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Abstract. Surprisingly small varieties of Heyting algebras have very complex categor-
ical structure and contain the largest possible number of subquasivarieties.

1. Introduction

A quasivariety is a class of algebraic systems of a similarity type ∆ closed under isomor-
phisms, products, subsystems and ultraproducts. For a family of algebraic systems U of a
type ∆, let Quasi(U) denote the least quasivariety containing U .

If Q is a quasivariety then subquasivarieties of Q form a complete lattice Lat(Q) with
respect to the inclusion. One topic of universal algebra is an investigation of properties of
Lat(Q) for some quasivarieties. M. V. Sapir [23] defined that a quasivariety Q of a finite
type ∆ is Q-universal if for every quasivariety V of a finite type the lattice Lat(V) is a
quotient of a sublattice of Lat(Q). He proved that a variety of commutative 3-nilpotent
semigroups is Q-universal and he asked which other quasivarieties are Q-universal.

A family {AU | U ∈ P(ω)} of algebraic systems indexed by the set P(ω) of all finite
subsets of the set ω of all natural numbers is called an A-D family if
(p1) A∅ is a terminal object of Q;
(p2) if U, V ∈ P(ω) then AU∪V ∈ Quasi{AU ,AV };
(p3) if U, V ∈ P(ω) such that U �= ∅ and AU ∈ Quasi{AV } then U = V ;
(p4) if for V ∈ P(ω) there exist a finite set U ⊆ P(ω), finite algebraic systems B,C ∈

Quasi{AU | U ∈ U} and an injective homomorphism fAV → B×C then there exists
an injective homomorphism gAV → B or there exists an injective homomorphism
gAV → C or there exist subsets V1, V2 ⊆ V and injective homomorphisms g1AV1 → B
and g2AV2 → C with V = V1 ∪ V2.

M. E. Adams and W. Dziobiak [6, 7] proved that the existence of an A-D family in
Q implies that Lat(Q) satisfies no nontrivial lattice identity. Then M. E. Adams and
W. Dziobiak improved these results by proving in [2] that a quasivariety Q of algebras of
a finite type is Q-universal whenever there exists a sublattice of Lat(Q) isomorphic to the
lattice of all ideals of a free lattice over an infinite countable set, and that the existence of this
sublattice in Lat(Q) follows from the existence of an A-D family in Q. Many quasivarieties
are Q-universal, see the excellent survey paper [1] by M. E. Adams et al.

Another important and interesting theme is the algebraic structure of morphisms of a
category. One of the notions indicating its complexity is the alg-universality. A category
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K is alg-universal if every category of algebras and all their homomorphisms can be fully
embedded into K, or equivalently, if the category GR of all graphs and their homomorphisms
can be fully embedded into K. Many familiar concrete categories are alg-universal, see the
monograph by A. Pultr and V. Trnková [22]. Experience shows that this notion is often
too restrictive, and this is because there are many familiar categories rich in their structure
which are not alg-universal, for example categories of topological spaces and varieties of
lattices or those of monoids. Two obstacles to alg-universality are illustrated in the following
theorem.

Theorem 1.1 ([12]). The variety V of semigroups is alg-universal if and only if V contains
all commutative semigroups and for every n > 1 the power law (xy)n = xnyn fails in V.

The condition that V contains all commutative semigroups is equivalent to the property
that for every n > 1 the law xn = x fails in V and this holds exactly when there exists
a semigroup S ∈ V without idempotents. We can say that for a rich category there are
two main obstacles, the forced existence of endomorphisms whose images belongs to a poor
subcategory (in our earlier examples the existence of endomorphisms whose images belong
to the trivial variety) or the existence of canonical symmetries of objects (in our example the
existence of endomorphisms x �→ xn for some n > 1). These facts motivate the following
modifications. Let K be a category. Then a class I of K-morphism is an ideal of K if
f ◦ g ∈ I whenever f ∈ I or g ∈ I. A faithful functor F : L → K is called an I-relatively
full embedding if
(f1) Fg /∈ I for every L-morphism g;
(f2) if f : FA→ FB is a K-morphism for some L-objects A and B then either there exists

an L-morphism g : A→ B with Fg = f or f ∈ I.
A category K is I-relatively alg-universal if there exists an I-relatively full embedding

F : GR → K. If, moreover, K is concrete and the underlying set of FG is finite for every
finite graph G then we say that K is I-relatively ff -alg-universal. If K is concrete and
I consists of all K-morphisms whose underlying mappings are constant, then K is almost
alg-universal. Observe that if I = ∅ then K is I-relatively alg-universal exactly when it is alg-
universal. Ideals determined by a subvariety play an important role. Let Q be a quasivariety
and let V be a subvariety of Q. Let us denote IV the class of all homomorphisms f ∈ Q such
that Im(f) ∈ V. It is easy to verify that IV is an ideal. If Q is IV-relatively alg-universal for
some a subvariety V of Q then we say that Q is var-relatively alg-universal. A var-relatively
ff -alg-universal quasivariety is defined analogously. The idea of this notion is that many
types of algebraic systems allow a retract to an object of a small proper subvariety while
the overall morphism structure of Q remains rich.

Let M be a monoid viewed as a one-object category. Then GR×M is a category whose
objects are all undirected graphs and morphisms from a graph G1 to a graph G2 are all
pairs (f,m) where f : G1 → G2 is a graph homomorphism and m ∈ M, and if (f ′,m′) is
morphism from G2 to G3 then (f,m) ◦ (f ′,m′) = (f ◦ f ′,mm′). We say that a category
K is alg-universal modulo M if there exists a full embedding of GR × M into K. This
notion plays an important role for a characterization of richness of an algebraic structure
of homomorphisms of a finitely generated variety of distributive dp-algebras, see [13] – in
this case M is one of the powers C0

2,C2, C2
2, C3

2 of the two-element cyclic group C2. In
the present paper we also combine these notions. We say that a category K is I-relatively
alg-universal modulo M if there exists an I-relatively full embedding F from GR×M into K

where I is an ideal of K. If, moreover, K is concrete and FG is finite for every finite graph
then K is I-relatively ff -alg-universal modulo M. If Q is an IV-relatively alg-universal
quasivariety modulo M where V is a proper subvariety of Q then Q is var-relatively alg-
universal quasivariety modulo M. A var-relatively ff -alg-universal quasivariety modulo
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M is defined analogously. Observe that if M is the singleton monoid then a category K

is I-relatively alg-universal modulo M exactly when K is I-relatively alg-universal. For
algebraic systems, the elements of M often correspond to derived operations that are their
homomorphisms.

M. E. Adams and W. Dziobiak proved the following remarkable result connecting Q-
universality and ff -alg-universality.

Theorem 1.2 ([3]). Every ff -alg-universal quasivariety of algebraic systems contains an
A-D family and thus it is Q-universal.

This result was strengthened to almost ff -alg-universal quasivarieties in [14]. An analo-
gous result was proved for special var-relatively ff -alg-universal quasivarieties in [15], but
in general this does not hold: there exists a var-relatively ff -alg-universal variety of dis-
tributive dp-algebras that is not Q-universal, see [16]. On the other hand, a construction of
IV-relatively ff -full embedding can be often modified to a proof that the given quasivariety
contains an A-D family. We will illustrate this observation on finitely generated varieties of
Heyting algebras. We give a partial answer to the problem formulated in [1] asking to char-
acterize Q-universal varieties of Heyting algebras. We also extend [9], where some finitely
generated var-relatively ff -alg-universal varieties of Heyting algebras were exhibited.

For a family U of algebras of a similarity type ∆, we let Var(U) denote the least variety
containing U . Thus Var(U) is the variety generated by U . We will work with the Priestley
duals of Heyting algebras. It is well-known that duals of finite Heyting algebras are finite
posets. Thus for a set S of finite posets we say that a variety V of Heyting algebras is
generated by S if V is generated by Heyting algebras whose duals belong to S. For a finite
poset P, we denote DP the Heyting algebra whose Priestley dual is the poset P. The
principal aim of this paper is to prove

Theorem 1.3. For each i = 0, 1, . . . , 10 the variety of Heyting algebras generated by DQi

is var-relatively alg-universal modulo C2 or C0
2 and contains an A-D family, thus it is

Q-universal. The posets Qi are shown in Figure 1.
For i = 0, 1, 2 the variety of Heyting algebras generated by {DFi,DGi} is var-relatively

ff -alg-universal and contains an A-D family, so that it is Q-universal. The posets Fi and
Gi with i = 0, 1, 2 are shown in Figure 2.

It should be pointed out that it was already known to the authors of [1] that any variety
V of Heyting algebras containing DQi with i = 0, 1, 3, 6 is Q-universal.

M. E. Adams and W. Dziobiak [4] proved that the variety of Heyting algebras generated
by {DH1,DG1} has an A-D family and thus it is Q-universal. This variety is a subva-
riety of the variety generated by {DF1,DG1}. This then generalizes our result. It is an
open question whether the variety generated by {DH1,DG1} is var-relatively alg-universal
modulo M for some monoid M and it is also an open problem whether the varieties gen-
erated by {DFi,DGi} for i = 1, 2 are minimal such that they contain an A-D family or
whether they are var-relatively alg-universal modulo M for a monoid M. The varieties
generated by {DQi} for i = 0, 1, . . . , 10 are minimal with respect to Q-universality and
minimal var-relative alg-universal varieties modulo a monoid M.

As a consequence we then obtain

Corollary 1.4. The variety of Heyting algebras generated by DSi with i = 0, 1, . . . , 11 is
var-relatively alg-universal and contains an A-D family; thus it is Q-universal. The posets
Si for i = 0, 1, . . . , 11 are shown in Figure 3.

Corollary 1.5. Let V be a variety of Heyting algebras such that there exist a finite poset P
whose dual belongs to V and there exist a three-element antichain {x1, x2, x3} in P and an
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element y from P such that xi ≤ y for i = 1, 2, 3. Then V is var-relatively ff -alg-universal
and contains an A-D family, so that it is also Q-universal.

