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C*-algebras arising from a matched pair of locally compact groupoids
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ABSTRACT. We introduce a notion of a matched pair of locally compact groupoids
and construct several C*-algebras from a matched pair of locally compact groupoids
without assuming the existence of quasi-invariant measures on the unit space. We
also show that there exist natural representations of the above C*-algebras when there
exists an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of operator
algebras. S. Majid studied bicrossed product Hopf-von Neumann algebras constructed
from a matched pair of locally compact groups in [4]. T. Yamanouchi studied W*-quantum
groups arising from matched pairs of locally compact groups in [13]. S. Baaj, G. Skandalis
and S. Vaes studied C*-algebraic quantum groups obtained through the bicrossed product
construction from a matched pair of locally compact groups in [1]. We remark that the
definition of a matched pair of locally compact groups by Baaj, Skandalis and Vaes is
different from the definition by Majid and Yamanouchi. The author studied C*-algebras
arising from a mathced pair of r-discrete groupoids in [7]. Recently J.-M. Vallin studied
measured quantum groupoids associated with matched pairs of locally compact groupoids
in the setting of von Neumann algebras in [12].

In [7], we assume the existence of an invariant measure on the unit space of groupoids.
In this paper, we construct several C'*-algebras from a matched pair of locally compact
groupoids without assuming the existence of quasi-invariant measures on the unit space.
We also show that there exist natural representations of the C*-algebras when there exists
an invarianat measure.

We do not know yet how to formulate structures of quantum groupoids on these C*-
algebras. As for quantum groupoids in the setting of C*-algebras, there are works by T.
Timmermann [10, 11].

The paper is organized as follows: In Section 2, we introduce a notion of a matched
pair (G1,G3) of locally compact groupoids where G; and G2 are subgroupoids of a locally
compact groupoids G and we also introduce two conditions for Harr systems. We prove
that these conditions are satisfied if G is r-discrete in Proposition 2.6. In the previous
paper [7], we did not know this fact and assumed that these conditions are satisfied for a
matched pair of r-discrete groupoids. We also introduce a groupoid 7 which is isomorphic
to G. In Section 3, we describe several representations of groupoid C*-algebras on Hilbert
C*-modules. In Section 4, we study six Hilbert C*-modules associated with 7, which are
isomorphic with each other, and representations on these Hilbert C*-modules. In Section 5,
we introduce two C*-algebras B and B associated with 7. In Section 6, we introduce four
C’*—algebras C:(Gl) > C:(Gg), C: (Gg) > C:(Gl), C: (Gl) X Co(GQ) and C:(Gg) X CO(Gl)
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and study representations of these C*-algebras on Hilbert C*-modules associated with 7.
By construction, C(G1) <1 C*(G3) and C¥(G2) <1 Cf(Gy) are isomorphic to C(G), which
is isomorphic to C¥(7), C*(G1) x Cy(G2) is isomorphic to B and C}(G2) x Cy(Gy) is
isomorphic to B. In Section 7, we assume that there exists a G1- and Gs-invariant measure
1 on the unit space G(?). Then we show that there exist natural representations of the above
C*-algebras on a Hilbert space H in Theorem 7.2. In Section 8, we give two examples of
actions of matched pairs.

2 A matched pair of locally compact groupoids Let G be a second countable locally
compact Hausdorff groupoid. We denote by rg (resp. sg) the range (resp. source) map of
G, by G the unit space of G and by G(? the set of composable pairs. The map r¢ (resp.
sq) is also denoted by 7 (resp. s) to simplify a notation. For details of groupoids, we refer
the reader to [8] and [9].

Definition 2.1. Let G; and G5 be closed subgroupoids of G. A pair (G1,G2) is called a
matched pair if G1Gs = G, G1 NGy = G and there exist continuous maps p1 : G — Gy
and po : G — G2 such that g = p1(g)p2(g) for all g € G.

Let (G1,G2) be a matched pair. Fori = 1,2, set G; , = s~ (z)NG; and G¥ = r~1(z)NG;
for z € G, For (92,91) € G2 n (G2 x G1), set goa> g1 = p1(g291) and ga < g1 = p2(g291)-
Note that we have r(ga>g1) = r(g2), s(g2<991) = s(g1) and s(ga>g1) = r(g2<¢g1). As in
the group case, we have the following lemma (cf [2],[6]).

Lemma 2.2. The following equations hold:
(1) ha>(g2>91) = (haga) b g1 (91 € G1, g2 € Gap(gy), h2 € Gar(gy))-
(2)  (92991) 9h1i =gz a(g1h1) (92 € Ga, g1 € G392, by € G}9Y)).
(3) 920 (g1h1) = (925 91)((92991) > h1)) (g2 € G, g1 € G392, hy € G19Y)).
(4) (h2g2) <g1 = (ha< (92> 91))(92<91) (91 € G1, g2 € Gar(gy), h2 € Gargy))-
Let 7 be the fibered product

G1s%s G2 ={(g91,92) € G1 x G2;5(g1) = s(g2)}-

Define maps &, k1 and k3 : 7 — T by k(g1,92) = (92> 97 (92 <97 ) 1), k1lgr,92) =
(97" 92 9grt) and ka(g1,92) = ((g2> g7 1)1, g5 ) respectively. Then k2, k2 and x3 are
the identity map, in particular, x, k1 and ko are homeomorphisms. Note that we have k =
K1kg = Kak1. Define a homeomorphism w : G — 7 by w(g) = (p1(¢~ '), p2(¢g~*)~!). Then
we have w™1(g1,92) = gag; 1 We introduce a structure of groupoid into 7 as follows: Let
T be the set {(x,z);2 € GO}, which we identify with G(°). The range and source maps
rr, st T — GO is defined by r7(g1,92) = 7(g2) and s7(g1,92) = 7(g1) respectively.
The product is defined by

(91,92) (R, h2) = (ha(hy ' > 1), g2(hy ' <9 g1) ™)

for ((g1,92), (h1,h2)) € T, The inverse is defined by (g1, 92) " = k(g1,92). Then w is an
isomorphism of groupoids.

