ2∗. We denote by C∗

r (G2) n C0(G1) the C∗-algebra that is the
completion of Cc(T2) with respect to this norm. We can extend ϕ2∗ to an isomorphism of
C∗

r (G2)nC0(G1) onto B̂, which is denoted again by ϕ2∗. We define a ∗-representation ρ̂x of
C∗

r (G2)nC0(G1) on Hx by ρ̂x(a) = ˜̂ρx(ϕ2∗(a)). We also define an injective ∗-homomorphism
ρ̂E2 : C∗

r (G2) n C0(G1) −→ LA0(E2) by ρ̂E2 = ˜̂ρE2 ◦ ϕ2∗.

7 Representations on Hilbert sapces Let µ be a positive regular Radon measure on
G(0). For i = 1, 2, we say that µ is Gi-invariant if it satisfies the following equation∫

G(0)

∫
Gi

ξ(g−1
i ) dλi,x(gi)dµ(x) =

∫
G(0)

∫
Gi

ξ(gi) dλi,x(gi)dµ(x)

for ξ ∈ Cc(Gi). In this section, we assume that there exists a G1- and G2-invariant measure
µ on G(0) whose support is G(0). Then by equations (C1) and (D2), we have∫

G(0)

∫
G2

∫
G1

ξ ◦ κ(g1, g2) dλ1,x(g1)dλ2,x(g2)dµ(x)(∗)

=
∫

G(0)

∫
G2

∫
G1

ξ(g1, g2)∆1(g1)∆2(g2)−1 dλ1,x(g1)dλ2,x(g2)dµ(x)

for ξ ∈ Cc(T ).
Note that the inner products of the following Hilbert spaces are linear in the second vari-

ables. We denote by HT the completion of the pre-Hilbert space Cc(T ) with the following
inner product

〈ξ, η〉 =
∫

G(0)
〈ξ, η〉ET (x) dµ(x).

The Hilbert space H̃T , H̃ and H are similarly defined with respect to the A0-valued in-
ner product 〈ξ, η〉ẼT

, 〈ξ, η〉Ẽ and 〈ξ, η〉E on Cc(T ) respectively. Since µ is G1-invariant,
we can define an isomorphism IT : HT → H by (IT ξ)(g1, g2) = ∆2(g2)−1/2ξ(g1, g2).
Since µ is G2-invariant, we can define an isomorphism ĨT : H̃T → H by (ĨT ξ)(g1, g2) =
∆1(g1)1/2ξ(g1, g2). By the equation (∗), we can define an isomorphism Ĩ : H̃ → H by
(Ĩξ)(g1, g2) = ∆2(g2)−1/2ξ(g1, g2).

For a ∈ Cc(T ) ⊂ C∗
r (T ) and η ∈ Cc(T ) ⊂ ET , we have πT (a)η ∈ Cc(T ). Then, for

ξ ∈ Cc(T ) ⊂ Ẽ, we have T̃ ∗
2 πT (a)T̃2ξ ∈ Cc(T ). Moreover we have

‖T̃ ∗
2 πT (a)T̃2ξ‖H̃ ≤ ‖a‖C∗

r (T )‖ξ‖H̃ .

Therefore we can extend T̃ ∗
2 πT (a)T̃2 to a bounded linear operator on H̃, which we denote

by µ(T̃ ∗
2 πT (a)T̃2). Define π : Cc(T ) → L(H) by π(a) = Ĩµ(T̃ ∗

2 πT (a)T̃2)Ĩ∗. Since we
have ‖π(a)‖ ≤ ‖a‖C∗

r (T ), we can extend π to C∗
r (T ), which we donote again by π. Since

πT is injective, the ∗-homomorphism π : C∗
r (T ) → L(H) is injective. Similarly we can

define an injective ∗-homomorphism π1 : C∗
r (G1) → L(H) (resp. π2 : C∗

r (G2) → L(H))
by π1(a) = IT µ(T1(πG1 ⊗ ι)(a)T ∗

1 )I∗T (resp. π2(a) = ĨT µ(T2(ι ⊗ πG2)(a)T ∗
2 )Ĩ∗T ). Define

an injective ∗-homomorphism ρ1 : C0(G1) → L(H) (resp. ρ2 : C0(G2) → L(H)) by
ρ1(a) = IT µ(T1(ρG1 ⊗ ι)(a)T ∗