Our results use Priestley duality and the category of functors from a poset into compact
totally disconnected spaces. We recall the Priestley duality for Heyting algebras in the
second section. Let C be the category of compact totally disconnected spaces and continuous
mappings between them, and for a poset P, let CP be the category of all functors from
P into C and all natural transformations between them. The third section is devoted to
construction of relatively full embeddings from a suitable subcategory of CP to categorical
duals of varieties of Heyting algebras. The subsequent sections apply these results to finitely
generated varieties of Heyting algebras. The last section summarizes our results in detail.
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2. Priestley duality and some basic facts

Throughout the paper, we extensively use Priestley’s duality for distributive (0,1)-lattices.
We begin with a brief review of Priestley’s duality and its application to Heyting algebras.

For a poset P and any Q ⊆ P denote [Q) = {x ∈ P | ∃y ∈ Q, x ≥ y} and (Q] = {x ∈ P |
∃y ∈ Q, x ≤ y}. A subset Q of P is decreasing if (Q] = Q, increasing if [Q) = Q, and convex
if [Q) ∩ (Q] = Q. Let Min(P ) denote the set of all minimal elements of P and Max(P )
denote the set of all maximal elements of P . For Q ⊆ P denote Min(Q) = (Q] ∩ Min(P )
and Max(Q) = [Q) ∩ Max(P ). If x ∈ P we shall write (x] or [x) instead of ({x}] or [{x})
and, analogously, we shall write Min(x) and Max(x). A poset P is connected if for every
pair x, y ∈ P there exists a sequence {x0, x1, ..., xn} such that x = x0, xn = y, and xi

is comparable to xi+1 in P for every i = 0, 1, ..., n − 1. If P is a poset then a maximal
connected subposet (with respect to inclusion) is called its order component. We say that
y covers x and x is covered by y if {y, x} = (y] ∩ [x); then (y, x) is called a covering pair.
For x ∈ P , let Cov(x) denote the set consisting of all elements covered by x.

Let X = (X ;≤, τ) be an ordered topological space; that is, (X ; τ) is a topological space
and (X ;≤) is a poset. A subset Z ⊆ X is clopen if it is both closed and open in τ . We say
that X is a Priestley space if τ is compact and totally order disconnected; this means that
for any x, y ∈ X with x �≤ y there exists a clopen decreasing set U ⊆ X with y ∈ U , x /∈ U .
Let P denote the category of all Priestley spaces and all their continuous order preserving
mappings.

Clopen decreasing sets of any Priestley space form a distributive (0,1)-lattice, and the
inverse image map f−1 of any P-morphism f is a (0,1)-homomorphism of these lattices. This
gives rise to a contravariant functor D : P → D from the category of Priestley spaces into
the category D of all distributive (0,1)-lattices and their (0,1)-homomorphisms. Conversely,
for any distributive (0,1)-lattice L, let P(L) = (F (L);≤, τ) where (F (L);≤) is the poset of
all prime filters of L ordered by the reversed inclusion, and an open subbasis of τ is formed
by all sets {x ∈ F (L) | a ∈ x}, {x ∈ F (L) | a /∈ x} for a ∈ L. According to H. A. Priestley
[19], P(L) is a Priestley space and if f : L → L′ is a (0,1)-homomorphism then f−1 is
continuous order preserving mapping from P(L′) to P(L). This determines a contravariant
functor P : D → P.
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Theorem 2.1 ([19, 20]). The two functors P◦D : P → P and D◦P : D → D are naturally
equivalent to the identity functors. Therefore D is dually isomorphic to P. Moreover, a
Priestley space X is finite if and only if PX is a finite distributive (0, 1)-lattice.

A Priestley space X = (X ;≤, τ) is called an h-space if [U) is clopen for every clopen set
U ⊆ X . A mapping h : P → P ′ between two posets has an h-property if (f(x)] = f((x])
for all x ∈ P . An order preserving continuous mapping f : (X ;≤, τ) → (Y ;≤, σ) with
h-property is called an h-mapping. The subcategory of P formed by all h-spaces and h-
mappings is denoted by PH. The following claim is folklore.

Theorem 2.2 ([21]). For a Priestley space X , DX is a Heyting algebra if and only if X is
an h-space. For an order preserving continuous mapping f : X → Y between two h-spaces,
Df is a homomorphism of Heyting algebras if and only if f is an h-mapping. Therefore PH

is dually isomorphic to the variety H of all Heyting algebras and their homomorphisms.

For an h-space X = (X,≤, τ), clearly A → B = X \ (A \ B) for any clopen decreasing
sets A,B ⊆ X .

The claim below is folklore.

Statement 2.3. A homomorphism h : H → H ′ between Heyting algebras is injective if
and only if Ph is surjective. A homomorphism h : H → H ′ between Heyting algebras is
surjective if and only if Ph is injective.

The authors [17] have shown that for a family {fi : Ai → B | i ∈ I} of order preserving
continuous mappings the lattice DB is a subdirect product of {DAi | i ∈ I} whenever
∪{Im(fi) | i ∈ I} is dense in X . Since products of Heyting algebras and distributive (0,1)-
lattices coincide, we immediately obtain the following folklore statement in which, for a
variety V of Heyting algebras, PHV denotes the full subcategory of PH determined by all
h-spaces PH with H ∈ V.

Theorem 2.4. An h-space X = (X ;≤, τ) is a dual of subdirectly irreducible Heyting algebra
if and only if Max(X) is a clopen singleton. For a variety V of Heyting algebras one has
X = (X,≤, τ) ∈ PHV if and only if (x] ∈ PHV for every x ∈ X.

Note that for any h-map f : (X ;≤, τ) → (Y ;≤, σ) of h-spaces, its image Im(f) ⊆ Y is
closed decreasing and for all y ∈ Im(f) if v ∈ f−1(y) and x ∈ (y] there is some u ∈ (v] with
f(u) = x. Thus f factorizes through PHV for a variety V of Heyting algebras if and only
if the h-subspace of (Y ;≤, σ) on Im(f) belongs to PHV. Since the congruence lattice of
any Heyting algebra is distributive, any finitely generated variety V of Heyting algebras has
only finitely many subdirectly irreducible algebras and all of these are finite. Their duals
are also finite, and we may use Theorem 2.4 to determine whether X = (X ;≤, τ) belongs
to PHV. Hence for every finitely generated variety of Heyting algebras V there exists a
natural number n such that for every X = (X ;≤, τ) ∈ PHV and for every x ∈ X we have
|(x]| ≤ n.

If S is a class of h-spaces then Var(S) denotes the least variety V of Heyting algebras
such that DX ∈ V for all X ∈ S. If S = {X} then we shall write only Var(X ) instead of
Var({X}).

Clearly, any finite poset (X,≤) with the discrete topology is an h-space. Thus

Theorem 2.5. Let S = {Pi | i ∈ I} be a finite set of finite posets such that |Max(Pi)| = 1
for all i ∈ I and let V = Var{Pi | i ∈ I} be a variety of Heyting algebras. Then an h-space
X = (X ;≤, τ) belongs to PHV if and only if for every x ∈ Max(X) there exist i ∈ I, a
finite poset P , an injective order preserving mapping f : (x] → P with the h-property and a
surjective order preserving mapping g : Pi → P with the h-property.
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Proof. Let A ∈ V be a Heyting algebra and let X = (X ;≤, τ) be its h-space. Since A ∈ V,
there exists a family {Aj | j ∈ J} of Heyting algebras such that for every j ∈ J there exists
i ∈ I such that Aj is isomorphic to DPi, an injective Heyting algebra homomorphism
f : B → ∏

j∈J Aj and a surjective homomorphism g : B → A. Let us denote PB = (Y ;≤
, τ) and f1 = Pf , g1 = Pg. Then, by Statement 2.3, g1 is injective and f1 is surjective.
Since the product of Heyting algebras coincides with the product of underlying distributive
(0, 1)-lattices we conclude that the dual h-space of

∏
j∈J Aj coincides with the Priestley

space of the corresponding underlying distributive (0, 1)-lattice. Thus, by [17], every order
component of the dual h-space (Z;≤, τ) of

∏
j∈J Aj is isomorphic to Pi for some i ∈ I.

Hence for every y ∈ Max(Y ) there exists z ∈ Max(Z) such that f1(z) = y. Choose
x ∈ Max(X) and y ∈ Max(Y ) with g1(x) ∈ (y]. Let us denote P = (y]. Then the domain-
range restriction g2 of g1 to (x] and P is an injective order preserving mapping from (x]
into P with the h-property. Since for every z ∈ Max(Z) there exists i ∈ I such that (z] is
isomorphic to Pi and since there exists z ∈ Max(Z) with f1(z) = y, there exists an surjective
order preserving mapping f2 : Pi → P with the h-property. Thus for every x ∈ Max(X)
there exist i ∈ I, a finite poset P , an injective order preserving mapping f : (x] → P with
the h-property and a surjective order preserving mapping g : Pi → P with the h-property.

Conversely, assume that X = (X ;≤, τ) is an h-space such that for every x ∈ Max(X)
there exist ix ∈ I, a finite poset Px, an injective order preserving mapping f : (x] → Px

with the h-property and a surjective order preserving mapping g : Pix → Px with the h-
property. Since V has products, we infer that PHV has coproducts and, by the universal
property of coproducts, there exists a surjective h-map g :

∐
x∈Max(X) → X . By Statement

2.3, DgD(
∐

x∈Max(X) Px) → DX is injective, and, by Theorem 2.2, D
∐

x∈Max(X) Px =∏
x∈Max(X) DPx ∈ V. Whence X ∈ PHV.

Corollary 2.6. Let X = (X ;≤, τ) and Y = (Y ;≤, τ) be h-spaces. Then Var(X ) ⊆ Var(Y)
whenever for every x ∈ Max(X) there exists some y ∈ Y such that the h-subspaces (x] and
(y] are isomorphic.

If there exists a natural number n such that |(x]| ≤ n for all x ∈ Max(X) and if f : X →
X is an endomorphism of X such that there exists x ∈ Max(X) satisfying

• if there exist y ∈ Max(X), a poset P , a surjective h-map g : (y] → P and an injective
h-map h : P → (x], then (x] and (y] are isomorphic;

• there exists no z ∈ Im(f) such that (z] and (x] are isomorphic

then Var((Im(f))) �= Var(X ).

3. General constructions

A poset P = (P ;≤) will be considered as a category in which ηq,p : q → p denotes the
P -morphism for each pair q ≥ p in P .

