C^{*}-algebras arising from a matched pair of locally compact groupoids

Moto O'vehi

Received April 22, 2011; revised August 31, 2011

Abstract

We introduce a notion of a matched pair of locally compact groupoids and construct several C^{*}-algebras from a matched pair of locally compact groupoids without assuming the existence of quasi-invariant measures on the unit space. We also show that there exist natural representations of the above C^{*}-algebras when there exists an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of operator algebras. S. Majid studied bicrossed product Hopf-von Neumann algebras constructed from a matched pair of locally compact groups in [4]. T. Yamanouchi studied W^{*}-quantum groups arising from matched pairs of locally compact groups in [13]. S. Baaj, G. Skandalis and S. Vaes studied C^{*}-algebraic quantum groups obtained through the bicrossed product construction from a matched pair of locally compact groups in [1]. We remark that the definition of a matched pair of locally compact groups by Baaj, Skandalis and Vaes is different from the definition by Majid and Yamanouchi. The author studied C^{*}-algebras arising from a mathced pair of r-discrete groupoids in [7]. Recently J.-M. Vallin studied measured quantum groupoids associated with matched pairs of locally compact groupoids in the setting of von Neumann algebras in [12].

In [7], we assume the existence of an invariant measure on the unit space of groupoids. In this paper, we construct several C^{*}-algebras from a matched pair of locally compact groupoids without assuming the existence of quasi-invariant measures on the unit space. We also show that there exist natural representations of the C^{*}-algebras when there exists an invarianat measure.

We do not know yet how to formulate structures of quantum groupoids on these C^{*} algebras. As for quantum groupoids in the setting of C^{*}-algebras, there are works by T . Timmermann [10, 11].

The paper is organized as follows: In Section 2, we introduce a notion of a matched pair $\left(G_{1}, G_{2}\right)$ of locally compact groupoids where G_{1} and G_{2} are subgroupoids of a locally compact groupoids G and we also introduce two conditions for Harr systems. We prove that these conditions are satisfied if G is r-discrete in Proposition 2.6. In the previous paper [7], we did not know this fact and assumed that these conditions are satisfied for a matched pair of r-discrete groupoids. We also introduce a groupoid \mathcal{T} which is isomorphic to G. In Section 3, we describe several representations of groupoid C^{*}-algebras on Hilbert C^{*}-modules. In Section 4, we study six Hilbert C^{*}-modules associated with \mathcal{T}, which are isomorphic with each other, and representations on these Hilbert C^{*}-modules. In Section 5, we introduce two C^{*}-algebras B and \hat{B} associated with \mathcal{T}. In Section 6, we introduce four C^{*}-algebras $C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right), C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right), C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right)$ and $C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right)$

2000 Mathematics Subject Classification. 46L89.
Key words and phrases. groupoid, groupoid C^{*}-algebra, matched pair, Hilbert C^{*}-module .
and study representations of these C^{*}-algebras on Hilbert C^{*}-modules associated with \mathcal{T}. By construction, $C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right)$ and $C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right)$ are isomorphic to $C_{r}^{*}(G)$, which is isomorphic to $C_{r}^{*}(\mathcal{T}), C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right)$ is isomorphic to B and $C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right)$ is isomorphic to \hat{B}. In Section 7 , we assume that there exists a G_{1} - and G_{2}-invariant measure μ on the unit space $G^{(0)}$. Then we show that there exist natural representations of the above C^{*}-algebras on a Hilbert space H in Theorem 7.2. In Section 8, we give two examples of actions of matched pairs.

2 A matched pair of locally compact groupoids Let G be a second countable locally compact Hausdorff groupoid. We denote by r_{G} (resp. s_{G}) the range (resp. source) map of G, by $G^{(0)}$ the unit space of G and by $G^{(2)}$ the set of composable pairs. The map r_{G} (resp. s_{G}) is also denoted by r (resp. s) to simplify a notation. For details of groupoids, we refer the reader to [8] and [9].
Definition 2.1. Let G_{1} and G_{2} be closed subgroupoids of G. A pair $\left(G_{1}, G_{2}\right)$ is called a matched pair if $G_{1} G_{2}=G, G_{1} \cap G_{2}=G^{(0)}$ and there exist continuous maps $p_{1}: G \rightarrow G_{1}$ and $p_{2}: G \rightarrow G_{2}$ such that $g=p_{1}(g) p_{2}(g)$ for all $g \in G$.

Let $\left(G_{1}, G_{2}\right)$ be a matched pair. For $i=1,2$, set $G_{i, x}=s^{-1}(x) \cap G_{i}$ and $G_{i}^{x}=r^{-1}(x) \cap G_{i}$ for $x \in G^{(0)}$. For $\left(g_{2}, g_{1}\right) \in G^{(2)} \cap\left(G_{2} \times G_{1}\right)$, set $g_{2} \triangleright g_{1}=p_{1}\left(g_{2} g_{1}\right)$ and $g_{2} \triangleleft g_{1}=p_{2}\left(g_{2} g_{1}\right)$. Note that we have $r\left(g_{2} \triangleright g_{1}\right)=r\left(g_{2}\right), s\left(g_{2} \triangleleft g_{1}\right)=s\left(g_{1}\right)$ and $s\left(g_{2} \triangleright g_{1}\right)=r\left(g_{2} \triangleleft g_{1}\right)$. As in the group case, we have the following lemma (cf [2],[6]).
Lemma 2.2. The following equations hold:
(1) $h_{2} \triangleright\left(g_{2} \triangleright g_{1}\right)=\left(h_{2} g_{2}\right) \triangleright g_{1} \quad\left(g_{1} \in G_{1}, g_{2} \in G_{2, r\left(g_{1}\right)}, h_{2} \in G_{2, r\left(g_{2}\right)}\right)$.
(2) $\left(g_{2} \triangleleft g_{1}\right) \triangleleft h_{1}=g_{2} \triangleleft\left(g_{1} h_{1}\right) \quad\left(g_{2} \in G_{2}, g_{1} \in G_{1}^{s\left(g_{2}\right)}, h_{1} \in G_{1}^{s\left(g_{1}\right)}\right)$.
(3) $\left.g_{2} \triangleright\left(g_{1} h_{1}\right)=\left(g_{2} \triangleright g_{1}\right)\left(\left(g_{2} \triangleleft g_{1}\right) \triangleright h_{1}\right)\right) \quad\left(g_{2} \in G_{2}, g_{1} \in G_{1}^{s\left(g_{2}\right)}, h_{1} \in G_{1}^{s\left(g_{1}\right)}\right)$.
(4) $\left(h_{2} g_{2}\right) \triangleleft g_{1}=\left(h_{2} \triangleleft\left(g_{2} \triangleright g_{1}\right)\right)\left(g_{2} \triangleleft g_{1}\right) \quad\left(g_{1} \in G_{1}, g_{2} \in G_{2, r\left(g_{1}\right)}, h_{2} \in G_{2, r\left(g_{2}\right)}\right)$.

Let \mathcal{T} be the fibered product

$$
G_{1 s} \times{ }_{s} G_{2}=\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2} ; s\left(g_{1}\right)=s\left(g_{2}\right)\right\}
$$

Define maps κ, κ_{1} and $\kappa_{2}: \mathcal{T} \rightarrow \mathcal{T}$ by $\kappa\left(g_{1}, g_{2}\right)=\left(g_{2} \triangleright g_{1}^{-1},\left(g_{2} \triangleleft g_{1}^{-1}\right)^{-1}\right), \kappa_{1}\left(g_{1}, g_{2}\right)=$ $\left(g_{1}^{-1}, g_{2} \triangleleft g_{1}^{-1}\right)$ and $\kappa_{2}\left(g_{1}, g_{2}\right)=\left(\left(g_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2}^{-1}\right)$ respectively. Then $\kappa^{2}, \kappa_{1}^{2}$ and κ_{2}^{2} are the identity map, in particular, κ, κ_{1} and κ_{2} are homeomorphisms. Note that we have $\kappa=$ $\kappa_{1} \kappa_{2}=\kappa_{2} \kappa_{1}$. Define a homeomorphism $\omega: G \longrightarrow \mathcal{T}$ by $\omega(g)=\left(p_{1}\left(g^{-1}\right), p_{2}\left(g^{-1}\right)^{-1}\right)$. Then we have $\omega^{-1}\left(g_{1}, g_{2}\right)=g_{2} g_{1}^{-1}$. We introduce a structure of groupoid into \mathcal{T} as follows: Let $\mathcal{T}^{(0)}$ be the set $\left\{(x, x) ; x \in G^{(0)}\right\}$, which we identify with $G^{(0)}$. The range and source maps $r_{\mathcal{T}}, s_{\mathcal{T}}: \mathcal{T} \longrightarrow G^{(0)}$ is defined by $r_{\mathcal{T}}\left(g_{1}, g_{2}\right)=r\left(g_{2}\right)$ and $s_{\mathcal{T}}\left(g_{1}, g_{2}\right)=r\left(g_{1}\right)$ respectively. The product is defined by

$$
\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)=\left(h_{1}\left(h_{2}^{-1} \triangleright g_{1}\right), g_{2}\left(h_{2}^{-1} \triangleleft g_{1}\right)^{-1}\right)
$$

for $\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right) \in \mathcal{T}^{(2)}$. The inverse is defined by $\left(g_{1}, g_{2}\right)^{-1}=\kappa\left(g_{1}, g_{2}\right)$. Then ω is an isomorphism of groupoids.

We suppose that there exists a right Haar system $\left\{\lambda_{i, x} ; x \in G^{(0)}\right\}$ on G_{i} for $i=1,2$. We denote by $\mathbb{R}_{>0}$ the multiplicative group of positive real numbers. Suppose that there exists a continuos homomorphism $\Delta_{2}: G_{2} \longrightarrow \mathbb{R}_{>0}$ such that

$$
\begin{align*}
& \int_{G_{1}} \xi \circ \kappa\left(g_{1}, g_{2}\right) d \lambda_{1, s\left(g_{2}\right)}\left(g_{1}\right) \tag{C1}\\
& =\int_{G_{1}} \xi \circ \kappa_{1}\left(g_{1}, g_{2}^{-1}\right) \Delta_{2}\left(g_{2}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right)
\end{align*}
$$

for every $g_{2} \in G_{2}$ and every positive Borel function ξ on \mathcal{T}. Suppsoe that there exists a continuos homomorphism $\Delta_{1}: G_{1} \longrightarrow \mathbb{R}_{>0}$ such that

$$
\begin{align*}
& \int_{G_{2}} \xi \circ \kappa\left(g_{1}, g_{2}\right) d \lambda_{2, s\left(g_{1}\right)}\left(g_{2}\right) \tag{C2}\\
& =\int_{G_{2}} \xi \circ \kappa_{2}\left(g_{1}^{-1}, g_{2}\right) \Delta_{1}\left(g_{1}\right)^{-1} d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right)
\end{align*}
$$

for every $g_{1} \in G_{1}$ and every positive Borel function ξ on \mathcal{T}. Note that equations (C1) and (C2) imply the following equations (D1) and (D2) respectively:

$$
\begin{equation*}
\int_{G_{1}} \xi\left(g_{2} \triangleright g_{1}^{-1}\right) d \lambda_{1, s\left(g_{2}\right)}\left(g_{1}\right)=\int_{G_{1}} \xi\left(g_{1}^{-1}\right) \Delta_{2}\left(g_{2}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) \tag{D1}
\end{equation*}
$$

for every $g_{2} \in G_{2}$ and every positive Borel function ξ on G_{1} and

$$
\begin{equation*}
\int_{G_{2}} \xi\left(g_{2} \triangleleft g_{1}\right) d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right)=\int_{G_{2}} \xi\left(g_{2}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(g_{2}\right) \tag{D2}
\end{equation*}
$$

for every $g_{1} \in G_{1}$ and every positive Borel function ξ on G_{2}.
If G is an r-discrete groupoid, then the equations (C1) and (C2) hold for $\Delta_{1}=\Delta_{2}=1$ (Proposition 2.6). If G is a groupoid arising from an action of a semidirect product group on a topological space, then the equations (C1) and (C2) hold for $\Delta_{1}=1$ (see $\S 8$).

