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ABSTRACT. Surprisingly small varieties of Heyting algebras have very complex categor-
ical structure and contain the largest possible number of subquasivarieties.

1. INTRODUCTION

A quasivariety is a class of algebraic systems of a similarity type A closed under isomor-
phisms, products, subsystems and ultraproducts. For a family of algebraic systems U of a
type A, let Quasi(i/) denote the least quasivariety containing U.

If Q is a quasivariety then subquasivarieties of Q form a complete lattice Lat(Q) with
respect to the inclusion. One topic of universal algebra is an investigation of properties of
Lat(Q) for some quasivarieties. M. V. Sapir [23] defined that a quasivariety Q of a finite
type A is Q-universal if for every quasivariety V of a finite type the lattice Lat(V) is a
quotient of a sublattice of Lat(Q). He proved that a variety of commutative 3-nilpotent
semigroups is @Q-universal and he asked which other quasivarieties are Q-universal.

A family {Ay | U € P(w)} of algebraic systems indexed by the set P(w) of all finite
subsets of the set w of all natural numbers is called an A-D family if

(pl) Ay is a terminal object of Q;

(p2) if U,V € P(w) then Ayuy € Quasi{Ay, Ay };

(p3) if U,V € P(w) such that U # () and Ay € Quasi{Ay} then U =V;

(p4) if for V € P(w) there exist a finite set U C P(w), finite algebraic systems B,C €
Quasi{Ay | U € U} and an injective homomorphism fAy — B x C then there exists
an injective homomorphism gAy — B or there exists an injective homomorphism
gAy — C or there exist subsets V1, Vo C V and injective homomorphisms g1 Ay, — B
and goAy, — C with V =1, U V5.

M. E. Adams and W. Dziobiak [6, 7] proved that the existence of an A-D family in
Q implies that Lat(Q) satisfies no nontrivial lattice identity. Then M. E. Adams and
W. Dziobiak improved these results by proving in [2] that a quasivariety Q of algebras of
a finite type is Q-universal whenever there exists a sublattice of Lat(Q) isomorphic to the
lattice of all ideals of a free lattice over an infinite countable set, and that the existence of this
sublattice in Lat(Q) follows from the existence of an A-D family in Q. Many quasivarieties
are @-universal, see the excellent survey paper [1] by M. E. Adams et al.

Another important and interesting theme is the algebraic structure of morphisms of a
category. Omne of the notions indicating its complexity is the alg-universality. A category
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K is alg-universal if every category of algebras and all their homomorphisms can be fully
embedded into K, or equivalently, if the category GR of all graphs and their homomorphisms
can be fully embedded into K. Many familiar concrete categories are alg-universal, see the
monograph by A. Pultr and V. Trnkové [22]. Experience shows that this notion is often
too restrictive, and this is because there are many familiar categories rich in their structure
which are not alg-universal, for example categories of topological spaces and varieties of
lattices or those of monoids. T'wo obstacles to alg-universality are illustrated in the following
theorem.

Theorem 1.1 ([12]). The variety V of semigroups is alg-universal if and only if V contains
all commutative semigroups and for every n > 1 the power law (xy)™ = z™y"™ fails in V.

The condition that V contains all commutative semigroups is equivalent to the property
that for every n > 1 the law 2™ = z fails in V and this holds exactly when there exists
a semigroup S € V without idempotents. We can say that for a rich category there are
two main obstacles, the forced existence of endomorphisms whose images belongs to a poor
subcategory (in our earlier examples the existence of endomorphisms whose images belong
to the trivial variety) or the existence of canonical symmetries of objects (in our example the
existence of endomorphisms x — " for some n > 1). These facts motivate the following
modifications. Let K be a category. Then a class I of K-morphism is an ideal of K if
fog e I whenever f €l orge I. A faithful functor F' : L. — K is called an I-relatively
full embedding if

(f1) Fg ¢ I for every L-morphism g;
(f2) if f : FA — F B is a K-morphism for some L-objects A and B then either there exists
an L-morphism ¢g: A — B with Fg= for f € 1I.

A category K is [-relatively alg-universal if there exists an I-relatively full embedding
F : GR — K. If, moreover, K is concrete and the underlying set of F'G is finite for every
finite graph G then we say that K is I-relatively ff-alg-universal. If K is concrete and
I consists of all K-morphisms whose underlying mappings are constant, then K is almost
alg-universal. Observe that if I = () then K is I-relatively alg-universal exactly when it is alg-
universal. Ideals determined by a subvariety play an important role. Let Q be a quasivariety
and let V be a subvariety of Q. Let us denote Iy the class of all homomorphisms f € Q such
that Im(f) € V. Tt is easy to verify that Iy is an ideal. If Q is Iy-relatively alg-universal for
some a subvariety V of QQ then we say that Q is var-relatively alg-universal. A var-relatively
ff-alg-universal quasivariety is defined analogously. The idea of this notion is that many
types of algebraic systems allow a retract to an object of a small proper subvariety while
the overall morphism structure of QQ remains rich.

Let M be a monoid viewed as a one-object category. Then GR x M is a category whose
objects are all undirected graphs and morphisms from a graph G; to a graph Gs are all
pairs (f,m) where f : G; — G2 is a graph homomorphism and m € M, and if (f’,m’) is
morphism from Gy to Gs then (f,m) o (f',m’) = (f o f/,mm’). We say that a category
K is alg-universal modulo M if there exists a full embedding of GR x M into K. This
notion plays an important role for a characterization of richness of an algebraic structure
of homomorphisms of a finitely generated variety of distributive dp-algebras, see [13] — in
this case M is one of the powers CY, Ca, C3, C3 of the two-element cyclic group Ca. In
the present paper we also combine these notions. We say that a category K is I-relatively
alg-universal modulo M if there exists an I-relatively full embedding F' from GR x M into K
where [ is an ideal of K. If, moreover, K is concrete and F'G is finite for every finite graph
then K is I-relatively ff-alg-universal modulo M. If Q is an Iy-relatively alg-universal
quasivariety modulo M where V is a proper subvariety of Q then Q is var-relatively alg-
universal quasivariety modulo M. A var-relatively ff-alg-universal quasivariety modulo
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M is defined analogously. Observe that if M is the singleton monoid then a category K
is I-relatively alg-universal modulo M exactly when K is I-relatively alg-universal. For
algebraic systems, the elements of M often correspond to derived operations that are their
homomorphisms.

M. E. Adams and W. Dziobiak proved the following remarkable result connecting Q-
universality and ff-alg-universality.

Theorem 1.2 ([3]). Every ff-alg-universal quasivariety of algebraic systems contains an
A-D family and thus it is Q-universal.

This result was strengthened to almost ff-alg-universal quasivarieties in [14]. An analo-
gous result was proved for special var-relatively ff-alg-universal quasivarieties in [15], but
in general this does not hold: there exists a var-relatively ff-alg-universal variety of dis-
tributive dp-algebras that is not Q-universal, see [16]. On the other hand, a construction of
Iy-relatively ff-full embedding can be often modified to a proof that the given quasivariety
contains an A-D family. We will illustrate this observation on finitely generated varieties of
Heyting algebras. We give a partial answer to the problem formulated in [1] asking to char-
acterize Q-universal varieties of Heyting algebras. We also extend [9], where some finitely
generated var-relatively ff-alg-universal varieties of Heyting algebras were exhibited.

For a family U of algebras of a similarity type A, we let Var({/) denote the least variety
containing U. Thus Var(Uf) is the variety generated by Y. We will work with the Priestley
duals of Heyting algebras. It is well-known that duals of finite Heyting algebras are finite
posets. Thus for a set S of finite posets we say that a variety V of Heyting algebras is
generated by S if V is generated by Heyting algebras whose duals belong to S. For a finite
poset P, we denote DP the Heyting algebra whose Priestley dual is the poset P. The
principal aim of this paper is to prove

Theorem 1.3. For each i =0,1,...,10 the variety of Heyting algebras generated by DQ;
is var-relatively alg-universal modulo Cy or CY and contains an A-D family, thus it is
Q-universal. The posets Q; are shown in Figure 1.

Fori=0,1,2 the variety of Heyting algebras generated by {DF;, DG;} is var-relatively
ff-alg-universal and contains an A-D family, so that it is Q-universal. The posets F; and
G; with i = 0,1,2 are shown in Figure 2.

It should be pointed out that it was already known to the authors of [1] that any variety
V of Heyting algebras containing DQ; with ¢ = 0,1, 3,6 is Q-universal.

M. E. Adams and W. Dziobiak [4] proved that the variety of Heyting algebras generated
by {DH;,DG;} has an A-D family and thus it is Q-universal. This variety is a subva-
riety of the variety generated by {DF;,DG1}. This then generalizes our result. It is an
open question whether the variety generated by {DH;, DG} is var-relatively alg-universal
modulo M for some monoid M and it is also an open problem whether the varieties gen-
erated by {DF;,DG;} for ¢ = 1,2 are minimal such that they contain an A-D family or
whether they are var-relatively alg-universal modulo M for a monoid M. The varieties
generated by {DQ;} for ¢ = 0,1,...,10 are minimal with respect to Q-universality and
minimal var-relative alg-universal varieties modulo a monoid M.

As a consequence we then obtain

Corollary 1.4. The variety of Heyting algebras generated by DS; with i = 0,1,...,11 is
var-relatively alg-universal and contains an A-D family; thus it is Q-universal. The posets
S; fori=0,1,...,11 are shown in Figure 3.

Corollary 1.5. Let 'V be a variety of Heyting algebras such that there exist a finite poset P
whose dual belongs to V and there exist a three-element antichain {x1,x2,z3} in P and an
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element y from P such that x; <y fori=1,2,3. ThenV is var-relatively ff-alg-universal
and contains an A-D family, so that it is also Q-universal.

Our results use Priestley duality and the category of functors from a poset into compact
totally disconnected spaces. We recall the Priestley duality for Heyting algebras in the
second section. Let C be the category of compact totally disconnected spaces and continuous
mappings between them, and for a poset P, let CF be the category of all functors from
P into C and all natural transformations between them. The third section is devoted to
construction of relatively full embeddings from a suitable subcategory of CP to categorical
duals of varieties of Heyting algebras. The subsequent sections apply these results to finitely
generated varieties of Heyting algebras. The last section summarizes our results in detail.
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2. PRIESTLEY DUALITY AND SOME BASIC FACTS

Throughout the paper, we extensively use Priestley’s duality for distributive (0,1)-lattices.
We begin with a brief review of Priestley’s duality and its application to Heyting algebras.

For a poset P and any Q C P denote [Q) ={z € P|Jy e Q,x >y} and (Q] ={r € P |
Jy € Q,z < y}. Asubset @ of P is decreasing if (Q] = @, increasing if [Q) = @, and convex
if [Q) N (Q] = Q. Let Min(P) denote the set of all minimal elements of P and Max(P)
denote the set of all maximal elements of P. For @@ C P denote Min(Q) = (Q] N Min(P)
and Max(Q) = [Q) NMax(P). If x € P we shall write (z] or [x) instead of ({z}] or [{z})
and, analogously, we shall write Min(z) and Max(z). A poset P is connected if for every
pair xz,y € P there exists a sequence {xg, 1, ...,2,} such that z = z¢, z, = y, and z;
is comparable to x;41 in P for every ¢ = 0,1,...,n — 1. If P is a poset then a maximal
connected subposet (with respect to inclusion) is called its order component. We say that
y covers x and x is covered by y if {y,z} = (y] N [z); then (y,z) is called a covering pair.
For z € P, let Cov(x) denote the set consisting of all elements covered by x.

Let X = (X;<,7) be an ordered topological space; that is, (X;7) is a topological space
and (X; <) is a poset. A subset Z C X is clopen if it is both closed and open in 7. We say
that X is a Priestley space if 7 is compact and totally order disconnected; this means that
for any z,y € X with 2 £ y there exists a clopen decreasing set U C X withy e U, x ¢ U.
Let P denote the category of all Priestley spaces and all their continuous order preserving
mappings.

Clopen decreasing sets of any Priestley space form a distributive (0,1)-lattice, and the
inverse image map f~! of any P-morphism f is a (0,1)-homomorphism of these lattices. This
gives rise to a contravariant functor D : P — D from the category of Priestley spaces into
the category D of all distributive (0,1)-lattices and their (0,1)-homomorphisms. Conversely,
for any distributive (0,1)-lattice L, let P(L) = (F(L); <,7) where (F(L); <) is the poset of
all prime filters of L ordered by the reversed inclusion, and an open subbasis of 7 is formed
by all sets {z € F(L) |a € z}, {x € F(L) | a ¢ x} for a € L. According to H. A. Priestley
[19], P(L) is a Priestley space and if f : L — L’ is a (0,1)-homomorphism then f~! is
continuous order preserving mapping from P(L’) to P(L). This determines a contravariant
functor P : D — P.
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Theorem 2.1 ([19, 20]). The two functors PoD :P — P and DoP : D — D are naturally
equivalent to the identity functors. Therefore D is dually isomorphic to P. Moreover, a
Priestley space X is finite if and only if PX is a finite distributive (0,1)-lattice.

A Priestley space X = (X;<,7) is called an h-space if [U) is clopen for every clopen set
U C X. A mapping h : P — P’ between two posets has an h-property if (f(z)] = f((z])
for all x € P. An order preserving continuous mapping f : (X;<,7) — (V;<,0) with
h-property is called an h-mapping. The subcategory of P formed by all h-spaces and h-
mappings is denoted by PH. The following claim is folklore.

Theorem 2.2 ([21]). For a Priestley space X, DX is a Heyting algebra if and only if X is
an h-space. For an order preserving continuous mapping f : X — Y between two h-spaces,
Df is a homomorphism of Heyting algebras if and only if f is an h-mapping. Therefore PH
is dually isomorphic to the variety H of all Heyting algebras and their homomorphisms.

For an h-space X = (X,<,7), clearly A — B = X \ (A \ B) for any clopen decreasing
sets A, B C X.
The claim below is folklore.

Statement 2.3. A homomorphism h : H — H' between Heyting algebras is injective if
and only if Ph is surjective. A homomorphism h : H — H' between Heyting algebras is
surjective if and only if Ph is injective.

The authors [17] have shown that for a family {f; : A; — B | i € I} of order preserving
continuous mappings the lattice DB is a subdirect product of {DA; | ¢ € I} whenever
U{Im(f;) | 7 € I} is dense in X. Since products of Heyting algebras and distributive (0,1)-
lattices coincide, we immediately obtain the following folklore statement in which, for a
variety V of Heyting algebras, PHV denotes the full subcategory of PH determined by all
h-spaces PH with H € V.

Theorem 2.4. An h-space X = (X; <, 7) is a dual of subdirectly irreducible Heyting algebra
if and only if Max(X) is a clopen singleton. For a variety V of Heyting algebras one has
X =(X,<,7) € PHV if and only if (x] € PHV for every xz € X.

Note that for any h-map f : (X;<,7) — (YV;<,0) of h-spaces, its image Im(f) C Y is
closed decreasing and for all y € Im(f) if v € f~!(y) and = € (y] there is some u € (v] with
f(u) = x. Thus f factorizes through PHV for a variety V of Heyting algebras if and only
if the h-subspace of (Y;<,0) on Im(f) belongs to PHV. Since the congruence lattice of
any Heyting algebra is distributive, any finitely generated variety V of Heyting algebras has
only finitely many subdirectly irreducible algebras and all of these are finite. Their duals
are also finite, and we may use Theorem 2.4 to determine whether X = (X; <, 7) belongs
to PHV. Hence for every finitely generated variety of Heyting algebras V there exists a
natural number n such that for every X = (X;<,7) € PHV and for every x € X we have
(@]l < n.

If S is a class of h-spaces then Var(S) denotes the least variety V of Heyting algebras
such that DX € V for all X € S. If § = {X} then we shall write only Var(X) instead of
Var({X'}).

Clearly, any finite poset (X, <) with the discrete topology is an h-space. Thus

Theorem 2.5. Let S ={P; |i € I} be a finite set of finite posets such that | Max(F;)| =1
for alli €I and let V.= Var{P; | i € I} be a variety of Heyting algebras. Then an h-space
X = (X;<,7) belongs to PHYV if and only if for every x € Max(X) there exist i € I, a
finite poset P, an injective order preserving mapping f : (x] — P with the h-property and a
surjective order preserving mapping g : P; — P with the h-property.
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Proof. Let A € V be a Heyting algebra and let X = (X; <,7) be its h-space. Since A € V,
there exists a family {A; | j € J} of Heyting algebras such that for every j € J there exists
i € I such that A; is isomorphic to DF;, an injective Heyting algebra homomorphism
f:B— HjeJ A, and a surjective homomorphism g : B — A. Let us denote PB = (Y; <
,7) and f1 = Pf, 1 = Pg. Then, by Statement 2.3, g1 is injective and f; is surjective.
Since the product of Heyting algebras coincides with the product of underlying distributive
(0,1)-lattices we conclude that the dual h-space of [[,.; A; coincides with the Priestley
space of the corresponding underlying distributive (0, 1)-lattice. Thus, by [17], every order
component of the dual h-space (Z;<,7) of HjeJ A; is isomorphic to P; for some i € I.
Hence for every y € Max(Y) there exists z € Max(Z) such that fi(z) = y. Choose
x € Max(X) and y € Max(Y') with gi(z) € (y]. Let us denote P = (y]. Then the domain-
range restriction go of g1 to (z] and P is an injective order preserving mapping from (z]
into P with the h-property. Since for every z € Max(Z) there exists ¢ € I such that (z] is
isomorphic to P; and since there exists z € Max(Z) with f1(z) = y, there exists an surjective
order preserving mapping fa : P; — P with the h-property. Thus for every z € Max(X)
there exist i € I, a finite poset P, an injective order preserving mapping f : (z] — P with
the h-property and a surjective order preserving mapping g : P; — P with the h-property.

Conversely, assume that X = (X;<,7) is an h-space such that for every x € Max(X)
there exist i, € I, a finite poset P, an injective order preserving mapping f : (z] — P,
with the h-property and a surjective order preserving mapping g : P;, — P, with the h-
property. Since V has products, we infer that PHV has coproducts and, by the universal
property of coproducts, there exists a surjective h-map g : [] reMax(X) X. By Statement
2.3, DQD(erMax(X)Px) — DX is injective, and, by Theorem 2.2, DI_[xeMaX(X)P =
[ emax(x) DPoe € V. Whence X € PHV. O

Corollary 2.6. Let X = (X;<,7) and Y = (Y;<,7) be h-spaces. Then Var(X) C Var())
whenever for every x € Max(X) there exists some y € Y such that the h-subspaces (x] and
(y] are isomorphic.

If there exists a natural number n such that |(z]| < n for all x € Max(X) and if f: X —
X is an endomorphism of X such that there exists x € Max(X) satisfying

o if there exist y € Max(X), a poset P, a surjective h-map g : (y] — P and an injective
h-map h: P — (x], then (z] and (y] are isomorphic;
o there exists no z € Im(f) such that (2] and (x] are isomorphic

then Var((Im(f))) # Var(X).

3. GENERAL CONSTRUCTIONS

A poset P = (P; <) will be considered as a category in which 7,, : ¢ — p denotes the
P-morphism for each pair ¢ > p in P.

In what follows we assume that V is a finitely generated variety of Heyting algebras
and X = (X;<,7) € PHV is an h-space. A finite convex open subset U C X is called
functorial, and U(X) denotes the induced subposet of (X; <) on the set U. Let us denote
I'x.y the constant functor from CUX) to PHV with the value X. For a functorial set
U of an h-space X = (X;<,7) € PHV we give a canonical construction of a functor
Uyy: CU(X¥) — PHV and a natural transformation v : Uy y — Iy py. For simplicity, let
us denote U = U(X) = (U; <). For a functor F : U — C define

-aset Yp = (X \U)U(U,ep Fu) (we assume that X N Fu = () for all u € U and that
Fun Fv = () whenever u,v € U are distinct);
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- a mapping YT : Yr — X given by
y ifye X\U,
Vi (y) = { \

u if y € Fu for some u € U;

- a binary relation < on Yp such that y < z for y, z € Yr just when
y,z€ X\U and y < z in X;
y€ X\U, z € Fu for some u € U with y <u in X;
y € Fu, z € X\ U for some u € U with u < z in X
y € Fu, z € Fv for some u,v € U with u <wv in X and Fn (2) = y;
- a topology 7 as the union topology of the finitely many topologies of the Boolean
spaces Fu € C with u € U and the topology on X'\ U.

It is straightforward to verify that < is a partial order on Y and that Z C Y is 7-open
exactly when Z N Fu is an open set of Fu for all u € U and also Z \ (¢¥)~1(U) is an open
set of X. Clearly, for any functor ' : U — C and for every € Uy yF we have

(1) 7 (Cov(z)) = Cov(y” ().

For a natural transformation ¢ : F — G between functors F,G : U — C define a mapping
\I/X,U(b : YF — YG by

Uy uoly) = Y ifye X\U,
7 ¢“(y) ify € Fu for some u € U.

We say that a family of mappings {f; : X — Y; | ¢« € I} with the same domain X
is separating if for any two distinct z,y € X there is some i € I with f;(x) # fi(y).
A family of mappings {f; : X; — Y | i € I} with the same codomain Y is covering if
Y = U;e; Im(fi). We reformulate this for transformations between functors from a poset
P to C as follows. A family {¢;, : F; — F | i € I} of transformations is a covering
family in C” if Fp = ;e Im(¢}) = U, ¢% (Fip) for every p € P. Analogously, a family
{¢;: F — F; | i € I} of transformations is a separating family in C? if for every p € P and
every distinct z, y € Fp there exists i € I with ¢ (z) # ¢ (y).

We prove

Theorem 3.1. For every functorial set U of X € PHV, Uy ¢ : CYX) - PHV is a functor
and p = {pF' | F € CYMN} : Uy y — Tay is a natural transformation such that ¥ is
surjective for every F € CYY) and o is injective on (y] for every F € CVX) and every
element y of Vx yF. Furthermore,
(1) a family {¢; : F; — F | i € I} is a covering family in CUX) if and only if {Vx ye; |
i € I} is a covering family in PHV;
(2) a family {¢; : F — F; | i € I} is a separating family in CYY) if and only if {Ux v¢; |
i € I} is a separating family in PHV.

Proof. For simplicity, let us denote U = U(X) = (U; <). For a functor F : U — C let us
denote ¥y yF = (Yp; <,7). First we prove that (Yp;<,7) is an h-space from PHV and
I Uy yF — X is a surjective h-map such that ¢! is injective on (y] for all y € Yp.

Since every Fv € C is non-void and because 1% is the identity map on X \ U, the
mapping ! is surjective. For every y € Fu, the subposet

Wl = (XA N @) [ HEFmouly) | u < 0}

of Yr is isomorphic to the poset (v] C X, so that ¥ preserves the order, is injective on (y]
and has the h-property. Since (¢)"1{v} = Fv for every v € U and (¢¥')~ {z} = {2} for
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every € X \ U, the continuity of %" follows. Once we show that Wy ¢/ F is an h-space, it
will follow that ¥ is an h-map.

As the union of finitely many compact spaces, the space (Yg;7) is compact. Let V C Yp
be a 7-clopen set we prove that [V) is also 7-clopen. By the definition of topology, ¥ (V)
is clopen in X and V N Fu is clopen in Fu for every u € U. The set [t (V))\ U is 7-clopen
because ¢ (V) and U are clopen in X. Since [VNFu)NFv = (Fny, )" (VN Fu) is non-void
only when u < v and V N Fu # () because the C-morphism F7, , is continuous, the latter
subset of F'v is clopen in F'v, and hence also in Yr. Then

[V)z([wF(V))\U)UU{[VﬁFu)ﬂFU|u,v€U,u§v, FunV #0}

and therefore [V') is 7-clopen for every 7-clopen V' C Yp. Thus if we prove that (Yp; <, 7)
is totally order disconnected then 7 has the basis consisting of all clopen sets and hence [V')
is 7-open for every T-open V C Yp.