In what follows we assume that V is a finitely generated variety of Heyting algebras
and X = (X ;≤, τ) ∈ PHV is an h-space. A finite convex open subset U ⊆ X is called
functorial, and U(X ) denotes the induced subposet of (X ;≤) on the set U . Let us denote
ΓX ,U the constant functor from CU(X ) to PHV with the value X . For a functorial set
U of an h-space X = (X ;≤, τ) ∈ PHV we give a canonical construction of a functor
ΨX ,U : CU(X ) → PHV and a natural transformation ψ : ΨX ,U → ΓX ,U . For simplicity, let
us denote U = U(X ) = (U ;≤). For a functor F : U → C define

- a set YF = (X \ U) ∪ (
⋃

u∈U Fu) (we assume that X ∩ Fu = ∅ for all u ∈ U and that
Fu ∩ Fv = ∅ whenever u, v ∈ U are distinct);
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- a mapping ψF : YF → X given by

ψF (y) =

{
y if y ∈ X \ U,
u if y ∈ Fu for some u ∈ U ;

- a binary relation ≤ on YF such that y ≤ z for y, z ∈ YF just when
y, z ∈ X \ U and y ≤ z in X ;
y ∈ X \ U , z ∈ Fu for some u ∈ U with y ≤ u in X ;
y ∈ Fu, z ∈ X \ U for some u ∈ U with u ≤ z in X ;
y ∈ Fu, z ∈ Fv for some u, v ∈ U with u ≤ v in X and Fηv,u(z) = y;

- a topology τ as the union topology of the finitely many topologies of the Boolean
spaces Fu ∈ C with u ∈ U and the topology on X \ U .

It is straightforward to verify that ≤ is a partial order on YF and that Z ⊆ YF is τ -open
exactly when Z ∩ Fu is an open set of Fu for all u ∈ U and also Z \ (ψF )−1(U) is an open
set of X . Clearly, for any functor F : U → C and for every x ∈ ΨX ,UF we have

ψF (Cov(x)) = Cov(ψF (x)).(1)

For a natural transformation φ : F → G between functors F,G : U → C define a mapping
ΨX ,Uφ : YF → YG by

ΨX ,Uφ(y) =

{
y if y ∈ X \ U,
φu(y) if y ∈ Fu for some u ∈ U.

We say that a family of mappings {fi : X → Yi | i ∈ I} with the same domain X
is separating if for any two distinct x, y ∈ X there is some i ∈ I with fi(x) �= fi(y).
A family of mappings {fi : Xi → Y | i ∈ I} with the same codomain Y is covering if
Y =

⋃
i∈I Im(fi). We reformulate this for transformations between functors from a poset

P to C as follows. A family {φi : Fi → F | i ∈ I} of transformations is a covering
family in CP if Fp =

⋃
i∈I Im(φp

i ) =
⋃

i∈I φ
p
i (Fip) for every p ∈ P . Analogously, a family

{φi : F → Fi | i ∈ I} of transformations is a separating family in CP if for every p ∈ P and
every distinct x, y ∈ Fp there exists i ∈ I with φp

i (x) �= φp
i (y).

We prove

Theorem 3.1. For every functorial set U of X ∈ PHV, ΨX ,U : CU(X ) → PHV is a functor
and ψ = {ψF | F ∈ CU(X )} : ΨX ,U → ΓX ,U is a natural transformation such that ψF is
surjective for every F ∈ CU(X ) and ψF is injective on (y] for every F ∈ CU(X ) and every
element y of ΨX ,UF . Furthermore,

(1) a family {φi : Fi → F | i ∈ I} is a covering family in CU(X ) if and only if {ΨX ,Uφi |
i ∈ I} is a covering family in PHV;

(2) a family {φi : F → Fi | i ∈ I} is a separating family in CU(X ) if and only if {ΨX ,Uφi |
i ∈ I} is a separating family in PHV.

Proof. For simplicity, let us denote U = U(X ) = (U ;≤). For a functor F : U → C let us
denote ΨX ,UF = (YF ;≤, τ). First we prove that (YF ;≤, τ) is an h-space from PHV and
ψF : ΨX ,UF → X is a surjective h-map such that ψF is injective on (y] for all y ∈ YF .

Since every Fv ∈ C is non-void and because ψF is the identity map on X \ U , the
mapping ψF is surjective. For every y ∈ Fv, the subposet

(y] = ((X \ U) ∩ (v])
⋃

{Fηv,u(y) | u ≤ v}
of YF is isomorphic to the poset (v] ⊆ X , so that ψF preserves the order, is injective on (y]
and has the h-property. Since (ψF )−1{v} = Fv for every v ∈ U and (ψF )−1{x} = {x} for
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every x ∈ X \ U , the continuity of ψF follows. Once we show that ΨX ,UF is an h-space, it
will follow that ψF is an h-map.

As the union of finitely many compact spaces, the space (YF ; τ) is compact. Let V ⊆ YF

be a τ -clopen set we prove that [V ) is also τ -clopen. By the definition of topology, ψF (V )
is clopen in X and V ∩Fu is clopen in Fu for every u ∈ U . The set [ψF (V ))\U is τ -clopen
because ψF (V ) and U are clopen in X . Since [V ∩Fu)∩Fv = (Fηv,u)−1(V ∩Fu) is non-void
only when u ≤ v and V ∩ Fu �= ∅ because the C-morphism Fηv,u is continuous, the latter
subset of Fv is clopen in Fv, and hence also in YF . Then

[V ) = ([ψF (V )) \ U) ∪
⋃

{[V ∩ Fu) ∩ Fv | u, v ∈ U, u ≤ v, Fu ∩ V �= ∅}
and therefore [V ) is τ -clopen for every τ -clopen V ⊆ YF . Thus if we prove that (YF ;≤, τ)
is totally order disconnected then τ has the basis consisting of all clopen sets and hence [V )
is τ -open for every τ -open V ⊆ YF .

To show that ΨX ,UF is totally order disconnected, we suppose that y �≤ z in (YF ;≤) and
exhibit a τ -clopen decreasing set Z ⊆ YF containing z but not y. Since ψF is continuous and
preserves order, if ψF (y) �≤ ψF (z) then the required Z exists (indeed since X is an h-space
there exists a clopen decreasing set Z ′ ⊆ X with ψF (z) ∈ Z ′ and ψF (y) /∈ Z ′ and it suffices
to take Z = (ψF )−1(Z ′)). Thus it is enough to consider y �≤ z such that ψF (y) ≤ ψF (z)
in X . If ψF (y) /∈ U then y = ψF (y) and hence y ≤ v for all v ∈ (ψF )−1(ψF (z)), contrary
to this hypothesis. Analogously, if ψF (z) /∈ U then z = ψF (z) and hence v ≤ z for all
v ∈ (ψF )−1(ψF (y)), contrary to this hypothesis. Thus y ∈ Fu and z ∈ Fv for some
u, v ∈ U with u ≤ v and y �= Fηv,u(z). There is a set W ⊆ Fu clopen in Fu such
that Fηv,u(z) /∈ W and y ∈ W . Since W is τ -clopen, the set [W ) is also τ -clopen. Clearly
z ∈ Z = YF \ [W ) and y /∈ Z. Thus ΨX ,UF is totally order disconnected, and this completes
the proof that ΨX ,UF is an h-space.

The spaces (y] and (ψF (y)] are isomorphic for every y ∈ YF and, by Corollary 2.6, we
obtain that X ∈ PHV implies that ΨX ,UF ∈ PHV.

To complete the proof that ΨX ,U is a functor, consider functors F,G : U → C and a
natural transformation φ : F → G. Let us denote ΨX ,UF = (YF ;≤, τ) and ΨX ,UG =
(YG;≤, τ). Since for any u, v ∈ U with u ≤ v and for every y ∈ Fv we have φu(Fηv,u(y)) =
Gηv,u(φv(y)), we conclude that ΨX ,Uφ preserves order and has the h-property.

To see that ΨX ,Uφ is continuous, let V ⊆ YG be clopen in ΨX ,UG. Then V \ (ψF )−1(U)
and the finitely many sets V ∩Gv with v ∈ U are clopen in ΨX ,UG. Since every C-morphism
φv : Fv → Gv is continuous, the subset (φv)−1(V ∩ Gv) of Fv is clopen in Fv. But then
the finite union

(ΨX ,Uφ)−1(V ) = (V \ (ψF )−1(U))
⋃

{(φv)−1(V ∩Gv) | v ∈ U}
is clopen in ΨX ,UF , and the continuity of ΨX ,UFφ follows because every h-space has an open
basis formed by clopen sets. Altogether, ΨX ,U is a well-defined functor from CU to PHV,
and it is also clear that ΨX ,U is faithful. It is routine to verify that ψF = ψG ◦ ΨX ,Uφ for
every transformation φ : F → G where F,G ∈ CU, thus ψ = {ψF | FU → C is a functor }
is a surjective transformation from ΨX ,U into the constant functor with the value X . Hence
ΨX ,U : CU → PHV is a functor and ψ : ΨX ,U → ΓX ,U is a natural transformation. It is
then routine to verify (1) and (2).

For an increasing open subset A ⊆ X , let X \ A denote the h-space (X \A;≤, τ) where
both the partial order and the topology on X \A are inherited from X .

Next we generalize the notion of a relatively full embedding for our purposes. Let K be
a category and Φ : K → PHV be a functor. Assume that Z = {ZK | K ∈ Ko} is a family
of sets with ZK ⊆ Max(ΦK) for all K ∈ Ko and G = {µKG → Aut(ΦK) | K ∈ Ko} is a
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family of injective group homomorphisms from a fixed group G. Then we say that Φ is a
(Z,G)-relatively full embedding if

(e0) µK(a)(ZK) = ZK for every element a of the group G and for every K-object K;
(e1) Φ is faithful;
(e2) ZK′ ∩ Im(Φf) �= ∅ for every K-morphism f : K → K ′;
(e3) if f : ΦK → ΦK ′ is an h-map for K-objects K and K ′ then either ZK′ ∩ Im(f) = ∅ or

there exist a K-morphism g : K → K ′ and an element a of G with f = µK′(a) ◦Φg =
Φg ◦ µK(a).

If G is a singleton group then we omit G. Thus if we say that Φ is a Z-relatively full
embedding then Φ is a (Z,G)-relatively full embedding where G is a singleton group.