We suppose that there exists a right Haar system {); ;2 € G on G, fori =1,2. We
denote by R~ the multiplicative group of positive real numbers. Suppose that there exists
a continuos homomorphism As : Go — R+ such that

(Cl) ‘/G f o R(glvg2) d)‘l,s(gQ)(gl)

_ /G €0 k1(91,95 ) Do (g2) Mty (o) (91)
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for every go € G2 and every positive Borel function £ on 7. Suppsoe that there exists a
continuos homomorphism A; : G; — R+ such that

(C2) . £ o k(g1,92) A2 5(g1)(92)

= /G Eoka(grt, 92)A1(g1) " dA2,r(g1)(92)

for every g1 € G1 and every positive Borel function £ on 7. Note that equations (C1) and
(C2) imply the following equations (D1) and (D2) respectively:

(D1) £(g2 > 07Y) A a(on) (91) = / £(gT 1) Da(g2) M1 rgn) (1)
Gy G1

for every go € G2 and every positive Borel function £ on G and

(D2) £(g2 a91) g ri (92) = / £(02) A1 (1) Aoy (02)
Go G

for every g1 € G1 and every positive Borel function £ on Ga.

If G is an r-discrete groupoid, then the equations (C1) and (C2) hold for Ay = Ay =1
(Proposition 2.6). If G is a groupoid arising from an action of a semidirect product group
on a topological space, then the equations (C1) and (C2) hold for A; =1 (see §8).

Lemma 2.3. The following equations hold:
(1) Ai(g2>g1) = A1(g1),
(2) Az(g2<991) = Az(g2),
for (g2,91) € G® N (G2 x Gy).

Proof. (1) For ¢ € C.(G) and (g2,91) € G® N (G2 x G1), we have

; §(h2)A1(g2 > g1) A2 s(gongy) (h2)

= . §(h2 2 (g2 g1)) A2 v (gongy) (h2) by (D2)

=/, £(((h2g2) <91)(92991) ") A2 r(g)(h2) by Lemma2.2(4)
=/ E((ha ag1)(g2991) ") dAa gy (h2)

=/, E(h2(g2 2 91) " )AL(g1) Ao sy (h2) by (D2)

= /. §(h2)A1(g1) dAa s(gapg1) (h2),

where the last equation follows from the fact that r(g2<g1) = s(g2>g1). The statement (2)
is proved similarly. O

Using the equation (D2), we can prove the following:
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Theorem 2.4. There exists a right Haar system {vy;x € GO} of T such that
[ fw v
T
— [ £onrlo1,5" ) 80(00) DA (1) dAes(52)
Go JG1

for f € C.(T) and x € GO,

Proof. We define measures {v,; € G} by the equation in the theorem. We will show
that the right invariance of {v,}. For f € C.(7T) and u = (g1, 92) € 7, we have

/[ Fou)dvy ) (v)
— / / F(g1((haga) ™ & BT, ((haga) ™ < hTH) ™) Ar(Rr) Ay gy (1) o (g ()

= [ #or s o B0 A ) A () (B): (9
Since we have

g1(hy ' o by t) = pr({ha(ha > gy )(ha < gy )},
hyt ahit =pa({hi(ha>gi ) (haa g ")} ),

the equation (x) is equal to
[ £ ta a9y pa(ma (e a9} A tagy)
X d)\lyr(hzqgl—l)(hl)d}\z,r(gl)(hz)

- / / For (ke ™), pa({hnha) )
X A1(h1) ANy g (hy) (P1)dAg r gy (he) by (D2)

— [ 10y
T
O

Corollary 2.5. There exists a right Haar system {\y;x € GO} of G such that

[ 1@an) = [ [ 0192 81(00) s (92) 0202

G G2 /Gy
for f € C(G) and x € GO,
Proof. Let {\;} be the image of {v,} by w. Then {A;} has the desired property. O

As for an r-discrete groupoid, we have the following results:

Proposition 2.6. Suppose that (G1,G2) is a matched pair of an r-discrete groupoid G.
(1) G; isr-discrete (i = 1,2).
(2) If each of Gy and Go has a right Haar system, then the equations (C1) and (C2)
are hold with A1 = Ag = 1.
(3) If each of G1 and Gy has a right Haar system, then G; is open (i = 1,2).
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Proof. (1) The groupoid G is said to be r-discrete if G(9) is open in G ([9], p.18, Definition
2.6, see also [8], p.44). Since we have GE—O) =GO G, is r-discrete.

(2) If G; has a right Haar system, then it is essentially the counting measure system
(19], p-18, Lemma 2.7). It follows from Lemma 2.2 that, for every go € G, the map
g1 € G‘;(gz) — ga g1 € G’I(g?) is a bijection. This implies that the equation (C1) holds. It
follows from Lemma 2.2 that, for every g € G1, the map g2 € G ,(g,) — 92 <91 € G2 5(gy)
is a bijection. This implies that the equation (C2) holds.