To show that Uy I is totally order disconnected, we suppose that y £ z in (Yr; <) and
exhibit a 7-clopen decreasing set Z C YF containing z but not 5. Since 1" is continuous and
preserves order, if 9 (y) £ ¥ (2) then the required Z exists (indeed since X is an h-space
there exists a clopen decreasing set Z' C X with ¢ () € Z’ and ¥ (y) ¢ Z’ and it suffices
to take Z = (»¥)71(Z')). Thus it is enough to consider y £ z such that ¥ (y) < ¥ (2)
in X. If ¥ (y) ¢ U then y = ¢ (y) and hence y < v for all v € ()~ (¥ (2)), contrary
to this hypothesis. Analogously, if ¥ (z) ¢ U then z = ¥ (z) and hence v < z for all
v e (WF)"YWF(y)), contrary to this hypothesis. Thus y € Fu and z € Fuv for some
u,v € U with v < v and y # Fny,u(z). There is a set W C Fu clopen in Fu such
that F'n, ,(2) ¢ W and y € W. Since W is 7-clopen, the set [IW) is also 7-clopen. Clearly
z€Z=Yp\[W)andy ¢ Z. Thus ¥ yF is totally order disconnected, and this completes
the proof that W ¢ F is an h-space.

The spaces (y] and (¥ r(y)] are isomorphic for every y € Yr and, by Corollary 2.6, we
obtain that & € PHV implies that ¥y yF € PHV.

To complete the proof that ¥y ry is a functor, consider functors F,G : U — C and a
natural transformation ¢ : F — G. Let us denote Uy yF = (Yp;<,7) and Uy yG =
(Yo; <, 7). Since for any u,v € U with v < v and for every y € Fv we have ¢*(Fn, ,(y)) =
Gny u (97 (y)), we conclude that ¥ 7¢ preserves order and has the h-property.

To see that Uy ¢ is continuous, let V' C Yg be clopen in Wy yG. Then V' \ () ~1(U)
and the finitely many sets VNGv with v € U are clopen in ¥ x G. Since every C-morphism
@Y : Fv — Gu is continuous, the subset (¢*)~1(V N Gv) of Fv is clopen in Fv. But then
the finite union

(Txpd) (V) =V \ @) ONH@")(VNG) |veU}

is clopen in W x  F', and the continuity of W x iy F'¢ follows because every h-space has an open
basis formed by clopen sets. Altogether, ¥y ;s is a well-defined functor from CY to PHV,
and it is also clear that Wy 1 is faithful. It is routine to verify that ¢ = % o Wy ¢ for
every transformation ¢ : F — G where F,G € CY, thus ¢ = {¢' | FU — C is a functor }
is a surjective transformation from Wy ;; into the constant functor with the value X'. Hence
Uy : CY — PHYV is a functor and % : Yy y — 'y v is a natural transformation. It is
then routine to verify (1) and (2). O

For an increasing open subset A C X let X' \ A denote the h-space (X \ A;<,7) where
both the partial order and the topology on X \ A are inherited from X'.

Next we generalize the notion of a relatively full embedding for our purposes. Let K be
a category and ® : K — PHYV be a functor. Assume that Z = {Zx | K € K°} is a family
of sets with Zx C Max(®K) for all K € K° and G = {uxG — Aut(®K) | K € K°} is a
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family of injective group homomorphisms from a fixed group G. Then we say that ® is a
(Z,G)-relatively full embedding if

(€0) pr(a)(Zk) = Zk for every element a of the group G and for every K-object K;

(el) @ is faithful;

(€2) Zx: NIm(Df) # O for every K-morphism f: K — K’';

(e3) if f: PK — ®K' is an h-map for K-objects K and K’ then either Zx NIm(f) = 0 or
there exist a K-morphism g : K — K’ and an element a of G with f = pg(a) o ®g
Dgo puk(a).

If G is a singleton group then we omit G. Thus if we say that ® is a Z-relatively full
embedding then ® is a (Z, G)-relatively full embedding where G is a singleton group.

If W is a proper subvariety of V such that for every K-object K we have (z] € PHW for
all elements x of ®K \ Zx and (z] ¢ PHW for all z € Zg, then ® : K — PHV is a W-
relatively full embedding modulo G (and if G is a singleton group then ¥ is a W-relatively
full embedding).

We will develop specific proof techniques for the existence of an A-D family and for
relative var-universality.

An h-space X = (X;<,7) € Vis a (U, C)-representing object of V if

(rl) U C X is functorial and C' C Max(U);

(r2) f(u) = u for every automorphism f of X and every u € U,

(r3) |Cov(c)| > 2 for all ¢ € C and Cov(c) # Cov(z) for all c € C' and z € X \ {c};

(r4) if f: X\ C — X is an h-map then either f = got where ¢ : X\ C — X is the inclusion
and ¢ is an automorphism of X or else f is not injective on X \ U.

We say that an h-space X = (X;<,7) € PHV is a (U, C, Z)-testing object of V if

(t1) X is a (U, C)-representing object and Z C Max(X);

(t2) f(Z) = Z for every automorphism f of X;

(t3) if 21,29 € Z then (z1] and (z2] are isomorphic;

(t4) either CNZ = () and for every z € Z and ¢ € C there exists no surjective h-map from
(c] onto (z], or C C Z and (z] is isomorphic to (z] for every z € Max(X) and z € Z
such that there exists a surjective h-map from (z] onto (z];

(t5) for every h-map f : X \ C — X such that f is not injective on X \ U we have

Im(f)NZ = () and either for every z € Z there exists u, € Cov(z) such that u, ¢ Im(g)

for every h-map g: X\ C — X with g | X\U = f | X \ U or else for every c € CNZ

there exists u. € (¢]\C such that every h-map g : X\C — X with g [ X\U = f | X\U

is not injective on (u.].

Let us assume that X is a (U, C, Z)-testing object. Then for every F € CV(¥) we set
Zr = (W) "HZ). Let pp : Aut(X) — Aut(¥x yF) be a mapping such that for every
automorphism f € Aut(X)

u ifudgd X\U,
“Ff(u){f(u) ifue X\U,

for every element u of ¥x yF. Since f is an automorphism of X then, by (r2) and the
fact that 1 is a surjective transformation with ()~1(z) = {z} for all z € X \ U we
conclude that pp(f) preserves order and has the h-property. Since U is a clopen set we
obtain the continuity of pp(f). Thus pp(f) is an h-map and the bijectivity of pup(f)
immediately follows from the definition. Hence pp(f) is an automorphism of ¥ yF. By
a straightforward calculation, we find that pur maps the identity mapping to the identity
mapping and preserves composition. Thus pp is a group homomorphism from Aut(X) to



ON RELATIVE UNIVERSALITY AND Q-UNIVERSALITY 185

Aut(Uy pF). Clearly, ur is injective. Set Z = {Zp | F € CY¥)} and G = {up : Aut(X) —
Aut(Ty pF) | F e CUXNY,

Let U = (U;<) be a poset with an increasing set C' and let F' : U — C be a functor.
Then a family {z, | u € U\ C} is called a C-coherent family if

(cl) zy € Fufor allu e U\ C;

(c2) if u,w’ € U\ C with u < ' then Fnys (zy) = xy.

If for every ug € U\ C and every x € Fug there exists a C-coherent family {z, | v € U\ C}
such that = = z,,, then we say that the functor F is C-coherent. Let C(CY) denote the
full subcategory of CY formed by C-coherent functors from U to C.

Theorem 3.2. If X is a (U, C)-representing object of V then
Uy : C(CYY)) - PHV

is a faithful functor and if f : Yy yF — Wx G is a h-map for F,G € C(CYY)) then
either there exist a natural transformation ¢ : F' — G and an automorphism g € Aut(X)
with f = pa(g)oVa ud = Uy ydour(g) or else o f is not injective on X \U. Moreover,
if X is a (U,C, Z)-testing object then Wy : C(CYX)) — PHV is a (Z,G)-relatively full
embedding.

Proof. By Theorem 3.1, Uy 7 : C(CVY)) — PHV is a faithful functor. Consider an h-map
f:UxyF — Uy pG for F,G € C(CYXY). For every C-coherent family F = {2, | u €
U\ C}of F define fr: X\C — Yy yF by

u ifueX\U,
Jru) = {xu ifueU\C.
Since U is finite and clopen and because V N (X \ U) is clopen for every clopen set V' C
Uy v F, we conclude that fr is continuous. Since the partial orders of X' and of Wy yF
coincide on X \ U and because x,, < z, in ¥y yF for u,v € U\ C if and only if u < v in X,
we conclude that fr preserves order and has the h-property. Thus fr: X\ C — Uy yF is
an h-map for every C-coherent family F of F. Then ¥“ o fo f£ : X\ C — X is an h-map
for every C-coherent family F of F.

By (r4), either % o fo fr = go for g € Aut(X) and the inclusion ¢ or ¥ o f o fr is
not injective on X \ U. From fz(x) = 2 for all x € X \ U we infer that 1 o f is injective
in the first case and ¢% o f is not injective on X \ U in the second case. Suppose that there
exists a C-coherent family F’ of F such that ¥“ o f o fr = g o for some g € Aut(X).
Then ¥% o f o fr(x) = ¥ o f o fr(x) for every C-coherent family F of F and every
x € X\ U. Thus ¢% o f o fr is injective on X \ U and, by (r4), there exists gz € Aut(X)
with ¥ o fo fr = grot. By (r2), g(u) = u for every u € U and every g € Aut(X), thus
there exists g € Aut(X) such that g = g7 and ¥ o fo fz(u) = u for all w € U \ C and any
C-coherent family F of F. From this it follows that f(Fu) C Gu for all u € U \ C.

From (r3) it follows that | Cov(c)| > 2 for all ¢ € C and that Cov(c) # Cov(z) for all
r € X\ {c¢}. Consider ¢ € C. By (1), ¥¥'(Cov(z)) = Cov(c) for every x € Fc. Hence
Y% o f(x) = c and therefore f(Fc) C Ge. We conclude that f(Fu) C Gu for all u € U. Let
¢" be the domain-range restriction of f to Fu and Gu. Then ¢" is a continuous mapping
from Fu to Gu and since f preserves order we infer that

¢" o Fnup = Gy 0 9"

for all u,v € U with v <wv. Whence ¢ = {¢" |u € U} : F — G is a natural transformation
such that Wy yé(x) = f(z) for all v € |,y Fu and f(z) = g(x) for all z € X \ U. Since
pa(g)(y) =y forally € U,y Gu and pr(g)(x) = x for all x € |J,,r; F'u we conclude that
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f=Yxpudopur(g) = puc(g)o¥x yd or o f is not injective on X \ U. Thus the first
statement holds.

Let X be a (U, C, Z)-testing object. Then (e0) follows from (t2). By (t1), X is a (U, C)-
representing object and, by the foregoing part of the proof, we obtain (el). For every natural
transformation ¢ : F — G with F,G € CY we have ¥ y¢(Fu) C Gu for every u € U, and
since F'u # ) for every u € U we conclude that Im(¥x y¢) N Gz # 0 for every z € ZNU.
By (r1) and (13), Yy (X \U) = X \ U, thus Im Wy ¢ N (%) ~1(Z) # 0 and (e2) holds.

To prove (e3), consider an h-map f : Uy yF — Uy G for F,G € C(CVX)) such that
f = pc(g) o Uy ue for no pair (g,¢) where g € Aut(X) and ¢ : F' — G is a natural
transformation. Then, by the foregoing part of the proof, we conclude that ¢ o f is not
injective on X \ U. Consider that Im(y% o f) N Z # (. Then there exist 2 € Z and
T € Max(Vy pF) with v o f(x) = z. Let y = ¢f(z). If y ¢ C then there exists a
C-coherent family F with = f#(y). Hence ¥“ o f o fz(y) = z and this is a contradiction
because, by (t5), Im(g)NZ = () for every h-map g : X\ C — X such that g is not injective on
X\ U. Thus we can assume that y € C. Since ¥ is injective on (x] there exists a mapping
h: (y] — (2] with ho' | (] = %o f | (z]. Since 9o f and ¥ are h-maps, we infer that
h is also an h-map, and thus it is surjective. Hence, by (t4), C C Z. Choose a C-coherent
family F then 9% o f o f£ is not injective on X \ U. By (t5), either there exists u, € Cov(z)
such that u, ¢ Im(g) for every g : X\ C — X with g | X \U =¢%o fo fz | X\ U or there
exists uy € (y]\ C such that every g : X\ C — X with g | X \U =9%o fofr | X\U is not
injective on (u,]. In the first case, z = f(z) implies that u, € ¥ o f(x]. Thus there exists
vy € (z] \ {z} with f(v;) = u.. Hence v, ¢ Max(X) and thus ¢ (v,) = y, ¢ C. Therefore
there exists a C-coherent family 7’ containing v,.. Then ¥% o fo fr (y,) = V%o f(vs) = us
but %o fo fr | X\U =¢%o0 fo fr | X\ U and this is a contradiction. In the second
case, there exists w, € (z] with ¥ (w,) = u, because ¥ is a h-map and %' (z) = y. Let
F' be a C-coherent family containing w,. Since %o fo fr | X\U =9¢%o fo fr | X\U
we conclude that ©“ o f o fz is not injective on (uy], but fz is injective and thus PCo f
is not injective on (w,] and whence ¥% o f is not injective on (x]. Since (z] is isomorphic
to (y] we conclude, by (t3), that (x] is isomorphic to (z] and this is a contradiction with
%o f(z) = z because (z] is finite. Whence Im(f) N (¢¥%)~1(Z) = Im(f)N Zg = () and (e3)
is true. o

To apply Theorem 3.2 in a construction of an A-D family we need the following concepts
and technical statements.

Let P = (P;<) be a poset. A functor F' : P — C is an isofunctor, if Fn,, is an
homeomorphism for every p,q € P with p < gq. We recall that every continuous bijection
between compact Hausdorff spaces is a homeomorphism. Further a functor F : P — C is
finite if F'p is finite for every p € P.

We claim that if {¢; : F; — F | ¢ € I} is a family of natural transformations between
functors from P into C such that F' is finite then there exist a finite functor G: P — C, a
covering family {p; : F; — G | i € I} of natural transformations and an injective natural
transformation v : G — F such that ¢; = v o p; for all i € I. Indeed, for every p € P
let us define Gp = J;c; Im(¢;)? C Fp. From the finiteness of Fp it follows that Gp € C.
Consider ¢,p € P with ¢ < p. If z € Gp then there exist ¢ € I and y € F;p with (¢;)?(y) = x.
Hence Fnp q(z) = Fnpq 0 (9:)P(y) = (¢5)? 0 Finp q(y) € Gg. Thus we can define Gy, 4 as
the domain-range restriction of Fn,, and we conclude that G is a finite functor from P
into C and if v? is the inclusion from Gp into Fp then v : G — I is an injective natural
transformation. For every i € I and p € P, let p be the range restriction of ¢f'. Then, by a
direct calculation, we obtain that p; : F; — G is a natural transformation, that ¢; = v o p;
for all i € I and that {p; | i € I} is a covering family in CP. We shall write G = {J;¢; pi-
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The technical lemma below gives a stronger version of a diagonalization property of a
factorization system for h-spaces which are Wy r-images of finite isofunctors.

Lemma 3.3. Let X = (X;<, 1) be a (U, C, Z)-testing object such that X is finite and ¥ x u
is a (Z,G)-relatively full embedding. Let {F; |i € I} and F be C-coherent finite isofunctors
from U =U(X) to C such that

(1) for every i € I, if a,08 : F; — F are natural transformations, then there exists a
natural equivalence v : F; — F; with a = Bov;
(2) C#£U.
LetY = (Y;<,7) be a finite h-space such that there exist an injective h-map g : Y — Ux yF
and a covering family {f;; : VxuF; — Y |i € 1, j € J;} of h-maps (the case J; = 0 is
allowed) such that

I'={iel|3jeJ;,Im(gofi;)N@")"Z#0}
is a non-empty set. Then there exist a family {c; : F; — F | i € I'} of natural transforma-

tions and h-maps h' : Vx y(U;ep i) — Y and h: Y — Vx y(U;cp i) such that hoh' is
the identity map of Vx uv(U;cp i)

Proof. Assume that X = (X;<,7) is a finite (U, C, Z)-testing object satisfying (2) and
such that ¥y r is a relatively (Z,G)-full embedding where Z and G are defined just before
Theorem 3.2, and {F; | i € I} and F' are C-coherent finite isofunctors from U to C satisfying
(1). Let ¥ = (Y;<,7) be an h-space such that there exists an injective h-map g : Y —
Uy yF and a covering family {f; ; : Yx pF; — Y | i€ I, j € J;} of h-maps (the case J; = ()
is allowed) such that

I'={iel|3jeJ;,Im(go fi;)N@"12Z)#0}
is a non-empty set. For every i € I’ set

Ji={j € Ji[Im(go fi;) N (¥")"'Z #0}.

Then, by the hypothesis, for every i € I’ and j € J] there exist a natural transformation
a;; : F; — F and an h-automorphism o; j of X with go f; ; = Ux y(e,;) o ur,(0;,;). For
every ¢ € I’ choose j(i) € J/. By (1), for every ¢ € I' and j € J! there exists a natural
equivalence (3; ; of F; with a;j = a; j(;y © B ;. Thus Im(cy ;)" = Im(ay ;)" for all u € U.
For simplicity we shall write o; instead of ; j(;y and we set G = (J;c;, a;. By the definition
of union of functors, there exist a family {p; : F; — G | i € I'} of natural transformations
and a natural transformation v : G — F such that v o p; = a; for all ¢ € I’ the family
{pi | i € I'} is covering, and v is an injective natural transformation.

By Theorem 3.1, {Ux u(p;) | ¢ € I'} is a covering family and ¥y 7(v) is injective. Thus
{Uxu(pioBij)our(oiy)|iel,je J}isa covering family (because ¥x y(5;,;) and
wr,(0;,;) are h-isomorphisms). Since g is also an injective h-map and

go fig=Yxulais)opr(oij)=Yxu)eVyulpioBij)onr(oi;)
for all ¢ € I’ and j € J/, by the diagonalization property of the factorization system, there
exists an h-map h' : Uy yG — Y with f; ; = h oW x y(p; 0B ;) o pr, (0 ) for all i € I’ and
€ J/,and go ' = ¥y y(v). By Theorem 3.1, U yy(v) is injective and hence the h-map
h' is also injective.

It remains to produce an h-map h : Y — Yg such that h o A’ is the identity mapping of
\I/X’UG.

First, for any y € Y of the form y = h/(z) for some = € Y5 we set h(y) = z. Then
h((y]) = (h(y)] for all y € Im(h’) because (h'(y)] C Im(k') for all y € Im(h'). Thus h has
the h-property on Im(h’) C Y, and h o A’ will be the identity on ¥ G regardless of how
h will be defined on Y \ Im(#').
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Let us denote Y/ =Y \ Im(h’) and Y = (¢ 0 g) 71 (X \ U). Then Y'NY" = ) because
W)Y X \U) CIm(¥x ya;) for all i € I’ and thus Y C Im(R').

Consider y € Y \ (Y UY"). Then there exist i € I’ and a € Fyu for u = ¢¥ o g(y) € U
with f; ji)(a) = y and (y] € Im(f; ;) € Im(R). If y" € [y) then g(y') = g(y) and thus
Y% o g(y') > ¢% o g(y). From the injectivity of g and of ¢ on (u] for every u € Uy yF
we infer that ¢ o g(y') = %% o g(y) if and only if ' = y. Then either % o g(y’) € U or
¥ og(y) € X\U.

First we assume that 9% og(y’) = v’ € U. Since F; is an isofunctor, there exists a’ € Fyu’
with F;ny w(a’) = a. Then g(y') > g(y) = go fij(a) < gofi;(a’) and g(y'), go fi ;(a’) € Fu'.
Since F is an isofunctor we conclude that g(y') = go f; ;j(a’) and the injectivity of g implies
figld) =y TS og(y) =w¢ X \U, then go fi; = Wa (i) o pr,(0i;) implies, by
(r2), that

go fij(pnr,(0i5) " (w) = Va u(aiy) o pr, (055) (1r, (0i5) " () = Ya u(e ) (w) = w.

From the injectivity of g it then follows that f; ;(w) = 3" and thus y’ € Im(h’). Therefore
we conclude that [y) C Im(f; j;)) € Im(h'). Whence (Y] CY'UY" and [Y') CY".

Consider y € Y’. Then there exist ¢ € I, j € J; and a € F; with f; j(a) = ¥’ and either
i¢I'oriel and j ¢ J!. Hence g(y) ¢ (vF)~1(Z).

Since I’ # () we can select ¢ € I’ and a C-coherent family {z, | v € U \ C} of F; because
F; is C-coherent, any space in C is non-empty and, by (2), C'# U. Then {¥x y(;)"(zy) |
ve U\ C} C Uy yG is a C-coherent family of F. Thus we can fix a C-coherent family of
{l'v |’U€U\C}Q\IIX’UGOfF.

Since C' C Z we infer 9% o g(y) ¢ Z for all y € Y’ and thus there exist a C-coherent
family {z! | v € U\ C} such that g(y) = 2/, for some w € U \ C because F is C-coherent.
Since F is isofunctor two distinct C-coherent families are disjoint. Thus for every v € U\ C
we set h(g~'(a)) = x,. Then h is defined on Y, preserves order and has the h-property.

Since X is finite we obtain that Wy ¢ F is a finite h-space and also ¥y G is a finite
h-space. The finiteness of ) implies the continuity of h. Therefore h : Y — Uy yG is an
h-map such that h o k' is the identity of ¥y yG. O

Let P(w) be the set of all finite subsets of the set w of all natural numbers and let P(wq)
be the subset of P(w) consisting of all non-empty finite subsets of w. Denote N the poset
of all members of P(w) ordered by the reversed inclusion.

Theorem 3.4. Let X be a finite (U,C,Z)-testing object of V such that U(X) is order
connected, ZNU # 0 and C # U. Let ® : N — CY be a functor such that

(1) if a: PA — PB is a natural transformation for A, B € P(wy), then A C B and there
exists a natural equivalence p: ®PA — ®A with o = ®na pop;

(2) ®A is a finite C-coherent isofunctor for all A € P(wo);

(3) if A,B € P(wy) with A C B then ®na g is an injective natural transformation;

(4) if A,B,C € P(wo) then A= BUC if and only if {Pnc, 4, Pnp.a} is a covering family.

Then VYV contains an A-D family and thus V is Q-universal.

Proof. Set A = Uy y o ®. Since X is finite we infer, by (2), that AA is finite for every

A € P(wp). We prove that the family {AA | A € P(wp)} satisfies the following conditions:

(dp2) if A, By, By € P(wo) with A = By U By then {Anp, a,Anp, a} is a covering family;

(dp3) if A, B € P(wp) are such that the family of all h-maps from AA into AB is a covering
family then A = B;

(dp4) if Y and Z are finite h-spaces such that for a finite subset A C P(wp) the families
{f:AB—Y|Be€ A} and {f : AB — Z | B € A} of h-maps are covering and if
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A € P(wp) is a set such that there exists a surjective h-map ¢g : YV Z — AA then one
of the following conditions holds:
- there exists a surjective h-map h: )Y — AA,
- there exists a surjective h-map h: Z — AA,
- there exist A1, Ay € P(w) with A = A; UA3 and surjective h-maps hy : Y — AAq,
hg 2 — AA2

Then, by Priestley duality, the singleton Heyting algebra and the family of algebras dual
to the members of {AA | A € P(wp)} constitute an A-D family and by Adams-Dziobiak
theorem [3], V is Q-universal.

The condition (dp2) follows from (4) and Theorem 3.1.