If W is a proper subvariety of V such that for every K-object K we have (x] ∈ PHW for
all elements x of ΦK \ ZK and (z] /∈ PHW for all z ∈ ZK , then Φ : K → PHV is a W-
relatively full embedding modulo G (and if G is a singleton group then Ψ is a W-relatively
full embedding).

We will develop specific proof techniques for the existence of an A-D family and for
relative var-universality.

An h-space X = (X ;≤, τ) ∈ V is a (U,C)-representing object of V if

(r1) U ⊆ X is functorial and C ⊆ Max(U);
(r2) f(u) = u for every automorphism f of X and every u ∈ U ;
(r3) |Cov(c)| ≥ 2 for all c ∈ C and Cov(c) �= Cov(x) for all c ∈ C and x ∈ X \ {c};
(r4) if f : X \C → X is an h-map then either f = g◦ ι where ι : X \C → X is the inclusion

and g is an automorphism of X or else f is not injective on X \ U .

We say that an h-space X = (X ;≤, τ) ∈ PHV is a (U,C,Z)-testing object of V if

(t1) X is a (U,C)-representing object and Z ⊆ Max(X);
(t2) f(Z) = Z for every automorphism f of X ;
(t3) if z1, z2 ∈ Z then (z1] and (z2] are isomorphic;
(t4) either C ∩Z = ∅ and for every z ∈ Z and c ∈ C there exists no surjective h-map from

(c] onto (z], or C ⊆ Z and (x] is isomorphic to (z] for every x ∈ Max(X) and z ∈ Z
such that there exists a surjective h-map from (x] onto (z];

(t5) for every h-map f : X \ C → X such that f is not injective on X \ U we have
Im(f)∩Z = ∅ and either for every z ∈ Z there exists uz ∈ Cov(z) such that uz /∈ Im(g)
for every h-map g : X \C → X with g � X \U = f � X \U or else for every c ∈ C ∩Z
there exists uc ∈ (c]\C such that every h-map g : X\C → X with g � X\U = f � X\U
is not injective on (uc].

Let us assume that X is a (U,C,Z)-testing object. Then for every F ∈ CU(X ) we set
ZF = (ψF )−1(Z). Let µF : Aut(X ) → Aut(ΨX ,UF ) be a mapping such that for every
automorphism f ∈ Aut(X )

µF f(u) =

{
u if u /∈ X \ U,
f(u) if u ∈ X \ U,

for every element u of ΨX ,UF . Since f is an automorphism of X then, by (r2) and the
fact that ψ is a surjective transformation with (ψF )−1(x) = {x} for all x ∈ X \ U we
conclude that µF (f) preserves order and has the h-property. Since U is a clopen set we
obtain the continuity of µF (f). Thus µF (f) is an h-map and the bijectivity of µF (f)
immediately follows from the definition. Hence µF (f) is an automorphism of ΨX ,UF . By
a straightforward calculation, we find that µF maps the identity mapping to the identity
mapping and preserves composition. Thus µF is a group homomorphism from Aut(X ) to
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Aut(ΨX ,UF ). Clearly, µF is injective. Set Z = {ZF | F ∈ CU(X )} and G = {µF : Aut(X ) →
Aut(ΨX ,UF ) | F ∈ CU(X )}.

Let U = (U ;≤) be a poset with an increasing set C and let F : U → C be a functor.
Then a family {xu | u ∈ U \ C} is called a C-coherent family if
(c1) xu ∈ Fu for all u ∈ U \ C;
(c2) if u, u′ ∈ U \ C with u ≤ u′ then Fηu′,u(xu′ ) = xu.
If for every u0 ∈ U \C and every x ∈ Fu0 there exists a C-coherent family {xu | u ∈ U \C}
such that x = xu0 , then we say that the functor F is C-coherent. Let C(CU ) denote the
full subcategory of CU formed by C-coherent functors from U to C.

Theorem 3.2. If X is a (U,C)-representing object of V then

ΨX ,U : C(CU(X )) → PHV

is a faithful functor and if f : ΨX ,UF → ΨX ,UG is a h-map for F,G ∈ C(CU(X )) then
either there exist a natural transformation φ : F → G and an automorphism g ∈ Aut(X )
with f = µG(g)◦ΨX ,Uφ = ΨX ,Uφ◦µF (g) or else ψG◦f is not injective on X \U . Moreover,
if X is a (U,C,Z)-testing object then ΨX ,U : C(CU(X )) → PHV is a (Z,G)-relatively full
embedding.

Proof. By Theorem 3.1, ΨX ,U : C(CU(X )) → PHV is a faithful functor. Consider an h-map
f : ΨX ,UF → ΨX ,UG for F,G ∈ C(CU(X ). For every C-coherent family F = {xu | u ∈
U \ C} of F define fF : X \ C → ΨX ,UF by

fF(u) =

{
u if u ∈ X \ U,
xu if u ∈ U \ C.

Since U is finite and clopen and because V ∩ (X \ U) is clopen for every clopen set V ⊆
ΨX ,UF , we conclude that fF is continuous. Since the partial orders of X and of ΨX ,UF
coincide on X \U and because xu ≤ xv in ΨX ,UF for u, v ∈ U \C if and only if u ≤ v in X ,
we conclude that fF preserves order and has the h-property. Thus fF : X \C → ΨX ,UF is
an h-map for every C-coherent family F of F . Then ψG ◦ f ◦ fF : X \ C → X is an h-map
for every C-coherent family F of F .

By (r4), either ψG ◦ f ◦ fF = g ◦ ι for g ∈ Aut(X ) and the inclusion ι or ψG ◦ f ◦ fF is
not injective on X \ U . From fF(x) = x for all x ∈ X \ U we infer that ψG ◦ f is injective
in the first case and ψG ◦ f is not injective on X \U in the second case. Suppose that there
exists a C-coherent family F ′ of F such that ψG ◦ f ◦ fF = g ◦ ι for some g ∈ Aut(X ).
Then ψG ◦ f ◦ fF(x) = ψG ◦ f ◦ fF ′(x) for every C-coherent family F of F and every
x ∈ X \ U . Thus ψG ◦ f ◦ fF is injective on X \ U and, by (r4), there exists gF ∈ Aut(X )
with ψG ◦ f ◦ fF = gF ◦ ι. By (r2), g(u) = u for every u ∈ U and every g ∈ Aut(X ), thus
there exists g ∈ Aut(X ) such that g = gF and ψG ◦ f ◦ fF (u) = u for all u ∈ U \C and any
C-coherent family F of F . From this it follows that f(Fu) ⊆ Gu for all u ∈ U \ C.

From (r3) it follows that |Cov(c)| ≥ 2 for all c ∈ C and that Cov(c) �= Cov(x) for all
x ∈ X \ {c}. Consider c ∈ C. By (1), ψF (Cov(x)) = Cov(c) for every x ∈ Fc. Hence
ψG ◦ f(x) = c and therefore f(Fc) ⊆ Gc. We conclude that f(Fu) ⊆ Gu for all u ∈ U . Let
φu be the domain-range restriction of f to Fu and Gu. Then φu is a continuous mapping
from Fu to Gu and since f preserves order we infer that

φv ◦ Fηu,v = Gηu,v ◦ φu

for all u, v ∈ U with u ≤ v. Whence φ = {φu | u ∈ U} : F → G is a natural transformation
such that ΨX ,Uφ(x) = f(x) for all x ∈ ⋃

u∈U Fu and f(x) = g(x) for all x ∈ X \ U . Since
µG(g)(y) = y for all y ∈ ⋃

u∈U Gu and µF (g)(x) = x for all x ∈ ⋃
u∈U Fu we conclude that
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f = ΨX ,Uφ ◦ µF (g) = µG(g) ◦ ΨX ,Uφ or ψG ◦ f is not injective on X \ U . Thus the first
statement holds.

Let X be a (U,C,Z)-testing object. Then (e0) follows from (t2). By (t1), X is a (U,C)-
representing object and, by the foregoing part of the proof, we obtain (e1). For every natural
transformation φ : F → G with F,G ∈ CU we have ΨX ,Uφ(Fu) ⊆ Gu for every u ∈ U , and
since Fu �= ∅ for every u ∈ U we conclude that Im(ΨX ,Uφ) ∩ Gz �= ∅ for every z ∈ Z ∩ U .
By (r1) and (r3), ΨX ,Uφ(X \U) = X \U , thus Im ΨX ,Uφ∩ (ψG)−1(Z) �= ∅ and (e2) holds.

To prove (e3), consider an h-map f : ΨX ,UF → ΨX ,UG for F,G ∈ C(CU(X )) such that
f = µG(g) ◦ ΨX ,Uφ for no pair (g, φ) where g ∈ Aut(X ) and φ : F → G is a natural
transformation. Then, by the foregoing part of the proof, we conclude that ψG ◦ f is not
injective on X \ U . Consider that Im(ψG ◦ f) ∩ Z �= ∅. Then there exist z ∈ Z and
x ∈ Max(ΨX ,UF ) with ψG ◦ f(x) = z. Let y = ψF (x). If y /∈ C then there exists a
C-coherent family F with x = fF(y). Hence ψG ◦ f ◦ fF(y) = z and this is a contradiction
because, by (t5), Im(g)∩Z = ∅ for every h-map g : X \C → X such that g is not injective on
X \U . Thus we can assume that y ∈ C. Since ψF is injective on (x] there exists a mapping
h : (y] → (z] with h◦ψF � (x] = ψG ◦f � (x]. Since ψG ◦f and ψF are h-maps, we infer that
h is also an h-map, and thus it is surjective. Hence, by (t4), C ⊆ Z. Choose a C-coherent
family F then ψG ◦ f ◦ fF is not injective on X \U . By (t5), either there exists uz ∈ Cov(z)
such that uz /∈ Im(g) for every g : X \C → X with g � X \U = ψG ◦ f ◦ fF � X \U or there
exists uy ∈ (y]\C such that every g : X \C → X with g � X \U = ψG ◦f ◦fF � X \U is not
injective on (uy]. In the first case, z = f(x) implies that uz ∈ ψG ◦ f(x]. Thus there exists
vx ∈ (x] \ {x} with f(vx) = uz. Hence vx /∈ Max(X) and thus ψF (vx) = yx /∈ C. Therefore
there exists a C-coherent family F ′ containing vx. Then ψG ◦f ◦fF ′(yx) = ψG ◦f(vx) = ux

but ψG ◦ f ◦ fF ′ � X \ U = ψG ◦ f ◦ fF � X \ U and this is a contradiction. In the second
case, there exists wx ∈ (x] with ψF (wx) = uy because ψF is a h-map and ψF (x) = y. Let
F ′ be a C-coherent family containing wx. Since ψG ◦ f ◦ fF � X \U = ψG ◦ f ◦ fF ′ � X \U
we conclude that ψG ◦ f ◦ fF ′ is not injective on (uy], but fF ′ is injective and thus ψG ◦ f
is not injective on (wx] and whence ψG ◦ f is not injective on (x]. Since (x] is isomorphic
to (y] we conclude, by (t3), that (x] is isomorphic to (z] and this is a contradiction with
ψG ◦ f(x) = z because (x] is finite. Whence Im(f)∩ (ψG)−1(Z) = Im(f)∩ZG = ∅ and (e3)
is true.