Lemma 2.3. The following equations hold:
(1) $\Delta_{1}\left(g_{2} \triangleright g_{1}\right)=\Delta_{1}\left(g_{1}\right)$,
(2) $\Delta_{2}\left(g_{2} \triangleleft g_{1}\right)=\Delta_{2}\left(g_{2}\right)$,
for $\left(g_{2}, g_{1}\right) \in G^{(2)} \cap\left(G_{2} \times G_{1}\right)$.
Proof. (1) For $\xi \in C_{c}\left(G_{2}\right)$ and $\left(g_{2}, g_{1}\right) \in G^{(2)} \cap\left(G_{2} \times G_{1}\right)$, we have

$$
\begin{aligned}
& \int_{G_{2}} \xi\left(h_{2}\right) \Delta_{1}\left(g_{2} \triangleright g_{1}\right) d \lambda_{2, s\left(g_{2} \triangleright g_{1}\right)}\left(h_{2}\right) \\
& =\int_{G_{2}} \xi\left(h_{2} \triangleleft\left(g_{2} \triangleright g_{1}\right)\right) d \lambda_{2, r\left(g_{2} \triangleright g_{1}\right)}\left(h_{2}\right) \quad \text { by (D2) } \\
& =\int_{G_{2}} \xi\left(\left(\left(h_{2} g_{2}\right) \triangleleft g_{1}\right)\left(g_{2} \triangleleft g_{1}\right)^{-1}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right) \quad \text { by Lemma2.2(4) } \\
& =\int_{G_{2}} \xi\left(\left(h_{2} \triangleleft g_{1}\right)\left(g_{2} \triangleleft g_{1}\right)^{-1}\right) d \lambda_{2, r\left(g_{1}\right)}\left(h_{2}\right) \\
& =\int_{G_{2}} \xi\left(h_{2}\left(g_{2} \triangleleft g_{1}\right)^{-1}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) \quad \text { by (D2) } \\
& =\int_{G_{2}} \xi\left(h_{2}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{2, s\left(g_{2} \triangleright g_{1}\right)}\left(h_{2}\right),
\end{aligned}
$$

where the last equation follows from the fact that $r\left(g_{2} \triangleleft g_{1}\right)=s\left(g_{2} \triangleright g_{1}\right)$. The statement (2) is proved similarly.

Using the equation (D2), we can prove the following:

Theorem 2.4. There exists a right Haar system $\left\{\nu_{x} ; x \in G^{(0)}\right\}$ of \mathcal{T} such that

$$
\begin{aligned}
& \int_{\mathcal{T}} f(u) d \nu_{x}(u) \\
& =\int_{G_{2}} \int_{G_{1}} f \circ \kappa\left(g_{1}, g_{2}^{-1}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
\end{aligned}
$$

for $f \in C_{c}(\mathcal{T})$ and $x \in G^{(0)}$.
Proof. We define measures $\left\{\nu_{x} ; x \in G^{(0)}\right\}$ by the equation in the theorem. We will show that the right invariance of $\left\{\nu_{x}\right\}$. For $f \in C_{c}(\mathcal{T})$ and $u=\left(g_{1}, g_{2}\right) \in \mathcal{T}$, we have

$$
\begin{align*}
& \int_{\mathcal{T}} f(v u) d \nu_{r_{\mathcal{T}}(u)}(v) \\
& =\iint f\left(g_{1}\left(\left(h_{2} g_{2}\right)^{-1} \triangleright h_{1}^{-1}\right),\left(\left(h_{2} g_{2}\right)^{-1} \triangleleft h_{1}^{-1}\right)^{-1}\right) \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right) \\
& =\iint f\left(g_{1}\left(\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right),\left(h_{2}^{-1} \triangleleft h_{1}^{-1}\right)^{-1}\right) \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) . \quad(*)\right. \tag{*}
\end{align*}
$$

Since we have

$$
\begin{aligned}
g_{1}\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right) & =p_{1}\left(\left\{h_{1}\left(h_{2} \triangleright g_{1}^{-1}\right)\left(h_{2} \triangleleft g_{1}^{-1}\right)\right\}^{-1}\right), \\
h_{2}^{-1} \triangleleft h_{1}^{-1} & =p_{2}\left(\left\{h_{1}\left(h_{2} \triangleright g_{1}^{-1}\right)\left(h_{2} \triangleleft g_{1}^{-1}\right)\right\}^{-1}\right),
\end{aligned}
$$

the equation $(*)$ is equal to

$$
\begin{aligned}
& \iint f\left(p_{1}\left(\left\{h_{1}\left(h_{2} \triangleleft g_{1}^{-1}\right)\right\}^{-1}\right), p_{2}\left(\left\{h_{1}\left(h_{2} \triangleleft g_{1}^{-1}\right\}^{-1}\right)^{-1}\right) \Delta_{1}\left(h_{1} g_{1}\right)\right. \\
& \quad \times d \lambda_{1, r\left(h_{2} \triangleleft g_{1}^{-1}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{1}\right)}\left(h_{2}\right) \\
& =\iint f\left(p_{1}\left(\left\{h_{1} h_{2}\right\}^{-1}\right), p_{2}\left(\left\{h_{1} h_{2}\right\}^{-1}\right)^{-1}\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{1}\right)}\left(h_{2}\right) \quad \text { by }(\mathrm{D} 2) \\
& =\int_{\mathcal{T}} f(v) d \nu_{\mathcal{S}_{\mathcal{T}}(u)}(v)
\end{aligned}
$$

Corollary 2.5. There exists a right Haar system $\left\{\lambda_{x} ; x \in G^{(0)}\right\}$ of G such that

$$
\int_{G} f(g) d \lambda_{x}(g)=\int_{G_{2}} \int_{G_{1}} f\left(g_{1} g_{2}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
$$

for $f \in C_{c}(G)$ and $x \in G^{(0)}$.
Proof. Let $\left\{\lambda_{x}\right\}$ be the image of $\left\{\nu_{x}\right\}$ by ω. Then $\left\{\lambda_{x}\right\}$ has the desired property.
As for an r-discrete groupoid, we have the following results:
Proposition 2.6. Suppose that $\left(G_{1}, G_{2}\right)$ is a matched pair of an r-discrete groupoid G.
(1) $\quad G_{i}$ is r-discrete $(i=1,2)$.
(2) If each of G_{1} and G_{2} has a right Haar system, then the equations (C1) and (C2) are hold with $\Delta_{1}=\Delta_{2}=1$.
(3) If each of G_{1} and G_{2} has a right Haar system, then G_{i} is open $(i=1,2)$.

Proof. (1) The groupoid G is said to be r-discrete if $G^{(0)}$ is open in G ([9], p.18, Definition 2.6, see also [8], p.44). Since we have $G_{i}^{(0)}=G^{(0)}, G_{i}$ is r-discrete.
(2) If G_{i} has a right Haar system, then it is essentially the counting measure system ([9], p.18, Lemma 2.7). It follows from Lemma 2.2 that, for every $g_{2} \in G_{2}$, the map $g_{1} \in G_{1}^{s\left(g_{2}\right)} \mapsto g_{2} \triangleright g_{1} \in G_{1}^{r\left(g_{2}\right)}$ is a bijection. This implies that the equation (C 1$)$ holds. It follows from Lemma 2.2 that, for every $g_{1} \in G_{1}$, the map $g_{2} \in G_{2, r\left(g_{1}\right)} \mapsto g_{2} \triangleleft g_{1} \in G_{2, s\left(g_{1}\right)}$ is a bijection. This implies that the equation (C2) holds.
(3) It follows from the above (2) and Corollary 2.5 that G has a right Haar system. For every subset U of G, we donte by $r \mid U$ (resp. $s \mid U$) the restriction of r (resp. s) to U. We denote by $U \in G^{o p}$ when U is an open set of G and $r \mid U$ and $s \mid U$ are homeomorphisms from U into G. Then $G^{o p}$ is a basis for the toplogy of G ([9], p.19, Proposition 2.8 and [8], p.44). Similary $G_{i}^{o p}$ is a basis for the topology of G_{i}. For every $g_{i} \in G_{i}$, there exist $U \in G_{i}^{o p}$ and $V \in G^{o p}$ such that $g_{i} \in U \cap V$. Since $U \cap V \in G_{i}^{o p}, r(U \cap V)$ is open in G. Set $W=r^{-1}(r(U \cap V)) \cap V$, which is an open neighborhood of g_{i} in G. Since r is one-to-one on V, W is a subset of G_{i}. Therefore G_{i} is open in G.

3 Representations of groupoid C^{*}-algebras We denote by $C_{c}(G)$ the set of complex valued continuous functions on G with compact supports. Then, $C_{c}(G)$ is a *-algebra with the following product and involution:

$$
\begin{aligned}
(a b)(g) & =\int_{G} a\left(g h^{-1}\right) b(h) d \lambda_{s(g)}(h) \\
a^{*}(g) & =\overline{a\left(g^{-1}\right)}
\end{aligned}
$$

for $a, b \in C_{c}(G)$ and $g \in G$. For $x \in G^{(0)}$, let $E_{G, x}$ be the Hilbert space $L^{2}\left(G, \lambda_{x}\right)$, where we assume that the inner product is linear in the second variable. Define a $*$-representation $\pi_{G, x}: C_{c}(G) \rightarrow \mathcal{L}\left(E_{G, x}\right)$ by

$$
\left(\pi_{G, x}(a) \xi\right)(g)=\int_{G} a\left(g h^{-1}\right) \xi(h) d \lambda_{x}(h)
$$

for $a \in C_{c}(G), \xi \in E_{G, x}$ and $g \in G_{x}$. Define the reduced norm $\|a\|$ by

$$
\|a\|=\sup \left\{\left\|\pi_{G, x}(a)\right\| ; x \in G^{(0)}\right\}
$$

The reduced groupoid C^{*}-algebra $C_{r}^{*}(G)$ is the completion of $C_{c}(G)$ by the reduced norm. We can extend $\pi_{G, x}$ to the $*$-representation of $C_{r}^{*}(G)$ on $E_{G, x}$, which we denote again by $\pi_{G, x}$.