Now we prove for a finite A C P(wp) and A € P(wp) that the family of all h-maps from
AB, B € A to AA is covering if and only if there exists A" C A with A = (Jgc 4 B. If
there exists A" C A with A = (Jzc 4 B then, by (4), we obtain that {Anp 4 | B € A’} is
a covering family, by an easy induction over |A’|. Thus we assume that the family of all
h-maps from AB, B € A into AA is covering. Let us define

A'={BecA|Jan h-map f: AB — AA, with Tm(f) N (¥**)71Z # 0}

and A" = (Jgeu B. Since X is a (U, C, Z)-testing object of V we conclude, by Theorem
3.2, that Uy : C(CY) — PHV is a (G, Z)-relatively full embedding. Thus for an h-map
f:AB — AA and for B € A such that Im(x)®*4) o f N Z # ) there exist an automorphism
a € Aut(X) and a natural transformation 8 : ®B — ®A with f = Uy yfoup(a) =
pa(a) oWy yf (pa is defined just before Theorem 3.2). Whence, by (1), B C A and there
exists a natural equivalence v of ®A such that 5 = ®np 4 o v and thus f = Uy y(Pnp 4 0
v)oup(a) = Ang,.a o Uy yv o pp(a). As a consequence we obtain that A C A and
f=Ana ao0Apa oWy yvopup(e). Hence Im(f) C Im(Anas a). We recall that AC is
finite for all C' € P(w). Since A is finite there are only finitely many h-maps from AB,
B € A to AA. Since the family of h-maps from AB, B € A to AA is covering we conclude
that (¢®4)~%(Z) € UIm(f) where the union is taken over all h-maps f : AB — AA
with Im(f) N (®4)~1(Z) # 0 and hence we infer that (®*4)~1(Z) C Im Anas . Thus
for z € U N Z we deduce that (Anas 4)? is surjective and, by (3) and Theorem 3.1, it is
also injective. Hence (Anas 4)? is a homeomorphism, and, by Theorem 3.1, (®nas 4)* is a
homeomorphism. By (2), ®A" and ®A are finite isofunctors and, thus for u,v € U with
u < v we have that (®A)n,. and (PA)n,,. are homeomorphisms. Hence (®Pnas 4)* is
a homeomorphism if and only if (®n4s,4)" is a homeomorphism and since U(X) is order
connected and z € U we infer that (®nas,4)" is a homeomorphism for all w € U. Thus,
®nas 4 is a natural equivalence and, by (1), we obtain that A = A’ and the proof of (dp2)
is complete.

To prove (dp3) consider A, B € P(wp) such that the family of h-maps from AB in AA is
covering. Then by the foregoing part of the proof, for A = {B} we conclude that A = B
and (dp3) follows.

To prove (dp4), assume that there exist finite h-spaces )V and Z, and A € P(wp) such
that there exist a surjective h-map g : YV Z — AA and a finite subset A C P(wp) and
covering families {f : AB — Y | B € A} and {f : AB — Z | B € A} of h-maps. Let
t:Y — YV Z be the sum inclusion. Then there exist a surjective h-map hy : Y — Y’ and
an injective h-map hg : Y’ — AA with hg o hy = g o . Since the assumption (1) of Lemma
3.3 follows from (1) and the assumptions (2) and (3) of Lemma 3.3 are our assumptions on
X, U, C and Z, we conclude that the hypotheses of Lemma 3.3 are satisfied for the family
of all h-maps from AB with B € A to )’ and hy : ) — AA. Let us denote

A ={BeA|3an h-map f: AB — Y with Imhyo f N () ~1(Z) # 0}.
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If A" # () then, by Lemma 3.3, there exists a surjective h-map g1 : ' — Ugca Anp,a- If we
set Ay = Ugea B then from (1), (2) and (3) we infer that (Jzc 4 AnB,a4 = AA; and thus
grohy :Y — AA; is a surjective h-map. If A’ = () then weset A; =0. Ifv:Z - YV Z
is the sum inclusion then, analogously, there exist a surjective h-map k1 : £ — Z’ and an
injective h-map ko : 2’ — AA with kg o k1 = gov. Let us denote

A" ={B e A|3f: AB — Z' with Im(ky o f) N (*4)"'(Z) # 0}.

If A” # () then, by Lemma 3.3, there exists a surjective h-map gz : 2" — Upgcar A1B A
Analogously to the above, we set Ay = (g4 B and then Jpc 4 Anp,.a = AAz, thus
g2oky : Z — AAjy is a surjective h-map. If A” = () then we set Ay = (). Hence to complete
the proof of (dp4) it suffices to show that A = A; U As. Since {f : AB — )Y | B € A} and
{f : AB — Z | B € A} are covering families of h-maps and since g : YV Z — AA is a
surjective h-map we infer that the family {f : AB — AA | B € A} of all h-maps from AG,
B € Ainto AA is a covering family of h-maps. Hence, by the foregoing part of the proof,
A=A UA,. O

Let P = (P; <) be a poset, then a covering pair (a,b) is called f-covering pair if b €
Max(P) and (a] N (a'] =0 for every a’ € Cov(b) with a # o’

Let {p;}32, be an increasing sequence of prime numbers with po > 11.

Let P = (P;<) be a poset and let (a,b) be a f-covering pair of P such that the poset
(P; <) is order connected where < is the least partial order such that u < v for all covering
pairs v < v of P other than (a,b). Let us denote P\ {a,b} = (P;=). Define a functor
®: N — C(CP) as follows:

o for an A C P(w) define (PA)p = {(p,i,j) | j € A, i € p;} for all p € P with the
discrete topology and for p,q € P with ¢ < p define

(¢g,i+1modp;,j) ifg<a<b=p
(q,1,7) else.

(@A)np,q(psi, ) = {

Since (®A)p is finite and non-empty for all p € P and (a,b) is a f-covering pair of P
we claim that ®A is a functor from P into C because, by the definition of f-covering
pair, for u,v € P with v < v < b we have u < a if and only if v < a.

o if A, B € P(w) and A C B then (®na,g)?(p,i,j) = (p,i,j) forallp e P,j € Aandi €
pj. Since A C B, the definition of (®na )P is correct for all p € P. From the finiteness
of (®A)p follows the continuity of (&4 p)? for all p € P. It is straightforward to verify
that (®B)np,q © (Pn4.8)7 = (Pna,B)? o (PA)n, , for all p,q € P with ¢ < p. Hence
®na,p: PA — ®B is a natural transformation and therefore ¢ : N — CP is a functor.

Finally, set C = {b}. We prove

Theorem 3.5. If P is a poset with a f-covering pair a < b such that P\ {a,b} is order
connected then ® : N — CF is a faithful functor such that

(1) (®A)p is finite and non-empty for all A € P(w) and all p € P;

(2) (Pna,p)?P is injective for all A, B € P(w) with A C B and all p € P;

(3) if A, By, By € P(w) then A= By U By iff {(®PnB,,4)7, (Pnp,,4)"} is a covering family
of ®Ap for all p € P, hence {®np, 4, Pnp, 4} is a covering family in CF;

(4) if ¢ : DA — ®B is a natural transformation then A C B and there exists a natural
equivalence p: A — ®A with ¢ = Pna po p;

(5) for all A € P(w), PA is a C-coherent finite isofunctor;

(6) (WA)n,q is the identity mapping for all A € P(w) and all p,q € P such that ¢ < p

and q ¢ (a] or b # p.
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Proof. By the foregoing note, ® : N — C(CPF) is a functor such that ®A is a finite isofunctor
for all A € P(w). A verification of faithfulness of ® and of statements (1), (2), (3), (5), and
(6) is straightforward. It remains to prove the statement (4).
Let ¢ : PA — ®B be a natural transformation. If p,q € P with ¢ < p and ¢ ¢ (a] or
b # p then
¢q(q7ivj) = ¢q 0 ((I)A)np#](pvzvj) = ((I)B)np’q o ¢p(p,l,j)
and hence there exists a mapping

FAGg)1jeAiepit = {(,5) 7 € B,icpj}
with ¢P(p,i,5) = (p, f(4,7)) for all p € P because (P; =) is order connected. From

¢" 0 (@AYo (b1, 5) = (PB)p.a 0 " (b, )
it follows that if f(i,j) = (k,) then f(i + 1 mod p;,j) = (k + 1 mod p;, 1) because
(@C)np,a(b, 4, j) = (byi + 1 mod pj, j)

for all C' € P(w), j € C and ¢ € p;. Since p; and p; are primes we conclude that j = [ and
whence A C B and f(i,5) = (k,j) for all j € A and ¢, k € p;. Further if f(¢,j) = (k,j) then
f(i+1mod pj,j) = (k+ 1 mod pj, j) for all [. Conversely, if ¢ = {k; | j € A} is a family of
natural numbers k; € p; then we define (pe)?(p,i,j) = (p,i + k; mod pj,j) for all j € A,
i € pj and p € P. By a direct calculation, we obtain that pue = {(ue)? | p € P} is a natural
equivalence of ®A (we exploit the finiteness of (PA)p for all p € P). If f(0,5) = (k;,j) then
¢ =Pna,pope for 8 ={k; | j € A} and the proof is complete. O

We say that a finite h-space X = (X;<,7) € PHV is a standard Q-testing object of
V if there exist a functorial set U C X of (X;<) and a f-covering pair a < b of U such
that U(X) \ {a,b} is order connected and a set Z C Max(X) such that b € Z and X is a
(U, C, Z)-testing object for C' = {b}. Observe that C # U.

Corollary 3.6. A finitely generated variety V of Heyting algebras contains an A-D family
and thus it is Q-universal whenever there exists a standard Q-testing object X of V.

Proof. If X is a standard @-testing object of V, then U and a < b satisfy the hypotheses of
Theorem 3.5. The functor ® from Theorem 3.5 satisfies the hypotheses of Theorem 3.4 and
X satisfies the hypotheses of Theorem 3.4 on testing object (for C' = {b}). An application
of Theorem 3.4 then completes the proof. O

Next we prepare for ‘testing’ relative universality.

Let A(1,1) be the category of all unary algebras with two unary operations and all
their homomorphisms, let D be the variety of all distributive (0, 1)-lattices and all their
(0, 1)-homomorphisms. Let us define a category L. whose objects are (L;7,V,A,0,1, a, 3)
where (L;7) is an object of C, (L;V,A,0,1) is an object of D, (L;a, ) is an object of
A(1,1) such that V and A are continuous mappings from (L;7)? to (L;7) and « and 3
are continuous mappings from (L; ) to itself, and L-morphisms from (L;7,V,A,0,1, «, 5)
into (L';7,V,A,0,1,, 3) are all mappings f : L — L’ such that f: (L;7) — (L';7) is a
morphism of C, f: (L;V,A,0,1) — (L';V,A,0,1) is a morphism of D and f : (L;a, 3) —
(L'; o, B) is a morphism of A(1,1). We recall

Theorem 3.7 ([5]). There is a contravariant faithful full functor $® : A(1,1) — L such
that
(1) (X;a,0) is a finite algebra if and only if ©(X;«, B) is a finite object of L;
(2) if (X;0,08) and (X;0a/,5") are unary algebras with the same underlying set X and
if (X, a,08) = (L;7,V,A,0,1,a,8) and (X, o, 3') = (L';7,V,A,0,1,c, B) then we
have (L;V,A,0,1) = (L';V,A,0,1) and (L;7) = (L'; 7).
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Let U = (U; <) be a poset and V' C U its increasing subset, and let E = {(u;,v;) | i € 7}
be a family of seven distinct f-covering pairs such that
(ul) V is order connected;
(u2) the poset (U \ V; <) is order connected; here < is the least order such that u < v for

u,v € U\ V if u € Cov(v) in U and (u,v) # (u;,v;) for i € T,

(u3) u; e U\V forallie 7, v, e Viorie3andwv, € U\V fori=3,4,5,6;
(ud) there exist v € V, uw € U\ V such that v € Cov(v) and (u,v) # (u;,v;) for all ¢ € 3.
Then we say that U = (U, V, E = {(u;,v;) | ¢ € 7}) is a u-triple. For a u-triple 4 = (U, V, E)
we shall define a functor Qg : L — CY. For an L-object £ = (L;7,V,A,0,1,a,(), let
Qg (L) = F be a functor from U to C given by

o Fu=(L;7)? forueV and Fu= (L;7) forue U\ V;

o if u,v € V with u < v then Fn, , is the identity of L?

o ifu,v e U\V with u < v then
« ifu<wuz <wvy=wo,
I) ifu<ug <wvg=0,
co ifu<us<wvs=0,
Fn'u,u = .
¢ ifu<ug<vg=w0,
1y  if either v # v; for all j =3,4,5,6

or v =uv; and u ¢ (u;] for some j = 3,4,5,6,

where ¢, is the constant mapping with the value x and 1x is the identity mapping of
X
o ifveVandueU\V are such that u < v then for all z,y € L

zVy ifu<uy <vy=w,
ANy fu<u <v =w,
Fryu(z,y) =<y ifu<us <wve =w,
x if either v # v; for j € 3
or v =wv; and u ¢ (u;] for some j € 3.

For any L-morphism f : (L;7,V,A,0,1,a,8) — (L';7,V,A,0,1,, 3), let Qg (f)* = f for
weU\Vand Qu(f)*=fx florueV.
Set C = [{v; | i €7}).

Proposition 3.8. Let 4 = (U,V, E) be a u-triple. Then Qy : L — CY is a full embedding
such that Qg (L) is C-coherent for all L-objects L. Moreover, QyLu is finite for allu € U
whenever L is finite.

Proof. First we prove that Qu(L£) = F is a correctly defined functor from U to C. Let
L= (L;7,V,A,0,1,c, 5) be an L-object. Clearly, Fu € C for every w € U and Fn,, is a
continuous mapping for every u,v € U with v < u. By the definition of f-covering pair, for
every u,v € U with u < v there exists at most one i € 7 with u < u; < v; = v and hence
the definition of F'n,,, is correct. From the definition of a f-covering pair it follows that
if u,v € U with u < v < v; for some j € 7 then u € (u;] if and only if v € (u;]. Hence
Fnyu = Fnya 0 Fry o and F is a functor from U to C. Verification that F' is C-coherent
is straightforward.

Let f: L= (L;7,V,A,0,1,,8) — L' = (L';7,VA,0,1,, 3) be an L-morphism. From
the continuity of f it follows that (Qgf)* is continuous for all w € U. It is clear that
Qg f commutes with both projections and the identity mappings. Since f : (L;V,A,0,1) —
(L';V,A,0,1) and f : (Lo, B) — (L';, 3) are homomorphisms, Qyf commutes with V,



ON RELATIVE UNIVERSALITY AND Q-UNIVERSALITY 193

A, «a, ( and the two constant mappings with values 0 or 1. Whence Qg f is a natural
transformation from Qg (L) to Qg (L').

Since (f x f)o(gxg)=(fog)x (fog), we have Qg f o Qyg = Qu(f o g). Hence Qg is
a functor from L into C(CY). Tt is clear that Qg is faithful. If £ is finite it is easy to see
that Qg Lu is finite for all uw € U.

It remains to prove that Qg is full. Let g : Qy(L) — Qg (L') be a transformation. By
the definition of 4, there exists u € U\ V. Set f = g*. Then the mapping f from (L;T) to
(L';7) is continuous because ¢g* from Qg (L)u = (L;7) to Qu(L)u = (L';7) is continuous.
By (ul) and (u2), f = g“ forallu € U\ V and g¥ = ¢* for all v,v' € V because for u,v € V
or u,v € U\ V with u < v, Qy(L)(ny,) is the identity map whenever v < u; < v; < v for
no i € 7. By (ud), there exist v € V and u € U with v < v and u < u; < v; < v for no
i € 7. If m; (or pj) is the j-th projection from L? to L (or (L')? to L, respectively), then,
by the definition of {y, for v € V' we have f om; = p; o g¥ for both j = 1,2. Whence, by
(ul), g" = f x f and thus f x f = g*' for all v’ € V. From the definition of (QyL)7,, ., and
(QuL )Ny, v, for i € 7 it follows that f preserves V, A, commutes with o and 5 and f(0) =0
and f(1) = 1. Thus f : £ — £’ is an L-morphism with Qg f = g. Hence Qy : L — CY is a
full embedding. O

Let W be a proper subvariety of V. We say that an h-space X = (X;<,7) € PHV is a
universal testing object of V with respect to W if there exist a functorial set U C X of X', an
increasing subset V' C U, f-covering pairs (u;,v;) of U(X) for i € 7 and a set Z C Max(X)
such that
(v1) (U(X),V,{(ui,v;} | i € 7}) is a u-triple;

(v2) X is a (U,C, Z)-testing object of V for C = [{v; | i € 7}) C Z;
(v3) for z € X, (z] belongs to PHW if and only if = ¢ Z.
Combining Theorems 3.2 and 3.7 with Proposition 3.8 we obtain

Theorem 3.9. If there exists a universal testing object X of V with respect to W then V is
W-relatively alg-universal modulo Aut(X). If X is automorphism free then V is W-relatively
alg-universal, if X is finite then V is W-relatively ff-alg-universal modulo Aut(X), and if
X is finite and automorphism free then V is W-relatively ff-alg universal.

Proof. By Theorem 3.2, the functor Uy : C(CY) — PHV is a (Z,G)-relatively full em-
bedding for Z = {Zp | F € C(CY*))} and G = {ur | F € C(CY?))} defined just before
Theorem 3.2. By Proposition 3.8, ¥ x 70€y is also a (Z, G)-relatively full embedding. From
(v3) and from Theorem 3.1 it follows for (z] € ¥y y F with F € C(CY) that x € PHW if and
only if x ¢ Zp. Thus if £1 and L, are L-objects and f : Uy o Qy(L1) — Ux yoQy(Ls) is
an h-map then Im(f) ¢ PHW if and only if there exist an L-morphism ¢ : £1 — L2 and an
automorphism a € Aut(X) such that f = Uy o Qy(g) o pg, (@) = pg, () o U iy 0 Qy(g).
Whence, by Theorem 3.7, V is W-relatively alg-universal modulo the group Aut(X). If,
moreover, X is finite then Uy (¢ L)) is finite if and only if £ is finite and hence V is
W-relatively ff-alg-universal modulo group Aut(X’). The rest is straightforward. O

Corollary 3.10. If W is a proper subvariety of V and X is a finite universal testing object
of V with respect to W then X is also a standard Q-testing object. Thus V contains an
A-D family and it is Q-universal.

4. DIRECTED GRAPHS

In this section we use special finite graphs in a construction of testing objects in several
finitely generated varieties of Heyting algebras. A few notions concerning digraphs are
needed.
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We recall that a digraph is a pair (X, R) in which X is a set and R C X x X, and that
a digraph homomorphism from (X, R) into (X', R') is a mapping f : X — X’ such that
(f(x), f(y)) € R for all (z,y) € R. A digraph (X, R) is

- reflexive if (z,z) € R for all z € X;

- antireflexive if (z,2) ¢ R for all z € X;

- antisymmetric if (z,y), (y,z) € R implies z = y.

For any digraph G = (X, R), respectively denote G" = (X,R") and G* = (X, R?%)
its reflexive and antireflexive modifications, that is, let R" = RU {(z,z) | * € X} and
R* =R\ {(z,z) |z € X}.

Consider the finite reflexive antisymmetric graph Go = (A4, B) shown in Figure 4 (where
all the loops (ai,a;) are omitted); denote A = {a; | # € 5} the set of all its vertices and B
the set of all its edges.

as a9
a4
ag ai
The digraph Gy
Figure 4

Z. Hedrlin described digraph homomorphisms from Gy.

Lemma 4.1 ([8] or [22]). Any digraph homomorphism from Gg to an antisymmetric graph
G s either constant or injective. Moreover, the identity mapping is the only injective digraph
endomorphism of Gyg.

We use the digraph Gg in our construction.

Let W =Ax{0,1,...14}/ ~ where ~ is the least equivalence on A x {0,1,...,14} such
that (ag, j) ~ (ag,j+1) and (az,j) ~ (a1,j+1) for all j € {0,1,...,13}. If [z] denotes the
equivalence class of ~ containing z € A x {0,1,...,14} then set

So ={([=],[y]) | A(u,v) € B, Fj € {0,1,... 14}, & = (u,j), y = (v, )},
S1 = SoU{([(a4,2k)],[(as,25)]) | 5 € {0,1,2,3,4}, k € {5,6,7}}.
Thus (W, Sp) is a ‘chain’ of fifteen successsive copies of G in which any two successive copies
of G are amalgamated at their opposing vertical edges, and (W, S}) is obtained from (W, Sp)
by adding fifteen edges connecting the ‘center’ points of certain even-numbered copies of
Go in (VV, So)

Next we prove a technical lemma about these two graphs.

Lemma 4.2. A mapping f : W — W is a digraph homomorphism from (W, Sy) into
(W, 51) if and only if it is a constant or the identity.

Proof. Since Sy C S7 and (W, S1) is a reflexive graph it is clear that the identity mapping
of W and any constant mapping from W into itself is a digraph homomorphism from
(W, So) to (W, S1). Conversely, let f : (W,Sy) — (W,S1) be a digraph homomorphism.
For j € {0,1,...,14} let g; : A — W be a mapping such that g;(ax) = [(ax,J)] for
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all £ € {0,1,...,14}. Then g; : Go — (W,S)) is a digraph homomorphism for each
j €40,1,...14}. Since |Im(g;) N Im(g;41)| = 2 for all j € {0,1,...,13} we conclude, by
Lemma 4.1, that f o g; is a constant mapping if and only if f o g;41 is a constant mapping.
Moreover, if fog; and fogj41 are constant mappings then Im(fog,) = Im(f o gj+1). Thus
either f og; are injective mappings for all j € {0,1,...,14} or there exists x € W such that
fog; is a constant mapping with value z for all j € {0,1,...,14}. From W = Uj615 Im(g;)
it follows that in the second case, f is a constant mapping with value x. Thus it suffices
to consider the first case. Observe that the sets T1 = {(as,a0), (ao,a4), (as,a3)}, To =
{(a1,a0), (an,a4), (as,a1)}, Ts = {(az,a1), (a2, a4), (as,a1)} of B are three pairwise distinct
cycles in (A, B) containing a4 such that T; and T;4; have a common edge for i = 1,2.
Then f o g;(as) must have the same property because f o g; is injective. But an element
x of W is contained in three distinct cycles 77, T3 and T3 such that 7] and T}, ; have a
common edge for ¢ = 1,2 if and only if = g;(a4) for some j € {0,1,...,14}. Therefore, by
Lemma 4.1, for every j € {0,1,...,14} there exists k(j) € {0,1,...,12} with fog; = gr()-
From |Im(g;) NIm(gj4+1)| = 2 it follows that k(j + 1) = k(j) + 1 and thus k(j) = j for all
je{0,1,...,14} and W = Ujel5 Im(g;) implies that f is the identity mapping. O

We say that a digraph (X, R) is strongly connected if for every ordered pair (z,y) of
distinct vertices there exists a sequence xq, 1, ...,2; of vertices such that x = xg, y = z;
and (z;,z;41) € R for all i = 0,1,...,0l — 1. Let DGy denote the category of all finite,
reflexive, antisymmetric and strongly connected digraphs with at least two vertices and all
their digraph homomorphisms. Clearly, (W, Sy) and (W, S1) belong to DGy.

Let S = (5;<,7) be a finite h-space such that Max(S) = {so}, Cov(sg) = {s1,52},
Cov(s1) = {s3}, | Cov(s2)| # 1, and (s2] \ {s2} = (s3] \ {s5} =S\ {s;:|i=0,1,2,3} =T.
The h-spaces @3, Q4 and @5 of Figure 5 below are instances of such a space S. Observe that
Cov(s2) = Cov(sz) and that any automorphism f satisfies f(s;) = s; for all i =0, 1,2, 3 for
each of these three spaces.

Let Sp be the h-space S§/6 where 6 is the least equivalence on S with sofls; and s20ss.
For the h-spaces @3, @4 and @5 of Figure 5, their respective quotients R3, R4 and Rs5 are
also shown in Figure 5. Let S; be the h-space §/6; where 6 is the equivalence on S whose
only non-singleton class is T'. The properties of S immediately imply that both Sy and &;
are quotient h-spaces of S via the maps whose respective kernels are defined above, and
that their associated mappings are h-maps from S onto Sy and S1, respectively

For the variety V = Var(S), we now construct an embedding of DGy into PHYV.

Recalling that T = S\ {so,...,s3}, for any finite digraph G = (X, R) € DG define
AG = (Yg; <, 7) such that Yo =T U (X % {0,1}) U R* (we assume that T', X x {0,1} and
R® are pairwise disjoint), < is the least partial order such that

(o) if u,v € T then v < w if and only if u < v in (5; <, 7);
(o) for all w € T and z € X we have u < (z,0) < (z,1);
(o) if (x,y) € R® then (z,1), (y,0) < (z,y).

Let 7 be the discrete topology on Yg. For a digraph homomorphism f : (X,R) — (X', R’) €
DGq define Af by

U ifueT,
Af(u) = (f(x),9) if u=(x,i) € X x{0,1},
(f(z), f(y) ifu=(z,y) € R and f(z) # f(y),

f
(f(x),0) if u=(z,y) € R* and f(z) = f
The lemma below is easily verified.