To apply Theorem 3.2 in a construction of an A-D family we need the following concepts
and technical statements.

Let P = (P ;≤) be a poset. A functor F : P → C is an isofunctor, if Fηp,q is an
homeomorphism for every p, q ∈ P with p ≤ q. We recall that every continuous bijection
between compact Hausdorff spaces is a homeomorphism. Further a functor F : P → C is
finite if Fp is finite for every p ∈ P .

We claim that if {φi : Fi → F | i ∈ I} is a family of natural transformations between
functors from P into C such that F is finite then there exist a finite functor G : P → C, a
covering family {ρi : Fi → G | i ∈ I} of natural transformations and an injective natural
transformation ν : G → F such that φi = ν ◦ ρi for all i ∈ I. Indeed, for every p ∈ P
let us define Gp =

⋃
i∈I Im(φi)p ⊆ Fp. From the finiteness of Fp it follows that Gp ∈ C.

Consider q, p ∈ P with q ≤ p. If x ∈ Gp then there exist i ∈ I and y ∈ Fip with (φi)p(y) = x.
Hence Fηp,q(x) = Fηp,q ◦ (φi)p(y) = (φi)q ◦ Fiηp,q(y) ∈ Gq. Thus we can define Gηp,q as
the domain-range restriction of Fηp,q and we conclude that G is a finite functor from P
into C and if νp is the inclusion from Gp into Fp then ν : G → F is an injective natural
transformation. For every i ∈ I and p ∈ P , let ρp

i be the range restriction of φp
i . Then, by a

direct calculation, we obtain that ρi : Fi → G is a natural transformation, that φi = ν ◦ ρi

for all i ∈ I and that {ρi | i ∈ I} is a covering family in CP. We shall write G =
⋃

i∈I ρi.
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The technical lemma below gives a stronger version of a diagonalization property of a
factorization system for h-spaces which are ΨX ,U -images of finite isofunctors.

Lemma 3.3. Let X = (X ;≤, τ) be a (U,C,Z)-testing object such that X is finite and ΨX ,U

is a (Z,G)-relatively full embedding. Let {Fi | i ∈ I} and F be C-coherent finite isofunctors
from U = U(X ) to C such that

(1) for every i ∈ I, if α, β : Fi → F are natural transformations, then there exists a
natural equivalence ν : Fi → Fi with α = β ◦ ν;

(2) C �= U .
Let Y = (Y ;≤, τ) be a finite h-space such that there exist an injective h-map g : Y → ΨX ,UF
and a covering family {fi,j : ΨX ,UFi → Y | i ∈ I, j ∈ Ji} of h-maps (the case Ji = ∅ is
allowed) such that

I ′ = {i ∈ I | ∃j ∈ Ji, Im(g ◦ fi,j) ∩ (ψF )−1Z �= ∅}
is a non-empty set. Then there exist a family {αi : Fi → F | i ∈ I ′} of natural transforma-
tions and h-maps h′ : ΨX ,U(

⋃
i∈I′ αi) → Y and h : Y → ΨX ,U(

⋃
i∈I′ αi) such that h ◦ h′ is

the identity map of ΨX ,U(
⋃

i∈I′ αi).

Proof. Assume that X = (X ;≤, τ) is a finite (U,C,Z)-testing object satisfying (2) and
such that ΨX ,U is a relatively (Z,G)-full embedding where Z and G are defined just before
Theorem 3.2, and {Fi | i ∈ I} and F are C-coherent finite isofunctors from U to C satisfying
(1). Let Y = (Y ;≤, τ) be an h-space such that there exists an injective h-map g : Y →
ΨX ,UF and a covering family {fi,j : ΨX ,UFi → Y | i ∈ I, j ∈ Ji} of h-maps (the case Ji = ∅
is allowed) such that

I ′ = {i ∈ I | ∃j ∈ Ji, Im(g ◦ fi,j) ∩ (ψF )−1(Z) �= ∅}
is a non-empty set. For every i ∈ I ′ set

J ′
i = {j ∈ Ji | Im(g ◦ fi,j) ∩ (ψF )−1Z �= ∅}.

Then, by the hypothesis, for every i ∈ I ′ and j ∈ J ′
i there exist a natural transformation

αi,j : Fi → F and an h-automorphism σi,j of X with g ◦ fi,j = ΨX ,U(αi,j) ◦ µFi(σi,j). For
every i ∈ I ′ choose j(i) ∈ J ′

i . By (1), for every i ∈ I ′ and j ∈ J ′
i there exists a natural

equivalence βi,j of Fi with αi,j = αi,j(i) ◦ βi,j . Thus Im(αi,j)u = Im(αi,j(i))u for all u ∈ U .
For simplicity we shall write αi instead of αi,j(i) and we set G =

⋃
i∈I′ αi. By the definition

of union of functors, there exist a family {ρi : Fi → G | i ∈ I ′} of natural transformations
and a natural transformation ν : G → F such that ν ◦ ρi = αi for all i ∈ I ′, the family
{ρi | i ∈ I ′} is covering, and ν is an injective natural transformation.

By Theorem 3.1, {ΨX ,U(ρi) | i ∈ I ′} is a covering family and ΨX ,U(ν) is injective. Thus
{ΨX ,U(ρi ◦ βi,j) ◦ µFi(σi,j) | i ∈ I ′, j ∈ J ′

i} is a covering family (because ΨX ,U(βi,j) and
µFi(σi,j) are h-isomorphisms). Since g is also an injective h-map and

g ◦ fi,j = ΨX ,U(αi,j) ◦ µFi(σi,j) = ΨX ,U(ν) ◦ ΨX ,U(ρi ◦ βi,j) ◦ µFi(σi,j)

for all i ∈ I ′ and j ∈ J ′
i , by the diagonalization property of the factorization system, there

exists an h-map h′ : ΨX ,UG→ Y with fi,j = h′ ◦ΨX ,U(ρi ◦βi,j) ◦µFi(σi,j) for all i ∈ I ′ and
j ∈ J ′

i , and g ◦ h′ = ΨX ,U(ν). By Theorem 3.1, ΨX ,U(ν) is injective and hence the h-map
h′ is also injective.

It remains to produce an h-map h : Y → YG such that h ◦ h′ is the identity mapping of
ΨX ,UG.

First, for any y ∈ Y of the form y = h′(x) for some x ∈ YG we set h(y) = x. Then
h((y]) = (h(y)] for all y ∈ Im(h′) because (h′(y)] ⊆ Im(h′) for all y ∈ Im(h′). Thus h has
the h-property on Im(h′) ⊆ Y , and h ◦ h′ will be the identity on ΨX ,UG regardless of how
h will be defined on Y \ Im(h′).
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Let us denote Y ′ = Y \ Im(h′) and Y ′′ = (ψF ◦ g)−1(X \U). Then Y ′ ∩ Y ′′ = ∅ because
(ψF )−1(X \ U) ⊆ Im(ΨX ,Uαi) for all i ∈ I ′ and thus Y ′′ ⊆ Im(h′).

Consider y ∈ Y \ (Y ′ ∪ Y ′′). Then there exist i ∈ I ′ and a ∈ Fiu for u = ψF ◦ g(y) ∈ U
with fi,j(i)(a) = y and (y] ⊆ Im(fi,j(i)) ⊆ Im(h′). If y′ ∈ [y) then g(y′) ≥ g(y) and thus
ψG ◦ g(y′) ≥ ψG ◦ g(y). From the injectivity of g and of ψG on (u] for every u ∈ ΨX ,UF
we infer that ψG ◦ g(y′) = ψG ◦ g(y) if and only if y′ = y. Then either ψG ◦ g(y′) ∈ U or
ψG ◦ g(y′) ∈ X \ U .

First we assume that ψG ◦g(y′) = u′ ∈ U . Since Fi is an isofunctor, there exists a′ ∈ Fiu
′

with Fiηu′,u(a′) = a. Then g(y′) ≥ g(y) = g◦fi,j(a) ≤ g◦fi,j(a′) and g(y′), g◦fi,j(a′) ∈ Fu′.
Since F is an isofunctor we conclude that g(y′) = g ◦ fi,j(a′) and the injectivity of g implies
fi,j(a′) = y′. If ψG ◦ g(y′) = w /∈ X \ U , then g ◦ fi,j = ΨX ,U(αi,j) ◦ µFi(σi,j) implies, by
(r2), that

g ◦ fi,j(µFi(σi,j)−1(w)) = ΨX ,U(αi,j) ◦ µFi(σi,j)(µFi(σi,j)−1(w)) = ΨX ,U(αi,j)(w) = w.

From the injectivity of g it then follows that fi,j(w) = y′ and thus y′ ∈ Im(h′). Therefore
we conclude that [y) ⊆ Im(fi,j(i)) ⊆ Im(h′). Whence (Y ′] ⊆ Y ′ ∪ Y ′′ and [Y ′) ⊆ Y ′.

Consider y ∈ Y ′. Then there exist i ∈ I, j ∈ Ji and a ∈ Fi with fi,j(a) = y′ and either
i /∈ I ′ or i ∈ I ′ and j /∈ J ′

i . Hence g(y) /∈ (ψF )−1(Z).
Since I ′ �= ∅ we can select i ∈ I ′ and a C-coherent family {xv | v ∈ U \C} of Fi because

Fi is C-coherent, any space in C is non-empty and, by (2), C �= U . Then {ΨX ,U(αi)v(xv) |
v ∈ U \ C} ⊆ ΨX ,UG is a C-coherent family of F . Thus we can fix a C-coherent family of
{xv | v ∈ U \ C} ⊆ ΨX ,UG of F .