We denote by $C_{0}\left(G^{(0)}\right)$ the commutative C^{*}-algebra of complex valued continuous functions on $G^{(0)}$ vanishing at infinity. Set $A_{0}=C_{0}\left(G^{(0)}\right)$. Let E_{G} be a Hilbert A_{0}-module obtained by the completion of a pre-Hilbert A_{0}-module $C_{c}(G)$ with the following structure:

$$
\begin{aligned}
& \left(\xi a_{0}\right)(g)=\xi(g) a_{0}(s(g)) \\
& \langle\xi, \eta\rangle(x)=\int_{G} \overline{\xi(g)} \eta(g) d \lambda_{x}(g)
\end{aligned}
$$

for $\xi, \eta \in C_{c}(G), a_{0} \in A_{0}, g \in G$ and $x \in G^{(0)}$. We denote by $\mathcal{L}_{A_{0}}\left(E_{G}\right)$ be the C^{*}-algebra of bounded adjointable operators from E_{G} to itself. Define an injective $*$-representation $\pi_{G}: C_{r}^{*}(G) \rightarrow \mathcal{L}_{A_{0}}\left(E_{G}\right)$ by

$$
\left(\pi_{G}(a) \xi\right)(g)=\int_{G} a\left(g h^{-1}\right) \xi(h) d \lambda_{s(g)}(h)
$$

for $a \in C_{c}(G) \subset C_{r}^{*}(G), \xi \in C_{c}(G) \subset E_{G}$ and $g \in G$. We can similarly define a representation $\left(\pi_{G_{i}}, E_{G_{i}}\right)$ of $C_{r}^{*}\left(G_{i}\right)$ with respect to $\left\{\lambda_{i, x}\right\}(i=1,2)$ and a representation $\left(\pi_{\mathcal{T}}, E_{\mathcal{T}}\right)$ of $C_{r}^{*}(\mathcal{T})$ with respect to $\left\{\nu_{x}\right\}$.
Lemma 3.1. For $a, \xi \in C_{c}(\mathcal{T})$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$, the following equation holds:

$$
\begin{aligned}
& \left(\pi_{\mathcal{T}}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\iint a\left(h_{1}, h_{2}^{-1}\right) \xi\left(p_{1}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right), p_{2}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right)^{-1}\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right)
\end{aligned}
$$

Proof. It follows from Theorem 2.4 that we have

$$
\begin{aligned}
& \left(\pi_{\mathcal{T}}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int a\left(\left(h_{1}, h_{2}\right)^{-1}\right) \xi\left(\left(h_{1}, h_{2}\right)\left(g_{1}, g_{2}\right)\right) d \nu_{r_{\mathcal{T}}\left(g_{1}, g_{2}\right)}\left(h_{1}, h_{2}\right) \\
& =\iint a \circ \kappa^{2}\left(h_{1}, h_{2}^{-1}\right) \xi\left(\kappa\left(h_{1}, h_{2}^{-1}\right)\left(g_{1}, g_{2}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right) .
\end{aligned}
$$

It follows from Lemma 2.2 (1) and (4) that we have

$$
\begin{aligned}
& \kappa\left(h_{1}, h_{2}^{-1}\right)\left(g_{1}, g_{2}\right) \\
& =\left(g_{1}\left(g_{2}^{-1} \triangleright\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right)\right),\left(h_{2}^{-1} \triangleleft h_{1}^{-1}\right)^{-1}\left\{g_{2}^{-1} \triangleleft\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right)\right\}^{-1}\right) \\
& =\left(g_{1}\left(\left(h_{2} g_{2}\right)^{-1} \triangleright h_{1}^{-1}\right),\left(\left(h_{2} g_{2}\right)^{-1} \triangleleft h_{1}^{-1}\right)^{-1}\right) \\
& =\left(p_{1}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right), p_{2}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right) .\right.
\end{aligned}
$$

Let \tilde{E}_{G} be a Hilbert A_{0}-module obtained by the completion of a pre-Hilbert A_{0}-module $C_{c}(G)$ with the following structure:

$$
\begin{aligned}
& \left(\xi a_{0}\right)(g)=\xi(g) a_{0}(r(g)) \\
& \langle\xi, \eta\rangle(x)=\int_{G} \overline{\xi\left(g^{-1}\right)} \eta\left(g^{-1}\right) d \lambda_{x}(g)
\end{aligned}
$$

for $\xi, \eta \in C_{c}(G), a_{0} \in A_{0}, g \in G$ and $x \in G^{(0)}$. Define an isomorphism $J_{G}: E_{G} \rightarrow \tilde{E}_{G}$ by $\left(J_{G} \xi\right)(g)=\xi\left(g^{-1}\right)$ for $\xi \in C_{c}(G) \subset E_{G}$ and $g \in G$. Define an injective $*$-representaion $\tilde{\pi}_{G}: C_{r}^{*}(G) \rightarrow \mathcal{L}_{A_{0}}\left(\tilde{E}_{G}\right)$ by $\tilde{\pi}_{G}(a)=J_{G} \pi_{G}(a) J_{G}^{*}$. We can similarly define a representation $\left(\tilde{\pi}_{G_{i}}, \tilde{E}_{G_{i}}\right)$ of $C_{r}^{*}\left(G_{i}\right)(i=1,2)$ and a representation $\left(\tilde{\pi}_{\mathcal{T}}, \tilde{E}_{\mathcal{T}}\right)$ of $C_{r}^{*}(\mathcal{T})$.

Define a $*$-homomorphism $\phi: A_{0} \rightarrow \mathcal{L}_{A_{0}}\left(E_{G_{2}}\right)$ by $\phi\left(a_{0}\right) \xi=\xi a_{0}$ for $a_{0} \in A_{0}$ and $\xi \in E_{G_{2}}$. We denote by E the interior tensor product $E_{G_{1}} \otimes_{\phi} E_{G_{2}}$ (cf. [3]). Note that A_{0}-valued inner product of E is given by

$$
\langle\xi, \eta\rangle(x)=\int_{G_{2}} \int_{G_{1}} \overline{\xi\left(g_{1}, g_{2}\right)} \eta\left(g_{1}, g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
$$

for $\xi, \eta \in C_{c}(\mathcal{T}) \subset E$ and $x \in G^{(0)}$. Define an injective $*$-homomorphism $\pi_{G_{1}} \otimes \iota$: $C_{r}^{*}\left(G_{1}\right) \rightarrow \mathcal{L}_{A_{0}}(E)$ by $\left(\pi_{G_{1}} \otimes \iota\right)(a)=\pi_{G_{1}}(a) \otimes_{\phi} I_{E_{G_{2}}}$ for $a \in C_{r}^{*}\left(G_{1}\right)$. Since ϕ and $\pi_{G_{2}}$ commute, we can define an injective $*$-homomorphism $\iota \otimes \pi_{G_{2}}: C_{r}^{*}\left(G_{2}\right) \rightarrow \mathcal{L}_{A_{0}}(E)$ by $\left(\iota \otimes \pi_{G_{2}}\right)(a)=I_{E_{G_{1}}} \otimes_{\phi} \pi_{G_{2}}(a)$ for $a \in C_{r}^{*}\left(G_{2}\right)$.

Define an injective $*$-homomorphism $\rho_{G}: C_{0}(G) \rightarrow \mathcal{L}_{A_{0}}\left(E_{G}\right)$ by $\left(\rho_{G}(a) \xi\right)(g)=a(g) \xi(g)$. We can define an injective $*$-homomorphism $\rho_{G_{1}} \otimes \iota: C_{0}\left(G_{1}\right) \rightarrow \mathcal{L}_{A_{0}}(E)$ by $\left(\rho_{G_{1}} \otimes \iota\right)(a)=$ $\rho_{G_{1}}(a) \otimes_{\phi} I_{E_{G_{2}}}$ and an injective $*$-homomorphism $\iota \otimes \rho_{G_{2}}: C_{0}\left(G_{2}\right) \rightarrow \mathcal{L}_{A_{0}}(E)$ by $(\iota \otimes$ $\left.\rho_{G_{2}}\right)(a)=I_{E_{G_{1}}} \otimes_{\phi} \rho_{G_{2}}(a)$.

4 Hilbert A_{0}-modules associated with \mathcal{T} In this section, we introduce several Hilbert A_{0}-modules which are completion of $C_{c}(\mathcal{T})$. We have already introduced $E_{\mathcal{T}}, \tilde{E}_{\mathcal{T}}$ and E in Section 3. In the following, let $\xi, \eta \in C_{c}(\mathcal{T}), a \in A_{0},\left(g_{1}, g_{2}\right) \in \mathcal{T}$ and $x \in G^{(0)}$.

The Hilbert A_{0}-module E is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(s\left(g_{1}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi\left(g_{1}, g_{2}\right)} \eta\left(g_{1}, g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
\end{aligned}
$$

The Hilbert A_{0}-module E_{1} is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(r\left(g_{1}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi\left(g_{1}^{-1}, g_{2}\right)} \eta\left(g_{1}^{-1}, g_{2}\right) d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right)
\end{aligned}
$$

The Hilbert A_{0}-module E_{2} is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(r\left(g_{2}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi\left(g_{1}, g_{2}^{-1}\right)} \eta\left(g_{1}, g_{2}^{-1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
\end{aligned}
$$

The Hilbert A_{0}-module \tilde{E} is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(s\left(g_{2} \triangleright g_{1}^{-1}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi \circ \kappa_{2}\left(g_{1}^{-1}, g_{2}\right)} \eta \circ \kappa_{2}\left(g_{1}^{-1}, g_{2}\right) d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right)
\end{aligned}
$$

The Hilbert A_{0}-module $E_{\mathcal{T}}$ is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(r\left(g_{1}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi \circ \kappa\left(g_{1}, g_{2}^{-1}\right)} \eta \circ \kappa\left(g_{1}, g_{2}^{-1}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right) .
\end{aligned}
$$

The Hilbert A_{0}-module $\tilde{E}_{\mathcal{T}}$ is the completion of $C_{c}(\mathcal{T})$ with the following structure:

$$
\begin{aligned}
(\xi a)\left(g_{1}, g_{2}\right) & =\xi\left(g_{1}, g_{2}\right) a\left(r\left(g_{2}\right)\right) \\
\langle\xi, \eta\rangle(x) & =\iint \overline{\xi\left(g_{1}, g_{2}^{-1}\right)} \eta\left(g_{1}, g_{2}^{-1}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
\end{aligned}
$$