(3) Tt follows from the above (2) and Corollary 2.5 that G has a right Haar system. For
every subset U of G, we donte by r|U (resp. s|U) the restriction of r (resp. s) to U. We
denote by U € G°P when U is an open set of G and r|U and s|U are homeomorphisms
from U into G. Then G°? is a basis for the toplogy of G ([9], p.19, Proposition 2.8 and
[8], p.44). Similary G;? is a basis for the topology of G;. For every g; € G, there exist
U e G;” and V € G? such that g; e UNV. Since UNV € G, r(UNV) is open in G. Set
W =r~1(r(UNV))NV, which is an open neighborhood of g; in G. Since r is one-to-one
on V, W is a subset of G;. Therefore GG; is open in G. O

3 Representations of groupoid C*-algebras We denote by C.(G) the set of complex
valued continuous functions on G with compact supports. Then, C.(G) is a *-algebra with
the following product and involution:

(ab)(g) = /G a(gh™1)b(R) dAsgg) (h),
a*(g) = a(g™1)

for a, b € Co(G) and g € G. For x € G| let Eg, be the Hilbert space L?(G,\,), where
we assume that the inner product is linear in the second variable. Define a *-representation
mas : Cc(G) — L(Eg.) by

(6.0 (a)€)(g) = / a(gh™")e(h) A, (h)

G

for a € C.(Q), £ € Eg, and g € G. Define the reduced norm ||al| by
lall = sup{||7c.o(a)l; z € GO}

The reduced groupoid C*-algebra C*(G) is the completion of C.(G) by the reduced norm.
We can extend g, to the s-representation of C(G) on Eg ., which we denote again by
TG,z

We denote by Co(G (0)) the commutative C'*-algebra of complex valued continuous func-
tions on G vanishing at infinity. Set Ag = Co(G(?)). Let Eg be a Hilbert Ag-module
obtained by the completion of a pre-Hilbert Ap-module C.(G) with the following structure:

(€ao)(9) = &(g9)ao(s(9)),
€)= [ Tl dnlo)
G
for £, m € Co(G), ag € Ap, g € G and = € G(°). We denote by L4,(FEg) be the C*-algebra

of bounded adjointable operators from FEg to itself. Define an injective x-representation
Yem C;‘(G) — EAO(Eg) by

(re(@)6) () = / a(gh™V)E(R) s (h)

G
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for a € C.(G) C CX(G), £ € C.(G) C Eg and g € G. We can similarly define a represen-
tation (7g,, Eg,) of C}(G;) with respect to {A; .} (i = 1,2) and a representation (77, E7)
of C}(T) with respect to {v,}.

Lemma 3.1. Fora, £ € C.(T) and (g1,92) € T, the following equation holds:
§)(91,92)
// a(hu, hy )é(p1(9195 " (hah2) ™), p2(9195 " (haha) ™) 7Y
X A1(h1) dA1 p(ng) (h1)dAa (o) (h2)-

Proof. Tt follows from Theorem 2.4 that we have
(m7(a)§) (91, g2)
— [l ) e ) (91,92)) s g, P o)

- / / a0 k2 (hy, hy )E(s(he, by V) (91, 92))
X A1(h1) ANy p(hy) (R1)dAg r(g,) (h2).

It follows from Lemma 2.2 (1) and (4) that we have

k(h1,hy ) (g1, 92)
= (g1(g92 "' > (hy ' o A7), (hy ' <hy ') "Hey ' a(hy o hy )}
= (91((h2ga) ' > A7), ((haga) ™" ahih) ™)
= (p1(g195 " (h1h2) "), p2(g1g5 ' (haha) ™).
O

Let E¢ be a Hilbert Ag-module obtained by the completion of a pre-Hilbert Ag-module
C.(G) with the following structure:

(€ao)(9) = (7"(9)),

/ £(g Az(9)

for £, € Co(G), ag € Ag, g € G and z € G, Define an isomorphism Jg : Eq — Eg
by (Ja€)(g) = €(g7!) for € € C.(G) C Eg and g € G. Define an injective *-representaion
7a: CXHG) — La,(Eg) by 7a(a) = Jamg(a)Jg. We can similarly define a representation
(ﬁ'Gi,ENGi) of C*(G;) (i =1,2) and a representation (7, ET) of C*(T).

Define a #-homomorphism ¢ : Ag — La4,(Fg,) by ¢(ao)é = Eap for ag € Ap and € € Eg,.
We denote by E the interior tensor product Eq, ®4 Eg, (cf. [3]). Note that Ag-valued
inner product of E is given by

(& m( /G . (g1, 92)n(91, 92) dM1,2(91)dN2,2(g2)

for &, m € C.(T) C E and z € GO, Define an injective *-homomorphism g, ® ¢ :
Cr(G1) — La,(E) by (1, ® t)(a) = g, (a) ®y Ik, for a € CF(G1). Since ¢ and 7g,
commute, we can define an injective *-homomorphism ¢ ® 7g, : C:(G2) — La,(E) by
(t®@7g,)(a) = Ig,, ®¢ Ta,(a) for a € CF(Ga).
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Define an injective *-homomorphism pg : Co(G) — L4, (Eq) by (pa(a)é)(g) = a(g)é(g).
We can define an injective s-homomorphism pg, ® ¢ : Co(G1) — La,(F) by (pe, ® t)(a)
pG,(a) ®¢ g, and an injective *-homomorphism ¢ ® pg, : Co(Ga) — La,(E) by (¢
sz)(a) = IEcl ®¢ PG (a)