Lemma 4.3. For every digraph G = (X, R) € DGy,

(y)-
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(1) Yg is finite and < is a partial order;

(2) Max(Yg) = R* and ((x,y)] is isomorphic to S for every (z,y) € R*;

(3) (Yg;<,7) is an h-space from PHV.
If f: (X,R) — (X', R') € DGy is a digraph homomorphism then Af : A(X, R) — A(X', R')
is an h-map.

A : DGy — PH(Var(S)) is a faithful functor.

Lemma 4.4. Let G = (X, R) and G’ = (X', R') be digraphs from DGq and let f : AG —
AG’ be an h-map, then exactly one of the following possibilities occurs:

(1) f is not injective on T, f(T) C T, f(X x {0}) C T, Im(f) N Max(Yg:) = 0 and
X % {1}) © Max(Yo);

(2) Im(f) N (R")* # 0, f(X x {0}) € X' x {0}, the mapping f' : X — X' given by
f(z,0) = (f'(x),0) for all x € X is a non-constant digraph homomorphism from G
to G', and there exists an automorphism g of S such that f(t) = g(t) for t € T and
Fu) = Af/(u) for ue Yo \T;

(3) Im(f) N (RH* =0, f(X x{0}) is a singleton in X’ x {0}, |Im(f) N (X’ x {1})] <1,
and there exists an automorphism g of S1 such that f(t) = g(t) for allt € T.

Proof. Since f has the h-property, by Lemma 4.3(2) and from the fact that T' = (s2]\{s2} =
(s3] \ {s3} we obtain that f(T) C T.

If f is not injective on T then f(T) C T because T is finite and, by the h-property,
f(X x{0}) CT. But then f(X x{1}) CTU(X’ x {0}) and f(Max(Yg)) NMax(Yg/) = 0.
Thus Im(f) N Max(Yg/) = 0 and f~1(X’ x {1}) C Max(Yg) and this fully describes the
case in (1).

Suppose that (1) fails. Accordingly, we assume that f(T') = T. Then f is a permutation
of T because of the finiteness of T' and f(X x {0}) C X’ x {0} because | Cov(z,0)| # 1 for
all z € X.

Now also suppose that f(X x {0}) is a singleton. Then f(X x {0}) = {(x1,0)}. Now
((%0,0)] and ((x1,0)] are isomorphic to S; for any o € X and, since f is an h-map, we
see that the permutation g of S given by g(¢t) = f(t) for all t € T and g(s) = s for all
s ¢ T is an automorphism of S;. From the h-property of f it follows that f(X x {0,1}) C
{(21,0), (z1,1)} and since |((z,y)] N (X’ x {0})] = 2 for all (z,y) € (R')* we conclude that
Im(f) N (R)* = 0. Thus (3) is fully established.

Suppose that |f(X x {0})] > 2. Since (X, R) is strongly connected, for every a’ € X’
there exists (z,y) € R® such that f(x,0) = (2/,0) and f(y,0) = (v/,0) # (2/,0). Then
(2',0), (v',0) € (f(z,y)] and from z’ # ' it follows that f(z,y) = (2/,y’) € (R')*. Whence
Im(f) N (R')* # 0 and a mapping f': X — X' such that f(z,0) = (f'(z),0) for all x € X
is a nonconstant digraph homomorphism from (X, R) into (X', R’). Let g : S — S be the
mapping given by

g(x)—{x %fxe{si|i€4},
flx) ifzeTl.
Since f is an h-map, the mapping g preserves order and has the h-property on T. Since f
is a permutation of T, it maps the set of all maximal elements of T" onto itself, so that ¢

preserves order and has the h-property on S. Since S is finite, g is an A-map and thus it is
an automorphism of S because f is a permutation of 7. This proves (2). O

For a digraph G = (X, R) € DGg denote Zg = R* = Max(AG) and define a mapping
pe : Aut(S) — Aut(AG) by
flu) fueT,

pe(hw) = {u i
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for all f € Aut(S) and all elements of AG. Since f € Aut(S) and AG is finite, by a direct
verification we obtain that pg(f) € Aut(AG) and hence ug : Aut(S) — Aut(AG) is an
injective group homomorphism. Set Z = {Zg | G € (DGy)°} and G = {uc | G € (DGy)°}.

Corollary 4.5. A : DGy — PHV is a faithful functor preserving finiteness such that
(1) if f: Gy — G2 is a non-constant DGg-homomorphism then Af(Zg,)] N Zag, # 0;
(2) if f: G1 — Ga is a constant DGo-homomorphism then Im(Af) N Zg, = 0;
(3) if f: AG1 — AGg is an h-map then either Im(f) N Zg, # O and there exist a
non-constant homomorphism g : G1 — Ga of DGg and ¢ € Aut(S) such that f =
UG, (@) o Ag = Ag o pg, (), or else Im(f) N Zg, =0 and [ is non-injective on T or
f is non-injective on {(z,0), (y,0)} for every edge (z,y) of G1 with y # x.

Consider X = A(W, 51), U = [{([(a4,25)],0) | 7 =0,1,...,7}), V = [{([(a4, 10)],0)}
[SQ;O(M)), C = {([(as,10)], [(as,25)]) | § = 0,1,2} U {([(as,12)],[(a4,2)]) | j = 0,1,2,3
1>

Nl

)
}

(ui,v;) = (([(a4,29)],0), ([(aq, 10)], [(a4, 2i)])) for i =0, 1,2, and

(ui,vi) = (([(a4,2(i = 3))],0), ([(as,12)], [(as, 2(i = 3))])) for i = 3,4, 5,6,
and Z = (S1)®. Observe that U and V are increasing sets (thus U is convex), (U; <) and
(V;<) are order connected, Z = MaxAX and C C Z. Clearly, (u;,v;) for i = 0,1,...,6
are f-covering pairs satisfying (u3) and (u4), and thus (U, V, {(us,v;) | ¢ =0,1,...6}) is a
u-triple. Clearly, (z] € PH(Var(Sp)) for all x € W'\ Z. Thus to obtain that X is a universal
testing object of V with respect to Var(Sp) it remains to prove that X is (U, C, Z)-testing
object. For this it suffices to prove (t5); the other conditions are clearly fulfilled. Since
A(W,Sy) is a h-subspace of X \ C, consider an h-map f : A(W,Sy) — X that is not
injective on X \ U. By Lemmas 4.2 and 4.4, either there exists ¢ € Aut(S) such that
[ = mw,s,)(¢) o Av where ¢ is the identity mapping of W, or Im(f) N Zg, = 0 and f is
non-injective on T' or on every set {(x,0), (y,0)} with (z,y) € S¢. Since in the first case
Hew,s,) (@) o A is injective we restrict ourselves to the second case. Then for every z € Z,
| Cov(z)| = 2 and Cov(z) C W x {0,1}. Hence for every z € Z there exists u, € Cov(z)
such that u, € Im(g) for no h-map g : A(W,Sp) — X withg | X\U = f | X\U. Thus X is
a (U, C, Z)-testing object of V. If T is finite then X is finite and we conclude, by Corollary

3.10 that in this case X is also a standard Q-testing object. By Theorem 3.9 and Corollary
3.6 we obtain

Corollary 4.6. If T is finite then the variety V is Var(So)-relatively ff-alg-universal mod-
ulo the group Aut(S). The variety V contains an A-D family and thus it is Q-universal.

We apply Corollary 4.6 to the varieties of Heyting algebras determined by h-spaces Qg,
Q4 and Qs given on Figure 5. Direct inspection shows that Aut(Qs) is a singleton group
and Aut(Q4) and Aut(Qs) are isomorphic to the cyclic group Cs of order 2. Observe that
if S = Q; then So = R; for i = 3,4,5. Altogether, we have

Theorem 4.7. The variety Var(DQg) is Var(DRg)-relatively ff-alg-universal.
The variety Var(DQy) is Var(DRy)-relatively ff-alg-universal modulo the group Cs.
The variety Var(DQs) is Var(DRs)-relatively ff-alg-universal modulo the group Cs.
Each of the varieties Var(DQs), Var(DQ4) and Var(DQs) contains an A-D family and
is therefore Q-universal.

We now turn our attention to three varieties generated by a pair of (finite) subdirectly
irreducible algebras.

To this end, we employ another category DG, of ‘pointed’ digraphs. Its objects are
quadruples (X, R, zg, x1) such that
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(¢) (X, R) is a finite connected reflexive antisymmetric digraph,
(o) xo, 71 € X,
(e) the induced subdigraph of (X, R) on X \ {zo,z1} belongs to DGy, that is, it is a
strongly connected digraph and | X \ {zo,z1}| > 2,

(o) (zg,z) € R only when x = xo,
() (z,21) € R only when x = a7,

(.) (an 1‘1), (1'1, J)Q) ¢ R,

(o) there exist z,2" € X \ {zo, z1} with (z1,z), (2',z0) € R.
And the DGp-morphisms from (X, R, zg, z1) to (Y, S, yo, y1) are all digraph homomorphisms
J+ (X, R) — (Y, 8) with f(zo) = yo and f(z1) = 1.

Recall the digraphs (W, Sp) and (W, S1) defined just above Lemma 4.2. Choose distinct

xo,x1 ¢ W and set V. =W U {xg, 21},

Ty = SO U {([aoa O]v xo)v ([a37 ].4],£E0), (xlv [ala 0])a (:L'la [(lg, 14])}
and Ty =Ty U Sq1. Then (V, Ty, xo, x1), (V,T1,x0, 1) € DG, and, by Lemma 4.2 we obtain

Corollary 4.8. If f : (V,Ty,z0,21) — (V,T1,x0,21) is a DGp-morphism then f is the
inclusion.

Proof. Let f:(V,Ty) — (V,T1) be a DG,-morphism. By the definition of DG,-morphisms
we have f(xg) = xg, f(x1) =21 and f(W) C W, so that f is not constant. But then f is
the identity mapping by Lemma 4.2. O

Let POS denote the category of all finite posets and all their order preserving maps
having the h-property.

For X = (X,R,z9,21) € DG, define a finite poset IIX = (Ax, <) such that Ax =
{a,b} U (X x {0,1,2}) \ {(x0,1)}) U R* where a and b are new distinct elements (i.e.
a,b¢ (X x{0,1,2}) UR%) where R* = R\ {(z,z) | z € X}) and

a < (z,0) < (z,1) < (x,2) 2 bforall z € X \ {xo,21};
(o) a < (24,0) < (x;,2) >bfori=0,1, and (z1,0) < (z1,1);

) )

< (z,y) > (y,0) for all (z,y) € R* (thus z # y).
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Clearly,

Lemma 4.9. For every X = (X, R, xo,x1) we have

(1) Max(Ax) = X x {2} UR?, Min(Ax) = {a,b};

(2) if (u] and (v] are isomorphic for u,v € Max(Ax) then either u,v € R* or u,v €
(X \{zo,z1}) x {2} oru,v € {xg,z1} x {2};

(3) for every u € Max(Ax), the only order preserving bijection from (u] onto itself is the
identity map;

4) |((z,9)]] =5 for all (z,y) € R*, |((z,2)]| =5 for allz € X\ {xo, 21} and |((x,2)]| =4
for x € {zo,z1};

(5) [b) = (X x {2}) U{b}, [a) N[b) = X x {2};

(6) if (z0,0) < u for some uw € Ax then u covers (xg,0);

(7) ifue X\ {xo} and (u,1) < v for av € Ax then v € Max(Ax).

For any DG,-morphism f : (X, R, zo, 1) — (Y, S, v0,y1) define IIf : Ax — Ay by

u if u € {a, b},

T f(u) = (f(z), ) if u=(z,7) € (X x {0,1,2}) \ {(z0, 1)},
(f(z), f(y) ifu=(z,y) € R and f(z) # f(y),
(f(z),1) if u=(2,y) € R* and f(z) = f(y).

Since (f(z), f(y)) € S* if (x,y) € R, the definition of IIf is correct.
Direct calculations yield

Lemma 4.10. Let f : X = (X, R,x0,21) — Y = (Y, S,y0,y1) be a DGy,-morphism. Then
(1) ifu,v € Ax with u < v in IIX then IIf(u) < IIf(v) in IY;
(2) (IIf (w)] =10f((u]) for all u € Ax;
(3) IIf(u) = u for u=a,b and I1f(z;,5) = (yi,7)
for all (i, ) € ({0,1} x {0,1,2}) \ {(0, 1)};
(4) (X \A{zo, z1}) x {i}) S (Y \ {wo,y1}) x {i} for i =0,1,2.
Thus 11 is a faithful functor from DG, to POS.

Next we prove the basic lemma about II.

Lemma 4.11. Let X = (X, R, zo,z1) and Y = (Y, S, y0,y1) be objects of DG, and let f :
ILX — IIY be a POS-morphism such that f((X\{zo,z1})x{2}) N (Y \{yo,11}) x{2}) # 0.
Then there exists a DGy-morphism g : X — Y with Ilg = f.

Proof. By the assumption, there exist z € X \ {zo,z1} and y € Y \ {yo0,y1} such that
f(z,2) = (y,2). Then, by Lemma 4.9(2), and (3), f(u) = u for u = a,b and f(z,7) = (y,1)
for i = 0,1,2. Thus, by Lemma 4.9(5), f(X x {2}) C Y x {2}. From (f(u)] = f((u]) it
follows that f(X x {0}) C (Y x {0}) U{a}. Since a and b are incomparable, we infer that
f(u) # b for all u € Ax with a < u. Hence, by Lemma 4.9(1) and (5),

FAX\ (X x {2h) U {b})) € Av \ ((Y x {2}) U {b}).
By Lemma 4.9(4), we conclude that for ¢ = 0,1 there exists k; € {0, 1} such that f(x;,j) =
(yx;,J) for j = 0,2. In particular, f({(x;,0)|i=0,1}) C {(y:,0) | i =0, 1}.

Observe that if f(u,0) = a for some u € X then, by the above, u # x¢,z1 and f(u,1) €
{(%0,0), (y1,0)}. Indeed, f(u,2) € Y x {2} and |f((u,2)])] < 4 because f(u,0) = f(a) = a.
By 49(5)7 then f(ua 2) € {(yo, 2)a (ylv 2)} and hence f(u7 1) € {(yO; 0)7 (yla 0)}

Next we show that f(v,1) € {(v0,0),(y1,0)} whenever (u,v) € R® and f(u,1) €
{(%0,0), (y1,0)}. Indeed, f(u,1) € {(yo,0), (y1,0)} implies that |(f(u,1)]] = 2 and hence,
by Lemma 4.9(5), f(u,v) ¢ S® Thus f(u,v) € {(y1,1), (y1,0), (y0,0)} and hence f(v,0) €
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{(90,0), (y1,0),a}. If f(v,0) = a then, by the foregoing part of the proof, f(v,1) €
{(90,0), (y1,0)}. If f(v,0) = (y;,0) for some j = 0,1 then f(v,2) € Y x {2} implies
F(0,2) = (y5,2) because [(5,0) N (¥ x {21) = {(g.2)}. Since (4;,0) = f(0,0) <
f(v,1) < f(v,2) = (y;,2), we infer that f(v,1) = (y;,0) because f(v,1) ¢ Y x {2}.

Since the subdigraph of (X, R) on X \ {zg, 1} is strongly connected we deduce that from
F(1,1) € {(30,0), (31,0} if follows that f((X\, {z0,21}) x {1}) C {(y0.0), (31, 0)}, and this
is a contradiction because f(z,1) = (y,1) by the assumption.

We claim that f((X\{zo,z1}) x{2}) C (Y \{yo,y1}) x {2}. Indeed, if there exists u € X
with f(u,2) ¢ (Y \{yo,y1}) x {2} then from f(X x {2}) CY x {2} it follows that f(u,2) €
{(y07 2)7 (y17 2)} Then f(u7 0) € {(yOa 0)7 (yla 0)7 a} and thus f(u7 1) € {(yOa 0)7 (yla O)} and
this is a contradiction. Therefore there exists a mapping ¢’ : (X \ {zo,z1}) — Y \ {v0, 11}
with f(u,i) = (¢'(u),9) for all w € X \ {zo,z1} and i = 0,1,2. Let g be an extension of g’
such that g(xo) = yo and g(z1) = y1.

Next we prove that f(x;,7) = (yi,j) for i = 0,1 and j = 0,2. By the assumption,
there exists u € X \ {zo, 1} with (u,z9) € R*. Then (u,1) < (u,z0) > (20,0). Hence
(9(w),1) = f(u,1) < F(u,70) > f(z0,0). We know that f(zo,0) € {(y,0), (1, 0)} and [(¥\
{9031 ) x {11)y1,0) = 0. Whence f(zo,0) = (yo,0) and then f(z0,2) = (3o, 2). Further,
by the assumption, there exists v € X \ {zo, 1} with (z1,v) € R*. Then (21,0) < (z1,1) <
(x1,v) > (v,0). If f(x1,0) = (y0,0) then, by Lemma 4.9(6), | f{(x1,0), (z1,1), (z1,v)}| < 2.
Thus |f(((x1,v)])] < 4 and, by Lemma 4.9(5), f(z1,v) ¢ S® Since f(v,0) = (g(v),0) €
(Y'\{yo,vy1}) x {0} and since [(Y'\ {yo,y1}) x {0})N[(y0,0)) C S* we obtain a contradiction.
Whence f(x1,0) = (y1,0) and also f(z1,2) = (y1,2). Moreover, f(z1,v) € S® implies that
(ylao) < f(xla 1) < f(xlav) and thus f(xla 1) = (yla 1)

Finally, we prove that g : X — ) is a DG,-morphism and IIg = f. To do this, consider
any (u,v) € R® Then (u,1) < (u,v) > (v,0) and f(u,1) = (g(u),1), f(v,0) = (g(v),0). If
g(u) # g(v) then (g(u),1) < F(u,v) > (9(v),0) and thus (g(u), g(v)) € 5* and f(u,0) =
(9(u),g(v)). TF g(u) = g(v) then f(u,v) > (g(uw),1) and |(F(u,0)]| < 4 because f(u,0) =
(9().0) = (g(1),0) = f(v,0). Hence f(u,v) ¢ S* and, by Lemma 4.9(1), f(u,v) ¢
Max(Ay ). Hence, by Lemma 4.9(7), f(u,v) = (g(u),1) and the proof is complete. O

We extend the faithful functor II to embeddings into the categories of h-spaces dual to
some finitely generated varieties of Heyting algebras. Let V; denote the variety of Heyting
algebras generated by algebras dual to the h-spaces F; and G; and let W; be a variety of
Heyting algebras generated by algebras dual to h-spaces G; and H; for i = 0, 1,2 where F;,
G; and H; for ¢ =0, 1,2 are shown in Figure 6 and Figure 7.

S
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Figure 6

For X = (X, R,x0, 1), let [IpX = (Ax U{¢,d}; <,7) be an extension of IIX by new
elements ¢ and d such that ¢ < a,b and d < b, and 7 is a discrete topology. Then IIpX €
PHV,. For a DG,-morphism f : X — Y let Iy f be an extension of ITf such that Iy f(c) = ¢
and Iy f(d) = d.
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For X = (X, R,x0,1), let ILX = (Ax U{¢,d}; <,7) be an extension of IIX by new
elements ¢ and d such that ¢ < a and d < a,b, and 7 is the discrete topology. Then
II; ¥ € PHV;. For a DG,-morphism f : X — Y let II; f be an extension of IIf such that
II; f(¢) = c and II; f(d) = d.

For X = (X, R, x0,21), let Il X = (Ax U {c,d,e}; <,7) be an extension of IIX by new
elements ¢, d and e such that ¢ < a, d < a,b, e < ¢,d and 7 is a discrete topology. Then
II,X € PHV,. For a DG,-morphism f : X — Y let Il f be an extension of IIf such that
o f(c) = ¢, Uaf(d) = d and Tz f(e) =e.

Corollary 4.12. For ¢ = 0,1,2, 1I; is a Z-relatively full embedding of DG, into PHV;
where Z = {Z(x pzo,x1) = (X \ {z0,21}) x {2} | (X, R, z0,21) € DGp}.

Proof. 1t is clear that for every i = 0,1,2 and every X = (X, R, x¢,z1) € DG, we have
ILX € PHV,. Let us assume that X = (X, R, zo,21) and Y = (Y, 5, y0,y1) are objects
of DG, and let f : X — Y be a DGp-morphism. Then f(X \ {zo,21}) C Y \ {v0, 91}
and thus there exists y € Im(f) \ {yo,y1}. Then (y,2) € Im(IIf) and ((y,2)] in Im(IL, f)
is isomorphic to F; for ¢ = 0,1,2. Since there exists x € X \ {zo, 21} with (z,z9) € R
we deduce that (f(z),y0) € S* and f(x,z9) = (f(z),y0) € Im(ILf). Then ((f(x),y0)] €
Im(TL; f) is isomorphic to G; for ¢ = 0, 1,2 and the variety generated by the Heyting algebra
corresponding to the h-subspace of II; on Im(IL; f) is V; for i = 0,1, 2.

Conversely, assume that f : ILX — IL;Y is a h-map. If there exists y € Im(f) such
that (y] is isomorphic to F; then there exists x € II; X such that (] is isomorphic to (y]
and f(z) = y. Since F; is automorphism free we infer that f(a) = a, f(b) = b, f(c) = ¢,
f(d) =d (and if i = 2 then also f(e) = e) and « > a,b. Hence f(Ax) C Ay and we apply
Lemma 4.10 to complete the proof. O

Set X; = IL;(V, T1, xo, 1) = (X;; <, 7) for i = 0, 1, 2, so that X; is an h-space from PHV;.
Set Z =S¢, U = [{([(a4,25)],0) | 7 =0,1,...,7}), and

0 # C < {({(as,10)}; [(a4,27)]) | 7 = 0,1, 2} U{([(as,12)], [(as,27)]) | j = 0,1,2,3}.

Then U is an increasing subset of X (thus it is convex), §) # Z C Max(U) and C C
U NMax(X). Observe that there exists no surjective h-map from G; onto F; for i =0, 1, 2.
For every i = 0, 1,2 we have CNZ = () in X; and (u] in X; is isomorphic to G; for every u € C
and (z] in X; is isomorphic to F; for every z € Z we deduce that (t4) holds. The condition
(t5) follows from Corollary 4.8 and Lemma 4.11 or Corollary 4.12; we conclude that X; is
a (U, C, Z)-testing object of V; for i = 0,1,2 because IL;(V, Ty, xo,x1) is a h-subspace of
X\ C. Set V = [{([(a4,10)],0)}) and

(ui,vi) = (([(a1,22)],0), ([(a4,10)], [(as, 20)])) for i = 0,1,2, and
(us,vi) = (([(aq,2(i = 3))],0), ([(as,12)], [(as, 2(i = 3))])) for i = 3,4,5,6.
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Observe that V' is an increasing set of U, (U; <) and (V; <) are order connected. Clearly,
(us,v;) for i =0,1,...,6 are f-covering pairs satisfying (u3) and (u4), thus (U, V, {(u;, v;) |
i =0,1,...6}) is a u-triple. Whence (&X;,U,C) is a universal testing object of V; with
respect to W;. Since A is finite, by Corollary 3.10 it is also a standard Q-testing object.
By Theorem 3.9 and Corollary 3.6 we then obtain

Theorem 4.13. For i = 0,1,2, the variety V; is W;-relatively ff-alg-universal and con-
tains an A-D family, so that V; is Q-universal for i =0,1,2.

Finally let DG; be the category of all finite antireflexive, antisymmetric, strongly con-
nected digraphs (X, R) such that there exist (x,y), (z,2),(y,2z) € R for pairwise distinct
vertices x,y, z € X, and all their digraph homomorphisms. Then the digraphs (W, S§) and
(W, S¢) defined just before Lemma 4.2 belong to DG;.