Using the equations (C1), (C2) and (D2), we have the following equations:

$$
\begin{aligned}
\langle\xi, \eta\rangle_{\tilde{E}}(x) & =\iint \overline{\xi \circ \kappa\left(g_{1}, g_{2}\right)} \eta \circ \kappa\left(g_{1}, g_{2}\right) \Delta_{1}\left(g_{1}\right) d \lambda_{1, x}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right), \\
\langle\xi, \eta\rangle_{E_{\mathcal{T}}}(x) & =\iint \overline{\xi\left(g_{1}^{-1}, g_{2}\right)} \eta\left(g_{1}^{-1}, g_{2}\right) \Delta_{2}\left(g_{2}\right)^{-1} d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right)
\end{aligned}
$$

There exist the following isomorphisms between Hilbert A_{0}-modules:

$$
\begin{aligned}
& T: E_{2} \longrightarrow E_{\mathcal{T}} \text { defined by }(T \xi)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{1 / 2} \xi \circ \kappa\left(g_{1}, g_{2}\right), \\
& T_{1}: E \longrightarrow E_{\mathcal{T}} \text { defined by }\left(T_{1} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{1 / 2} \Delta_{2}\left(g_{2}\right)^{1 / 2} \xi \circ \kappa_{1}\left(g_{1}, g_{2}\right), \\
& T_{2}: E \longrightarrow \tilde{E}_{\mathcal{T}} \text { defined by }\left(T_{2} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{-1 / 2} \Delta_{2}\left(g_{2}\right)^{-1 / 2} \xi \circ \kappa_{2}\left(g_{1}, g_{2}\right), \\
& \tilde{T}_{2}: \tilde{E} \longrightarrow E_{\mathcal{T}} \text { defined by }\left(\tilde{T}_{2} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{2}\left(g_{2}\right)^{1 / 2} \xi \circ \kappa_{2}\left(g_{1}, g_{2}\right) .
\end{aligned}
$$

We also have the following isomorphisms between Hilbert A_{0}-modules:

$$
\begin{aligned}
& S_{1}: E_{1} \longrightarrow E_{\mathcal{T}} \text { defined by }\left(S_{1} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{2}\left(g_{2}\right)^{1 / 2} \xi\left(g_{1}, g_{2}\right) \\
& S_{2}: E_{2} \longrightarrow \tilde{E}_{\mathcal{T}} \text { defined by }\left(S_{2} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{-1 / 2} \xi\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Therefore the above Hilbert A_{0}-modules are isomorphic with each other.
Theorem 4.1. The following equations hold:

$$
\begin{align*}
& \left(\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2} \xi\right)\left(g_{1}, g_{2}\right) \tag{1}\\
& =\int_{G_{2}} \int_{G_{1}} a\left(h_{1}, h_{2}^{-1}\right) \xi\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) \Delta_{2}\left(h_{2}\right)^{1 / 2} d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right)
\end{align*}
$$

for $a \in C_{c}(\mathcal{T}) \subset C_{r}^{*}(\mathcal{T}), \xi \in C_{c}(\mathcal{T}) \subset \tilde{E}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$, where

$$
\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)=\left(p_{1}\left(h_{1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2}\left(h_{1} h_{2}\right)^{-1}\right)\right)
$$

$$
\begin{align*}
& \left(T_{1}\left(\pi_{G_{1}} \otimes \iota\right)(a) T_{1}^{*} \xi\right)\left(g_{1}, g_{2}\right) \tag{2}\\
& =\int_{G_{1}} a\left(h_{1}^{-1}\right) \xi\left(g_{1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right)
\end{align*}
$$

for $a \in C_{c}\left(G_{1}\right) \subset C_{r}^{*}\left(G_{1}\right), \xi \in C_{c}(\mathcal{T}) \subset E_{\mathcal{T}}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$.

$$
\begin{align*}
& \left(T_{2}\left(\iota \otimes \pi_{G_{2}}\right)(a) T_{2}^{*} \xi\right)\left(g_{1}, g_{2}\right) \tag{3}\\
& =\int_{G_{2}} a\left(h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2} h_{2}^{-1}\right) \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right)
\end{align*}
$$

for $a \in C_{c}\left(G_{2}\right) \subset C_{r}^{*}\left(G_{2}\right), \xi \in C_{c}(\mathcal{T}) \subset \tilde{E}_{\mathcal{T}}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$.
Proof. (1) Note that we have $\left(\tilde{T}_{2}^{*} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{2}\left(g_{2}\right)^{1 / 2} \xi \circ \kappa_{2}\left(g_{1}, g_{2}\right)$. Put $\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)=$ $p_{1}\left(g_{2} g_{1}^{-1}\right)^{-1} g_{2}\left(h_{1} h_{2}\right)^{-1}$. It follows from Lemma 3.1 that we have

$$
\begin{aligned}
& \left(\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2} \xi\right)\left(g_{1}, g_{2}\right) \\
& =\Delta_{2}\left(g_{2}\right)^{1 / 2} \iint a\left(h_{1}, h_{2}^{-1}\right) \Delta_{2}\left(p_{2}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)^{-1}\right)^{1 / 2} \\
& \quad \times \xi \circ \kappa_{2}\left(p_{1}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right), p_{2}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)^{-1}\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right) .
\end{aligned}
$$

Since we have

$$
p_{1}\left[p_{2}\left\{g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right\} p_{1}\left\{h_{1} h_{2} p_{1}\left(g_{2} g_{1}^{-1}\right)\right\}\right]^{-1}=p_{1}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right)
$$

we have

$$
\begin{aligned}
& \left(p_{1}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right), p_{2}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right)^{-1}\right) \\
& =\kappa_{2}\left(p_{1}\left(h_{1} h_{2} p_{1}\left(g_{2} g_{1}^{-1}\right)\right)^{-1}, p_{2}\left(g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right)\right)
\end{aligned}
$$

By substituting g_{1} for $p_{1}\left(g_{2} g_{1}^{-1}\right)^{-1}$ and g_{2} for g_{2}^{-1} in the above equation, we have

$$
\left.\left(p_{1}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right), p_{2}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)^{-1}\right)=\kappa_{2}\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)\right)
$$

Since we have $p_{2}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)=\left(g_{2} h_{2}^{-1}\right) \triangleleft h_{1}^{-1}$, we have, by Lemma 2.3,

$$
\Delta_{2}\left(p_{2}\left(\gamma\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)^{-1}\right)=\Delta_{2}\left(g_{2}\right)^{-1} \Delta_{2}\left(h_{2}\right)
$$

(2) Note that we have $\left(T_{1}^{*} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{1 / 2} \Delta_{2}\left(g_{2}\right)^{-1 / 2} \xi \circ \kappa_{1}\left(g_{1}, g_{2}\right)$. The equation is an immediate consequence of the formula

$$
\left(\left(\pi_{G_{1}} \otimes \iota\right)(a) \xi\right)\left(g_{1}, g_{2}\right)=\int_{G_{1}} a\left(h_{1}^{-1}\right) \xi\left(h_{1} g_{1}, g_{2}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right)
$$

(3) Note that we have $\left(T_{2}^{*} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{1 / 2} \Delta_{2}\left(g_{2}\right)^{-1 / 2} \xi \circ \kappa_{2}\left(g_{1}, g_{2}\right)$. The equation is an immediate consequence of the formula

$$
\left(\left(\iota \otimes \pi_{G_{2}}\right)(a) \xi\right)\left(g_{1}, g_{2}\right)=\int_{G_{2}} a\left(h_{2}^{-1}\right) \xi\left(g_{1}, h_{2} g_{2}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right) .
$$

$5 \quad C^{*}$-algebras associated with \mathcal{T} For $a, b \in C_{c}(\mathcal{T})$, define a product $a \sharp b$ and an involution a° as follows:

$$
\begin{aligned}
& (a \sharp b)\left(g_{1}, g_{2}\right)=\int_{G_{1}} a\left(h_{1}^{-1}, g_{2} \triangleleft\left(h_{1} g_{1}\right)^{-1}\right) b\left(h_{1} g_{1}, g_{2}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right), \\
& a^{\circ}=\bar{a} \circ \kappa_{1} .
\end{aligned}
$$

For $a, b \in C_{c}(\mathcal{T})$, define a product $a b b$ and an involution a^{\diamond} as follows:

$$
\begin{aligned}
& (a b b)\left(g_{1}, g_{2}\right)=\int_{G_{2}} a\left(\left(\left(h_{2} g_{2}\right) \triangleright g_{1}^{-1}\right)^{-1}, h_{2}^{-1}\right) b\left(g_{1}, h_{2} g_{2}\right) d \lambda_{2, r\left(g_{2}\right)}\left(h_{2}\right), \\
& a^{\diamond}=\bar{a} \circ \kappa_{2} .
\end{aligned}
$$

Then $\left(C_{c}(\mathcal{T}), \sharp, \circ\right)$ and $\left(C_{c}(\mathcal{T}), b, \diamond\right)$ are $*$-algebras.
For $x \in G^{(0)}$, define measures ${ }^{x} m$ and m^{x} on \mathcal{T} as follows:

$$
\begin{aligned}
\int_{\mathcal{T}} f(u) d^{x} m(u) & =\iint f\left(g_{1}^{-1}, g_{2}\right) d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) \\
\int_{\mathcal{T}} f(u) d m^{x}(u) & =\iint f\left(g_{1}, g_{2}^{-1}\right) d \lambda_{1, r\left(g_{2}\right)}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right)
\end{aligned}
$$

for $f \in C_{c}(\mathcal{T})$. The support of ${ }^{x} m$ is ${ }^{x} \mathcal{T}=\left\{\left(g_{1}, g_{2}\right) \in \mathcal{T} ; r_{G}\left(g_{1}\right)=x\right\}$ and the support of m^{x} is $\mathcal{T}^{x}=\left\{\left(g_{1}, g_{2}\right) \in \mathcal{T} ; r_{G}\left(g_{2}\right)=x\right\}$. Put ${ }^{x} H=L^{2}\left(\mathcal{T},{ }^{x} m\right)$ and $H^{x}=L^{2}\left(\mathcal{T}, m^{x}\right)$, which are Hilbert spaces whose inner products are linear in the second variables. For $a, \xi \in C_{c}(\mathcal{T})$, define an element ${ }^{x} \tilde{\rho}(a) \xi$ of $C_{c}(\mathcal{T})$ by

$$
\left({ }^{x} \tilde{\rho}(a) \xi\right)\left(g_{1}, g_{2}\right)=\int a\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \xi\left(g_{1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \Delta\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right)
$$

and define an element $\tilde{\hat{\rho}}^{x}(a) \xi$ of $C_{c}(\mathcal{T})$ by

$$
\begin{aligned}
& \left(\tilde{\hat{\rho}}^{x}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int a\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2} h_{2}^{-1}\right) \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right) .
\end{aligned}
$$

We denote by $\mathcal{L}\left({ }^{x} H\right)$ the $*$-alegebra of bounded linear operators on ${ }^{x} H$ for each x. Then we have the following theorem.