®

4 Hilbert Ap-modules associated with 7 In this section, we introduce several Hilbert
Ag-modules which are completion of C.(7). We have already introduced E7, E7 and E in
Section 3. In the following, let &, € C.(T), a € Ay, (g1,92) € T and z € G,
The Hilbert Ap-module E is the completion of C.(7) with the following structure:
(€a)(g1,92) = &£(g1, 92)a(s(g1))
€@ = [[Eorgnlon o) . (a)ire(on).
The Hilbert Ap-module E; is the completion of C.(7") with the following structure:
(€a)(g1,92) = &(g1, 92)a(r(g1))

i) = [ [ €T antor " 90) dha i (92) M),

The Hilbert Ag-module Es is the completion of C.(7") with the following structure:
(€a)(g1, 92) = &(g1, 92)a(r(g2))

€)= [ [ €oria3 nl01.5) Nt (90)rag2)

The Hilbert Ag-module E is the completion of C,(7) with the following structure:
(€a)(g1,92) = €(g1, g2)a(s(g2 > g7 )
€)= [[ €omalarTegame ralor " g2) dhe g (92) a2 (90)
The Hilbert Ag-module E7 is the completion of C.(7) with the following structure:
(€a)(g1,92) = &(g1, 92)a(r(g1))
(&) (= / €o kg, 95 Imo kg, 95 DAL(G1) dM1 (g (91)dA2,0(g2)-
The Hilbert Ag-module E7 is the completion of C.(7) with the following structure:
(€a)(91,92) = &(91, 92)a(r(g2))

/ g 91792 91792 )Al(gl)d)\l,r(gz)(gl)d)\Q,x(QZ)~

Using the equations (C1), (C2) and (D2), we have the following equations:

(&;ma( / § o k(g1,92)n 0 K(g1,92)A1(91) dA1 2 (91)dN2,2(g2),

(€ n)sy (a / (g L g9 92) Aa(g2) ™" g (92)dM 1 (g1).
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There exist the following isomorphisms between Hilbert Ag-modules:

T : B, — Er defined by (T€)(g1,92) = A1(g1)"/*¢ 0 kg1, 92),

Ty : E — E7 defined by (T1€)(g1, 92) = A1(91)"/*Az(g2)"/?€ 0 k1(g1, 92),
Ty : E — E7 defined by (T5¢)(g1,92) = A1(g1) "2 As(g2) "2 0 k2 (g1, g2),
Ty : E — Er defined by (T5¢)(g1, g2) = Aa(g2)"/?€ 0 ka(g1, g2).

We also have the following isomorphisms between Hilbert Ag-modules:

Sy : By — Er defined by (51€)(g1,92) = Aa(g2)'/€(g1, g2),
Sy : By — Er defined by (S2¢)(g1,92) = A1(91) " *¢(91, 92)-

Therefore the above Hilbert Ag-modules are isomorphic with each other.

Theorem 4.1. The following equations hold:
(1) (Ts7r(a T2£)(91792)
/ / (h1,hy )E(0(g1, 92; b, ha2))
G2 J G
x A1(h1) Ao (ha)2 AN y(hy) (h1)dAg s(g1) (h2)
fora e C(T)C CHT), £ € Co(T) C E and (g1,92) € T, where

0(g1, g2; b1, ha) = (p1(hahagy )™, pa(g2(hiha) ™).

(2) (Ti(7a, @ )(a)T7€)(91, 92)

- /G a(h (T g2 BT AL ()2 Ay ey (1)

forae C.(Gy) CCH(Gr), € C(T) C Er and (g1,92) € T.
(3) (Ta(e @ ma, ) () T5€) (91, 92)
= /G a(hy " )E((ha > 7)™ 92hs ) As(ho) T2 A a(g,) (h2)

for a € Co(Go) C C(Gy), € € Co(T) C Ex and (g1,92) € T.

Proof. (1) Note that we have (T;{)(gl,gg) = As(g2)"? €okalgr, g2). Put (g1, g2; ha, h) =
p1 (gggfl)_lgg(hlhg)_l. It follows from Lemma 3.1 that we have

(Ty 77 (a)T5€) (g1, g2)
= As(go)" // (h1,hy ) Ao (pa(y(g1, go; b, ho)) 1)1/

x &0 ka(p1(v(g1, g2: b1, h2)), p2(v(g1, g2 b1, ha)) ™)
X Al(hl) d)\l,r(hz)(hl)d)\Q,s(gQ)(hZ)-

Since we have

pilp2{g5 ' (hiha) " }pi{hihopi (9297 )Y ~" = p1(g1g5 ' (haha) ™),



C™-algebras arising from a matched pair of locally compact groupoids 237

we have

(p1(9195 " (hiha) "), p2(g195 (haha) ™))
= ka(p1(h1hapi(g297 1)) " p2(g5 H(hih2) ™).

By substituting g; for pq (gggfl)’1 and gy for g;l in the above equation, we have

(p1(v(g1, 925 h1, h2)), p2(Y (91, 925 ha, h2)) ™) = K2(0(g1, g2; b1, ha))).

Since we have py(v(g1, go; h1, ho)) = (g2hy ') ahyt, we have, by Lemma 2.3,

Aa(pa(¥(g1,92: h1,h2)) ™) = Aa(ga) " As(ha).