Since C ⊆ Z we infer ψG ◦ g(y) /∈ Z for all y ∈ Y ′ and thus there exist a C-coherent
family {x′v | v ∈ U \ C} such that g(y) = x′w for some w ∈ U \ C because F is C-coherent.
Since F is isofunctor two distinct C-coherent families are disjoint. Thus for every v ∈ U \C
we set h(g−1(x′v)) = xv. Then h is defined on Y , preserves order and has the h-property.

Since X is finite we obtain that ΨX ,UF is a finite h-space and also ΨX ,UG is a finite
h-space. The finiteness of Y implies the continuity of h. Therefore h : Y → ΨX ,UG is an
h-map such that h ◦ h′ is the identity of ΨX ,UG.

Let P(ω) be the set of all finite subsets of the set ω of all natural numbers and let P(ω0)
be the subset of P(ω) consisting of all non-empty finite subsets of ω. Denote N the poset
of all members of P(ω) ordered by the reversed inclusion.

Theorem 3.4. Let X be a finite (U,C,Z)-testing object of V such that U(X ) is order
connected, Z ∩ U �= ∅ and C �= U . Let Φ : N → CU be a functor such that

(1) if α : ΦA→ ΦB is a natural transformation for A,B ∈ P(ω0), then A ⊆ B and there
exists a natural equivalence µ : ΦA→ ΦA with α = ΦηA,B ◦ µ;

(2) ΦA is a finite C-coherent isofunctor for all A ∈ P(ω0);
(3) if A,B ∈ P(ω0) with A ⊆ B then ΦηA,B is an injective natural transformation;
(4) if A,B,C ∈ P(ω0) then A = B∪C if and only if {ΦηC,A,ΦηB,A} is a covering family.

Then V contains an A-D family and thus V is Q-universal.

Proof. Set Λ = ΨX ,U ◦ Φ. Since X is finite we infer, by (2), that ΛA is finite for every
A ∈ P(ω0). We prove that the family {ΛA | A ∈ P(ω0)} satisfies the following conditions:

(dp2) if A,B1, B2 ∈ P(ω0) with A = B1 ∪B2 then {ΛηB1,A,ΛηB2,A} is a covering family;
(dp3) if A,B ∈ P(ω0) are such that the family of all h-maps from ΛA into ΛB is a covering

family then A = B;
(dp4) if Y and Z are finite h-spaces such that for a finite subset A ⊆ P(ω0) the families

{f : ΛB → Y | B ∈ A} and {f : ΛB → Z | B ∈ A} of h-maps are covering and if
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A ∈ P(ω0) is a set such that there exists a surjective h-map g : Y ∨Z → ΛA then one
of the following conditions holds:

- there exists a surjective h-map h : Y → ΛA,
- there exists a surjective h-map h : Z → ΛA,
- there exist A1, A2 ∈ P(ω) with A = A1∪A2 and surjective h-maps h1 : Y → ΛA1,
h2 : Z → ΛA2.

Then, by Priestley duality, the singleton Heyting algebra and the family of algebras dual
to the members of {ΛA | A ∈ P(ω0)} constitute an A-D family and by Adams-Dziobiak
theorem [3], V is Q-universal.

The condition (dp2) follows from (4) and Theorem 3.1.
Now we prove for a finite A ⊆ P(ω0) and A ∈ P(ω0) that the family of all h-maps from

ΛB, B ∈ A to ΛA is covering if and only if there exists A′ ⊆ A with A =
⋃

B∈A′ B. If
there exists A′ ⊆ A with A =

⋃
B∈A′ B then, by (4), we obtain that {ΛηB,A | B ∈ A′} is

a covering family, by an easy induction over |A′|. Thus we assume that the family of all
h-maps from ΛB, B ∈ A into ΛA is covering. Let us define

A′ = {B ∈ A | ∃ an h-map f : ΛB → ΛA, with Im(f) ∩ (ψΦA)−1Z �= ∅}
and A′ =

⋃
B∈A′ B. Since X is a (U,C,Z)-testing object of V we conclude, by Theorem

3.2, that ΨX ,U : C(CU ) → PHV is a (G,Z)-relatively full embedding. Thus for an h-map
f : ΛB → ΛA and for B ∈ A such that Im(ψΦA) ◦ f ∩ Z �= ∅ there exist an automorphism
α ∈ Aut(X ) and a natural transformation β : ΦB → ΦA with f = ΨX ,Uβ ◦ µB(α) =
µA(α) ◦ ΨX ,Uβ (µA is defined just before Theorem 3.2). Whence, by (1), B ⊆ A and there
exists a natural equivalence ν of ΦA such that β = ΦηB,A ◦ ν and thus f = ΨX ,U(ΦηB,A ◦
ν) ◦ µB(α) = ΛηB,A ◦ ΨX ,Uν ◦ µB(α). As a consequence we obtain that A′ ⊆ A and
f = ΛηA′,A ◦ ΛB,A′ ◦ ΨX ,Uν ◦ µB(α). Hence Im(f) ⊆ Im(ΛηA′,A). We recall that ΛC is
finite for all C ∈ P(ω). Since A is finite there are only finitely many h-maps from ΛB,
B ∈ A to ΛA. Since the family of h-maps from ΛB, B ∈ A to ΛA is covering we conclude
that (ψΦA)−1(Z) ⊆ ⋃

Im(f) where the union is taken over all h-maps f : ΛB → ΛA
with Im(f) ∩ (ψΦA)−1(Z) �= ∅ and hence we infer that (ψΦA)−1(Z) ⊆ Im ΛηA′,A. Thus
for z ∈ U ∩ Z we deduce that (ΛηA′,A)z is surjective and, by (3) and Theorem 3.1, it is
also injective. Hence (ΛηA′,A)z is a homeomorphism, and, by Theorem 3.1, (ΦηA′,A)z is a
homeomorphism. By (2), ΦA′ and ΦA are finite isofunctors and, thus for u, v ∈ U with
u ≤ v we have that (ΦA)ηv,u and (ΦA′)ηv,u are homeomorphisms. Hence (ΦηA′,A)u is
a homeomorphism if and only if (ΦηA′,A)v is a homeomorphism and since U(X ) is order
connected and z ∈ U we infer that (ΦηA′,A)u is a homeomorphism for all u ∈ U . Thus,
ΦηA′,A is a natural equivalence and, by (1), we obtain that A = A′ and the proof of (dp2)
is complete.

To prove (dp3) consider A,B ∈ P(ω0) such that the family of h-maps from ΛB in ΛA is
covering. Then by the foregoing part of the proof, for A = {B} we conclude that A = B
and (dp3) follows.

To prove (dp4), assume that there exist finite h-spaces Y and Z, and A ∈ P(ω0) such
that there exist a surjective h-map g : Y ∨ Z → ΛA and a finite subset A ⊆ P(ω0) and
covering families {f : ΛB → Y | B ∈ A} and {f : ΛB → Z | B ∈ A} of h-maps. Let
ι : Y → Y ∨ Z be the sum inclusion. Then there exist a surjective h-map h1 : Y → Y ′ and
an injective h-map h2 : Y ′ → ΛA with h2 ◦ h1 = g ◦ ι. Since the assumption (1) of Lemma
3.3 follows from (1) and the assumptions (2) and (3) of Lemma 3.3 are our assumptions on
X , U , C and Z, we conclude that the hypotheses of Lemma 3.3 are satisfied for the family
of all h-maps from ΛB with B ∈ A to Y ′ and h2 : Y ′ → ΛA. Let us denote

A′ = {B ∈ A | ∃ an h-map f : ΛB → Y ′ with Imh2 ◦ f ∩ (ψΦA)−1(Z) �= ∅}.
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If A′ �= ∅ then, by Lemma 3.3, there exists a surjective h-map g1 : Y ′ → ⋃
B∈A′ ΛηB,A. If we

set A1 =
⋃

B∈A′ B then from (1), (2) and (3) we infer that
⋃

B∈A′ ΛηB,A = ΛA1 and thus
g1 ◦ h1 : Y → ΛA1 is a surjective h-map. If A′ = ∅ then we set A1 = ∅. If υ : Z → Y ∨ Z
is the sum inclusion then, analogously, there exist a surjective h-map k1 : Z → Z ′ and an
injective h-map k2 : Z ′ → ΛA with k2 ◦ k1 = g ◦ υ. Let us denote

A′′ = {B ∈ A | ∃f : ΛB → Z ′ with Im(k2 ◦ f) ∩ (ψΦA)−1(Z) �= ∅}.
If A′′ �= ∅ then, by Lemma 3.3, there exists a surjective h-map g2 : Z ′ → ⋃

B∈A′′ ΛηB,A.
Analogously to the above, we set A2 =

⋃
B∈A′′ B and then

⋃
B∈A′′ ΛηB,A = ΛA2, thus

g2 ◦ k1 : Z → ΛA2 is a surjective h-map. If A′′ = ∅ then we set A2 = ∅. Hence to complete
the proof of (dp4) it suffices to show that A = A1 ∪A2. Since {f : ΛB → Y | B ∈ A} and
{f : ΛB → Z | B ∈ A} are covering families of h-maps and since g : Y ∨ Z → ΛA is a
surjective h-map we infer that the family {f : ΛB → ΛA | B ∈ A} of all h-maps from ΛG,
B ∈ A into ΛA is a covering family of h-maps. Hence, by the foregoing part of the proof,
A = A1 ∪A2.

Let P = (P ;≤) be a poset, then a covering pair (a, b) is called f -covering pair if b ∈
Max(P ) and (a] ∩ (a′] = ∅ for every a′ ∈ Cov(b) with a �= a′.

Let {pi}∞i=0 be an increasing sequence of prime numbers with p0 ≥ 11.
Let P = (P ;≤) be a poset and let (a, b) be a f -covering pair of P such that the poset

(P ;�) is order connected where � is the least partial order such that u � v for all covering
pairs u ≤ v of P other than (a, b). Let us denote P \ {a, b} = (P ;�). Define a functor
Φ : N → C(CP ) as follows:

• for an A ⊆ P(ω) define (ΦA)p = {(p, i, j) | j ∈ A, i ∈ pj} for all p ∈ P with the
discrete topology and for p, q ∈ P with q ≤ p define

(ΦA)ηp,q(p, i, j) =

{
(q, i+ 1 mod pj , j) if q ≤ a < b = p

(q, i, j) else.