Proposition 5.1. (1) For every $a \in C_{c}(\mathcal{T}),{ }^{x} \tilde{\rho}(a)$ is an element of $\mathcal{L}\left({ }^{x} H\right)$. The map ${ }^{x} \tilde{\rho}$ is $a *$-represetation of $\left(C_{c}(\mathcal{T}), \sharp, \circ\right)$ on ${ }^{x} H$.
(2) For every $a \in C_{c}(\mathcal{T})$, $\tilde{\hat{\rho}}^{x}(a)$ is an element of $\mathcal{L}\left(H^{x}\right)$. The map $\tilde{\hat{\rho}}^{x}$ is $a *$-representation of $\left(C_{c}(\mathcal{T}), b, \diamond\right)$ on H^{x}.

Proof. Let K be a support of a. For $i=1,2$, let K_{i} be the set of $g_{i} \in G_{i}$ with $\left(g_{1}, g_{2}\right) \in K$. Put $M_{i}\left(K_{i}\right)=\sup \left\{\lambda_{i, x}\left(K_{i}\right) ; x \in G^{(0)}\right\}$. We denote by χ_{K} the characteristic function of K.
(1) For $\left(g_{1}, g_{2}\right) \in \mathcal{T}$ with $r_{G}\left(g_{1}\right)=x$, we have

$$
\begin{aligned}
&\left\|^{x} \tilde{\rho}(a) \xi\right\|_{x}^{2} H \\
& \leq\|a\|_{\infty}^{2} \iint\left\{\int \chi_{K}\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right)\left|\xi\left(g_{1}^{-1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right)\right| \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right)\right\}^{2} \\
& \times d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) \\
& \leq\|a\|_{\infty}^{2} \iint\left\{\int \chi_{K}\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right)\right\} \\
& \times\left\{\int \chi_{K}\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right)\left|\xi\left(g_{1}^{-1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right)\right|^{2} \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right)\right\} \\
& \times d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) \\
& \leq M_{1}\left(K_{1}^{-1}\right)\|a\|_{\infty}^{2} \iiint \chi_{K_{1}}\left(h_{1}^{-1}\right)\left|\xi\left(g_{1}^{-1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right)\right|^{2} \Delta_{1}\left(h_{1}\right) \\
& \times d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{2, r\left(g_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) \\
&= M_{1}\left(K_{1}^{-1}\right)\|a\|_{\infty}^{2} \\
& \times \iiint \chi_{K_{1}}\left(h_{1}^{-1}\right)\left|\xi\left(g_{1}^{-1} h_{1}^{-1}, g_{2}\right)\right|^{2} d \lambda_{2, r\left(h_{1}\right)}\left(g_{1}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{1, x}\left(g_{1}\right) \\
&= M_{1}\left(K_{1}^{-1}\right)\|a\|_{\infty}^{2} \\
& \times \iiint \chi_{K_{1}}\left(g_{1} h_{1}^{-1}\right)\left|\xi\left(h_{1}^{-1}, g_{2}\right)\right|^{2} d \lambda_{2, r\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{1, x}\left(g_{1}\right) \\
&= M_{1}\left(K_{1}^{-1}\right)\|a\|_{\infty}^{2} \iiint \chi_{K_{1}}\left(g_{1}\right)\left|\xi\left(h_{1}^{-1}, g_{2}\right)\right|^{2} d \lambda_{1, r\left(h_{1}\right)}\left(g_{1}\right) d \lambda_{2, s\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, x}\left(h_{1}\right) \\
& \leq M_{1}\left(K_{1}\right) M_{1}\left(K_{1}^{-1}\right)\|a\|_{\infty}^{2}\|\xi\|_{x}^{2} H .
\end{aligned}
$$

Therefore we can extend ${ }^{x} \tilde{\rho}(a)$ to a bounded operator on ${ }^{x} H$, which we denote again by ${ }^{x} \tilde{\rho}(a)$. Note that we have $\left\|^{x} \tilde{\rho}(a)\right\| \leq M\|a\|_{\infty}$, where we have $M=\left(M_{1}\left(K_{1}\right) M_{1}\left(K_{1}^{-1}\right)\right)^{1 / 2}$.

By a straightforward calculation, we can show that ${ }^{x} \tilde{\rho}(a \sharp b) \xi={ }^{x} \tilde{\rho}(a)^{x} \tilde{\rho}(b) \xi$ for $a, b, \xi \in$
$C_{c}(\mathcal{T})$. We will show that ${ }^{x} \tilde{\rho}\left(a^{\circ}\right)={ }^{x} \tilde{\rho}(a)^{*}$. For $a, \xi, \eta \in C_{c}(\mathcal{T})$, we have

$$
\begin{aligned}
& \left\langle\xi,{ }^{x} \tilde{\rho}(a) \eta\right\rangle_{x} H \\
& =\iiint \bar{\xi}\left(g_{1}^{-1},\left(g_{2} \triangleleft h_{1}^{-1}\right) \triangleleft h_{1}\right) a\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \eta\left(g_{1}^{-1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \\
& \times \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{2, s\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{1, x}\left(g_{1}\right) \\
& =\iiint \bar{\xi}\left(g_{1}^{-1}, g_{2} \triangleleft h_{1}\right) a\left(h_{1}^{-1}, g_{2}\right) \eta\left(g_{1}^{-1} h_{1}^{-1}, g_{2}\right) \\
& \times \Delta_{1}\left(h_{1}\right)^{-1 / 2} d \lambda_{2, r\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, r\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{1, x}\left(g_{1}\right) \quad \text { by }(\mathrm{D} 2) \\
& =\iiint \bar{\xi}\left(g_{1}^{-1}, g_{2} \triangleleft\left(h_{1} g_{1}^{-1}\right)\right) a\left(g_{1} h_{1}^{-1}, g_{2}\right) \eta\left(h_{1}^{-1}, g_{2}\right) \\
& \times \Delta_{1}\left(h_{1} g_{1}^{-1}\right)^{-1 / 2} d \lambda_{2, r\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{1, x}\left(g_{1}\right) \\
& =\iiint \bar{\xi}\left(h_{1}^{-1} g_{1}^{-1}, g_{2} \triangleleft g_{1}^{-1}\right) a\left(g_{1}, g_{2}\right) \eta\left(h_{1}^{-1}, g_{2}\right) \\
& \times \Delta_{1}\left(g_{1}^{-1}\right)^{-1 / 2} d \lambda_{2, r\left(h_{1}\right)}\left(g_{2}\right) d \lambda_{1, r\left(h_{1}\right)}\left(g_{1}\right) d \lambda_{1, x}\left(h_{1}\right) \\
& =\left\langle{ }^{x} \tilde{\rho}\left(a^{\circ}\right) \xi, \eta\right\rangle_{x} H,
\end{aligned}
$$

where the last equation follows from the fact that $a \circ \kappa_{1}\left(g_{1}^{-1}, g_{2} \triangleleft g_{1}^{-1}\right)=a \circ \kappa_{1}^{2}\left(g_{1}, g_{2}\right)=$ $a\left(g_{1}, g_{2}\right)$.
(2) We can prove the statement as in (1). Especially we have $\|\tilde{\hat{\rho}}(a)\| \leq M^{\prime}\|a\|_{\infty}$, where $M^{\prime}=\left(M_{2}\left(K_{2}\right) M_{2}\left(K_{2}^{-1}\right)\right)^{1 / 2}$.

Lemma 5.2. (1) For $a \in C_{c}(\mathcal{T})$, if $x \tilde{\rho}(a)=0$ for every $x \in G^{(0)}$, then $a=0$.
(2) For $a \in C_{c}(\mathcal{T})$, if $\tilde{\hat{\rho}}^{x}(a)=0$ for every $x \in G^{(0)}$, then $a=0$.

Proof. (1) We have, for $\xi \in C_{c}(\mathcal{T})$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$,

$$
\begin{aligned}
& \left({ }^{x} \tilde{\rho}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int a \circ \kappa_{1}\left(h_{1}, g_{2}\right) \xi \circ \kappa_{1}\left(h_{1} g_{1}^{-1}, g_{2} \triangleleft g_{1}^{-1}\right) \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) .
\end{aligned}
$$

For $\xi_{i} \in C_{c}\left(G_{i}\right)(i=1,2)$, put $\xi=\left(\xi_{1} \otimes \xi_{2}\right) \circ \kappa_{1}$. Then we have, for $\left(g_{1}, g_{2}\right) \in{ }^{x} \mathcal{T}$,

$$
\begin{aligned}
0 & =\left({ }^{x} \tilde{\rho}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\xi_{2}\left(g_{2} \triangleleft g_{1}^{-1}\right) \int a \circ \kappa_{1}\left(h_{1}, g_{2}\right) \xi_{1}\left(h_{1} g_{1}^{-1}\right) \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) .
\end{aligned}
$$

This implies that $a \circ \kappa_{1}\left(h_{1}, g_{2}\right)=0$ for $h_{1} \in G_{1, s\left(g_{1}\right)}$. Especially we have $a \circ \kappa_{1}\left(g_{1}, g_{2}\right)=0$ for $\left(g_{1}, g_{2}\right) \in{ }^{x} \mathcal{T}$. Since x is an arbitrary element of G^{0}, we have $a=0$.
(2) We have, for $\xi \in C_{c}(\mathcal{T})$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$,

$$
\begin{aligned}
& (\tilde{\hat{\rho}}(a) \xi)\left(g_{1}, g_{2}\right) \\
& =\int a \circ \kappa_{2}\left(g_{1}, h_{2}\right) \xi \circ \kappa_{2}\left(\left(g_{2} \triangleright g_{1}^{-1}\right)^{-1}, h_{2} g_{2}^{-1}\right) \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) .
\end{aligned}
$$

We can prove the statement as in (1).
We introduce a norm on $\left(C_{c}(\mathcal{T}), \#, \circ\right)$ by $\|a\|=\sup \left\{\left\|^{x} \tilde{\rho}(a)\right\| ; x \in G^{(0)}\right\}$. We denote by B the completion of $\left(C_{c}(\mathcal{T}), \sharp, \circ\right)$ with respect to this norm. We can extend ${ }^{x} \tilde{\rho}$ to
the *-representation of B on ${ }^{x} H$, which we denote again by ${ }^{x} \tilde{\rho}$. There exists an injective *-homomorphism $\tilde{\rho}_{E_{1}}: B \longrightarrow \mathcal{L}_{A_{0}}\left(E_{1}\right)$ such that

$$
\left(\tilde{\rho}_{E_{1}}(a) \xi\right)\left(g_{1}, g_{2}\right)=\int a\left(h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \xi\left(g_{1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right)
$$

for $a \in C_{c}(\mathcal{T}), \xi_{\tilde{p}} \in C_{c}(\mathcal{T}) \subset E_{1}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$. We introduce a norm on $\left(C_{c}(\mathcal{T}), b, \diamond\right)$ by $\|a\|=\sup \left\{\left\|\tilde{\hat{\rho}}^{x}(a)\right\| ; x \in G^{(0)}\right\}$. We denote by \hat{B} the completion of $\left(C_{c}(\mathcal{T}), b, \diamond\right)$ with respect to this norm. We can extend $\tilde{\hat{\rho}}^{x}$ to the $*$-representation of \hat{B} on H^{x}, which we denote again by $\tilde{\hat{\rho}}^{x}$. There exists an injective $*$-homomorphism $\tilde{\hat{\rho}}_{E_{2}}: \hat{B} \longrightarrow \mathcal{L}_{A_{0}}\left(E_{2}\right)$ such that

$$
\begin{aligned}
& \qquad\left(\tilde{\hat{\rho}}_{E_{2}}(a) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int a\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2} h_{2}^{-1}\right) \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right) \\
& \text { for } a \in C_{c}(\mathcal{T}), \xi \in C_{c}(\mathcal{T}) \subset E_{2} \text { and }\left(g_{1}, g_{2}\right) \in \mathcal{T} .
\end{aligned}
$$