Consider a variety of Heyting algebras determined by the h-space Qg given in Figure 8.

g
€
f
d
c
b
a
Qo Ro
Figure 8

We shall construct an embedding of DG, into Var(DQg)
For a digraph G = (X, R) € DG let us define the h-space ©G = (Yg; <,7) so that
(o) Yo = {a,b,c} U (X x2)U (R x 4) (we assume that a, b and c¢ are pairwise distinct
elements with a,b,c ¢ (X x 2) U (R x 4) and that (X x 2) N (R x 4) = 0);
(o) < is the least partial order such that
a<b,ec,
b< (2,0) < (z,1) >cforal z € X,
c< (r,0) < (r,1) >bforall r € R,
((2.9),0) < ((2:9).2) > (1) and ((z,9),1) < (2,9),3) > (3,0) for all (z,y) € B
() 7 is the discrete topology on Yg.
For a digraph homomorphism f : (X, R) — (X', R') € DG; define

u if u € {a,b,c},
(f(x),9) if u=(z,i) forr € X and i =0, 1,
(f(@), f(y),1)  ifu=((z,y),) for (z,y) € R
and i =0,1,2,3.
Since f is a digraph homomorphism, we conclude that (f(z), f(y)) € R’ for all (z,y) € R

and hence O f is correctly defined.
Direct calculations give

Lemma 4.14. For every digraph G = (X, R) € DG; we have

(1) Max(Ye) = R x {2,3} and Min(Yg) = {a};
(2) ((r,9)] is isomorphic to Qg for allT € R and i = 2,3.
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(3) ©G is a finite h-space from PH(Var(Qy));
For every digraph homomorphism f: G — G’ € DGy, Of : ©G — OG’ is an h-map. Thus
0 : DGy — PH(Var(Qg)) is a faithful functor.

Lemma 4.15. Let h : (Yg;<,7) — (Yo;<,7) be an h-map where (Yg;<,7) = OG,
(Yor; <,7) = ©G’ for digraphs G = (X, R),G' = (X', R') € DG;. Then either there exists
a digraph homomorphism g : G — G’ with h = Og or else |h({a,b,c})| < 2.

Proof. By Lemma 4.14(1), h(a) = a. Clearly a € Cov(z) for z € Yg (or z € Yg/) if
and only if z € {b,c} and thus h({b,c}) C {a,b,c}. Hence h({b,c}) = {b, c} follows from
|h({a,b,c})| = 3. Thus it suffices to investigate the case of h({b,c}) = {b,c}. Observe
that any h-endomorphism of Qg fixing elements b and ¢ has to fix also d and e, and any
endomorphism of Qg fixing b, ¢ and f is the identity mapping, see Figure 8. We exploit
these facts in what follows.

Observe that (X x {1}) U (R x {1}) (or (X’ x {1} U (R’ x {1})) is the set of all least
elements above both b and ¢. Hence h((X x {1}) U (R x {1})) C (X' x {1}) U (R’ x {1}).
Since Cov(z,1) = {(x,0),c} and Cov(r,1) = {(r,0),b} for z € X and r € R (or z € X' and
r € R’) we infer that one of the following two possibilities occurs:

(a) h(b) = b, h(c) = ¢, there exist mappings g : X — X’ and f: R — R’ with h(z,i) =
(9(x),i) for all x € X, i € 2 and h(r,i) = (f(r),é) for all r € R, i € 2;

(b) or h(b) = ¢, h(c) = b, there exist mappings g : X — R’ and f : R — X' with
h(z,i) = (g(x),4) for all z € X, i € 2 and h(r,i) = (f(r),i) for all r € R, i € 2.

(
If (z,y) € R then h((z,y),3) > (9(y),0), (f(z,y),1) and h((z,y),2) > (9(2), 1), (f (=,

T )70

If A(b) = b and h(c) = c then we infer that f(x,y) = (g9(x),g(y)) € R’ and h((x, ) i) =
(f(x,y),4) for i = 2,3. If h(b) = ¢ and h(c) = b then h((z,y),3) = (9(y),2), h((z,y),2) =
(9(x),3) and g(z) = (u, f(z,v)),9(y) = (f(z,y),v) € R for some u,v € X'.

First consider the case h(b) = ¢ and h(c) = b. Then there exist pairwise distinct z,y, z €
X with (z,9), (z, 2), (y,2) € R. Thus (z,1),((2,9),0) < ((z,9),2) and (z,1),((z,2),0) <
((z,2), ?) Then h((z,y),2) = (r,3) = (9(=),1), (f(2,9),0) and h((z,2),2) = (',3) >

(9(x),1), (f(x,2),0) for some r,7" € R'. Hence r = g(z) = r/, thus h((z,y),2) = (9(x),3) =
h((z,z),2). Hence f(z,y) = f(x,z). From (y,0),((z,y),1) < ((z,y),3) it follows that
h((z,v),3) = (v",2) > (9(v),0),(f(z,y),1) for some " € R’ and hence " = g(y) =

(f(z,y),1),v) € R for some v € X’'. Analogously, from (z,0),((z,2),1) < ((z,2),3)

and (2,0), ((9,2),1) < ((y,2),3) it follows that h((z,2),3) = (g(2)2) = h((3,2),3) and

(
f(z,z) = f(y,z). And then from (y,1), ((y,2),0) < ((y, 2),2) it follows that
h((yvz), 2) = (va 3) = (g(y)v 1)7 (f(y7 Z)’ 0)

for some """ € R and hence """ = g(y) = (u, f(y,2)) € R’ for u € X’. If we combine these
facts we obtain that g(y) = (f(z,v), f(y,2)) € R and f(z,y) = f(z,2) = f(y, z) and this
is a contradiction because (X', R’) is antireflexive digraph.

Therefore h(b) = b and h(c) = ¢. Then g : (X, R) — (X', R') is a digraph homomorphism
and clearly h = Og. O

For G = (X, R) € DG, set Zg = R x {2,3} = Max(©G). Since Aut(Qy) is a singleton
group, we can omit G and set Z = {Zg | G € (DG4)°}. Thus

Corollary 4.16. The functor © : DG; — PH(Var(Qy)) is a Z-relatively full embedding.
Now we set
X =W, (51)"), U=[{([(as,2)],0) |7 =0,1,...,6}), V =[{([(as,10)],0)}),
C = {(([(a4,10)], [(as,25)]),3) | j = 0,1,2} U{(([(as,12)], [(as, 27)]),3) [ j = 0,1,2,3},
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Z =(5)"x{2,3}, and

(s, 03) = (([(as,22)}, 0), (([(+, 10)}; [(aa, 20)]), 3)) if i =0,1,2,

(([(as, 2(i = 3))], 0), (([(a4, 12)]; [(as, 2(i = 3))]),3))  ifi=3,...,6.
Thus (U, V, {(u;,v;) | ¢ =0,1,...6}) is a u-triple and (x] € PH(Var(Rs) for all z € W\ Z.
Combine Lemma 4.2 and the fact that ©(W, S§) is an h-subspace of X'\ C' and Lemmas 4.14
and 4.15 we obtain that X is a (U, C, Z)-testing object of Var(Qg) because {a,b,c} C (z]
for every x € Max(X). Hence X is a universal testing object of Var(Qg) with respect to
Var(Ry). Since X is finite, by Corollary 3.10, it is also standard @Q-universal testing object.
By Theorem 3.9 and Corollary 3.6, we obtain

Corollary 4.17. The variety Var(DQy) is Var(DRy)-relatively ff-alg-universal. It also
contains an A-D family and thus it is Q-universal.

5. UNDIRECTED GRAPHS

In this section we shall construct testing objects using undirected graphs. First we recall
several notions for undirected graphs.

An undirected graph (or a graph) is a pair G = (V, E) where V is a set (of the vertices
of G) and E is a set of two-element subsets of V' (the edges of G). A graph homomorphism
from (V,E) to (V',E’) is a mapping f : V — V’ such that {f(v), f(w)} € E’ for every
{v,w} € E. A path between u,v € V of length k in a graph G = (V, E) is a sequence
P ={u=uwxy,x1,...,xr = v} of vertices of G such that {z;,x,11} € Efori=0,1,...,k—1
and these edges are pairwise distinct. If, moreover, {zy, o} € F then it is a cycle of length
k+ 1. A graph (V, E) is connected if for every pair of vertices u,v € V there exists a path
between v and v. In [22] it is shown that the graph F = (T, F') shown in Fig 9 is rigid (that
is, only the identity mapping is a graph homomorphism from F to itself).

Figure 9

Let us define Fg = (Tp, Fy), where
(o) To = (T'x 22)/0 U D where D = {c; | i € 11} and 6 is the least equivalence on T' x 22
such that (b,7)0(a,i + 1) for all i € 21 (we assume that ¢; for i € 11 are pairwise
distinct new vertices, that is, ¢; ¢ (T x 22) /0 for every i € 11);
(o) if [z] is the class of 6 containing a vertex z € T' x 22 then

Foo ={{l=]. [y} | Fi € 22, {u, v} € F, x = (u,4), y = (v,i)}
U {l(d,d)], e}, {l(d, i+ 11)], e} | i € 11}

A graph (V, E) is bipartite if there exist disjoint sets V1, Vo C V such that ViUV =V
and l[eNVi| = leNVa| =1 for every e € E. Then {Vi,Va} is a bipartite decomposition of
(V. E).

For a bipartite graph B = (D, B), we define Fg = (T, Fy U B). Then
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Lemma 5.1. For every bipartite graph B = (D, B) the identity mapping ¢ : Ty — Ty is the
only graph homomorphism from Fy to Fg.

Proof. Since Fy C FyU B, the identity mapping ¢ : To — Tp is obviously a graph homomor-
phism from F( to Fg. Conversely assume that f : Fg — Fp is a graph homomorphism.
Since the shortest odd cycle of F has length 7 and because every cycle of Fg containing
¢; for some ¢ € 11 contains a path between (d,k) and (d,l) in Fg for distinct k,l € 22
and this path has length at least 6), the shortest odd cycle of Fg has length 7. If short-
est odd cycles in two graphs have the same length, then graph homomorphisms between
these graphs preserve shortest odd cycles. For every s,t € T, either there exists a cycle
of length 7 containing s and ¢ or there exist two cycles Cy, Co of length 7 such that C
contains s, Cs contains ¢t and C; and Cs have a common edge. Hence the image of a graph
homomorphism from F to Fg has also this property. By a routine inspection, we obtain
that {[(¢,7)] | t € T} for i € 22 are all the subsets of Fg with this property. Moreover,
the subgraph of Fg induced on the set {[(¢,7)] | t € T} is isomorphic to F for all i € 22.
For every i € 22 the mapping g; : T — T such that g;(t) = [(¢,7)] for all t € T is a graph
homomorphism from F to Fy. Since F is a rigid graph we deduce that for every i € 22
there exists j(i) € 22 with fog; = g;(;), hence f([(t,4)]) = [(¢,4())] for all t € T and i € 22.
From the definition of 6 it follows that j(i + 1) = j(i) + 1 for all i € 22 (with the usual
addition) and thus j(i) = i. Thus f([(¢,4)]) = [(t,4)] for all t € T and ¢ € 22. Since for
every i € 11 there exist exactly two edges of Fy or Fy U B between ¢; and (T x 22)/0 — the
edges {[(d,9)],¢;} and {[(d,7 4+ 9)], ¢;}, we conclude that f(c¢;) = ¢; for all i € 11 and f is
the identity mapping of Tj. O

A graph (V, E) has chromatic number 3 if it is not bipartite and there exists a graph
homomorphism f: (V, E) — ({0,1,2}, {{0,1}, {0, 2}, {1,2}}) = K3, the complete graph on
three vertices. By a direct verification, there exists a graph homomorphism f : F — Kj
such that f(a) = f(b). Assume that f(d) =1 € {0,1,2}. Let B = (D, B) be a bipartite
graph with a bipartite decomposition {D1, D2} and define a mapping ¢ : To — {0, 1,2} by
9([(u,9)]) = f(u) for all w € T and g(d) =’ for d € Dy and g(d) =" for d € Dy where
{,I',1"} = {0,1,2}. Since f(a) = f(b), the definition of g is correct and, by a routine
calculation, we obtain that g : Fg — K3 is a graph homomorphism. Thus F, Fy and Fg
for any bipartite graph B = (D, B) have a chromatic number 3. We exploit these graphs
to construct special embeddings into duals of some finitely generated varieties of Heyting
algebras.

Let GR be the category of all finite connected graphs with at least two vertices having
the chromatic number 3. Let TGR be a category whose object are triples (V, E, f) where
(V,E) is a finite connected graph with chromatic number 3 and f : (V,E) — Ks is a
graph homomorphism, and whose morphisms from (V, E, f) into (V', E’, f') are all graph
homomorphisms g : (V, E) — (V', E’) with f = f' o g.

We consider the h-space Qg given in Figure 10.

We shall construct a Z-relatively full embedding of GR into PH(Var Qs). For a graph
G = (V,E) € GR, let us define I'G = (X@; <,7) where Xg = {a,b} UV U (E x 2) (we
assume that the latter union is disjoint), and < be the least partial order such that

(o) a<b<(el)forallecF;
() a<wforallveV;
(o) v < (e,0) < (e,1) for allv e e € E;

and 7 is the discrete topology on X¢g. Denote Zg = E x {1}.
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Qs Rs
Figure 10

For a graph homomorphism f : (V, E) — (V', E’), let us define
u if u € {a, b},
T'f(u)=q f(v) ifu=vev,
{fw), f(w)}, i) ifu= ({v,w}i)for {v,w} € E and i =0,1.
By a direct verification, we obtain

Lemma 5.2. For every graph G = (V, E) € GR,

(1) < is a partial order, Xg is finite and I'G is an h-space;

(2) Max(T'G) = E x {1} = Zg;

(3) (] is isomorphic Qs for x € Xg if and only if x = (e, 1) fore € E.
If f : G — G’ is a graph homomorphism then U'f is an h-map. Thus I' : GR —
PH(Var(Qs)) is a faithful functor.

Lemma 5.3. Let Gy = (Vo, Ey) and G1 = (V4, E7) belong to GR and let f : TGy — I'Gy
be an h-map. Then one of the following cases occurs:

(1) there exists a graph homomorphism g : Go — G with Tg = f;

(2) Tm(f) C {a,b};

(3) f(b) =a, Im(f)N(EL x {1}) =0, and f(e,0) # f(e,1) implies that f(e,0) = a and
fle,1) e VU{b} for all e € Ey;

(4) f(b) € Vi and Im(f) C ({(e,0) | e € By, f(b) € e}].

Proof. Since f has the h-property we conclude that f(a) = a, f({b} UVy) C {a,b} UV; and
F(Eo % {03) 11 (By x {1}) = 0.

First assume that f(b) = a. Then |f(((e,1)])] < 6 =|((¢/,1)]| for all e € Ey and all ¢’ €
E, thus Im(f) is disjoint with E4 x{1}. Since a € Min(Xg, ) and ((e, 1)] = ((e, 0)]U{b, (e, 1)}
we conclude that f(((e,1)]) = f(((e,0)]) U{f(e,1)} because f has the h-property. Thus if
| Cov(f(e,1))] = 2 then f(e,0) = f(e,1). Since for y € Xg, we have |Cov(y)| < 1 if and
only if y ¢ Ey x {0,1} and since Ey x {1} NIm(f) = 0 we infer that if f(e, 1) # f(e,0) then
f(e,1) € {b} UV; and hence f(e,0) = a, and (3) holds.

Assume that f(b) € V4. Then for all e € Ey we have f(e, 1) € [f(b)) because b < (e, 1)
for all e € Ey and Max([v)) = {(¢/,1) | ¢’ € E1,v € €'} for all v € V4. Since |Vp| > 2 and Gy
is connected, for every v € V) there exists an edge e € Ey with v € e. If f(u) = b for some
u € Vp then for an edge e = {u,v} € Ey we infer that (f(e,0)] = (b] because |((e,0)]| = 4,
|((¢/,1)]| =6foralle’ € Ey and [b) = {b}U(E1 x{1}) inT'G;. Then f((e,0)), f(b) < f((e,1))
and hence f((e,1)) € Ey x {1} but |f(((e,1)])] <4 — this is a contradiction. Thus b ¢ f(Vp)
and hence f((e,1)) ¢ Eq1 x {1}. Therefore Im(f) C ({(e,0) | e € E1, f(b) € e}], and (4)
holds.

Assume that f(b) = b. If f(v) € {a,b} for some v € V} then for an edge e € Ey with
v € e we have | f(((e,1)])| < 6 and hence f(e,1) =b. Then f([(e,1))) = {a, b} and, from the
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connectedness of Gg, we conclude that Im(f) = {a, b} and (2) holds. Thus we can assume
that f(b) = b and f(Vp) C Vi. Let {v,w} € Ey. Then b,v,w < ({v,w},1) implies that
b, f(v), f(w) < f({v,w}, 1) and from f(v) € V; we conclude that f({v,w},1) € Ey x {1}.
By the h-property of f we obtain that f(v) # f(w), {f(v), f(w)} € Ey and f({v,w},1) =
({f(v), f(w)},1). Whence the domain-range restriction g of f to Vo and V; is a graph
homomorphism from Gy to G; with I'g = f, and hence (1) follows. O

Corollary 5.4. The functor T': GR — PH(Var(Qsg)) is a Z-relatively full embedding.

Let B = {{ci,c5} | i € 5} U {{cite6,c10} | i € 4}. Then B = (D, B) is a bipartite graph
with a bipartite decomposition {D; = {¢; | i € 5} U {ciy¢ | @ € 4}, D2 = {c5,c10}}. Let us
define a graph Fy = (Tp, F1) where F; = FoUB. Set X =TFy, Z = {(e,1) | e € Fi} =
Max(TF1), U = {¢; | ¢ € 11} U {b} U{({ci,¢5},7) | i € 5,5 = 0,1} U {({cite,c10},7) |
i€4,7=0,1},V = {c10} U{({cits,c10},7) | i € 4,5 =0,1}, C = [{({ciye5},1) | i €
4} U{({cite,cr0},1) |1 € 3}),

(u- ’U') _ (b, ({Ci+6; 010}, 1)) fOI' i = 0, ]., 2,
v (b, ({ci_3,¢5},1))  fori=3,4,5,6.

By a direct verification, C' C Max(U) and V C U, V is an increasing subset of U and U is a
convex subset of X, thus U is functorial. Further (V; <) and (U \ V, <) are order connected
and (u;,v;) is a f-covering pair in U(X) for all ¢ € 7, thus (U(X),V, {(u;,v;) |i € T}) is a
u-triple. By Lemma 5.1, X’ is automorphism free. Since | Cov(c)| > 2 for every ¢ € C we
obtain, by Lemmas 5.1 and 5.3, that & is a (U, C)-representing object from Var(Qsg). To
prove that X is a (U, C, Z)-testing object from Var(Qg) it suffices to verify (t5). Observe
that I'(To, Fp) is a h-subspace of X \ C. Consider h-map f : I'(Ty, Fy) — X. On the set
X \ U we recognize whether f = I'g for some graph homomorphism g : (Ty, Fy) — (To, F1)
(by Lemma 5.1, g is the identity) or Im(f) = {a,b} then for z = (e,1) € Z we choose
u, = (e,0) or b ¢ Im(f) then for z € Z we choose u, = b. By Lemma 5.2, the other
possibilities do not occur and for every h-map g : XY\ C — X with f [ X\U =g | X\U we
have u, ¢ Im g for all z € Z. Thus (t5) holds and X is a (U, C, V')-testing object of Var(Qs).
Therefore X is a finite universal testing object of (Var(Qg)) with respect to Var(Rsg) and,
by Corollary 3.10, X is also a standard Q-universal testing object. Hence, by Corollary 3.6
and Theorem 3.9 we obtain

Corollary 5.5. The variety Var(DQg) is Var(DRg)-relatively ff-alg-universal and has an
A-D family, so it is also Q-universal.

Next we describe a Z-relatively full embedding of GR into PH(Var(Quo)) for the h-space
Q10 given in Figure 11.

a

Q1o
Figure 11

For a graph G = (V, E) € GR define EG = (Yg; <, 7) where Yo = {a,b,¢,d} UV U
EU{(v,e) | v € e € E} (we assume that a, b, ¢, and d are pairwise distinct elements and
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{a,b,c,d}, V, E, and {(v,e) | v € e € E} are pairwise disjoint sets), < is the least partial
order such that

() a<b<canda<d;

(o) c<v>dforallveVandb<e<dforallec E;

(o) v < (v,e) >eforallee F and v € ¢;

and 7 is a discrete topology on Yg. For a graph homomorphism f : (V, E) — (V', E) define

u if u € {a,b,c,d},
= () — fv) fu=vev,
=fw) {f(), f(w)} if u={v,w} € E,
(f), {f(w), f(w)}) ifu=(v,{v,w}) for {v,w} € E.

By a direct inspection we obtain

Lemma 5.6. For every graph G = (V, F) € GR,
(1) ZG is a finite h-space;
(2) Max(Yg) = {(v,e) |ve€ec E};
(3) (] is isomorphic to Q1o for x € Ya if and only if x = (v, e) for some e = {v,w} € E;
(4) {a,b,c,d} C ((v,e)] foralle € E and v € ¢;
(5) |(e ]|—4f07"alleEE and |(v]| =5 for allv € V;
(6)

(e] is isomorphic to Rg from Figure 10 for all e € E.
For every graph homomorphism f : G — G’ € GR the mapping Ef : EG — ZG’ is an
h-map. Thus = : GR — PH(Var(Quo)) is a faithful functor.

The proof of Z-relative fulness is based on the following lemma.

Lemma 5.7. If f : EG — EG’ is an h-map for G = (V,E),G' = (V/,E’) € GR then
either there exists a graph homomorphism g : G — G’ with g = f or f(c) € {a,b,d} and
Im(f) € (E"]U{c} orIm(f) € {a,b,c}.

Proof. Let G = (V,E) and G’ = (V', E’) be graphs from GR and let [ : (Yg;<,7) —
(Yor; <,7) be an h-map where EG = (Yg;<,7) and 2G’ = (Yg;<,7). From the h-
property it follows that f(a) = a, f({b,d}) C {a,b,d} and, by Lemma 5.6(5), f(c) €
{a,b,c,d}.

First assume that f(c¢) = ¢ and f(d) = d. Then f(b) = b. Since E (or E’) is the set of
minimal elements in [b) N [d) we conclude that f(E) C E’. Analogously, V (or V') is the
set of minimal elements in [¢) N [d) and hence f(V) C V. From v, {v,w} < (v,{v,w}) for
all {v,w} € FE it follows that f(v), f({v,w}) < f(v,{v,w}) and whence f({(v, {v,w}) |ve
{v,w} € BY) C {0, {0/, w'}) | v/ € {0/} € B’} and if (v, {v,0}) = (o', {¢/, w'}) then
F(0) =o', [{{v,w}) = {v/,w'} because

((v,{v,w})] ={a,b,c,d,v,{v,w}, (v,{v,w})} and

(', '] = {a,b, e, d v, (o'}, (7, ! D).
If g is the domain-range restriction of f to V and V' then {g(v),g(w)} = f({v,w}) € E’
for all {v,w} € E. Whence g : (V,E) — (V', E’) is a graph homomorphism and =g = f. If
f(e) € {a,b,d} then |(f(v)]| <4 for all v € V' and hence, by Lemma 5.6(5), f(V)U f(E) C
(E') U {c} and, by the h-property, Im(f) C (F']U{c}. If f(¢) = ¢ and f(d) € {a, b} then
clearly Im(f) C {a,b, ¢} and the proof is complete. O

For a graph G = (V, E) € GR set Zg = {(v,e) |[v€e€ F} and Z = {Zg | G € GR}.
Corollary 5.8. The functor 2 : GR — PH(Var(Quo)) is a Z-relatively full embedding.
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Let B = {{ci,c;} |1 €8,j=28,9U{{ci,ci0} | i € 4} then B = (D, B) is a bipartite
graph with a bipartite decomposition {Dy = {¢; | i € 8}, Dy = {cg,c9,c10}}. Let us define
Fy, = FpUB and Fy = (T(),FQ). Set X = =Fsy, Z = {(v,e) | vV EecE FQ} = MaX(EFQ),
U=[DUB),V=[{cw}), C={(cr0.{ci,c10}) | i € 3} U{(co,{ci,co}) | i € 4},

(u, ’U-) _ ({CivCIO}v (Ci,{Ci,Cm})) fori=0,1,2,
iy Vi) = ({01;3, 09}, (01;3, {Cl;g, Cg})) for ¢ = 3,4,5, 6.