Since (ΦA)p is finite and non-empty for all p ∈ P and (a, b) is a f -covering pair of P
we claim that ΦA is a functor from P into C because, by the definition of f -covering
pair, for u, v ∈ P with u ≤ v < b we have u ≤ a if and only if v ≤ a.

• if A,B ∈ P(ω) and A ⊆ B then (ΦηA,B)p(p, i, j) = (p, i, j) for all p ∈ P , j ∈ A and i ∈
pj . Since A ⊆ B, the definition of (ΦηA,B)p is correct for all p ∈ P . From the finiteness
of (ΦA)p follows the continuity of (ΦηA,B)p for all p ∈ P . It is straightforward to verify
that (ΦB)ηp,q ◦ (ΦηA,B)p = (ΦηA,B)q ◦ (ΦA)ηp,q for all p, q ∈ P with q ≤ p. Hence
ΦηA,B : ΦA→ ΦB is a natural transformation and therefore Φ : N → CP is a functor.

Finally, set C = {b}. We prove

Theorem 3.5. If P is a poset with a f -covering pair a < b such that P \ {a, b} is order
connected then Φ : N → CP is a faithful functor such that

(1) (ΦA)p is finite and non-empty for all A ∈ P(ω) and all p ∈ P ;
(2) (ΦηA,B)p is injective for all A,B ∈ P(ω) with A ⊆ B and all p ∈ P ;
(3) if A,B1, B2 ∈ P(ω) then A = B1 ∪B2 iff {(ΦηB1,A)p, (ΦηB2,A)p} is a covering family

of ΦAp for all p ∈ P , hence {ΦηB1,A,ΦηB2,A} is a covering family in CP ;
(4) if φ : ΦA → ΦB is a natural transformation then A ⊆ B and there exists a natural

equivalence µ : ΦA→ ΦA with φ = ΦηA,B ◦ µ;
(5) for all A ∈ P(ω), ΦA is a C-coherent finite isofunctor;
(6) (ΨA)ηp,q is the identity mapping for all A ∈ P(ω) and all p, q ∈ P such that q ≤ p

and q /∈ (a] or b �= p.
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Proof. By the foregoing note, Φ : N → C(CP) is a functor such that ΦA is a finite isofunctor
for all A ∈ P(ω). A verification of faithfulness of Φ and of statements (1), (2), (3), (5), and
(6) is straightforward. It remains to prove the statement (4).

Let φ : ΦA → ΦB be a natural transformation. If p, q ∈ P with q ≤ p and q /∈ (a] or
b �= p then

φq(q, i, j) = φq ◦ (ΦA)ηp,q(p, i, j) = (ΦB)ηp,q ◦ φp(p, i, j)
and hence there exists a mapping

f : {(i, j) | j ∈ A, i ∈ pj} → {(i, j) | j ∈ B, i ∈ pj}
with φp(p, i, j) = (p, f(i, j)) for all p ∈ P because (P ;�) is order connected. From

φa ◦ (ΦA)ηb,a(b, i, j) = (ΦB)ηb,a ◦ φb(b, i, j)

it follows that if f(i, j) = (k, l) then f(i+ 1 mod pj, j) = (k + 1 mod pl, l) because

(ΦC)ηb,a(b, i, j) = (b, i+ 1 mod pj , j)

for all C ∈ P(ω), j ∈ C and i ∈ pj . Since pj and pl are primes we conclude that j = l and
whence A ⊆ B and f(i, j) = (k, j) for all j ∈ A and i, k ∈ pj. Further if f(i, j) = (k, j) then
f(i+ l mod pj , j) = (k + l mod pj , j) for all l. Conversely, if k = {kj | j ∈ A} is a family of
natural numbers kj ∈ pj then we define (µk)p(p, i, j) = (p, i + kj mod pj , j) for all j ∈ A,
i ∈ pj and p ∈ P . By a direct calculation, we obtain that µk = {(µk)p | p ∈ P} is a natural
equivalence of ΦA (we exploit the finiteness of (ΦA)p for all p ∈ P ). If f(0, j) = (kj , j) then
φ = ΦηA,B ◦ µk for k = {kj | j ∈ A} and the proof is complete.

We say that a finite h-space X = (X ;≤, τ) ∈ PHV is a standard Q-testing object of
V if there exist a functorial set U ⊆ X of (X ;≤) and a f -covering pair a < b of U such
that U(X ) \ {a, b} is order connected and a set Z ⊆ Max(X) such that b ∈ Z and X is a
(U,C,Z)-testing object for C = {b}. Observe that C �= U .

Corollary 3.6. A finitely generated variety V of Heyting algebras contains an A-D family
and thus it is Q-universal whenever there exists a standard Q-testing object X of V.

Proof. If X is a standard Q-testing object of V, then U and a < b satisfy the hypotheses of
Theorem 3.5. The functor Φ from Theorem 3.5 satisfies the hypotheses of Theorem 3.4 and
X satisfies the hypotheses of Theorem 3.4 on testing object (for C = {b}). An application
of Theorem 3.4 then completes the proof.

Next we prepare for ‘testing’ relative universality.
Let A(1, 1) be the category of all unary algebras with two unary operations and all

their homomorphisms, let D be the variety of all distributive (0, 1)-lattices and all their
(0, 1)-homomorphisms. Let us define a category L whose objects are (L; τ,∨,∧, 0, 1, α, β)
where (L; τ) is an object of C, (L;∨,∧, 0, 1) is an object of D, (L;α, β) is an object of
A(1, 1) such that ∨ and ∧ are continuous mappings from (L; τ)2 to (L; τ) and α and β
are continuous mappings from (L; τ) to itself, and L-morphisms from (L; τ,∨,∧, 0, 1, α, β)
into (L′; τ,∨,∧, 0, 1, α, β) are all mappings f : L → L′ such that f : (L; τ) → (L′; τ) is a
morphism of C, f : (L;∨,∧, 0, 1) → (L′;∨,∧, 0, 1) is a morphism of D and f : (L;α, β) →
(L′;α, β) is a morphism of A(1, 1). We recall

Theorem 3.7 ([5]). There is a contravariant faithful full functor $Φ : A(1, 1) → L such
that

(1) (X ;α, β) is a finite algebra if and only if Φ(X ;α, β) is a finite object of L;
(2) if (X ;α, β) and (X ;α′, β′) are unary algebras with the same underlying set X and

if Φ(X,α, β) = (L; τ,∨,∧, 0, 1, α, β) and Φ(X,α′, β′) = (L′; τ,∨,∧, 0, 1, α, β) then we
have (L;∨,∧, 0, 1) = (L′;∨,∧, 0, 1) and (L; τ) = (L′; τ).



192 VÁCLAV KOUBEK AND JIŘÍ SICHLER

Let U = (U ;≤) be a poset and V ⊆ U its increasing subset, and let E = {(ui, vi) | i ∈ 7}
be a family of seven distinct f -covering pairs such that
(u1) V is order connected;
(u2) the poset (U \ V ;�) is order connected; here � is the least order such that u � v for

u, v ∈ U \ V if u ∈ Cov(v) in U and (u, v) �= (ui, vi) for i ∈ 7;
(u3) ui ∈ U \ V for all i ∈ 7, vi ∈ V for i ∈ 3 and vi ∈ U \ V for i = 3, 4, 5, 6;
(u4) there exist v ∈ V , u ∈ U \ V such that u ∈ Cov(v) and (u, v) �= (ui, vi) for all i ∈ 3.
Then we say that U = (U, V,E = {(ui, vi) | i ∈ 7}) is a u-triple. For a u-triple U = (U, V,E)
we shall define a functor ΩU : L → CU . For an L-object L = (L; τ,∨,∧, 0, 1, α, β), let
ΩU(L) = F be a functor from U to C given by

• Fu = (L; τ)2 for u ∈ V and Fu = (L; τ) for u ∈ U \ V ;
• if u, v ∈ V with u ≤ v then Fηv,u is the identity of L2;
• if u, v ∈ U \ V with u ≤ v then

Fηv,u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if u ≤ u3 < v3 = v,

β if u ≤ u4 < v4 = v,

c0 if u ≤ u5 < v5 = v,

c1 if u ≤ u6 < v6 = v,

1L if either v �= vj for all j = 3, 4, 5, 6
or v = vj and u /∈ (uj ] for some j = 3, 4, 5, 6,

where cx is the constant mapping with the value x and 1X is the identity mapping of
X ;

• if v ∈ V and u ∈ U \ V are such that u ≤ v then for all x, y ∈ L

Fηv,u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∨ y if u ≤ u0 < v0 = v,

x ∧ y if u ≤ u1 < v1 = v,

y if u ≤ u2 < v2 = v,

x if either v �= vj for j ∈ 3
or v = vj and u /∈ (uj ] for some j ∈ 3.

For any L-morphism f : (L; τ,∨,∧, 0, 1, α, β) → (L′; τ,∨,∧, 0, 1, α, β), let ΩU(f)u = f for
u ∈ U \ V and ΩU(f)u = f × f for u ∈ V .

Set C = [{vi | i ∈ 7}).
Proposition 3.8. Let U = (U, V,E) be a u-triple. Then ΩU : L → CU is a full embedding
such that ΩU(L) is C-coherent for all L-objects L. Moreover, ΩULu is finite for all u ∈ U
whenever L is finite.

Proof. First we prove that ΩU(L) = F is a correctly defined functor from U to C. Let
L = (L; τ,∨,∧, 0, 1, α, β) be an L-object. Clearly, Fu ∈ C for every u ∈ U and Fηu,v is a
continuous mapping for every u, v ∈ U with v ≤ u. By the definition of f -covering pair, for
every u, v ∈ U with u ≤ v there exists at most one i ∈ 7 with u ≤ ui < vi = v and hence
the definition of Fηu,v is correct. From the definition of a f -covering pair it follows that
if u, v ∈ U with u ≤ v < vj for some j ∈ 7 then u ∈ (uj ] if and only if v ∈ (uj ]. Hence
Fηw,u = Fηv,u ◦ Fηw,v and F is a functor from U to C. Verification that F is C-coherent
is straightforward.