(2) Note that we have (T7¢)(g1,92) = A1(g91)/?2Aa(g2) "2 € 0 k1(g1, g2). The equation
is an immediate consequence of the formula

(rq, @ 1)(a)§)(g1,92) = /G a(hi")é(higr, g2) AN g1y (P1).

(3) Note that we have (T5€)(g1,92) = A1(g91)/?Aa(g2) "% € 0 kalgr, g2). The equation
is an immediate consequence of the formula

(0 ® 76,) (@)€) (g1, 92) = /G a(hy (g1, haga) drapgn) (h2).

O

5 (*-algebras associated with 7 For a, b € C.(7), define a product afb and an
involution a® as follows:

(afib)(g1, 92) :/ a(hi', g2 < (h1g1) " )b(h1gi, 92) A1 (gy) (h1),

G1

a® =aoK.

For a, b € C.(T), define a product abb and an involution a® as follows:

(abb)(g1,92) = /G a(((h2g2) > g1 ")~ by )b(g1, haga) dAs (g,) (h2),

a® =aokKs.

Then (C.(7),4,0) and (C.(T),b, ) are x-algebras.
For z € G, define measures “m and m® on 7 as follows:

/Tf(U) d*m(u) =// Fg1, 92) dAap(gr) (92)dN1 2 (91),
/T £ () dm® () = / / £(91,05") A1 (o) (91)dD.2(02)

for f € C.(T). The support of *m is *T = {(g1,92) € T;7c(g91) = «} and the support of
m®is 7% = {(g1,92) € T;ra(g2) = x}. Put *H = L*(T,%m) and H® = L*(7,m®), which
are Hilbert spaces whose inner products are linear in the second variables. For a, £ € C.(7),
define an element *p(a)¢ of C.(7) by

(*p(a)€)(g1,92) = / a(hyt, g2 <hTH)E(gihT, go <hy AR Y2 AN (g0 (1)



238 M. O’UCHI

and define an element p*(a)¢ of Co(T) b

(A" (a)€)(g1, 92)
= /a((hz >gr ) Ry DE((ha e gr )T g2hy ) As(h) T2 dAg y(gy) (ha).

We denote by L(*H) the x-alegebra of bounded linear operators on *H for each x. Then
we have the following theorem.

Proposition 5.1. (1) For every a € C.(T), “p(a) is an element of L(*H). The map p is
a x-represetation of (Ce(T),8,0) on *H.

(2) For everya € Co(T), p*(a) is an element of L(H®). The map p* is a *-representation
of (Co(T),b,$) on H™.

Proof. Let K be a support of a. For i = 1, 2, let K; be the set of g; € G; with (¢1,¢2) € K.
Put M;(K;) = sup{\; .(K;);z € GO}, We denote by xf the characteristic function of K.

(1) For (g1,92) € T with r¢(g1) = z, we have
I1”5(a)é||Z
2
<l [f { [ g @b lelor b gw a b ()2 dAl,r<gl><h1>}
X d/\2xr(91)(92)d/\1,z(gl)

<ol [/ { / xK<h;1,92«h;l)dAl,,(gl)(hl)}

X {/XK(hl_1792 ahiHIE(gr it g2 < hi Y PAL (he) d/\l,r(gl)(hl)}
X d>\2 T((]l)(g2 dAl , T gl
< My(K7Yall%, ///m DlE(or by ge < BV PAL(R)

X d/\l,r 91)(h1)d)‘2,r (91) (92)d)\17w(gl)
= M (K )al%

<[ [ it b 9B Ao ()0 ()dAr s () by (D)
= My (K a2
x / / / i (G I 92) 2 Aoy (92)dM (o) (1) Ao (1)

= My (7Y a2, / / / X GOIERT Y, g2)[2 sy (91)dD2.s () (92) 8N (1)
< My (K2 My (K7 Y a2

Therefore we can extend *p(a) to a bounded operator on *H, which we denote agaln by
*5(a). Note that we have ||*5(a)|| < M||al|so, where we have M = (M, (K)M;(K;*))"/2.

By a straightforward calculation, we can show that *p(afb)é = *p(a)*p(b)€ for a, b, £ €
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C.(T). We will show that *p(a®) = *p(a)*. For a, &, n € C.(T), we have

=// (g7t (gaahyt) <hn)a(hy ! g <hy (g thit g2 <hi )
< A1(h1)2da (1) (92) AN (gr) (h1)dA1 2 (91)
// (g1t g2 9hi)a(hy !, g2)n(gr Thi s g2)
h1) " 2dNs ) (92) AN o9y (B1)dA1 2 (g1) by (D2)
/ / [ €lor 02 (g alanhi g2l g2)
x Ay (hugy ') 2o () (92)dA 1 s(g0) (h1)d A1 2 (g1)

///{ ot g2 <9 Dalgr, g2)n(hit g2)

x A1(gr)™ 1/2d>\2,r(h1)(92)d)\1,r(hl)(gl)d)\l,z(hl)
= ("p(a®)&, M= m,

where the last equation follows from the fact that a o x1(g7 ", g2 <97 "') = ao k3 (g1,92) =

a(gla 92) ~
(2) We can prove the statement as in (1). Especially we have ||5(a)|| < M’||a||s, where
M’ = (My(Ky) My(Ky1))Y2. O

Lemma 5.2. (1) Fora € C.(T), if “p(a) =0 for every x € GO then a = 0.
(2) For a € C.(T), if p*(a) =0 for every x € G, then a = 0.