By a direct verification, C' C Max(U) C Max(X) = Z and V C U, V and U are increasing
(thus U is convex), U is functorial, (V;<) and (U \ V; =) are order connected and (u;, v;)
are f-covering pairs for all ¢ € 7, thus (U(X), V, {(u;,v;) | i € 7}) is a u-triple. Clearly, ZF,
is a h-subspace of X \ C. By Lemmas 5.1 and 5.7, if f : ZFy — X is an h-map then either
there exists a graph homomorphism ¢ : Fg — Fy with f = Zg (by Lemma 5.1, g is the
identity) or f is not injective on {a,b,c,d}. By Lemma 5.6, {a, b, c,d} C (z] for every z € Z
and thus (t5) is satisfied. Thus X is a (U, C, Z)-testing object of Var(Qjp). Thus X is a
finite universal testing object of (Var(DQio)) with respect to Var(DRg) and by Corollary
3.10 X is also a standard @-universal testing object. Whence by Corollary 3.6 and Theorem
3.9 we obtain

Corollary 5.9. The variety Var(DQqg) is Var(DRg)-relatively ff-alg-universal and has
an A-D family, thus it is also Q-universal.

Next we investigate the varieties of Heyting algebras determined by h-spaces Qg and Q7
given in Figure 12. We apply some ideas from [9].

b
g

Rs R~
Figure 12

Let V be the variety of Heyting algebras generated by DQ7. First we shall construct
a functor Q : TGR — PHV. For a TGR-object (G = (V, E)), f) set UG, f) = (Zg;<,7)
where Zg = {¢,0,1,2} UV U E (we assume that ¢ is distinct from 0, 1 and 2, and that
{t,0,1,2}, V and E are pairwise disjoint), < is the least partial order such that

(o) t <iforallie{0,1,2};
(o) i <wforie {0,1,2} and v € V just when i # f(v);
(o) v<eforveV and e € E just when v € ¢;
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and 7 is the discrete topology on Zg. For a TGR-morphism g : ((V, E), f) — (V', E'), /)
let us define
u ituwe {t,0,1,2},
Qg(u) = < g(v) fu=veV,

{9(v),9(w)} ifu={v,w} € E.
By a direct verification we obtain that < is a partial order, and because Zq is finite we
conclude

Lemma 5.10. For every TGR-object G = ((V, E), f) we have

(1) Zg is finite and Q(G, f) = (Za; <, T) is an h-space;

(2) Max(Zg) = E and Min(Zg) = {t};

(3) (z] is isomorphic to Q7 for x € Zg if and only if x € E.
If g : (G, f) — (G, f") is a TGR-morphism then Qg is an h-map. Thus Q : TGR —
PH(Var(Q7)) is a faithful functor.

Lemma 5.11. Let G = (V,E), f) and G' = ((V',E'), f") be TGR-objects and let g :
QG — QG be an h-map. Then g(t) =t, g({0,1,2}) C {¢,0,1,2} and one of the following
Cases occurs:
(1) there exists i € {0,1,2} such that i ¢ {g(0),9(1),9(2)} and then Im(g) N E' = 0 and
g { eV f/(v) #i}) C E;
(2) g(E) C E, g(V) C V', g({0,1,2}) = {0,1,2} and the domain-range restriction g
of g to {0,1,2} and the domain-range restriction g" of g to V and V' are such that
g’ G — G’ is a graph homomorphism and g' o f = f' o g”.

Proof. Since g is an h-map we have that ¢g(t) = t, ¢({0,1,2}) C {¢,0,1,2} and g(V) C
V'U{t,0,1,2}. Assume that ¢ ¢ {g(0),9(1),9(2)} for some i € {0,1,2}. Consider v € V’
with f/(v') #i. Then i <v'. If v € V with g(v) = v’ then i € (g(v)] = g((v]) but

g((]) € g({v,1,0,1,2}) € {1} U ({0,1,2}\ {i})
and this is a contradiction with the h-property of g. Hence g~ 1(v') NV = () and thus
g '(v') C E. Since |g({t,0,1,2}| < 3 we infer |(¢]] = 7 > |g(e])| for all e € E and
thus £/ N Im(g) = 0 and (1) is proved. Suppose that g({0,1,2}) = {0,1,2}. Then the
domain-range restriction g’ of g to {0, 1,2} is a permutation of {0,1,2}. Since Cov(v) =
{i € {0,1,2} | f(v) # i} for all v € V we have g(V) C V'. For every e = {v,w} € E,
Cov(e) = {v,w} and f(v) # f(w). Hence g(v) # g(w) and therefore g(e) € E’. Thus
g(E) C E’. Let ¢g” be the restriction of g to V and V’. For every e = {v,w} € E we
have v,w < e, hence g(v),g(w) < g(e) and thus g(e) = {g(v),g(w)} € E’. Therefore g”
is a graph homomorphism from G to G’. Since f'(¢”(v)) £ ¢”(v) for all v € V we have
g of(w)=g(f(w)=[f(glv))=fog"(v) for all v € V and (2) is proved. O

Fix a graph homomorphism f : Fo — K3 (it exists because the chromatic number of Fa
is 3). By Lemma 5.1, f is also a graph homomorphism of Fj onto K3 and, by Lemmas 5.1
and 5.11, if g : Q(Fo, ') — Q(Fa2, f) is an h-map then either g = Q17, or |g{¢,0,1,2}| < 3.
Thus we set X = Q(Fa, f), Z = Fo = Max(Q(Fa, f)), U = [D), V = [{c10}), C =
{{eiscro} |i €3 U{{ci,co} | i € 4}),
(ui,vi) _ {(ci,{ci,clo}) for ’L: 0,1,2,
(ci—s,{ci—3,c9}) fori=3,4,5,6.

Analogously as above we obtain that (U(X),V,{(u;,v;) | ¢ € 7}) is a u-triple.
By Lemmas 5.1 and 5.11, we conclude that X" is a (U, C, Z)-testing object of Var(DQr).
Thus X is a finite universal testing object of (Var(DQ7)) with respect to Var(DR7) and,
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by Corollary 3.10, X is also standard Q-universal testing object. By Corollary 3.6 and
Theorem 3.9 we obtain

Corollary 5.12. The variety Var(DQ7) is Var(DRy7)-relatively ff-alg-universal and has
an A-D family, thus it is also Q-universal.

By Lemma 5.10, X = Q(Fq, f) has the least element ¢ and X'\ {t} is an h-space from the
variety of Heyting algebras Var(DQg). Clearly, t ¢ U. Since C C U we have ¢t ¢ C. Also
Q(Fo, f) has the least element and hence Q(Fo, f)\ {t} is an h-space. If g : Q(Fo, f)\{t} —
Q(Fy, f) \ {t} is an h-map then the extension ¢’ of g with ¢'(¢¥) = t is an h-map from
Q(Fo, f) to Q(Fa, f). Conversely, if g : Q(Fo, f) — Q(Fa, f) is an h-map with g~{t} = {t}
then the domain-range restriction ¢’ of g to Q(Fo, f) \ {t} and Q(Fq, f) \ {¢t} is an h-map.
Thus X'\ {t} is a finite universal testing object of Var(DQg) with respect to Var(DRg) and
a standard @Q-universal testing object. Thus, by Corollary 3.6 and Theorem 3.9, we obtain

Theorem 5.13. The variety Var(DQg) is Var(DRg)-relatively ff-alg-universal and has
an A-D family, thus it is also Q-universal.

6. SPECIAL CASES

This section is devoted to three varieties of Heyting algebras that need to be treated
separately. First we consider posets Qo and Q; shown in Figure 13 (or in Figure 1).

c
SOTIZN
|
Qo Qu

Figure 13

To begin with Qo, we consider h-spaces Xy = (Xo;<,7), &1 = (X1;<,7) and Ay =
(XQ; <, T) such that Xy = {ao, al}U{bi, C; | xS 41}, X1 = X()U{ag}, Xo=X, U{ag, ay, a5}
and < is the least partial order such that

(o) ap < b; for all ¢ € 41;
(®) bi,bit1,bira < ¢ for i € 41 where the addition is modulo 41;
(.) bO;blabll < ag;
(®) bi343i,b1at3i, barysi < asq; for all i € 4;
and discrete topology 7. Clearly, by Corollary 2.6, Xy, X1, Xo € Var(DQy).

Lemma 6.1. Let h : Xy — X; be an h-map for i = 1,2. Then either h is the inclu-
sion or Im(h) N Max(X;) = 0 and for every j € 41, |{h( i), R(bjg1), h(bj+2)} < 2 and
if [{h(b;), h(bj+1), h(bj+2)} = 2 then ag € {h(b;), h(bjt1), h(ijrg)} where the addition is
modulo 41. The inclusion from Xo into X; for i = 1,2 is an h-map.

Proof. Since Xy is a decreasing subset in X; for ¢ = 1,2, the inclusion is an h-map from X}
to Xi-

Conversely, assume that h : Xy — &; for ¢ = 1,2 is an h-map. Let us denote B = {by, |
k € 41}. Observe that |(u]] € {1,2,5} for every v € X3 and that v € Max(X;) if and
only if |(u]| = 5. From the h-property of h it follows h(ag) = ap and h(B) C B U {ao}.
Since (¢;] = {¢j,b;,b41,bj12,a0} for every j € 41 we conclude that h(c;) € Max(X;) if
and only if h(b;), h(bj+1) and h(b;jy2) are three distinct elements from the set B. Thus
for every j € 41 either |{h(b;),h(bj+1),h(bj+2)} N B| = 3 or there exists | € 41 with
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{h(b;), h(bjt1), h(bj+2), h(cj)} C {ao,bi}. Since |(¢;] N (¢j+1]] = 3 for every j € 41 (the
addition is modulo 41) we infer that either h(Max(X()) C Max(X;) or Im(h) "Max(X;) =0
for every j € 41 [{A(b), h(bj1). h(bj+2)}| < 2 and if [{h(b;). h(bj1), h(byr2)}] = 2 then
ag € {h(b;), h(bjt1), h(bj+2)} where the addition is modulo 41.

It remains to restrict ourselves to the case of h(Max(X()) C Max(X;). Then h(B) C B.
For j €41, let g;; : X; \ [bj) — {a,bo,b1,b2,c} be a mapping such that g¢; ;(ao) = a,
9i.;(Max(X;) \ [bj)) = ¢ and

bkmodS lf k < jv
gij(bg) = b . }
k+1mod3 if k> 7.

By a direct calculation, we obtain that g; ; : &; \ [b;) — Qo is an h-map for every j € 41
and ¢ = 1,2. Moreover, if x € Max(X2)\ [b;) then g; j(z] = A = {a, by, b1, b2, c}. Conversely
assume that there exists a surjective h-map g : Xy — Qp. Then for every j € 41 either
g((c;]) = A or there exists [ € {0, 1,2} with g((¢;]) = {a,b}. From |(¢;] N (¢j41]] = 3 for
all j € 41 (the addition is modulo 41) it follows that either g({b;,bj11,bj42}) = {bo, b1, b2}
for all j € 41 or ¢ ¢ Im(g) and this is a contradiction. If

g({bj, bjv1,0542}1) = 9({bj11,bj12,bj13}) = {bo, b1, b2}

then necessarily g(b;) = g(b;+3). Hence g(bo) = g(ba1moas) = g(b2) and this is a contradic-
tion. Thus there exists no surjective h-map from Xp onto Qg. If h(Max(Xyp)) C Max(X;)
and there exists j € 41 with b; ¢ h(B) then g; j o h is a surjective h-map from Xy onto Qg
and this is a contradiction. Hence h(B) = B and h is injective on B.

Consider j € 41. If h(c;) = a; for | € {2, 3,4, 5} then, by the h-property of h we infer that
h({bj,bj+1,b542}) = {b1342(1-2), b1at2(1—2), b2742(1—2)}- Hence there exists j' € {j,j + 1}
with ba7400—2) € h({bj,bjr11}). If j* = j then set k = j — 1, if j/ = j + 1 then set
k = j+ 1. In both cases bariau—2) € h({bk;bk+1,bk42}) and {bizi20-2),brayaq-2)} N
h({bk,bk+1,bk+2}) 75 #. So h(ck) = q and h({bk,bk+1,bk+2}) = h({bj,bj_;,_l,bj_;,_g}) and
this contradicts the injectivity of h on B. If h(c;) = a1 then analogously we obtain that
h({bj,b41,bj42}) = {bo,b1,b11} and there exists k € {j — 1,j + 1} with h(cx) = a1 and
h({bk, bet1,bet2}) = h({b;,bj+1,b;4+2}) and this again contradicts the injectivity of h on
B. Hence we conclude that for every j € 41 there exists k(j) € 41 such that h(c;) = cx(y)
and h({b;,bj+1,b542}1) = {br(j), Orjy+1, br(i)+2}-

If A(bj12) = byj)41 then set I = j — 1, if h(b;) = by(j4+1 then set [ = j+ 1. By
the assumption, we infer that A({by, bi+1,b142} N {bj, bj11,b512}) = {br(j), br(j)+2} and this
implies hA({bs, b1, bit2}) = h({bj,bj+1,b;j+2}) and this is a contradiction with the injectivity
of h on B. Thus either h(b]) = bk(j)v h(bj+1) = bk(j)-{-l; h(bj+2) = bk(j)+2 or h(bj) = bk(j)+2;
h(bj11) = b(jy+1, h(bjr2) = bi(;)- In the first case, by the injectivity of 2 on B we infer that
h(bjy3) = br(j)+3 and h(cj11) = cp(jy4+1 in the second case we infer that h(b;y3) = byj)—1
and h(cjy1) = cp(j)—1. By induction we deduce that there exists k£(0) € 41 such that either
h(b;) = by(0)+; for all j € 41 or h(bj) = by)—; for all j € 41 (the addition is modulo 41).
Then h(a;) = a1 because the differences between indices are preserved and thus we obtain
that h(b;) = b; for all j € 41. Therefore h is the inclusion. O

If we set X = AXs, Z = Max(X3), C = {az,as3,a4,a5}, U = [{b; | i = 13,14,...,33}),
then X \ C = Xy and, by Lemma 6.1, Aut(X) is a singleton group and if h : Xy — As
is an h-map then either h is the inclusion or Im(h) N Max(X3) = 0, for every j € 41,
[{1(b5); 1(bj41); 1(bjy2) }| < 2 and if [{h(b)), h(bjt1), h(bjr2)}] = 2 then

ap € {h(b;),h(bj+1), h(bjt2)}
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where the addition is modulo 41. Thus every h-map h : Xy — X that is not the inclusion is
non-injective on X \ U. For every z € Z there exists ¢ € 41 with b;,b,41 < z and b; ¢ Im(h)
or biy1 ¢ Im(h). Choose u, € {b;,bi+1} such that u, ¢ Im(h). Then for every h-map
g: X1 — Xwithh | X\U=g¢g1 X\U we have u, ¢ Im(g) for all z € Z. Thus (t5) is
fulfilled and hence X is a (U, C, Z)-testing object of Var(Qq). Let V' = [{b31, b2, b33}), then
V is increasing, order connected set. Let us define (ug,vo) = (b17,a4), (u1,v1) = (b1s, aq),
(u2,v2) = (b1g,as5), (u3,v3) = (b13,a2), (ua,v4) = (b1, a2), (us,vs) = (b1s,a3), (us,vs) =
(b1s,as). Then (U\V, <) is order connected and (u;, v;) for i € 7 are f-covering pairs. Thus
(U, V,{(us,v;) | i € T}) is a u-triple. Let H; be the variety of Heyting algebras generated
by the Heyting algebra that is an i-element chain for ¢ = 2,3. If € X5 \ Max(X3) then
(z] € PHH3 and thus X is a finite universal testing object of Var(DQy) with respect to Hg
and, by Corollary 3.10, X is a standard Q-universal testing object. By Corollary 3.6 and
Theorem 3.9 we obtain

Theorem 6.2. The variety Var(DQg) is Hs-relatively ff-alg-universal and contains an
A-D family, so it is Q-universal.

Clearly, X’ has a unique minimal element ap and X \ {ag} is an h-space from the variety
Var(DQ). Clearly ap ¢ U and thus ag ¢ C. Also Min(Xy) = {ag} and hence Xj has the
least element and X3\ {ag} is an h-space from Var(DQq). If g : Xp\{ao} — X2\{ao} is an h-
map then the extension ¢’ of g given by ¢’(ag) = ag is an h-map from X to X3. Conversely,
if g: Xo — Xy is an h-map with g7 '{ap} = {aop} then the domain-range restriction g’ of g
to Xo \ {ao} and X5\ {ao} is an h-map. Thus X'\ {ap} is a finite universal testing object of
Var(DQ1) with respect to the variety Hs of Boolean algebras and a standard Q-universal
testing object. Thus, by Corollary 3.6 and Theorem 3.9, we obtain

Theorem 6.3. The variety Var(DQq) is Ha-relatively ff-alg-universal and contains an
A-D family, so that it is Q-universal.

Finally, we consider the Heyting space Q2 given in Figure 14 (or in Figure 2).

Qo2 R»
Figure 14

Although we do not know whether V = Var(Qs) is Var(Ro)-relatively ff-alg-universal,
we at least prove that V = Var(Qz) is Var(Rz)-relatively alg-universal.

The proof is based on ideas from [10].

Let us denote N the set of all natural numbers, and let Z denote the set of all integers.
Let us define disjoint posets A = {a; | i € N}, B={b; | i € N}, T = {t; | i € Z} and
W ={w; | i € Z} so that

a2; < A2i41 > A242 and by; < b2i+1 > b2i+2 for all i € N,

to; < toit1 > t2i+2 and Wo; < W41 > W2i4-2 for all ¢ € Z.
Let U = {n; | i € 24} U{e; | i € 15} be such that ns; > nz;11 < ngi42 for i =0,1,...,7
and n3j+1 < €35+i > N3i+16 fOI'j €bandi€ 3. SetV = [7122) = {77,22} @] {63j+2 | jE 5}
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Then V is an increasing subset of U. Let us define (u;,v;) = (n3i41,€3i4+2) for i € 3 and
(Wits,Vits) = (ngit1,es3:41) for ¢ € 4 and set

C={esirjli€3,j=12} U{ew} = {e; | i € 11 is not divisible by 3}.

By an easy calculation, we verify that (U, V, {(u;,v;) | ¢ = 0,1,...,6}) with C satisfies
the conditions (ul)—(u4) and hence (U,V,{(u;,v;) | i = 0,1,...,6}) is a u-triple. Let us
define S = {s; | i € 8}. Let (X; <) be the poset on the disjoint union X of A, B, T', W, U
and S, and < is the least partial order that is the union of partial orders on A, B, T\, W,
and U that also satisfies

(o) sp < s1,89;

(O) S1 < 83,86, N3k+1, A4i+2, b4l‘,U)4j+2,t4j for all k € 5,1 € N andj SV A

(O) So < S4,87,N3k+16, A4i, b4i+2, w4j,t4j+2 for all k € 3,7 N andj € Z;

(8) ag < s, by < S7, 83 < S5, S4 < S5;
(®) weoi < N3i, teoit2 < Nait2 for i € 5;
(0) We0i+2 < N34, t60i < N3i+2 for i =5,6,7.

A straightforward calculation gives

Lemma 6.4. (X;<) is a poset such that
(1) MaX(U) = {85, S6, 87} @] {a2i+1, boit1 | i € N} @] {w2i+1,t2i+1 | i € Z} @] {ngi,ngiJrg |
ie8tU{e;|ie€lb};
(2) U is a finite increasing subset of X and C C Max(X)NU;
(3) for every x € Max(X) \ {s¢,s7}, (] is isomorphic to Q2 while (s¢] and (s7] are
isomorphic to Ro.

Let (Y; <) be the subposet of (X; <) on the set
Y=X\{e|lel5}
and let us denote
X3 = {aai+2,b4i | 1 € N} U{wajyo,ta; | j €Z}U{nsps1 | k €5} U {s3},
X4 ={aai,baivo | i € NYU{waj,tajio | € Z} U {nsps1 | k=5,6,7FU {s4}.
Observe also that the subposet (S’; <) of (X;<) on the set S" = {s; | i € 6} is isomorphic
to Qa.

Lemma 6.5. Let f:Y — X be an order preserving mapping having the h-property. Then
one of the following posibilities occurs:

(1) Flsi) = s fori = 0,1,2,6,7, (o) = ao, £(b) = bo, F(A) € AU {s1,56}, f(B) C
BU{sa,s7} and f(Max(Y)) C Max(X);

(2) f(s0) = so, f(si) = s3—i fori = 1,2, f(s;) = s13—j for j = 6,7, f(ag) = bo,
f(bo) = ao, f(A) € BU{sz,s7}, f(B )Q {81786} f(MaX( )) € Max(X);

(3) f(So) = 505 f({ShSQ}) C {80’81782}7

f(Max(Y)) N Max(X) C {se, 57}

and f({s1,s2}) # {s1,s2}, and if s1 € f({s1,s2}) then Im(f) C X35 U (s¢], if s2 €
F({s1,82}) then Im(f) C X4 U (s7], if {so} = f({s1,82}) then Im(f) C X5U X4 U
{80751,82}.

Proof. Since Min(Y) = Min(X) = {so} we obtain f(so
{s0,s1,82}. If f({s1,52}) = {s1,52} then f(Max(Y)) ax

51,82 € (y]} = Max(Y) and {z € X | s1,s2 € (2]} = Max(X). By Lemma 6.4(3),
f({se,87}) C {se,s7}. Since Cov(sg) = {s1,a0}, Cov(s {s2,bp} it follows that
f(s1) = s1 implies f(s;) = s; for i = 1,2,6,7, f(ao) = ao and f(by) = by and since

) = so. Hence f({s1,s2}) C
- (X) because {y € Y |

Ma
Ma;
7) =
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f has the h-property we deduce that f(A) € AU {s1,s6} and f(B) € B U {s2,s7} (if
f(a2;) = agj for j > 0 then f({a2i—1,a2i41}) € {agj—1,a2541}, if f(azi) = aop then
f({azi—1,a2i+1}) C {se,a1} and an analogous claim holds for b;). Similarly f(s1) = s2
implies f(s2) = s1, f(s6) = s7, f(s7) = s6, f(ao) = by and f(bg) = ap and since f has the
h-property we deduce that f(B) C AU {s1,s6} and f(A) C BU {s2,s7}. Thus (1) and
(2) hold. Finally assume that f({s1,s2}) # {s1,s2} then |(f(x))]| <5 for all x € Max(Y)
and thus f(Max(Y)) N Max(X) C {se,s7}. Observe that every 4-element chain in (Y <)
contains either s; or so. Hence if s1 € f({s1, s2}) then there exists no 4-element chain con-
taining s in Im(f) and thus s7 ¢ Im(f). Further for every 2 € Max(Y) we have f(x) > sq,
thus f(z) € X3 U {sg,s1} and we conclude that Im(f) C X5 U (sg]. If s2 € f({s1,s2})
then there exists no 4-element chain containing s; in Im(f) and thus s¢ ¢ Im(f). Further,
for every x € Max(Y) we have f(s) > s, thus f(z) € X4 U{s7, s2} and we conclude that
Im(f) C XsU(s7]. If {so} = f({s1,s2}) then there exists no 4-element chain in Im(f), thus
s6, 87 ¢ Im(f) and whence Im(f) C X3 U X4 U {so, s1, $2}. We obtain (3). O

Let us denote Hy = Var(DR32) and V = Var(DQs2). Our next goal is to define a topology
7on X so that X = (X; <, 7) is an h-space, U is an open set and if b : (V;<,7) — (X;<,7)
is an h-map and h({s1, s2}) = {s1, s2} then h is the inclusion and satisfies (t5). Then X will
be a (U, C, Z)-testing object of V, for Z = Max(X) \ {se, s7} since (Y; <, 7) is a h-subspace
of X\ C. Hence X will be a universal testing object of V with respect to Hy and Theorem
3.9 will conclude the proof that the variety V is a Hy-relatively alg-universal.

To define a topology consider a decomposition M = {M; | j € Z} of N such that
(ol) M; is infinite for all j € Z;

(02) if j = 0 mod 4 then n = 0 mod 4 for all n € Mj;

(03) if j = 2 mod 4 then n = 2 mod 4 for all n € Mj;

(04) if j is odd then n is odd for all n € Mj;

(05)

finite for all j € Z.