1 )I∗T (resp. ρ2(a) = ĨT µ(T2(ι⊗ ρG2)(a)T ∗
2 )Ĩ∗T ). Then we have
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(ρ1(a)ξ)(g1, g2) = a(g−1
1 )ξ(g1, g2) and (ρ2(a)ξ)(g1, g2) = a(g−1

2 )ξ(g1, g2). By Theorem 4.1,
we have

(π(a)ξ)(g1, g2)

=
∫

G2

∫
G1

a(h1, h
−1
2 )ξ(θ(g1, g2; h1, h2))∆1(h1) dλ1,r(h2)(h1)dλ2,s(g1)(h2),

(π1(a1)ξ)(g1, g2)

=
∫

G1

a1(h−1
1 )ξ(g1h

−1
1 , g2 / h−1

1 )∆1(h1)1/2 dλ1,s(g1)(h1),

(π2(a2)ξ)(g1, g2)

=
∫

G2

a2(h−1
2 )ξ((h2 . g−1

1 )−1, g2h
−1
2 )∆2(h2)−1/2 dλ2,s(g2)(h2)

for a ∈ Cc(T ), a1 ∈ Cc(G1), a2 ∈ Cc(G2) and ξ ∈ Cc(T ).

Proposition 7.1. The following equations hold:

π2(a2)π1(a1) = π((∆1/2
1 a1)̌ ⊗ (∆1/2

2 a2))

π1(a1)π2(a2) = π(((∆−1/2
1 a1) ⊗ (∆−1/2

2 a2)̌ ) ◦ κ)

for ai ∈ Cc(Gi) ⊂ C∗
r (Gi) (i = 1, 2), where ǎi(gi) = ai(g−1

i ).

Proof. For ξ ∈ Cc(T ) and (g1, g2) ∈ T , we have

(π2(a2)π1(a1)ξ)(g1, g2)

=
∫∫

ǎ1(h1)a2(h−1
2 )ξ((h2 . g−1

1 )−1h−1
1 , (g2h

−1
2 ) / h−1

1 )

× ∆2(h2)−1/2∆1(h1)1/2 dλ1,r(h2)(h1)dλ2,s(g2)(h2)

=
∫∫

ǎ1(h1)a2(h−1
2 )ξ(θ(g1, g2; h1, h2))

× ∆1(h1)1/2∆2(h2)−1/2 dλ1,r(h2)(h1)dλ2,s(g2)(h2)

=
∫∫

(∆1/2
1 a1)̌ (h1)(∆

1/2
2 a2)(h−1

2 )ξ(θ(g1, g2; h1, h2))

× ∆1(h1) dλ1,r(h2)(h1)dλ2,s(g1)(h2)

= (π((∆1/2
1 a1)̌ ⊗ (∆1/2

2 a2))ξ)(g1, g2).

We also have

(π1(a1)π2(a2)ξ)(g1, g2)

=
∫∫

a1(h−1
1 )a2(h−1

2 )ξ((h2 . (g1h
−1
1 )−1)−1, (g2 / h−1

1 )h−1
2 )

× ∆1(h1)1/2∆2(h2)−1/2 dλ2,r(h1)(h2)dλ1,s(g1)(h1).