$6 \quad C^{*}$-algebras arising from a matched pair of groupoids Let \mathcal{T}_{1} be the fibered product $G_{1 s} \times{ }_{r} G_{2}=\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2} ; s\left(g_{1}\right)=r\left(g_{2}\right)\right\}$ and let \mathcal{T}_{2} be the fibered product $G_{2} \times_{r} G_{1}=\left\{\left(g_{2}, g_{1}\right) \in G_{2} \times G_{1} ; s\left(g_{2}\right)=r\left(g_{1}\right)\right\}$. Define homeomorphisms $\varphi_{1}: \mathcal{T} \rightarrow \mathcal{T}_{1}$ and $\varphi_{2}: \mathcal{T} \rightarrow \mathcal{T}_{2}$ by $\varphi_{1}\left(g_{1}, g_{2}\right)=\left(g_{1}, g_{2}^{-1}\right)$ and $\varphi_{2}\left(g_{1}, g_{2}\right)=\left(g_{2}, g_{1}^{-1}\right)$ respectively.

Define a bijection $\Phi_{1}: C_{c}\left(\mathcal{T}_{1}\right) \rightarrow C_{c}(\mathcal{T})$ by

$$
\Phi_{1}(a)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{1 / 2} \Delta_{2}\left(g_{2}\right)^{-1 / 2}\left(a \circ \varphi_{1} \circ \kappa\right)\left(g_{1}, g_{2}\right)
$$

Since $C_{c}(\mathcal{T})$ is a dense $*$-subalgebra of the C^{*}-algebra $C_{r}^{*}(\mathcal{T})$, we have a $*$-algebraic structure and a C^{*}-norm on $C_{c}\left(\mathcal{T}_{1}\right)$ induced by Φ_{1}. We denote by $C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right)$ the C^{*}-algebra that is the completion of $C_{c}\left(\mathcal{T}_{1}\right)$ with respect to this norm. We can extend Φ_{1} to an isomorphism of $C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right)$ onto $C_{r}^{*}(\mathcal{T})$, which is denoted again by Φ_{1}. Define a bijection $\Phi_{2}: C_{c}\left(\mathcal{T}_{2}\right) \rightarrow C_{c}(\mathcal{T})$ by

$$
\Phi_{2}(a)\left(g_{1}, g_{2}\right)=\Delta_{1}\left(g_{1}\right)^{-1 / 2} \Delta_{2}\left(g_{2}\right)^{1 / 2}\left(a \circ \varphi_{2}\right)\left(g_{1}, g_{2}\right)
$$

Then we have a $*$-algebraic structure and a C^{*}-norm on $C_{c}\left(\mathcal{T}_{2}\right)$ induced by Φ_{2}. We denote by $C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right)$ the C^{*}-algebra that is the completion of $C_{c}\left(\mathcal{T}_{2}\right)$ with respect to this norm. We can extend Φ_{2} to an isomorphism of $C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right)$ onto $C_{r}^{*}(\mathcal{T})$, which is denoted again by Φ_{2}. By the construction, we have

$$
C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right) \cong C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right) \cong C_{r}^{*}(\mathcal{T}) \cong C_{r}^{*}(G)
$$

Then we have the following injective $*$-homomorphisms:

$$
\begin{aligned}
& \operatorname{Ad} \tilde{T}_{2}^{*} \circ \pi_{\mathcal{T}} \circ \Phi_{1}: C_{r}^{*}\left(G_{1}\right) \bowtie C_{r}^{*}\left(G_{2}\right) \longrightarrow \mathcal{L}_{A_{0}}(\tilde{E}), \\
& \operatorname{Ad} \tilde{T}_{2}^{*} \circ \pi_{\mathcal{T}} \circ \Phi_{2}: C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right) \longrightarrow \mathcal{L}_{A_{0}}(\tilde{E}),
\end{aligned}
$$

where $\operatorname{Ad} \tilde{T}_{2}^{*} \circ \pi_{\mathcal{T}}(a)=\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2}$ for $a \in C_{r}^{*}(\mathcal{T})$.
Define a bijection $\varphi_{1 *}: C_{c}\left(\mathcal{T}_{1}\right) \rightarrow C_{c}(\mathcal{T})$ by $\varphi_{1 *}(a)=a \circ \varphi_{1}$. Since $\left(C_{c}(\mathcal{T}), \sharp, \circ\right)$ is a dense $*$-subalgebra of the C^{*}-algebra B, we have a $*$-algebraic structure and a C^{*}-norm on $C_{c}\left(\mathcal{T}_{1}\right)$ induced by $\varphi_{1 *}$. We denote by $C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right)$ the C^{*}-algebra that is the completion of $C_{c}\left(\mathcal{T}_{1}\right)$ with respect to this norm. We can extend $\varphi_{1 *}$ to an isomorphism of $C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right)$ onto B, which is denoted again by $\varphi_{1 *}$. We define a $*$-representation ${ }^{x} \rho$ of
$C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right)$ on ${ }^{x} H$ by ${ }^{x} \rho(a)={ }^{x} \tilde{\rho}\left(\varphi_{1 *}(a)\right)$. We also define an injective $*$-homomorphism $\rho_{E_{1}}: C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right) \longrightarrow \mathcal{L}_{A_{0}}\left(E_{1}\right)$ by $\rho_{E_{1}}=\tilde{\rho}_{E_{1}} \circ \varphi_{1 *}$.

Define a bijection $\varphi_{2 *}: C_{c}\left(\mathcal{T}_{2}\right) \rightarrow C_{c}(\mathcal{T})$ by $\varphi_{2 *}(a)=a \circ \varphi_{2}$. Since $\left(C_{c}(\mathcal{T}), b, \diamond\right)$ is a dense $*$-subalgebra of the C^{*}-algebra \hat{B}, we have a $*$-algebraic structure and a C^{*}-norm on $C_{c}\left(\mathcal{T}_{2}\right)$ induced by $\varphi_{2 *}$. We denote by $C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right)$ the C^{*}-algebra that is the completion of $C_{c}\left(\mathcal{T}_{2}\right)$ with respect to this norm. We can extend $\varphi_{2 *}$ to an isomorphism of $C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right)$ onto \hat{B}, which is denoted again by $\varphi_{2 *}$. We define a $*$-representation $\hat{\rho}^{x}$ of $C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right)$ on H^{x} by $\hat{\rho}^{x}(a)=\tilde{\hat{\rho}}^{x}\left(\varphi_{2 *}(a)\right)$. We also define an injective $*$-homomorphism $\hat{\rho}_{E_{2}}: C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right) \longrightarrow \mathcal{L}_{A_{0}}\left(E_{2}\right)$ by $\hat{\rho}_{E_{2}}=\tilde{\hat{\rho}}_{E_{2}} \circ \varphi_{2 *}$.

7 Representations on Hilbert sapces Let μ be a positive regular Radon measure on $G^{(0)}$. For $i=1,2$, we say that μ is G_{i}-invariant if it satisfies the following equation

$$
\int_{G^{(0)}} \int_{G_{i}} \xi\left(g_{i}^{-1}\right) d \lambda_{i, x}\left(g_{i}\right) d \mu(x)=\int_{G^{(0)}} \int_{G_{i}} \xi\left(g_{i}\right) d \lambda_{i, x}\left(g_{i}\right) d \mu(x)
$$

for $\xi \in C_{c}\left(G_{i}\right)$. In this section, we assume that there exists a $G_{1^{-}}$and G_{2}-invariant measure μ on $G^{(0)}$ whose support is $G^{(0)}$. Then by equations (C1) and (D2), we have

$$
\begin{align*}
& \int_{G^{(0)}} \int_{G_{2}} \int_{G_{1}} \xi \circ \kappa\left(g_{1}, g_{2}\right) d \lambda_{1, x}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right) d \mu(x) \tag{*}\\
& =\int_{G^{(0)}} \int_{G_{2}} \int_{G_{1}} \xi\left(g_{1}, g_{2}\right) \Delta_{1}\left(g_{1}\right) \Delta_{2}\left(g_{2}\right)^{-1} d \lambda_{1, x}\left(g_{1}\right) d \lambda_{2, x}\left(g_{2}\right) d \mu(x)
\end{align*}
$$

for $\xi \in C_{c}(\mathcal{T})$.
Note that the inner products of the following Hilbert spaces are linear in the second variables. We denote by $H_{\mathcal{T}}$ the completion of the pre-Hilbert space $C_{c}(\mathcal{T})$ with the following inner product

$$
\langle\xi, \eta\rangle=\int_{G^{(0)}}\langle\xi, \eta\rangle_{E_{\mathcal{T}}}(x) d \mu(x)
$$

The Hilbert space $\tilde{H}_{\mathcal{T}}, \tilde{H}$ and H are similarly defined with respect to the A_{0}-valued inner product $\langle\xi, \eta\rangle_{\tilde{E}_{\mathcal{T}}},\langle\xi, \eta\rangle_{\tilde{E}}$ and $\langle\xi, \eta\rangle_{E}$ on $C_{c}(\mathcal{T})$ respectively. Since μ is G_{1}-invariant, we can define an isomorphism $I_{\mathcal{T}}: H_{\mathcal{T}} \rightarrow H$ by $\left(I_{\mathcal{T}} \xi\right)\left(g_{1}, g_{2}\right)=\Delta_{2}\left(g_{2}\right)^{-1 / 2} \xi\left(g_{1}, g_{2}\right)$. Since μ is G_{2}-invariant, we can define an isomorphism $\tilde{I}_{\mathcal{T}}: \tilde{H}_{\mathcal{T}} \rightarrow H$ by $\left(\tilde{I}_{\mathcal{T}} \xi\right)\left(g_{1}, g_{2}\right)=$ $\Delta_{1}\left(g_{1}\right)^{1 / 2} \xi\left(g_{1}, g_{2}\right)$. By the equation (*), we can define an isomorphism $\tilde{I}: \tilde{H} \rightarrow H$ by $(\tilde{I} \xi)\left(g_{1}, g_{2}\right)=\Delta_{2}\left(g_{2}\right)^{-1 / 2} \xi\left(g_{1}, g_{2}\right)$.