Proof. (1) We have, for £ € C.(T) and (g1,92) € T,
(*p(a)€)(g1, 92)
aok1(h1, g2)€ 0 k1 (higy ', g2 < gy )AL (he)Y/? dA1,s(gy) (1)

For & € C.(G;) (i = 1,2), put £ = (&1 ® &) o k1. Then we have, for (g1,g92) € *7T

0= ("p(a)é)(g1,92)
=629 ) /a o k1(h1,g2)€1(higy V)AL (hy)Y/? A s(gyy(P1)-

)

This implies that a o k1(h1,g2) = 0 for hy € G 4(4,). Especially we have a o k1(g1,92) =0
for (g1,92) € *7T. Since x is an arbitrary element of G°, we have a = 0.
(2) We have, for £ € C.(T) and (g1,92) € 7,

(p(a)€)(g1,92)
= /a 0 ka(g1, h2)€ o ka((g2> g1 ) h hagy M) Ao (ha) ™2 dXg s(g1) (h2).

We can prove the statement as in (1). O

We introduce a norm on (C,(7),#,0) by |la| = sup{||*5(a)||; = € G{®}. We denote
by B the completion of (C.(7),4,0) with respect to this norm. We can extend *p to
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the x-representation of B on *H, which we denote again by *p. There exists an injective
s-homomorphism pg, : B — L4,(E1) such that

(PE, (a)§)(g1,92) = /a(hf1792 ahTHE(gihy Y go ahy )AL (he)? dA1,s5(g1) (1)

for a € C.(7T), £ € Ce(T) C Ey and (g1,92) € 7. We introduce a norm on (C.(7),b, )
by |la] = sup{[|p*(a)||; z € G©}. We denote by B the completion of (Co(T),b, <) with
respect to this norm. We can extend ,51 to the #-representation of B on H *  which we
denote again by 5“” There exists an injective *-homomorphism ;:>E2 :B— A, (E2) such
that

(PE:(@)€) (91, 92)

= / a((ha> g7 ')y DE((he > g1 ") ™ g2hs ) As(ho) ™2 g g,y (ha)

fora e C.(T), £ € C.(T) C Ey and (g1,92) € 7.

6 (*-algebras arising from a matched pair of groupoids Let 77 be the fibered
product Gy s X, Go = {(g1,92) € G1 X G2;5(g1) = r(g2)} and let 73 be the fibered product
Ga s%r G1 ={(g92,91) € G2 x G1;8(g2) = r(g1)}. Define homeomorphisms ¢, : 7 — 7; and

@2 :T — T3 by ¢1(g1,92) = (91,95 ") and ¢2(g1, 92) = (g2, 97 ') respectively.
Define a bijection @ : C.(71) — C.(T) by

D1 (a)(g1, 92) = A1(91)"/*As(g2) "2 (a0 1 0 K) (g1, g2).

Since C..(7) is a dense *-subalgebra of the C*-algebra C*(7), we have a x-algebraic structure
and a C*-norm on C,(7;) induced by ®;. We denote by C;(G1) 1 C}(G2) the C*-algebra
that is the completion of C.(77) with respect to this norm. We can extend ®; to an
isomorphism of C*(G1) < C*(G2) onto C*(T), which is denoted again by ®;. Define a
bijection @5 : C.(T2) — C.(T) by

Dy(a)(g1, 92) = A1(g1) /*Aa(g2)"?(a 0 2) (g1, g2)-

Then we have a x-algebraic structure and a C*-norm on C.(73) induced by ®5. We denote
by C}(G3) > Cf(Gy) the C*-algebra that is the completion of C.(73) with respect to this
norm. We can extend ®5 to an isomorphism of C*(G2) xt C*(G;) onto C*(7T), which is
denoted again by ®5. By the construction, we have

Cr(G1) O (G2) = O (G2) 2 C1(Gr) = CH(T) = CH(G).
Then we have the following injective *-homomorphisms:

Ad T} omg o ®y :CH(G1) > CF (Go) — L4, (E),
Ad T omr 0o ®y :CF(Gy) > CF(G1) — La,(E),

where Ad Ty o w7 (a) = Tymr(a)Ty for a € C*(T).

Define a bijection 1. : Co(71) — Co(7) by ¢1.(a) = ao 1. Since (Co(7),t,0) is a
dense *-subalgebra of the C*-algebra B, we have a x-algebraic structure and a C*-norm
on C.(77) induced by ¢1.. We denote by C}(G1) x Cp(G2) the C*-algebra that is the
completion of C.(77) with respect to this norm. We can extend @1, to an isomorphism of
C*(G1) x Cy(G2) onto B, which is denoted again by ¢1.. We define a s-representation *p of
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C*(G1)xCo(G2) on*H by “p(a) = *p(p14(a)). We also define an injective x-homomorphism
B CHGr1) x Co(Ga) — La,(Ev) by pE, = pE, © P1x-

Define a bijection @a. : Ce(T2) — Co(T) by @as(a) = a o . Since (C.(T),b, ) is a
dense *-subalgebra of the C*-algebra B, we have a x-algebraic structure and a C*-norm
on C.(72) induced by @a.. We denote by C}(G2) x Cy(G1) the C*-algebra that is the
completion of C.(72) with respect to this norm. We can extend @o, to an isomorphism of
C*(Ga) X Co(Gy) onto B, which is denoted again by ¢o.. We define a *-representation p* of
Cr(G2)xCo(G1) on H” by p*(a) = p”(w2+(a)). We also define an injective +-homomorphism
pE, + Cr(G2) x Co(G1) — La,(E2) by pp, = pp, © P24