Since we have h2h1 = (h2 .h1)(h2 /h1), h2 . (g1h
−1
1 )−1 = p1(h2h1g

−1
1 ) and (g2 /h−1

1 )h−1
2 =
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p2(g2(h2h1)−1), the last integral equals to∫∫
a1(h−1

1 )a2(h1(h2 / h1)−1(h2 . h1)−1)

× ξ(p1((h2 . h1)(h2 / h1)g−1
1 )−1, p2(g2(h2 / h1)−1(h2 . h1)−1))

× ∆1(h1)1/2∆2((h2 . h1)(h2 / h1)h−1
1 )−1/2 dλ2,r(h1)(h2)dλ1,s(g1)(h1)

=
∫∫

a1(h−1
1 )a2(h1h

−1
2 (h2 . h−1

1 ))

× ξ(p1((h2 . h−1
1 )−1h2g

−1
1 )−1, p2(g2h

−1
2 (h2 . h−1

1 )))

× ∆1(h1)3/2∆2(h1h
−1
2 (h2 . h−1

1 ))1/2dλ1,s(g1)(h1)dλ2,s(g1)(h2)

by (C2). Since we have h−1
1 = h−1

2 . (h2 . h−1
1 ), the last integral equals to∫∫

a1((h−1
2 . (h2 . h−1

1 ))a2({h−1
2 . (h2 . h−1

1 )}−1h−1
2 (h2 . h−1

1 ))

× ξ(p1((h2 . h−1
1 )−1h2g

−1
1 )−1, p2(g2h

−1
2 (h2 . h−1

1 )))

× ∆1(h−1
2 . (h2 . h−1

1 ))−3/2∆2({h−1
2 . (h2 . h−1

1 )}−1h−1
2 (h2 . h−1

1 ))1/2

× dλ1,s(h2)(h1)dλ2,s(g1)(h2)

=
∫∫

a1(h−1
2 . h−1

1 )a2({h−1
2 . h−1

1 }−1h−1
2 h−1

1 )

× ξ(p1(h1h2g
−1
1 )−1, p2(g2h

−1
2 h−1

1 ))

× ∆1(h−1
2 . h−1

1 )−3/2∆2({h−1
2 . h−1

1 }−1h−1
2 h−1

1 )1/2∆2(h2)
× dλ1,r(h2)(h1)dλ2,s(g1)(h2)

by (D1). Since we have {h−1
2 . h−1

1 }−1h−1
2 h−1

1 = h−1
2 / h−1

1 , the last integral equals to∫∫
a1(h−1

2 . h−1
1 )a2(h−1

2 / h−1
1 )ξ(p1(h1h2g

−1
1 )−1, p2(g2h

−1
2 h−1

1 ))

× ∆1(h1)3/2∆2(h2)1/2 dλ1,r(h2)(h1)dλ2,s(g1)(h2)

by Lemma 2.3. Therefore we have

(π1(a1)π2(a2)ξ)(g1, g2)

=
∫∫

(∆−1/2
1 a1)(h−1

2 . h−1
1 )(∆−1/2

2 a2)̌ ((h−1
2 / h−1

1 )−1)ξ(θ(g1, g2;h1, h2))

× ∆1(h1) dλ1,r(h2)(h1)dλ2,s(g1)(h2)

= (π(((∆−1/2
1 a1) ⊗ (∆−1/2

2 a2)̌ ) ◦ κ)ξ)(g1, g2).

From the above arguments, we have injective ∗-homomorphisms π ◦ Φ1 : C∗
r (G1) ./

C∗
r (G2) → L(H) and π ◦ Φ2 : C∗

r (G2) ./ C∗
r (G1) → L(H). The invariance of µ implies

that H =
∫ ⊕ xH dµ(x) =

∫ ⊕
Hx dµ(x). Then we can define injective ∗-homomorphisms

ρ : C∗
r (G1) n C0(G2) → L(H) and ρ̂ : C∗

r (G2) n C0(G1) → L(H) by ρ =
∫ ⊕ xρ dµ(x) and

ρ̂ =
∫ ⊕

ρ̂x dµ(x) respectively.

Theorem 7.2. The following equations hold:
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(1) π ◦ Φ1(a ⊗ b) = π1(a)π2(b) (a ∈ Cc(G1), b ∈ Cc(G2)).