For a set Q C X let us denote A(Q) ={i € N | a; € Q} and B(Q) ={i € N | b; € Q}. Let

Cam be the family of all subsets @ of X such that

(06) if w; € @ then M; \ A(Q) is finite;

(o7) if M; N A(Q) is infinite for j € Z then w; € Q;

(08) if t; € Q then M; \ B(Q) is finite;

(09) if M; N B(Q) is infinite for j € Z then t; € Q;

(010) if s3 € @ then the sets {i € Z | i = 2mod 4, M; \ A(Q) # 0} and {i € Z | i =
0 mod 4, M; \ B(Q) # (0} are finite;

(o11) if{i € Z | i =2 mod 4, M;NA(Q) # 0} is infinite or {i € Z | i = 0 mod 4, M;NB(Q) #
@} is infinite then s3 € Q;

(012) if s4 € Q then the sets {i € Z | i = Omod 4, M; \ A(Q) # 0} and {i € Z | i =
2mod 4, M; \ B(Q) # 0} are finite;

(013) if{i € Z | i =0 mod 4, M;NA(Q) # 0} is infinite or {i € Z | i = 2 mod 4, M;NB(Q) #
()} is infinite then s4 € Q;

(014) if s5 € @Q then the sets {i € Z | i is odd, M; \ A(Q) # 0} and {i € Z | i is odd, M; \
B(Q) # 0} are finite;

(015) if {i € Z | i is odd, M; N (A(Q) UB(Q)) # (0} is infinite then s5 € Q.

Lemma 6.6. The family Caq is closed under complements and finite unions and intersec-
tions and contains § and X.

Proof. Consider @ C X. Observe that M, \ A(Q) is finite if and only if M; N A(X \ Q) is
finite and M; \ B(Q) is finite if and only if M; N B(X \ Q) is finite for all j € Z. Hence, by
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a standard calculation we obtain that if @) C X satisfies (06)-(09) then also X \ @ satisfies
(06)-(09). Analogously, M; C A(Q) if and only if M; N A(X \ Q) = 0 and, by a standard
calculation, we obtain that if @ C X satisfies (010)-(015) then also X \ Q satisfies (010)-
(015). Whence Cpq is closed under complements. The proof that if @Q1,Q2 C X satisfies
(06)-(015) then also @1 U Q2 satisfies (06)-(015) is direct. Hence Caq is closed under finite
unions and, by deMorgan rules, it is also closed under finite intersections. Clearly, () and X
satisfy (06)-(015), and the proof is complete. O

Consider the topology 7 on X with basis Ca¢. By Lemma 6.6, any set @) € Cxq is clopen
in 7. If @ and X \ Q are open in 7 then, by (010), (012) and (014), we conclude that
Q € Cprq. Thus Cpy is the Boolean algebra of all 7-clopen sets.

Proposition 6.7. The triple X = (X;<,7) is an h-space belonging to PHV.

Proof. First we prove that the topology 7 on X is compact. Let {O; | i € I} be an open
covering of X. Then there exist ig, 41,72 € I with s3,; € O;; for j =0,1,2. Since Cpq is a
basis of 7 there exist Q;; € Crpq for j = 0,1,2 such that 83+j € Qi; € O;;. By (010), (012)
and (014), the sets {i € Z | i = 2mod 4, M; \ A(Qs,) # 0}, {i € Z | i = 0 mod 4, M; \
B(Qi,) £ 0}, {i € Z | i = 0mod 4, M; \ A(Qu) # 0}, {i € Z | i = 2 mod 4, M \ B(Qs,) #
0}, {i € Z|iisodd, M; \ A(Qi,) # 0}, {i € Z | iid odd, M; \ B(Qs,) # 0} are finite. If
M; C A(Q;) for some i € Z and j = 0,1, 2 then, by (o7), w; € Q;;, if M; C B(Q;;,) for some
i€ Zand j=0,1,2 then, by (09), t; € Q;;. Hence the sets 7"\ U?:o Oi;, W\ U?:o O;, are
also finite. Thus there exists a finite subset Iy C I with ig,41,i2 € I and TUW C Uiel1 0O;.
By (06) and (08), A\ U, Oi and B\ U;¢;, Oi are finite and thus X \ U;¢;, O; is finite.
Whence (X, 7) is compact.

To prove that (X; <, 7) is a Priestley space it remains to show that for z,y € X withy € =
there exists a clopen decreasing set Q with € @ and y ¢ Q. First observe that (z] is clopen
for all z € AUBU (U \ {ns;, n3iye | i € 8}) U{so,s1, S2, S6, 57} and [z) is clopen for all z €
AUBUUU{sg, s7}. The remaining case is that x € TUW U{ns;, n3;4+2 | ¢ € 8} U{ss, s4, 55}
and y € (S'\ {s¢,s7}) UT UW. Observe that {t;} U{b; | i € M;} and {w;} U{a; | i€ M;}
are clopen for all j € Z. By (05), the sets [{t;} U{b; | i € M;}), ({t;} U{b; | i € M;}],
Hwjt U{a; | i € M;}), and ({w;} U{a; | ¢ € M,}] are clopen for all j € Z, by (05)
because finite subsets of A U B are clopen. Since ({t;} U {b; | i € M;} NS = (¢;]NS
and ({w;} U{a; | ¢ € M;}] = (w;] NS for all j € Z we conclude that the required
clopen decreasing set exists for x € TUW or y € T U W. Since (n3;| U{a; | j € Meo:},
(n3i+2] U{b; | j € Meoi+2} for i € 4 and (nz;] U{a; | j € Meoi+2}, (n3it2] U {b; | j € Moo}
for ¢ = 4,5,6 are clopen decreasing we can restrict to the case that z € {s3,s4, 5} and
y € S\ {s6,s7}. The fact that the disjoint sets

{s3,51,80} U {w;|j=2mod4}U{t; |j=0mod4}U{a;|i€ M; for j =2 mod 4}
U {b;|i€ M, for j =0mod 4} and
{s4,82,80} U {w;|j=0mod4}U{t; |j=2mod4}U{a;|ie€ M, for j =0 mod 4}
U {b; i€ M, for j =2mod 4}
are clopen and decreasing and the fact that (s5] = {so, s1, s2, s3, 54, S5} is isomorphic to Q2
complete the proof that (X; <, 1) is a Priestley space.

Next we prove that (X; <, 7) is an h-space. Consider Q € Cyq. For k = 0,2 observe that
{tj | j = kmod4}) = {t; | j # (k+2)mod 4} and [{w; | j = kmod 4}) = {w; | j #
(k4 2) mod 4}. By a routine calculation, we obtain that

[81) =X \ ({82,84} @] {n3k+1 | k=4, 5,6} @] {ai,bi+2 | 1 € N, 1 =0 mod 4}
U {wi,tiye|i€Z,i=0mod 4})

i€l
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and
[82) = X\ ({51, 83} U {n3k+1 | ke 4} U {ai+2,bi | 1e€N,1=0 mod 4}
U {wiye,t; |1 € Z,i=0mod 4}).

Thus [Q) satisfies (010)-(o15), and, by (05), [Q) satisfies also (06)—(09). Whence [Q) € Caq
and (X; <, 7) is an h-space since C is a base of 7 consisting of clopen sets. Since Ry € PHV
we obtain, by Theorem 2.5 and Lemma 6.4(3), that X € PHV. O

It is clear that the ordered space Y = (Y; <, 7) obtained from X’ by removing its clopen
subset {e; | | € 15} of Max(X) is an h-space and that ) € PHV.

Lemma 6.8. Let f:Y — X be an h-map such that f({s1,s2}) = {s1,82}. Then f(s5) =
ss5, f~Ha} is finite for all x € X and
(1) if f(s1) = s1 then f(s;) = s; foralli € 8, AC f(A), BC f(B), W = f(W), and
T = f(T);
(2) if f(s1) = s2 then f(s5) = s5, f(si) = sz—i fori =1,2, f(s;) = s7y_; fori = 3,4,
f(si) = s13—; fori=6,7, AC f(B), BC f(A), W= f(T), and T = f(W).

Proof. Let f : Y — X be an h-map with f({s1,s2}) = {s1,s2}. First let f(s1) = s1.
Then, by Lemma 6.5(1), f(A4) € AU {s1,s6} and f(B) C B U {s2,s7}. Observe that the
singletons {s1}, {s2}, {s6}, and {s7} are clopen sets. From the definition of Caq it follows
that ({Q | Q@ € Cim, A C Q} = AUW U {s3,84,85} and ({Q | Q@ € Cpmq, B C Q} =
BUT U{ss, S4, $5}. Thus the closure of A is the set {s3, s4, 5} UW U A and the closure of B
is the set {s3, 84, 85 }UTUB. Hence f(AUW U{s3, S4,85}) C AUW U{s1, s3, S4, S5, S¢ } and
f(BUT U{s3,84,85}) € BUT U{s2, 83, 84, 85,57} Thus f({s3,84,55}) C {s3, 54, 85} and,
by Lemma 6.5(1), we deduce that f(s;) = s; for all ¢ € 8. By Lemma 6.5, f(Max(Y)) C
Max(Y") and hence

f({a; |i €N, iisodd}) {s5,86} U{a; | i € N, iisodd} U{w; |i€Z,iisodd}
f({bi | i€ N,iisodd}) {s5,87}U{b; | i € N,iisodd} U{t; | i € Z, i is odd}.

If for some odd ¢« € N we have f(a;) = s5 then f({ai—1,a:41}) = {s3,s4} and thus
flait2), f(ai—2) = s5. From this it follows that f(ag) € {ss,s4} and this is a contra-
diction with Lemma 6.5(1). Analogously, we obtain that f(a;) ¢ {w; | j € Z, j is odd} and
f(b;) ¢ {s5}U{t; | j € Z, j is odd}. Since every finite subset of A or B is closed we con-
clude f(A) and f(B) are infinite. By Lemma 6.5(1), we infer that A C f(A) and B C f(B)
because A and B are one-way infinite zig-zags. From this it follows that f(WW) = W and
f(T') = T because for every j € Z the closure of {a; | i € M;} (or {b; | i € M;}) is
{a; | i€ M;}U{w;} (or {b; | i € M;}U{t;}, respectively).

Let f(s1) = s2. Then, by Lemma 6.5(2), f(A) C BU {s2,s7} and f(B) C AU {s1,s6}
Hence f(AUW U{s3,54,85}) C BUT U{s2, 3, 4, S5,57} and f(BUT U{s3,84,55}) C AU
WU{s1, s3, 84, S5, 56 }. Thus f({ss3,s4,55}) C {s3, 54, 55} and, by Lemma 6.5(2), f(s5) = s5,
f(s;) =s3—; fori =1,2) f(s;) = s7—; for i = 3,4, and f(s;) = s13—; for i = 6,7. From the
closedness of finite sets we obtain again A C f(B) and B C f(A) and whence f(W) =T
and f(T)=W.

Consider z € AU B. Since every element of A U B is clopen we obtain that any subset
of AU B is open and compactness of X implies that the closure of any infinite subset of
AU B contains an element of W UT U{s3, s4,55}. We have f~1{x} C AUBU{s1, s2, 5, 57}
and claim that this set is finite. From ({Q | Q@ € Cam, W C Q} = W U {s3, 54, 55} and
Q| Q € Cim, T C Q} = T U {s3,84,55} it follows that the closure of W is the set
W U {s3, 4, 85} and the closure of T is the set T'U {s3, 84, $5}. Since for every z € WUT
there exists an open set O such that {z} = ON (W UT), the compactness of X implies that

-
-
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the closure of any infinite subset of W UT contains an element of {ss, s4, s5}. Thus f~1{z}
is finite for all z € W U T because f~{z} C WUT. Thus f1{z} N(AUBUWUT) is
finite for all z € X and hence f~'{z} is finite for all z € X. O

Lemma 6.9. Let f : Y — X be an h-map such that {f(s1), f(s2)} = {s1,$2}. Then

(1) if f(s1) = s1 then for every j € Z there exists v; € N such that if f(w;) = wj then
for every i € M; with i > v; there exists i' € My with f(a;) = ay and if f(t;) =ty
then for every i € M; with i > v; there exists i € M with f(b;) = bys;

(2) if f(s1) = s1 then for every j € Z there exists u; € N such that for every i € M;
with i > 1 we have A(f~{ai}) € U{Mjr | f(wj) =w;} and B(f~H{bi}) € U{M; |
flty) =15}

(3) if f(s1) = s2 then for every j € Z there exists v; € N such that if f(w;) = t; then
for every i € M; with i > v; there exists i' € Mj with f(a;) = by and if f(t;) = wy
then for every i € M; with i > v; there exists i € M with f(b;) = ai;

(4) if f(s1) = s2 then for every j € Z there exists u; € N such that for every i € M;
with i > 1 we have A(F~bi) € ULMy. | fluwg) = t;} and B Has}) € ULMy |
f(t) =w;};

(5) if f(ai) = aj (or f(a;) =b;) then j <1, if f(bi) =b; (or f(bi) = aj) then j < i;

(6) if f(a:;) = ar (or f(a;) =bi) and f(a;) = a; (or f(a;) =b;) fori < j then {a, | k <
n<lorl<n<k}C{flan) |i<n<yj} (orf{bn | k<n<lorl<n<k}C
{flan) | i <n < j}) and hence |k — 1] < |i — j|, if f(bi) = bg (or f(b;)) = ar) and
f(b;) =b; (or f(bj) =a;) then {b, |k <n<lorl<n<k}C{f(by)]|i<n<j}
(or{an |E<n<lorl<n<k}C{f(b,)|i<n<j})and hence |k —1| <l|i— j|.

Proof. Let j € Z. Then by (06) and (07), w; is a member of the closure of ) C A if and
only if A(Q)NMj is infinite. By (010)—(015), the intersection of {s3, s4, s5} with the closure
of a set @ C A is non-empty if and only if the set {j € Z | M; N A(Q) # 0} is infinite.
Analogously, ¢; is a member of the closure of @ C B if and only if B(Q) N M; is infinite and
the intersection of {ss, s4, 5} with the closure of a set Q C B is non-empty if and only if
the set {j € Z | M; N B(Q) # 0} is infinite.

Since every h-map f : Y — X is closed, for every j € Z the set f({w;}U{a; | i € M;}) is
closed. Since {f(w;)} = f({w;} U{a; | i € M;})\ (AU B) we conclude that if f(w;) = wj
(or f(w;) = tj) then the set {i € M, | f(a;) ¢ {ar | k € M }} (or {i € M; | f(a:) ¢
{bx | k € M;/}}) is finite and hence, by Lemma 6.8, the clauses (1) and (3) are proved.
Since each h-map is continuous and {w;} U {a; | i € M;} and {t;} U {b; | i € M,} are
clopen sets for each j € Z, by Lemma 6.8 and (06)-(015) we obtain that the difference sets
of f’l({ai | 1€ M]}) and {ai | 1€ Mj/, f(wj/) = w]‘} U {bl | 1€ Mj/, f(tj/) = U)j}, and of
F7H{bi | i€ M;}) and {a; | i € My, f(wj:) =t;}U{b; | i € My, f(ty) = t;} are finite.
Whence (2) and (4) follow.

By Lemma 6.5(1) and (2), we obtain (5) because any order preserving mapping maps a
zig-zag of length k onto a zig-zag of length at most k. Since every order preserving mapping
preserves connectedness we obtain (6). O

To complete the proof we now specify the sets M; with j € Z. Let {n;};2, and {m;}$2,
be two increasing sequences of natural numbers and set

I'={(i,j)|i €N, j€Z, —n; <j<m}.
For (i,7) € I, let us define

’ (i+1,—ni+1) lf] =my;.
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Consider the lexicographical order < on I (in which (,5) < (¢/,4’) just when either ¢ < ¢’
or i = ¢ and j < j'). Then suc is the successor function on I with respect to <. For
a finite interval J of natural numbers, let [(J) = minJ and w(J) = max.J; then J =
{i e N[I(J) <i < ull)}. Let {Ru,) | (4,5) € I} be a family of finite non-empty
intervals of natural numbers such that 1(i, j) < (i, j) = l(suc(i, j)) — 1 for all (4,5) € I and
1(0,—ng) = 0. Then we define Myj, for j € Z by My; = {4k | 3i,(i,j) € I, k € R, j},
Myjpo = {4]{3 +2 | 32,(2,]) el ke R(i,j)}a Myjpq = {/{J | k—1,k+1¢€ My U M4j+2},
M4j+3 = {]{i | k—1¢ M4j+2, k+1 ¢ M4j}.

Lemma 6.10. The family {M; | j € Z} satisfies the conditions (01)—(05).

Proof. Since for every j € Z there exist infinitely many ¢ € N with (¢,5) € I and since
R ;) # 0 for all (i,7) € I, the set Mj is infinite for every j € Z and (ol) is true. The
conditions (02)—(o4) immediately follow from the definition. Clearly, the sets My;11 and
My 1o satisfy (05) for all j € Z. Consider n € Myjy3. Thenn—1 € Myji2 andn+1 ¢ Majia
if and only if there exists ¢ € N such that j = m; and n = u(R; ;). But for given j € Z
there exists at most one i € N with j = m; because {m;};en is an increasing sequence.
Analogously, if n € My; then n +1 € Myj1 and n—1 ¢ My; 1 = M;_1y43 if and only
if there exists ¢ € N such that j = —n; and n = I(R; ;). Again for a given j € Z there
exists at most one i € N with j = —n; because {n;};cs is an increasing sequence. Thus
(05) holds. O

Next we define intervals R; ; for (¢,j) € I. Let {p;}ien be a sequence of integers such

that

(s1) —n; < p; <'m; for every i € N;

(s2) for every finite set K C Z and for [,q € N there exists ¢ > [ such that p; ., ¢ K for
allm=0,1,...,q;

(s3) for every ki,ko,j € Z with k; < ko and [, q € N there exists ¢ > [ such that p; # j
and k1 < piym < ke for allm =0,1,...,¢;

(s4) for every j, k € Z and I, q € N there exists ¢ > [ such that p; = j and p; ., # k for all
m=12,...,q.

From (s4) it follows that for every j € Z there exist infinitely many ¢ € N with p; = j.

Choose a natural number o > 0. Then for (4, 5) € I with j # p; we set u(R; ;) — (R, ;) =

a—1 and for (4,7) € I with j = p; we set u(R; ;) — I(R; ;) = szzo(mk + ng)a — 1. Thus

a and the sequence {p;}ien uniquely determine a family {R;; | (¢,5) € I} of intervals of

natural numbers.

Lemma 6.11. If f : Y — X is an h-map such that {f(s1), f(s2)} = {s1, s2} then either
(1) f(a;) = a4, f(bs) =0b; for alli € N and f(w;) = w;, f(t;) =t; for alli €Z or
(2) f(a;) =bs, f(b)) =a; for alli € N and f(w;) =t;, f(t;) = w; for alli € Z.

Proof. By Lemma 6.5(1) and (2), it suffices to prove that

(i) if f(ao) = ap then f(a;) = a; for all i € N and f(w;) = w; for all i € Z;

(ii) if f(ao) = bo then f(a;) =b; for all i € N and f(w;) = ¢; for all i € Z;

(iii) if f(bo) = by then f(b;) = b; for all i € N and f(¢;) = ¢; for all i € Z;

(iv) if f(bg) = ag then f(b;) = a; for all i € N and f(t;) = w; for all i € Z.
Observe that if f(ag) = ag then for every i € N there exists ¢/ € N with f(a4;) = agy. Let
us define g(i) = 4’ and for every j € Z there exists j' € Z with f(was;) = wa;’, let us define
h(j) = 3. If f(ao) = bo then for every i € N there exists i’ € N with f(a4;) = bair, let us
define g(i) = i’ and for every j € Z there exists j' € Z with f(wa;) = taj, let us define
h(j) = 7'. Once we prove that both g and h are the identity then (i) and (ii) are proved,
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The proof of (iii) and (iv) is by symmetry. To prove that both g and h are the identity
mapping, denote R; = |J{ R ;) | 3i € I with (i,7) € I}. We claim the following properties
of g and h.
(1) if g(i) = ¢’ for i € N then g(i + 1) € {i’ — 1,¢,¢' + 1}, if h(j) = j' for j € Z then
B(j — 1),k +1) € {j' = 1,55 + 1}

if i <jandg(i)=1,g(j) =7 then {l |/ <1 <j orj <1<} Cg({l|i<l<j});
(N)=N, h(Z) =Z;
~1i} and h=1{j} are finite sets for all i € N and j € Z;
if h(j) = j’ then g(R;) \ Rj is a finite set for all j € Z;

(7) g7 (R;)\ (Uren-1¢;) Br) is a finite set for all j € Z.
Indeed, the h-property of f implies (1), Lemmas 6.5 and 6.9(5) imply (2), Lemma 6.9(6)
implies (3), Lemma 6.8 implies (4) and {5), Lemma 6.9(1) and (3) implies (6) and Lemma
6.9(2) and (4) implies (7).

Choose j € Z. Since n; and m; form increasing sequences, there exists ¢ € N such that
—n; < j—1<j+1< m, for every i > v, thus (i,5 — 1), (4,5), (4,5 + 1) € I for every
i > 19. By (7), there exists 11 € N with ¢; > 19 and g7 *(R; ;) C Ukeh—l(j) Ry, for all > 4.
By (5), there exists 1o € N such that for every i > 15 and for every k € h={j} we have
(i,k —1),(,k), i,k + 1) € I and, by (1), (5) and (6), we can assume that g(R;,—1) C
Rye-1), 9(Rikv1) € Rprsr) and g(Rix) € Uizn R; ;. Since (4,5 — 1), (3,5 + 1) € I for all
1 > 19 and ¢1 > 1o and since R; ;1 and R; ;41 are non-empty intervals we conclude that
for every i > 15 and every k € h™'{j} there exists ¢(i, k) > 11 with g(R; x) C Ry x),;- By
(2), ¢(i, k) < i because g(i) < i for all i € N. If h(k) = j and @ > 12 then h(k — 1) # j (or
h(k+ 1) # j) implies that R; N Rh(k—l) = () and g(Rir-1) C Rh(k—l) (or R; N Rh(k+1) =0
and g(Rik41) € Ry(kt1))- Henceif 4,3’ > 1y and k, k' € h='{j} are such that (i, k) < (i, k')
and there exists no (i, k") € I with (i,k) < (i, k") < (i',k") and k" € h=*{j} then one of
the following possibilities occurs:

(a) if (i, ') = suc(i, k) then (i, k) = (7', ')
(b) if (¢, k") # suc(i, k), h(k+1) =j—1and h(k' —1) = j +1 then ¢(7', k ) o(i, k) —
(c) if (', k") # suc(i, k), h(k+1) =7 — 1 and h(k’ — 1) = j — 1 then ¢(¢', k') = ¢(z,k;)
(d) if (', k') # suc(i, k), h(k+1) =j+ 1 and h(k' — 1) = j + 1 then ¢(¢/, k') = ¢(4, k‘)
(e) if (¢, k") # suc(i, k), h(k+1) =j+1and h(k' —1) = j — 1 then ¢(¢', k') = &(i, k) +

Hence there exists an integer @ such that ¢(i + 1,k) = ¢(i,k) + 0 for all i > 15 and
ke h™1{j}. By (4), g(N) =N and 8 > 0.
Since {n;}2, and {m;};2, are increasing sequences, we deduce that {m; + n;}{2, is an
)
increasing sequence of natural numbers. Since [],_,(mi + ng)a — 1 depends only on i we
obtain that

i2

(mi +ni)a+ [[(me +n)a =1 < U(Rij1;) — IR ;)
k=0
(i41)?
< (Mg Fnig)a + H (mp +np)a —1,
k=0
whenever —n; < j < m;. Hence we deduce that if —n; < j < m; then for every integer k > 0
we have l(RiJrk;JrLj) — l(RiJrk;’j) > l(RiJrLj) — Z(Rl’J) Thusif k € hil{]} is such that ﬂ >1
then there exists i with ¢(i, k) > i. Then I(Riy1,6) — l(Rik) < U Rp(i+1,k),5) — {(Rg(ik),5)
and this contradicts (3). Hence 3 = 1. Since ¢(i,k) < i for all i > 15 and k € h=1{j}, there
exists a natural number 7y such that ¢(i,k) =i — v, for all ¢ > 1o.
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First assume that there exist k,m € h™1{j} such that k < m, there exists no k¥’ € h={j}
with k& < k' < m and ¢(i,m) = ¢(4, k) +1 for every i > 2. By (s2), there exists i1 € N such
that i1 = ¢(i, k) for some i > 12, p;; # j, and either p; < k or p; > m. Hence i1 > t1 > 1.
Then g(Ri k) C Ry, j and g(R;m) € Riy 11,5 and, by (3),

{l ] w(Ri, 5) <l <U(Riy115)} = UH{Rap | (@, 0) €1, (i1,j) < (, f) < (ix +7)}

g {g(l) | U(Ri,k) <l< l(Ri,m)} = g(U{Ra,B | El(aaﬁ) € Ia (lak) < (a,ﬁ) < (’Lvm)})

By the construction of the family {R; ; | (¢,7) € I}, we have

i

Z(RilJrLj) — U(Ril,j) = (mil + N 41 — 2+ H(ml —+ nl))a -1

1=0
and I(R;m) —uw(Rix) = (m—k—1)a—1. Then m—k < m,, +n,, < m;, +n;,+1, and hence
(R +1,5) —u(Ri, 5) > U(Ri,m) — u(R; ) and this is a contradiction. Hence ¢(i, k) = ¢(i,m)
for all k,m € h™'{j} and ¢(i + 1, min h~1{j}) = #(i, max h~*{j}) + 1 because 8 = 1. Thus
Yk = Ym for all k,m € h=1{j}.