7 Representations on Hilbert sapces Let p be a positive regular Radon measure on
GO, For i = 1,2, we say that u is Gj-invariant if it satisfies the following equation

/G<0>/ §gi") dXialgi)du(x /G(O)/ &(gi) dXi o (gi)dp(z)

for £ € C.(G;). In this section, we assume that there exists a G- and Ge-invariant measure
1 on G whose support is G(9). Then by equations (C1) and (D2), we have

(%) /G<0)/G /G § o k(g1,92) dA1,2(91)dA2,0 (92)dp()
=[] a8 0007 ) l02) (o)

for £ € C (7).

Note that the inner products of the following Hilbert spaces are linear in the second vari-
ables. We denote by Hy the completion of the pre-Hilbert space C.(7") with the following
inner product

€)= [ (&nes (@) duta).

The Hilbert space Hy, H and H are similarly defined with respect to the Ag-valued in-
ner product (§,1)z_, (§,7) g and (§,n)r on Cc(7) respectively. Since p is Gi-invariant,
we can define an isomorphism I+ : Hr — H by (I7€)(g1,92) = Dal(ga) Y?€(g1,92).
Since p is Go-invariant, we can define an isomorphism I : Hr — H by (I7€)(g1,g2) =
A1(91)Y/%¢(g1, 92). By the equation (x), we can define an isomorphism I : H — H by
(I€)(g1,92) = Aa(g2) €91, 92).-

For a € C.(T) C C}(T) and n € C.(T) C Er, we have nr(a)n € C(7). Then, for
£ € C.(T) C E, we have Tyrr(a)Tol € Co(T). Moreover we have

|75 77 (a)Toé]l 5 < 7)€l &

Therefore we can extend T3 77 (a)Th to a bounded linear operator on H, which we denote
by w(Tynr(a)Ty). Define w : Co(T) — L(H) by n(a) = ITu(Tynr(a)Ty)I*. Since we
have ||7(a) ), we can extend 7 to C(7), which we donote again by 7. Since
77 is injective, the x-homomorphism 7 : C*(7) — L(H) is injective. Similarly we can
define an injective *-homomorphism 7y : C}(G1) — L(H) (resp. w2 : C}(G2) — L(H))
by mi(a) = Irp(Ti(ne, @ )(a)T)I5 (resp. mo(a) = Irpu(To(t @ T, )(a)T5)I5). Define
an injective *-homomorphism p; : Co(G1) — L(H) (resp. p2 : Co(G2) — L(H)) by
p1(a) = ITp(Ti(pa, @ 1)(a)T5)I% (resp. pa(a) = Irp(T2(t ® pa,)(a)Ty)I%). Then we have
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(p1(a)€)(g1.92) = algy (g1, 92) and (p2(a)é)(g1,92) = algs ")é(g1,92). By Theorem 4.1,
we have

91792
/G/G (h1,hy EO(g1, 923 b1,y ha)) Av(he) dAL(hy) (h1)dAs,s(g,) (h2),
(me( al)f)(gl,gﬁ
- /G ar (T )E(gihT " g2 AT )AL ()72 dA () (),
(m2(a2)€) (91, 92)
= [ aalhy (b ) g ) ) g ()

for a € C.(T),a1 € C.(G1),a2 € C.(G2) and & € C.(T).

Proposition 7.1. The following equations hold:

ma(az)mi(ar) = 7((A1 a1y @ (A) *as))
T(((ATa1) ® (A;?as)) o k)

m1(a1)ma(az)
for a; € Co(Gy) € CH(Gy) (i = 1,2), where di(g;) = ai(g; ).
Proof. For £ € C.(T) and (g1, g2) € T, we have
(m2(az)m1(a1)€)(g1, 92)

//a1 hi)ag(hy E((he > g7 ) ATt (g2ha b) <y h)
x Ag(ha)™ /2A1(h1) 12 AN () (h1)dAg (g0 (h2)
//a1 (h1)as(hy M)EO(g1, ga; ha, ho))
X A1(’11)1/2A2(h2) Y2 AN () (h1)d A2, (g,) (h2)

= [0y ) (A az) 03 e 0001, 1)

X A1(h1) dXy p(hy) (h1)dAg 5(g,) (ho2)
= (n((A a1 ® (8 %02))€) (91, g2)-

We also have

(7T1 a 7T2(a2)f)(91792)
// a1 (b s (B3 DE(ha v (9187 )™)Y, (g0 <hy Az )
xAl(hl)l/QAQ(hz) Y2 ANy (1) (h2)dA 1 s(gy) (B1).