(2) π ◦ Φ2(b ⊗ a) = π2(b)π1(a) (a ∈ Cc(G1), b ∈ Cc(G2)).

(3) ρ(a ⊗ b) = π1(a)ρ2(b) (a ∈ Cc(G1), b ∈ C0(G2)).

(4) ρ̂(b ⊗ a) = π2(b)ρ1(a) (a ∈ C0(G1), b ∈ Cc(G2)).

Proof. The statements (1) and (2) are immediate consequences of the definitions of C∗
r (G1) ./

C∗
r (G2) and C∗

r (G2) ./ C∗
r (G1) and Proposition 7.1. The statements of (3) and (4) are im-

mediate consequences of the definitions of representations involved.

8 Examples

8.1 Actions of semidirect product groups Let Γ1 and Γ2 be a locally compact second
countable Hausdorff groups. Let σ : Γ2 → Aut(Γ1) be a continuous homomorphism. Let
Γ = Γ1 ×σ Γ2 be a seimidirect product group. Suppose that Γ acts on a topological space
X. We have groupoids G = Γ × X and Gi = Γi × X (i = 1, 2). For every (γ, x) ∈ G, we
have (γ, x) = (γ1, γ2 ·x)(γ2, x) for γi ∈ Gi with γ = γ1γ2. That is, p1(γ, x) = (γ1, γ2 ·x) and
p2(γ, x) = (γ2, x). Then (G1, G2) is a matched pair. Let λi be a right Haar measure of Γi.
Defin ∆2 : G2 −→ R>0 by ∆2(γ2, x) = d(σγ2 ·λ1)/dλ1, which is constant on X since λ1 is a
Haar measure. We set ∆1 = 1. Then the equation (Ci) is satisfied for the right Haar system
{λi × δx} (i = 1, 2), where δx is the Dirac measure. Let δi be the modular function of Γi.
Then a positive measure µ on X is Gi-invariant if and only if (d(γi · µ)/dµ)(x) = δi(γi) for
λi × µ-a.a. (γi, x) ∈ Gi.

8.2 An action of a matche pair given by S. Majid Using a matched pair given by
S. Majid [5], Example 6.2.16, we describe an action of a matched pair on a two torus. Let
Γ1 be the group of 3 × 3 lower triangular matrices with 1 on the diagonal and Γ2 the the
group of 3× 3 upper triangular matrices with 1 on the diagonal. We take the entries in the
integers Z. That is

Γ1 =


1 0 0

a 1 0
b c 1

∣∣∣∣∣∣ a, b, c ∈ Z

 , Γ2 =


1 a b

0 1 c
0 0 1

∣∣∣∣∣∣ a, b, c ∈ Z

 .

Define a bijection σ : Γ1 ∪ Γ2 → Γ1 ∪ Γ2 by σ(γ) = tγ−1, where tγ is the transpose of γ.
For γi ∈ Γi (i = 1, 2), define

γ2 / γ1 = I + (γ2 − I)σ(γ1) ∈ Γ2,

γ2 . γ1 = I + σ(γ2)(γ1 − I) ∈ Γ1.

Then (Γ1, Γ2) is a matched pair of groups. Note that we have γ2σ(γ1) = σ(γ2 . γ1)(γ2 / γ1).
We can form the bicrossed product group Γ = Γ1 ./ Γ2. Let X = T2. Define an action of
Γ on X by

(γ1, γ2) · (u1, u2) = σ(γ1)γ2

u1

u2

1


for (γ1, γ2) ∈ Γ and (u1, u2) ∈ X, where we identify (u1, u2) with t(u1, u2, 1). Define r-
dicrete groupoids G, G1 and G2 by G = Γ × X and Gi = Γi × X (i = 1, 2). Then (G1, G2)
is a matched pair of groupoids.

Remark. The groups Γ, Γ1 and Γ2 are amenable. In fact, they are semidirect product
groups of amenable groups: Γ1 ' Γ2 ' Z2 ×s Z and Γ ' Z3 ×s Γ2.
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