For $a \in C_{\tilde{c}}(\mathcal{T}) \subset C_{r}^{*}(\mathcal{T})$ and $\eta \in C_{c}(\mathcal{T}) \subset E_{\mathcal{T}}$, we have $\pi_{\mathcal{T}}(a) \eta \in C_{c}(\mathcal{T})$. Then, for $\xi \in C_{c}(\mathcal{T}) \subset \tilde{E}$, we have $\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2} \xi \in C_{c}(\mathcal{T})$. Moreover we have

$$
\left\|\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2} \xi\right\|_{\tilde{H}} \leq\|a\|_{C_{r}^{*}(\mathcal{T})}\|\xi\|_{\tilde{H}}
$$

Therefore we can extend $\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2}$ to a bounded linear operator on \tilde{H}, which we denote by $\mu\left(\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2}\right)$. Define $\pi: C_{c}(\mathcal{T}) \rightarrow \mathcal{L}(H)$ by $\pi(a)=\tilde{I} \mu\left(\tilde{T}_{2}^{*} \pi_{\mathcal{T}}(a) \tilde{T}_{2}\right) \tilde{I}^{*}$. Since we have $\|\pi(a)\| \leq\|a\|_{C_{r}^{*}(\mathcal{T})}$, we can extend π to $C_{r}^{*}(\mathcal{T})$, which we donote again by π. Since $\pi_{\mathcal{T}}$ is injective, the ${ }^{*}$-homomorphism $\pi: C_{r}^{*}(\mathcal{T}) \rightarrow \mathcal{L}(H)$ is injective. Similarly we can define an injective $*$-homomorphism $\pi_{1}: C_{r}^{*}\left(G_{1}\right) \rightarrow \mathcal{L}(H)$ (resp. $\pi_{2}: C_{r}^{*}\left(G_{2}\right) \rightarrow \mathcal{L}(H)$) by $\pi_{1}(a)=I_{\mathcal{T}} \mu\left(T_{1}\left(\pi_{G_{1}} \otimes \iota\right)(a) T_{1}^{*}\right) I_{\mathcal{T}}^{*} \quad\left(\right.$ resp. $\left.\pi_{2}(a)=\tilde{I}_{\mathcal{T}} \mu\left(T_{2}\left(\iota \otimes \pi_{G_{2}}\right)(a) T_{2}^{*}\right) \tilde{I}_{\mathcal{T}}^{*}\right)$. Define an injective $*$-homomorphism $\rho_{1}: C_{0}\left(G_{1}\right) \rightarrow \mathcal{L}(H)$ (resp. $\rho_{2}: C_{0}\left(G_{2}\right) \rightarrow \mathcal{L}(H)$) by $\rho_{1}(a)=I_{\mathcal{T}} \mu\left(T_{1}\left(\rho_{G_{1}} \otimes \iota\right)(a) T_{1}^{*}\right) I_{\mathcal{T}}^{*}$ (resp. $\left.\rho_{2}(a)=\tilde{I}_{\mathcal{T}} \mu\left(T_{2}\left(\iota \otimes \rho_{G_{2}}\right)(a) T_{2}^{*}\right) \tilde{I}_{\mathcal{T}}^{*}\right)$. Then we have
$\left(\rho_{1}(a) \xi\right)\left(g_{1}, g_{2}\right)=a\left(g_{1}^{-1}\right) \xi\left(g_{1}, g_{2}\right)$ and $\left(\rho_{2}(a) \xi\right)\left(g_{1}, g_{2}\right)=a\left(g_{2}^{-1}\right) \xi\left(g_{1}, g_{2}\right)$. By Theorem 4.1, we have

$$
\begin{aligned}
& (\pi(a) \xi)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{2}} \int_{G_{1}} a\left(h_{1}, h_{2}^{-1}\right) \xi\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) \\
& \left(\pi_{1}\left(a_{1}\right) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{1}} a_{1}\left(h_{1}^{-1}\right) \xi\left(g_{1} h_{1}^{-1}, g_{2} \triangleleft h_{1}^{-1}\right) \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) \\
& \left(\pi_{2}\left(a_{2}\right) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{2}} a_{2}\left(h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2} h_{2}^{-1}\right) \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right)
\end{aligned}
$$

for $a \in C_{c}(\mathcal{T}), a_{1} \in C_{c}\left(G_{1}\right), a_{2} \in C_{c}\left(G_{2}\right)$ and $\xi \in C_{c}(\mathcal{T})$.
Proposition 7.1. The following equations hold:

$$
\begin{aligned}
& \pi_{2}\left(a_{2}\right) \pi_{1}\left(a_{1}\right)=\pi\left(\left(\Delta_{1}^{1 / 2} a_{1}\right)^{)} \otimes\left(\Delta_{2}^{1 / 2} a_{2}\right)\right) \\
& \pi_{1}\left(a_{1}\right) \pi_{2}\left(a_{2}\right)=\pi\left(\left(\left(\Delta_{1}^{-1 / 2} a_{1}\right) \otimes\left(\Delta_{2}^{-1 / 2} a_{2}\right)^{\zeta}\right) \circ \kappa\right)
\end{aligned}
$$

for $a_{i} \in C_{c}\left(G_{i}\right) \subset C_{r}^{*}\left(G_{i}\right)(i=1,2)$, where $\check{a_{i}}\left(g_{i}\right)=a_{i}\left(g_{i}^{-1}\right)$.
Proof. For $\xi \in C_{c}(\mathcal{T})$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$, we have

$$
\begin{aligned}
& \left(\pi_{2}\left(a_{2}\right) \pi_{1}\left(a_{1}\right) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\iint \check{a}_{1}\left(h_{1}\right) a_{2}\left(h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright g_{1}^{-1}\right)^{-1} h_{1}^{-1},\left(g_{2} h_{2}^{-1}\right) \triangleleft h_{1}^{-1}\right) \\
& \quad \times \Delta_{2}\left(h_{2}\right)^{-1 / 2} \Delta_{1}\left(h_{1}\right)^{1 / 2} d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right) \\
& =\iint \check{a}_{1}\left(h_{1}\right) a_{2}\left(h_{2}^{-1}\right) \xi\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right)^{1 / 2} \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{2}\right)}\left(h_{2}\right) \\
& =\iint\left(\Delta_{1}^{1 / 2} a_{1}\right)^{r}\left(h_{1}\right)\left(\Delta_{2}^{1 / 2} a_{2}\right)\left(h_{2}^{-1}\right) \xi\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) \\
& =\left(\pi\left(\left(\Delta_{1}^{1 / 2} a_{1}\right)^{\check{2}} \otimes\left(\Delta_{2}^{1 / 2} a_{2}\right)\right) \xi\right)\left(g_{1}, g_{2}\right) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \left(\pi_{1}\left(a_{1}\right) \pi_{2}\left(a_{2}\right) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\iint a_{1}\left(h_{1}^{-1}\right) a_{2}\left(h_{2}^{-1}\right) \xi\left(\left(h_{2} \triangleright\left(g_{1} h_{1}^{-1}\right)^{-1}\right)^{-1},\left(g_{2} \triangleleft h_{1}^{-1}\right) h_{2}^{-1}\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right)^{1 / 2} \Delta_{2}\left(h_{2}\right)^{-1 / 2} d \lambda_{2, r\left(h_{1}\right)}\left(h_{2}\right) d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) .
\end{aligned}
$$

Since we have $h_{2} h_{1}=\left(h_{2} \triangleright h_{1}\right)\left(h_{2} \triangleleft h_{1}\right), h_{2} \triangleright\left(g_{1} h_{1}^{-1}\right)^{-1}=p_{1}\left(h_{2} h_{1} g_{1}^{-1}\right)$ and $\left(g_{2} \triangleleft h_{1}^{-1}\right) h_{2}^{-1}=$
$p_{2}\left(g_{2}\left(h_{2} h_{1}\right)^{-1}\right)$, the last integral equals to

$$
\begin{aligned}
& \iint a_{1}\left(h_{1}^{-1}\right) a_{2}\left(h_{1}\left(h_{2} \triangleleft h_{1}\right)^{-1}\left(h_{2} \triangleright h_{1}\right)^{-1}\right) \\
& \quad \times \xi\left(p_{1}\left(\left(h_{2} \triangleright h_{1}\right)\left(h_{2} \triangleleft h_{1}\right) g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2}\left(h_{2} \triangleleft h_{1}\right)^{-1}\left(h_{2} \triangleright h_{1}\right)^{-1}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right)^{1 / 2} \Delta_{2}\left(\left(h_{2} \triangleright h_{1}\right)\left(h_{2} \triangleleft h_{1}\right) h_{1}^{-1}\right)^{-1 / 2} d \lambda_{2, r\left(h_{1}\right)}\left(h_{2}\right) d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) \\
& =\iint a_{1}\left(h_{1}^{-1}\right) a_{2}\left(h_{1} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right) \\
& \quad \times \xi\left(p_{1}\left(\left(h_{2} \triangleright h_{1}^{-1}\right)^{-1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right)^{3 / 2} \Delta_{2}\left(h_{1} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right)^{1 / 2} d \lambda_{1, s\left(g_{1}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right)
\end{aligned}
$$

by (C2). Since we have $h_{1}^{-1}=h_{2}^{-1} \triangleright\left(h_{2} \triangleright h_{1}^{-1}\right)$, the last integral equals to

$$
\begin{aligned}
& \iint a_{1}\left(\left(h_{2}^{-1} \triangleright\left(h_{2} \triangleright h_{1}^{-1}\right)\right) a_{2}\left(\left\{h_{2}^{-1} \triangleright\left(h_{2} \triangleright h_{1}^{-1}\right)\right\}^{-1} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right)\right. \\
& \quad \times \xi\left(p_{1}\left(\left(h_{2} \triangleright h_{1}^{-1}\right)^{-1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right)\right) \\
& \quad \times \Delta_{1}\left(h_{2}^{-1} \triangleright\left(h_{2} \triangleright h_{1}^{-1}\right)\right)^{-3 / 2} \Delta_{2}\left(\left\{h_{2}^{-1} \triangleright\left(h_{2} \triangleright h_{1}^{-1}\right)\right\}^{-1} h_{2}^{-1}\left(h_{2} \triangleright h_{1}^{-1}\right)\right)^{1 / 2} \\
& \quad \times d \lambda_{1, s\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) \\
& =\iint a_{1}\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right) a_{2}\left(\left\{h_{2}^{-1} \triangleright h_{1}^{-1}\right\}^{-1} h_{2}^{-1} h_{1}^{-1}\right) \\
& \quad \times \xi\left(p_{1}\left(h_{1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2} h_{2}^{-1} h_{1}^{-1}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right)^{-3 / 2} \Delta_{2}\left(\left\{h_{2}^{-1} \triangleright h_{1}^{-1}\right\}^{-1} h_{2}^{-1} h_{1}^{-1}\right)^{1 / 2} \Delta_{2}\left(h_{2}\right) \\
& \quad \times d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right)
\end{aligned}
$$