Assume that [h=1{j}| > 2 and set k = maxh~1{j}, m = minh~1{j}. By (s3), there
exists 41 € N such that ¢(i, k) = iy for some i > g, i1 > Y&, pi, # j and m < p; < k. Then
g(Ri’k) - Ril,j and g(Ri+1’m) - Ri1+1,j and, by (3),

{11 u(Riy ) <U<U(Riy+15)} = (HRas | (@, 8) €1, (i1,4) < (@, ) < (i1 + )}

C g{llu(Rip) <1 <URis1,m}) = g HRas | (k) < (@, 8) < (i + L,m)}).
By the construction of the family {R; ; | (¢,7) € I}, we have
it
Z(RilJrLj) — U(Ril,j) = (mil + N 41 — 2+ H(ml —+ nl))a -1
1=0
and [(Rit1.m) — u(Ri k) < (m;+mn;41 — 1)a— 1. Since 41 = i — % and i1 > -y, we conclude
2
that i3 > i+ 1. Then (m; +n;+1 — 1)a < [[,L,(mi +ni)o and hence I(R;, 11,;) —u(Ri, ;) >
I(Rit1,m) — w(R; ;) and this is a contradiction. Thus |h~1{j}| = 1.
Finally we prove that v =0 and h={;j} = {j}. Assume the contrary. Thus if h=1{j} =
{k} then k # j or v # 0. By (s4), there exists i1 € N such that ¢(i, k) = i1 for some ¢ > 1o,
2
pi, = jand p; # k. Then, by (3), g(Rix) = Ri, ;. But |Rs, ;| = [[[Lo(mu+n)a > a = |R; 4
— this is a contradiction. Thus h(j) = j and for every ¢ > 1o we have g(R; ;) = R; ;. By
(2), for every I € N there exists i € N with ¢ > [ and ¢g(¢) = . From (2) and (3) it follows
that g(I) =1 for all I € N. Since j is arbitrary we have h(j) = j for all j € Z. O

Lemma 6.12. If f : Y — X is an h-map with {f(s1), f(s2)} = {s1,82} then f is the
inclusion.

Proof. If f(s1) = s1 then, by Lemma 6.11, f is the inclusion. Assume that f(s2) = s1. By
Lemma 6.11, f(w;) =t; and f(t;) = w; for all j € Z. Then weo; < n3; > N3git1 < Nagit2 >
t60i+2- Thus tgp; < f(ngz) > f(n3i+1) < f(n3i+2) > We0i+2, but no such zig-zag exists in
(X; <) — a contradiction. Thus f(s1) = so is impossible, and the proof is complete. O

Finally, it remains to construct a sequence {p;};en satisfying the conditions (s1)—(s4).
We shall construct this sequence by induction. Let x and A be natural numbers. At the
initial step we set A = 1, k = mg and pg = —ng. If § is the greatest natural number such
that p; was constructed for all ¢ € § then we apply the following step:

if ps—1 < Kk then ps = ps+1 = -+ = Ps+x = ps—1 + 1, if ps—1 = k then we increase A
by 1, set kK = mg and ps = ps+1 = - - = Ps+r = —Ns.
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From the construction it immediately follows that the sequence {p;};en satisfies the condi-
tions (s1)-(s4).

Thus, by Lemmas 6.5 and 6.12, X is a (U, C, Z)-testing object of V because {sg, $1, 52} C
(2] for all z € Z. By Lemma 6.4, (z] € PHH, for all z € X \ Z, and thus X is a universal
testing object of V with respect to Hy. Since &X' is automorphism-free, Theorem 3.9 gives

Corollary 6.13. The variety V of Heyting algebras is Hy-relatively alg-universal.

To prove the Q-universality of the variety V, we use the technique from [18] in order to
construct a standard @Q-universal testing object for V.

Let (A;<) be a poset where A = {a; | i € 80} and ag; < a2i41 > agi42 for all i € 40
where the addition is modulo 80. For j € 4, let (D;; <) be a poset with D; = {d; ; | i € 21}
and do; j > dojy1,j < doit2; for all 4 € 10 and each j € 4 (we assume that D; N Dj = ()
for distinct j,7' € 4 and AN D; = 0 for all j € 4). Let (X; <) be a new poset that is the
union of posets (4; <), (D;; <) for j € 4 and the set S = {s; | i € 10}, whose members are
related as follows:

(o) sp < 81,825 ag < 83 > 82; Aog < 84 > S1; U5 < S5 > S2;

(0) s1 < a4i,d4j+17k,d4j+37l for i € 20, j €4, k=0,2,1=1,3;

(0) So < A4442, d4j+37]€, d4j+1,l for i € 20, j €4, k=0,2,1=1,3;

(0) azo+2i < doﬂ; and a7g_9; < dgo,i for i e 4;

(o) do,o < s6>dg1; doo < s7>dgs;dogo <sg>dgi;dyga<sg>dys.
Let us denote U = [{dg; | i €4}) ={d;,i | j =8,9,10, i € 4}U{s; | j =6,7,8,9}, C = {s9}
and (a,b) = (dg 3, S9). The topology 7 is discrete. By a direct verification we obtain

Lemma 6.14. For X = (X;<,7) we have
(1) MaX(X) = {a2i+1 | 1€ 39} U {d2i,j | 1€l1l, j € 4} U {Sk | k=3,4,.. .,9},‘
(2) (] is isomorphic to Qg for all x € Max(X) \ {s3, 4,55} and (z] is isomorphic to Ro
for x € {ss,84,85};
(3) [s1) N [s2) = Max(X);
(4) X belongs to PHV;
(5) U C X is functorial, C C Max(U) and (dg,3,S9) is an f-covering pair.

Set Y = X \ {s6, 57, 88,89}. Since X is finite and sg, s7, S5, 89 € Max(X) we conclude
that Y = (Y; <, 7) is an h-space and )Y € PHV. We will investigate h-maps from ) to X.

Lemma 6.15. Let f : Y — X be an h-map. Then f(so) = so, f({si | i = 1,2}) C
{50,51,52) and either f({s1,52}) = {s1,52}, f(Max(¥)) = Max(X) and f({ss, 51, 55}) C
{83,854, 85} or there exists i = 1,2 such that s; ¢ f({s; | j € 3}) and Im(f) N Max(Y") C
{s3, 54,85}

Proof. Since Min(X) = Min(Y) = {so}, we have f(sgp) = so. To demonstrate that f({s; |
i=1,2}) C{s; | i € 3} observe that Cov(y) = {so} in YV for y € Y if and only if y € {s1, s2},
and Cov(z) = {so} in X for xz € X if and only if x € {s1,s2}. Thus f({s; | i =1,2}) C {s; |
i € 3}. Next observe that sq,s2 € (2] for z € X (or z € Y) if and only if z € Max(X) (or
x € Max(Y)). Hence if f({s1,s2}) = {s1,s2} then f(Max(Y)) C Max(X) and, by Lemma
6.14(2), f({s3,84,55}) C {s3,54,85}. If |f({s; | i € 3})| < 2then f is not injective on (] for
all z € Max(Y') because {s; | i € 3} C (z] for all z € Max(Y"). By Lemma 6.14(2), |(x]| = 6
if and only if © € Max(X) \ {s3, s4, s5} and hence Im(f) N (Max(X) \ {s3,54,55} = 0 and
the proof is complete. O

Finally, we investigate h-maps f : Y — X with {f(s1), f(s2)} = {s1, s2} in more detail.
Let us denote Sop = {s; | 1 =6,7,8,9} U{do i | k € 4}.
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Lemma 6.16. Let f : Y — X be an h-map such that {f(s1), f(s2)} = {s1,s2}. Then one
of the following possibilities occurs:

(1) f is the inclusion;

(2) f is not injective on the set {a; | i € 56} and Im(f) NSy = 0.

Proof. First observe that Cov(sz) N {s1,s2} = Cov(ss) N {s1,s2} = {s2} and Cov(ss) N
{s1,51} = s2. From f({ss3,s4,85}) C {s3, 54,55} it follows that f is injective on (s;] for
i = 3,4,5 and hence either f({ss,s5}) C {s3,55} and f(s4) = s4 or f(s3) = f(s5) = s4
and f(s4) € {s3,55}. Moreover, if f({ss,s5}) C {s3,55} then f(s1) = s1 and f(s2) = 2,
if f(s3) = f(s5) = s4 then f(s1) = s2 and f(s2) = s;. By Lemma 6.15, if z € Max(Y") \
{s3,84,85} and f(x) # s3,54,85 then f is injective on (z] because, by Lemma 6.14(2),
|(z]] = 6 = |(f(x)]]. If 2 € Max(Y) \ {s3,54,55} and f(x) € {s3,s5} then f is injective
on (z] \ f~1(s2) and |(x] N f~1(s2)| = 2, and from f(z) = s4 it follows that f satisfies
f(Cov(z)) = Cov(f(z)) for every x € Max(Y).

Define posets (P, <) and (P, <) where P, = AU (U?:o D;) U {s3, 54,85} and P, =
Py U{sg,s7,88,89} and p < g in Py or P, just when p € Cov(q) in (X, <). Then f(P;) C P>
and the domain-range restriction g of f to P; and P» is a h-map from (Py, <) to (P, <) such
that g(Max(Py)) C Max(P») and either g({ss,s5}) C {ss,s5} and g(s;) = s; fori =1,2,4
or else g(s3) = g(ss5) = s4, g(s4) € {s3,85}, g(s1) = s2, and g(s2) = s1.

For i = 1,2 and p,q € P; let distp, (p, q) be length of the shortest sequence xg, z1,. .., 2
such that p = z9, ¢ = z and z; and x;4; are comparable for all j = 0,1,...,k — 1.
Such a sequence zg, z1,. ..,z is called a path between p and ¢q. Then distp,(g(p), g(q)) <
distp, (p, q) for all p,q € P;.

Observe that distp,(s3,s4) = 29 and distp,(ss,s4) = 31 for ¢ = 1,2. Thus either
s3 € g({s3,85}) C {s3,85} and g(s4) = s4 or g(s3) = g(s5) = s4 and g(s4) = s3. Since
83,00, a1, ...,025,S4 1S the unique shortest path between s3 and s4 then in the first case
gla;) = a; for i € 27 and in the second case g(a;) = age—; for i € 27. Observe that
S5, S2, 83,00, 01, - - - ,A26, S4 1S the unique shortest path between s; and s4 and that

S5, A56, A55, -« -, A26, S4

is the unique path between s; and s4 of length 33. If g(s5) = s3 then g(s2) = s2 and
hence g(ass) = ao. Thus g({ase—; | ¢ € 30}) C {a; | j € 28} U {s1, 52, 83, 4, a7s, aro}. If
g(s5) = s5 then g(ass) = ase and hence g(ass) € {ass, asr, S5} Since 31 = distp, (S5, $4) =
distp, (ass, s4) < distp,(as7,s4) and since ass, asa, - - ., a25, S4 is the unique shortest path
between as5 and s4 we conlcude that either g(ass) = s5, g(ass) = s2, g(ass) = s3, g(ase—;) =
a; for i € 27 or g(ass—;) = ass—; for i € 30. If g(s5) = g(s3) = s4 then g(ass) = aze and
glazg) = ap. Since between ag and agg every path of length at most 30 contains a; for i € 26
we conlcude that g({ase—; | ¢ € 30}) C {a; | i € 28} U {s1, 52, S3, S4,a79,a7s}. From the
above we infer that one of the following four cases occurs:

(1) g(a;) = a; for i € 57 and g(s;) = s; for i = 1,2, 3,4, 5;
(2) g(si) = s; for i = 1,2,3,4,5, g(a;) = a; for ¢ € 27, g(ass) = ase, g(ass) = ss,

g(ass) = s2, g(asz) = s3 and g(ase—;) = a; for i € 27T;

(3) g(si) =s; fori =1,2,3,4, g(s5) = s3, g(a;) = a; for i € 27, g({ass—; | i € 30}) € {q; |
jE 28} U {81, S92, 83,54, 78, a79};
(4) g(s3) = g(s5) = s4, g(s1) = 83, g(s2) = 51, g(s1) = s2, g(aze—;) = a; for i € 27 and

g({a56_i | 1€ 30}) = {aj |] S 28} U {81,52, 83,54,a78,a79}.

We now consider these four cases.
Case (1). Direct observation shows that

83,79, 78, 77, 76, 20,0, d19,0, - - - » d0,0, A30, (29
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is the unique shortest path between ss and ag9 and hence g(a;) = a; for i = 76,77,78,79
and g(d; o) = d; o for all ¢ € 21. Since

77-245 A76—24, d20,5, A19,45 - - - » A0 4, A3042i, 31425

is the unique shortest path between az7_o; and asy49; for i = 1,2, 3 we infer that g(a;) = a;
for i = 75,74,...,70 and ¢(d;;) = d;; for all ¢ € 21 and j = 1,2,3. There are ex-
actly two shortest paths ss, so, s3, a9, a79,a7s,-..,as9 and ss,ass, @57, - --,069 between ss
and agg. Since g(asg) = ase we conclude that g(as7) # s3 and therefore g maps the path
S5, G56,a57, - - -, gy into itself. Thus g(a;) = a; for all 4 € 80 and g(d; ;) = d; ; for all i € 21
and j € 4. In this case f is the inclusion.

Case (2). We know that g is not injective on {a; | ¢ € 56}, and hence f is also not
injective on {a; | i € 57}. By the assumption, g(azg) = ags. Since distp, (azg, az7) = 25 and
distp, (s3,a77) = 5 we conclude that g(a77) € {ar9,a1,as,s3}. From distp, (asg,a77) = 9
it follows that g({a; | ¢ = 79,77,...,69}) is a subset of By U Dy where By = {a; | i =
1,3,...,11 U {51,53,...,61} U {71,73,75,77,79}} and

Dy = {d20,0, d13,0, d16,0d20,2, d18,2, d20,4, 3, S5 }

Thus g({a; | i € 57,59, ...,69}) is a subset BoUDgU{a; | i = 63,49}. Hence SpNIm(g) =0
and thus also So N Im(f) = 0.

Case (3). Again, g is not injective on {a; | 4 € 57} and hence also f is not injective on
{a; | i € 57}. From g(s5) = s3 we infer that g(ass) = ap and hence g(ass) € {ar9,a1,s3}. If
g(ass) = arg then g(ass) = ars and hence g(as3) € {ar7,arg}. Since distp, (as3,54) = 29 and
distp, (a77, 84) = 31, we obtain g(as3) = arg, g(asa—;) = a; for i € 27. If g(ass) = s3 then
g(as4) = s2 and hence g(ass) € {ss3,s5}. From distp, (ass, s4) = 29 and distp, (s5,s4) = 31
we infer that g(ass) = s3 and g(asa—i) = a; for i € 27. If g(ass) = a1 then g(ass) = aq
and g(as3) € {a1,a3}. Hence g(ase—;) € {a;, ai44} for i € 27 which is even and g(ass—;) €
{ai,aiq2,a;14} for i € 27 vhich is odd. In particular, g(azg) € {ass,ass,as7,s4}. From
distp, (az9,a77) = 25 and distp, (s3,a77) = 5 we get g(azz) € {ar9,a1,a3,s3}. (From
distp, (agy,az7) = 9 it follows that g({a; | ¢ = 79,77,...,69}) is a subset of By U Dy
where By = {a; | i = 1,3,...,11} U {51,53,...,61} U {71,73,75,77,79}} and Dy =
{d20,0, d18,0, d16,0, d20,2, d18,2, d20,4, 53, 85 }. Thus g({a; | i € 57,59,...,69}) is a subset of
By U Dy because g(s5) = s3. Hence Sp NIm(g) = 0 and thus So N Im(f) = 0.

Case (4). We know that g, and also f, is not injective on {a; | i € 57}. From g(s5) = s4
we get that g(ass) = age and thus g(ass) € {ass,a27,s4}. If glass) € {ss,aa27} then
g(as4) € {ass, s1}, but

diStp2 (agg, 83) = diStp2 (81, 83) = distp1 ((154, 84) =30

and hence g(as3) = g(ass) and g(ase—;) = a; for i € 27. If g(ass) = ass then g(ass) = a2
and g(ass) € {aas, ass}. Hence g(asa—;) € {ai,a;—4} for i € 27 which is even and g(as2—;) €
{a;,a;—2,a,_4} for i € 27 which is odd. From distp, (az29,a7r7) = 25 and distp, (s3,a77) =
5 it follows that g(az7) € {aar,ass,ass,sa}t. From distp, (asg,a77) = 9 it follows that
g({a; | © = 79,77,...,69}) is a subset of By U Dy where By = {a; | ¢ = 15,17,...,35}
and D1 = {d()’o, d2707 d4’0, doﬁg, dgﬁg, d0’4, 84}. Thus g({ai | S 57, 59, ceey 69}) is a subset of
By U D because g(s5) = s4. Hence SopNIm(g) = 0 and thus So N —Im(f) = 0.

Thus in the case (1), we conclude that 6.16(1) holds and in the cases (2), (3) and (4)
that 6.16(2) holds. O

If we set Z = {sg} then C C Z and to obtain that X is a standard @Q-testing object it
remains to prove that X is a finite (U, C, Z)-testing object. Since Y is an h-subspace of X'\ C'
and | J, . Cov(c) C Sy, we obtain, by Lemmas 6.15 and 6.16 that X" is a (U, C, Z)-testing
object. Since X is finite the proof is complete. Then, by Corollary 3.6, we obtain
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Corollary 6.17. The variety V contains an A-D family and hence it is Q-universal.

7. CONCLUSION

Theorem 1.3 follows from Theorems 4.7, 4.13, 5.13, 6.2, 6.3 and Corollaries 4.17, 5.5, 5.9,
5.12, 6.13, 6.16.

Next we give the proof of Corollaries 1.4 and 1.5. First we give an auxiliary notion. From
Priestley duality it follows that if H € PHV and if f : H' — H is an injective h-map and
g:H — H" is a surjective h-map then H', H” € PHV. This fact motivates the following
notion. Let (X;<,7) be an h-space then an equivalence 6 on X is called an h-congruence
if a quotient space (X;<,7)/0 = (X/0,C, o) (it means that (X/6,C) is a quotient poset of
(X, <) by 6 and (X, 0) is a quotient topological space of (X, 7) by 6) is an h-space and the
associated canonical quotient mapping is an h-map. This implies that every class of 8 is
closed and convex. If (X; <, 7) is finite then, by a standard calculation, an equivalence 6 is
an h-congruence if and only if

(1) every class of 6 is convex;
(2) if z,y € X with 20y and z < z for z € X then there exists u € X with v < y and
ubz.

If V is a variety and H € PHV and 6 is an h-congruence of H then H/0 € PHV.

Proof of Corollary 1.4 Referring to Fig. 3 and Fig. 1, we show that every variety Var(DS;)
with ¢ =0,1,...,11 contains one of the varieties Var(DQ;,) with j =0,1,...,10.
(0) on Sy, the equivalence @ collapsing only the minimal elements in the middle and on
the right is an h-congruence with Sp/6 = Qs;
(1) on Sy, the h-congruence 6 collapsing only all minimal elements gives S;/60 = Qq;
(2) on S,, the h-congruence 6 collapsing only the least element and its three covers gives
S2/0 = Qo;
(3) for Ss, its subposet (x] where x is the cover of the minimal element on the right is
isomorphic to Qgs;
(4) on Sy, the h-congruence 6 that collapses only the minimal element on the right and
its two covers gives S4/6 = Qg;
(5) on Ss, the h-congruence 6 collapsing only the least element and its cover on the left
gives S5/0 = Qg;
(6) on Sg, the h-congruence 6 collapsing only the two covers of the minimal element on
the right produces Sg/0 = Qs;
(7) for S7, the subposet (x] where x is the cover of the minimal element on the left is
isomorphic to Qgs;
(8) for Sg, the subposet (z] where z is either element covered by the maximal element is
isomorphic to Qgs;
(9) for S, the subposet (z] for either element z covering the minimal element on the left
is isomorphic to Qg;
(10) on Syg, the h-congruence 6 collapsing only the least element and the element covering
it on the left gives S19/6 = Q1o;
(11) on Siq1, the h-congruence 6 collapsing only the least element and its cover on the left
gives S11/0 = Qo.
Theorem 1.3 completes the proof because if a variety V contains a W-relatively alg-universal
variety V’ then V is also W-relatively alg-universal, if V contains a variety V' having an
A-D family then V also has an A-D family.

Proof of Corollary 1.5 Let (X;<,7) be a finite h-space with the greatest element such
that there exists an antichain A of (X; <) with |A| > 3. Then we can assume that either
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A C Min(X) or ANMin(X) = 0 or |[Min(X)| = 2 and |A N Min(X)| = 1. Indeed, if
| Min(X)| > 3 or Min(X) is a singleton then we can choose an antichain A C X such that
|A| > 3 and either ANMin(X) =0 or A C Min(X). If [Min(X)| = 2 then either there
exists an antichain A C X with |A] > 3 and AN Min(X) = @ or every antichain A C X
with |A| > 3 satisifies AN Min(X) # 0. In the second case necessarily |[ANMin(X)| =1 for
every antichain A C X with |A] > 3.

Let xg, z1, x2 be pairwise distinct elements of A such that if A N Min(X) # () then
xo € Min(X). Let 6 be the least equivalence on X such that ufv for all u,v € X with
(u] N {zo,x1,22} = (v] N {xo, 21, 22}. Tt is then straightforward to verify that 6 is an h-
congruence on H and /6 is isomorphic to one of the h-spaces Qp, Q1, Qs, Q7, Qs, So,
S1, So, Ss, S4, Sg, S7, Ss, and Sg. By Theorem 1.3 and Corollary 1.4, if (X;<,7) € PHV
for a variety V of Heyting algebras then V is var-relatively alg-universal modulo a group
and contains an A-D family.

M. E. Adams and W. Dziobiak [4] have improved Theorem 4.13 by showing that the
variety Var{DGo, DHy} is a minimal Q-universal variety. It is an open question whether
Var{DGg, DHy} is var-relatively alg-universal. Both questions appear to be open for the
varieties Var{DG1,DH;} and Var{DGg2, DH,}: we do not know whether or not these
varieties are (Q-universal or var-relatively alg-universal.

Another interesting question is whether or not the varieties from Theorem 1.3 are mini-
mal. Using the result of Adams and Dziobiak and the results from [11] we obtain that the
variety Var(DQ);) is a minimal Q-universal variety for ¢ = 0,1,...,9. A more complicated
is the question concerning minimal var-relatively alg-universal varieties. Here it is clear
that the varieties Var(DQ;) for ¢ = 0,1, 3,6 are minimal var-relatively alg-universal. For
the other varieties this question is open. But we still conjecture that all varieties Var(DQ;)
with ¢ = 0,1,...,10 will show to be both minimal @-universal and minimal var-relatively
alg-universal.
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