Since we have hohy = (ha>hy)(ha<ahi), hat (g1hi ') ™! = pi(hahigy ') and (ga<hy )byt =
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pa(g2(hahi1)™1), the last integral equals to

//al 1(hs <) (ha o he) ™Y

x &(p1((hg > h1)(ha <hi)gy )™t palga(he <hy)H(ha > hy)™h))
x A1(h1)2Ag((ha > hi)(ha <hi)hT") ™2 dAg ) (h2)dM s(g) (R1)

//a1 Yag(hihy *(ho > hit))

X E(pr((h2>hi ") thagy )7 pa(gahs ' (ha > hi)))
x Ay (h1)*2Ag(hihgt (ho > hl_l))l/zd)‘l s(gn) (P1)dX2 5(g,) (h2)

by (C2). Since we have hy* = hy ' > (hg > hi!'), the last integral equals to

/ / ar((h3 o (ha > b )as({h3 Lo (ho o by )} hy (ha o b))

< E(p1((ha > hi") Thagy ")™Y pa(gahy M (ho v hTY)))

x Ar(hy e (ha > hi ") 32 A0 ({hy ' & (ho e hy ')} hy t (ha A1)

X A1 s(hy) (h1)dN2 5(g,) (R2)
=//a1<h51>h;1>a2<{hgl>h;1}‘1h51h;1>

x &(p1(hihagy )" p2(g2hs thih)

< Ap(hy ' o hy )T A({hy > Y Ry TR Y2 A (o)

X dA1 7 (hy) (P1)dA2 5(g,) (h2)

by (D1). Since we have {hy ' > h7 '} "Thy'hy! = hy ' <h7?, the last integral equals to

// ar(hy ' > by Dag(hy ' <hy DE(prL(hihagy t) ™Y pa(g2hy Th )
X A1(h1)*7? Do (h2)'? dAy p(ny) (h1)dA2 (g, (h2)
by Lemma 2.3. Therefore we have

(m1(a1)m2(az)§) (g1, 92)

= [[ @ s 1A ) (0" 4 e(bor, 9231, ha))

x Ay (hy) d)\l,r(hg)(hl)d)‘2,s(gl)(h2)
= (r((A7?a) © (85 a2)) 0 K)E) (91, 92)-

O

From the above arguments, we have injective *-homomorphisms 7 o ®; : C*(G1) >
CHGy) — L(H) and mo®y 2 CF(G2) = CF(Gy) — L(H). The invariance of p implies
that H = [ *Hdu(z) = [ H" du(z). Then we can define injective *-homomorphisms
p: C*H(Gy) x Co(Gy) — z:( ) and p : C*(Ga) x Co(G1) — L(H) by p = [®#pdp(z) and
p= fea p% du(z) respectively.

Theorem 7.2. The following equations hold:
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(1) mo®(a®b) =m(a)m(b)  (a € Ce(Gr), be Ce(Ga)).
(2) mo®y(b® a) =ma(b)m(a) (a € C.(Gr), be C.(G2)).
3) pla®b) =m(a)p2(b)  (a € Ce(Gr), b€ Co(Ga)).
(4) plb®a) =m(d)pi(a)  (a € Co(Gy), be Cu(Go)).

Proof. The statements (1) and (2) are immediate consequences of the definitions of C(G1) >
C}(G3) and C}(G2) > C(G1) and Proposition 7.1. The statements of (3) and (4) are im-
mediate consequences of the definitions of representations involved. O

8 Examples

8.1 Actions of semidirect product groups Let I'; and I'; be a locally compact second
countable Hausdorff groups. Let o : I's — Aut(I';) be a continuous homomorphism. Let
I' =T x4, I's be a seimidirect product group. Suppose that I acts on a topological space
X. We have groupoids G =T x X and G; =T; x X (i = 1,2). For every (v,z) € G, we
have (v, z) = (71,72 7) (72, 7) for 73 € G; with v = y1792. That is, p1(v,z) = (71,72 z) and
p2(7,x) = (72, 2). Then (G1,G2) is a matched pair. Let \; be a right Haar measure of T';.
Defin Ay : Go — Ry by Ag(y2,2) = d(04, - A1)/dA1, which is constant on X since A is a
Haar measure. We set A; = 1. Then the equation (Ci) is satisfied for the right Haar system
{A\i x 0z} (i =1,2), where 0, is the Dirac measure. Let §; be the modular function of T;.
Then a positive measure p on X is G;-invariant if and only if (d(v; - p)/dp)(z) = 6;(7;) for
A X H-a.a. (’Yiaﬂ?) € G;.

8.2 An action of a matche pair given by S. Majid Using a matched pair given by
S. Majid [5], Example 6.2.16, we describe an action of a matched pair on a two torus. Let
I’y be the group of 3 x 3 lower triangular matrices with 1 on the diagonal and I'; the the
group of 3 x 3 upper triangular matrices with 1 on the diagonal. We take the entries in the
integers Z. That is

b

1 00 1
I = a 1 O0||la,byceZ,, I 0 a,b,ceZ
b ¢ 1 0

O = Q

c
1
Define a bijection o : I'y UTy — I'y UTe by o(y) = ty~1, where '~ is the transpose of 7.
For v, € T'; (i = 1,2), define

Ye<dy1 =1+ (2 —1I)o(m) €Iy,
Yoy =I+0o(y)(n—1) el

Then (I';,T'5) is a matched pair of groups. Note that we have v20(v1) = o(y2>v1) (72 <71)-
We can form the bicrossed product group I' = I'; 1 I';. Let X = T2. Define an action of
I' on X by
Uy
(71, 72) - (1, u2) = o(11)72 | u2
1

for (y1,72) € T and (uy,uz) € X, where we identify (u1,us) with *(u,us,1). Define r-
dicrete groupoids G, G; and Go by G =T x X and G; =T; x X (i = 1,2). Then (G1,G2)
is a matched pair of groupoids.

Remark. The groups I', I'; and I's are amenable. In fact, they are semidirect product
groups of amenable groups: I'1 ~ Ty ~ Z2 x,Z and ' ~ Z3 x, T'5.
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