by (D1). Since we have $\left\{h_{2}^{-1} \triangleright h_{1}^{-1}\right\}^{-1} h_{2}^{-1} h_{1}^{-1}=h_{2}^{-1} \triangleleft h_{1}^{-1}$, the last integral equals to

$$
\begin{aligned}
& \iint a_{1}\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right) a_{2}\left(h_{2}^{-1} \triangleleft h_{1}^{-1}\right) \xi\left(p_{1}\left(h_{1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2} h_{2}^{-1} h_{1}^{-1}\right)\right) \\
& \quad \times \Delta_{1}\left(h_{1}\right)^{3 / 2} \Delta_{2}\left(h_{2}\right)^{1 / 2} d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right)
\end{aligned}
$$

by Lemma 2.3. Therefore we have

$$
\begin{aligned}
& \left(\pi_{1}\left(a_{1}\right) \pi_{2}\left(a_{2}\right) \xi\right)\left(g_{1}, g_{2}\right) \\
& =\iint\left(\Delta_{1}^{-1 / 2} a_{1}\right)\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right)\left(\Delta_{2}^{-1 / 2} a_{2}\right)^{\check{ }\left(\left(h_{2}^{-1} \triangleleft h_{1}^{-1}\right)^{-1}\right) \xi\left(\theta\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right)} \\
& \quad \times \Delta_{1}\left(h_{1}\right) d \lambda_{1, r\left(h_{2}\right)}\left(h_{1}\right) d \lambda_{2, s\left(g_{1}\right)}\left(h_{2}\right) \\
& =\left(\pi\left(\left(\left(\Delta_{1}^{-1 / 2} a_{1}\right) \otimes\left(\Delta_{2}^{-1 / 2} a_{2}\right)^{\tau}\right) \circ \kappa\right) \xi\right)\left(g_{1}, g_{2}\right) .
\end{aligned}
$$

From the above arguments, we have injective $*$-homomorphisms $\pi \circ \Phi_{1}: C_{r}^{*}\left(G_{1}\right) \bowtie$ $C_{r}^{*}\left(G_{2}\right) \rightarrow \mathcal{L}(H)$ and $\pi \circ \Phi_{2}: C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right) \rightarrow \mathcal{L}(H)$. The invariance of μ implies that $H=\int^{\oplus} x H d \mu(x)=\int^{\oplus} H^{x} d \mu(x)$. Then we can define injective $*$-homomorphisms $\rho: C_{r}^{*}\left(G_{1}\right) \ltimes C_{0}\left(G_{2}\right) \rightarrow \mathcal{L}(H)$ and $\hat{\rho}: C_{r}^{*}\left(G_{2}\right) \ltimes C_{0}\left(G_{1}\right) \rightarrow \mathcal{L}(H)$ by $\rho=\int^{\oplus} x \rho d \mu(x)$ and $\hat{\rho}=\int^{\oplus} \hat{\rho}^{x} d \mu(x)$ respectively.
Theorem 7.2. The following equations hold:

$$
\begin{align*}
& \pi \circ \Phi_{1}(a \otimes b)=\pi_{1}(a) \pi_{2}(b) \quad\left(a \in C_{c}\left(G_{1}\right), b \in C_{c}\left(G_{2}\right)\right) . \tag{1}\\
& \pi \circ \Phi_{2}(b \otimes a)=\pi_{2}(b) \pi_{1}(a) \quad\left(a \in C_{c}\left(G_{1}\right), b \in C_{c}\left(G_{2}\right)\right) . \tag{2}\\
& \rho(a \otimes b)=\pi_{1}(a) \rho_{2}(b) \quad\left(a \in C_{c}\left(G_{1}\right), b \in C_{0}\left(G_{2}\right)\right) . \tag{3}\\
& \hat{\rho}(b \otimes a)=\pi_{2}(b) \rho_{1}(a) \quad\left(a \in C_{0}\left(G_{1}\right), b \in C_{c}\left(G_{2}\right)\right) . \tag{4}
\end{align*}
$$

Proof. The statements (1) and (2) are immediate consequences of the definitions of $C_{r}^{*}\left(G_{1}\right) \bowtie$ $C_{r}^{*}\left(G_{2}\right)$ and $C_{r}^{*}\left(G_{2}\right) \bowtie C_{r}^{*}\left(G_{1}\right)$ and Proposition 7.1. The statements of (3) and (4) are immediate consequences of the definitions of representations involved.

8 Examples

8.1 Actions of semidirect product groups Let Γ_{1} and Γ_{2} be a locally compact second countable Hausdorff groups. Let $\sigma: \Gamma_{2} \rightarrow \operatorname{Aut}\left(\Gamma_{1}\right)$ be a continuous homomorphism. Let $\Gamma=\Gamma_{1} \times{ }_{\sigma} \Gamma_{2}$ be a seimidirect product group. Suppose that Γ acts on a topological space X. We have groupoids $G=\Gamma \times X$ and $G_{i}=\Gamma_{i} \times X(i=1,2)$. For every $(\gamma, x) \in G$, we have $(\gamma, x)=\left(\gamma_{1}, \gamma_{2} \cdot x\right)\left(\gamma_{2}, x\right)$ for $\gamma_{i} \in G_{i}$ with $\gamma=\gamma_{1} \gamma_{2}$. That is, $p_{1}(\gamma, x)=\left(\gamma_{1}, \gamma_{2} \cdot x\right)$ and $p_{2}(\gamma, x)=\left(\gamma_{2}, x\right)$. Then $\left(G_{1}, G_{2}\right)$ is a matched pair. Let λ_{i} be a right Haar measure of Γ_{i}. Defin $\Delta_{2}: G_{2} \longrightarrow \mathbb{R}_{>0}$ by $\Delta_{2}\left(\gamma_{2}, x\right)=d\left(\sigma_{\gamma_{2}} \cdot \lambda_{1}\right) / d \lambda_{1}$, which is constant on X since λ_{1} is a Haar measure. We set $\Delta_{1}=1$. Then the equation (Ci) is satisfied for the right Haar system $\left\{\lambda_{i} \times \delta_{x}\right\}(i=1,2)$, where δ_{x} is the Dirac measure. Let δ_{i} be the modular function of Γ_{i}. Then a positive measure μ on X is G_{i}-invariant if and only if $\left(d\left(\gamma_{i} \cdot \mu\right) / d \mu\right)(x)=\delta_{i}\left(\gamma_{i}\right)$ for $\lambda_{i} \times \mu$-а.а. $\left(\gamma_{i}, x\right) \in G_{i}$.
8.2 An action of a matche pair given by S. Majid Using a matched pair given by S. Majid [5], Example 6.2.16, we describe an action of a matched pair on a two torus. Let Γ_{1} be the group of 3×3 lower triangular matrices with 1 on the diagonal and Γ_{2} the the group of 3×3 upper triangular matrices with 1 on the diagonal. We take the entries in the integers \mathbb{Z}. That is

$$
\Gamma_{1}=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}, \quad \Gamma_{2}=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}
$$

Define a bijection $\sigma: \Gamma_{1} \cup \Gamma_{2} \rightarrow \Gamma_{1} \cup \Gamma_{2}$ by $\sigma(\gamma)={ }^{t} \gamma^{-1}$, where ${ }^{t} \gamma$ is the transpose of γ. For $\gamma_{i} \in \Gamma_{i}(i=1,2)$, define

$$
\begin{aligned}
& \gamma_{2} \triangleleft \gamma_{1}=I+\left(\gamma_{2}-I\right) \sigma\left(\gamma_{1}\right) \in \Gamma_{2} \\
& \gamma_{2} \triangleright \gamma_{1}=I+\sigma\left(\gamma_{2}\right)\left(\gamma_{1}-I\right) \in \Gamma_{1} .
\end{aligned}
$$

Then $\left(\Gamma_{1}, \Gamma_{2}\right)$ is a matched pair of groups. Note that we have $\gamma_{2} \sigma\left(\gamma_{1}\right)=\sigma\left(\gamma_{2} \triangleright \gamma_{1}\right)\left(\gamma_{2} \triangleleft \gamma_{1}\right)$. We can form the bicrossed product group $\Gamma=\Gamma_{1} \bowtie \Gamma_{2}$. Let $X=\mathbb{T}^{2}$. Define an action of Γ on X by

$$
\left(\gamma_{1}, \gamma_{2}\right) \cdot\left(u_{1}, u_{2}\right)=\sigma\left(\gamma_{1}\right) \gamma_{2}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
1
\end{array}\right)
$$

for $\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma$ and $\left(u_{1}, u_{2}\right) \in X$, where we identify $\left(u_{1}, u_{2}\right)$ with ${ }^{t}\left(u_{1}, u_{2}, 1\right)$. Define r dicrete groupoids G, G_{1} and G_{2} by $G=\Gamma \times X$ and $G_{i}=\Gamma_{i} \times X(i=1,2)$. Then $\left(G_{1}, G_{2}\right)$ is a matched pair of groupoids.

Remark. The groups Γ, Γ_{1} and Γ_{2} are amenable. In fact, they are semidirect product groups of amenable groups: $\Gamma_{1} \simeq \Gamma_{2} \simeq \mathbb{Z}^{2} \times{ }_{s} \mathbb{Z}$ and $\Gamma \simeq \mathbb{Z}^{3} \times{ }_{s} \Gamma_{2}$.

References

[1] S. Baaj, G. Skandalis and S. Vaes, Non-semi-regular quantum groups coming from number theory, Commun. Math. Phys. 235(2003), 139-167.
[2] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
[3] E. C. Lance, Hilbert C^{*}-modules, Cambridge University Press, Cambridge, 1995.
[4] S. Majid, Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations, J. Funct. Analysis 95(1991), 291-319.
[5] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
[6] S. Majid, A quantum groups primer, London Mathematical Society Lecture Note Series 292, Cambridge University Press, Cambridge, 2002.
[7] M. O'uchi A trinary relation arising from a matched pair of r-discrete groupoids, Sci. Math. Japonicae 69(2009), 45-57.
[8] A. L. P. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Math., Vol. 170, Birkhäuser, Boston, 1999.
[9] J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Math., Vol. 793, SpringerVerlag, New York, 1980.
[10] T. Timmermann, Pseudo-multiplicative unitaries and pseudo-Kac systems on C^{*}-modules, Dissertationsthema, Uiversität Münster, 2005.
[11] T. Timmermann, Compact quantum groupoids in the setting of C^{*}-algebras, preprint, arXiv:0810.3771v3 [math.OA], 2008.
[12] J.-M. Vallin, Measured quantum groupoids associated with matched pairs of locally compact groupoids, arXiv:0906.5247v3 [math.OA], 2010.
[13] T. Yamanouchi, W^{*}-quantum groups arising from matched pairs of groups, Hokkaido Math. J. 29(2000), 73-101.
communicated by Masaru Nagisa;
Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Sakai City, Osaka 599-8531, Japan.
E-mail : ouchi@mi.s.osakafu-u.ac.jp