Let f : L = (L; τ,∨,∧, 0, 1, α, β) → L′ = (L′; τ,∨∧, 0, 1, α, β) be an L-morphism. From
the continuity of f it follows that (ΩUf)u is continuous for all u ∈ U . It is clear that
ΩUf commutes with both projections and the identity mappings. Since f : (L;∨,∧, 0, 1) →
(L′;∨,∧, 0, 1) and f : (L;α, β) → (L′;α, β) are homomorphisms, ΩUf commutes with ∨,
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∧, α, β and the two constant mappings with values 0 or 1. Whence ΩUf is a natural
transformation from ΩU(L) to ΩU(L′).

Since (f × f) ◦ (g × g) = (f ◦ g)× (f ◦ g), we have ΩUf ◦ ΩUg = ΩU(f ◦ g). Hence ΩU is
a functor from L into C(CU). It is clear that ΩU is faithful. If L is finite it is easy to see
that ΩULu is finite for all u ∈ U .

It remains to prove that ΩU is full. Let g : ΩU(L) → ΩU(L′) be a transformation. By
the definition of U, there exists u ∈ U \ V . Set f = gu. Then the mapping f from (L; τ) to
(L′; τ) is continuous because gu from ΩU(L)u = (L; τ) to ΩU(L′)u = (L′; τ) is continuous.
By (u1) and (u2), f = gu for all u ∈ U \V and gv = gv′

for all v, v′ ∈ V because for u, v ∈ V
or u, v ∈ U \ V with u ≤ v, ΩU(L)(ηv,u) is the identity map whenever u ≤ ui < vi ≤ v for
no i ∈ 7. By (u4), there exist v ∈ V and u ∈ U with u ≤ v and u ≤ ui < vi ≤ v for no
i ∈ 7. If πj (or ρj) is the j-th projection from L2 to L (or (L′)2 to L′, respectively), then,
by the definition of ΩU, for v ∈ V we have f ◦ πj = ρj ◦ gv for both j = 1, 2. Whence, by
(u1), gv = f × f and thus f × f = gv′

for all v′ ∈ V . From the definition of (ΩUL)ηui,vi and
(ΩUL′)ηui,vi for i ∈ 7 it follows that f preserves ∨, ∧, commutes with α and β and f(0) = 0
and f(1) = 1. Thus f : L → L′ is an L-morphism with ΩUf = g. Hence ΩU : L → CU is a
full embedding.

Let W be a proper subvariety of V. We say that an h-space X = (X ;≤, τ) ∈ PHV is a
universal testing object of V with respect to W if there exist a functorial set U ⊆ X of X , an
increasing subset V ⊆ U , f -covering pairs (ui, vi) of U(X ) for i ∈ 7 and a set Z ⊆ Max(X)
such that
(v1) (U(X ), V, {(ui, vi} | i ∈ 7}) is a u-triple;
(v2) X is a (U,C,Z)-testing object of V for C = [{vi | i ∈ 7}) ⊆ Z;
(v3) for x ∈ X , (x] belongs to PHW if and only if x /∈ Z.

Combining Theorems 3.2 and 3.7 with Proposition 3.8 we obtain

Theorem 3.9. If there exists a universal testing object X of V with respect to W then V is
W-relatively alg-universal modulo Aut(X ). If X is automorphism free then V is W-relatively
alg-universal, if X is finite then V is W-relatively ff -alg-universal modulo Aut(X ), and if
X is finite and automorphism free then V is W-relatively ff -alg universal.

Proof. By Theorem 3.2, the functor ΨX ,U : C(CU ) → PHV is a (Z,G)-relatively full em-
bedding for Z = {ZF | F ∈ C(CU(X ))} and G = {µF | F ∈ C(CU(X ))} defined just before
Theorem 3.2. By Proposition 3.8, ΨX ,U ◦ΩU is also a (Z,G)-relatively full embedding. From
(v3) and from Theorem 3.1 it follows for (x] ∈ ΨX ,UF with F ∈ C(CU ) that x ∈ PHW if and
only if x /∈ ZF . Thus if L1 and L2 are L-objects and f : ΨX ,U ◦ΩU(L1) → ΨX ,U ◦ΩU(L2) is
an h-map then Im(f) /∈ PHW if and only if there exist an L-morphism g : L1 → L2 and an
automorphism α ∈ Aut(X ) such that f = ΨX ,U ◦ΩU(g) ◦ µL1(α) = µL2(α) ◦ΨX ,U ◦ΩU(g).
Whence, by Theorem 3.7, V is W-relatively alg-universal modulo the group Aut(X ). If,
moreover, X is finite then ΨX ,U(ΩUL)) is finite if and only if L is finite and hence V is
W-relatively ff -alg-universal modulo group Aut(X ). The rest is straightforward.

Corollary 3.10. If W is a proper subvariety of V and X is a finite universal testing object
of V with respect to W then X is also a standard Q-testing object. Thus V contains an
A-D family and it is Q-universal.

4. Directed graphs

In this section we use special finite graphs in a construction of testing objects in several
finitely generated varieties of Heyting algebras. A few notions concerning digraphs are
needed.
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We recall that a digraph is a pair (X,R) in which X is a set and R ⊆ X ×X , and that
a digraph homomorphism from (X,R) into (X ′, R′) is a mapping f : X → X ′ such that
(f(x), f(y)) ∈ R′ for all (x, y) ∈ R. A digraph (X,R) is

- reflexive if (x, x) ∈ R for all x ∈ X ;
- antireflexive if (x, x) /∈ R for all x ∈ X ;
- antisymmetric if (x, y), (y, x) ∈ R implies x = y.

For any digraph G = (X,R), respectively denote Gr = (X,Rr) and Ga = (X,Ra)
its reflexive and antireflexive modifications, that is, let Rr = R ∪ {(x, x) | x ∈ X} and
Ra = R \ {(x, x) | x ∈ X}.

Consider the finite reflexive antisymmetric graph G0 = (A,B) shown in Figure 4 (where
all the loops (ai, ai) are omitted); denote A = {ai | i ∈ 5} the set of all its vertices and B
the set of all its edges.

a0 a1

a3 a2

a4

The digraph G0

Figure 4

Z. Hedrĺın described digraph homomorphisms from G0.

Lemma 4.1 ([8] or [22]). Any digraph homomorphism from G0 to an antisymmetric graph
G is either constant or injective. Moreover, the identity mapping is the only injective digraph
endomorphism of G0.

We use the digraph G0 in our construction.
Let W = A×{0, 1, . . .14}/ ∼ where ∼ is the least equivalence on A×{0, 1, . . . , 14} such

that (a3, j) ∼ (a0, j+ 1) and (a2, j) ∼ (a1, j+ 1) for all j ∈ {0, 1, . . . , 13}. If [x] denotes the
equivalence class of ∼ containing x ∈ A× {0, 1, . . . , 14} then set

S0 = {([x], [y]) | ∃(u, v) ∈ B, ∃j ∈ {0, 1, . . .14}, x = (u, j), y = (v, j)},
S1 = S0 ∪ {([(a4, 2k)], [(a4, 2j)]) | j ∈ {0, 1, 2, 3, 4}, k ∈ {5, 6, 7}}.

Thus (W,S0) is a ‘chain’ of fifteen successsive copies of G0 in which any two successive copies
ofG0 are amalgamated at their opposing vertical edges, and (W,S1) is obtained from (W,S0)
by adding fifteen edges connecting the ‘center’ points of certain even-numbered copies of
G0 in (W,S0).

Next we prove a technical lemma about these two graphs.

Lemma 4.2. A mapping f : W → W is a digraph homomorphism from (W,S0) into
(W,S1) if and only if it is a constant or the identity.

Proof. Since S0 ⊆ S1 and (W,S1) is a reflexive graph it is clear that the identity mapping
of W and any constant mapping from W into itself is a digraph homomorphism from
(W,S0) to (W,S1). Conversely, let f : (W,S0) → (W,S1) be a digraph homomorphism.
For j ∈ {0, 1, . . . , 14} let gj : A → W be a mapping such that gj(ak) = [(ak, j)] for
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all k ∈ {0, 1, . . . , 14}. Then gj : G0 → (W,S0) is a digraph homomorphism for each
j ∈ {0, 1, . . .14}. Since | Im(gj) ∩ Im(gj+1)| = 2 for all j ∈ {0, 1, . . . , 13} we conclude, by
Lemma 4.1, that f ◦ gj is a constant mapping if and only if f ◦ gj+1 is a constant mapping.
Moreover, if f ◦gj and f ◦gj+1 are constant mappings then Im(f ◦gj) = Im(f ◦gj+1). Thus
either f ◦ gj are injective mappings for all j ∈ {0, 1, . . . , 14} or there exists x ∈W such that
f ◦ gj is a constant mapping with value x for all j ∈ {0, 1, . . . , 14}. From W =

⋃
j∈15 Im(gj)

it follows that in the second case, f is a constant mapping with value x. Thus it suffices
to consider the first case. Observe that the sets T1 = {(a3, a0), (a0, a4), (a4, a3)}, T2 =
{(a1, a0), (a0, a4), (a4, a1)}, T3 = {(a2, a1), (a2, a4), (a4, a1)} of B are three pairwise distinct
cycles in (A,B) containing a4 such that Ti and Ti+1 have a common edge for i = 1, 2.
Then f ◦ gj(a4) must have the same property because f ◦ gj is injective. But an element
x of W is contained in three distinct cycles T ′

1, T
′
2 and T ′

3 such that T ′
i and T ′

i+1 have a
common edge for i = 1, 2 if and only if x = gj(a4) for some j ∈ {0, 1, . . . , 14}. Therefore, by
Lemma 4.1, for every j ∈ {0, 1, . . . , 14} there exists k(j) ∈ {0, 1, . . . , 12} with f ◦ gj = gk(j).
From | Im(gj) ∩ Im(gj+1)| = 2 it follows that k(j + 1) = k(j) + 1 and thus k(j) = j for all
j ∈ {0, 1, . . . , 14} and W =

⋃
j∈15 Im(gj) implies that f is the identity mapping.

We say that a digraph (X,R) is strongly connected if for every ordered pair (x, y) of
distinct vertices there exists a sequence x0, x1, . . . , xl of vertices such that x = x0, y = xl

and (xi, xi+1) ∈ R for all i = 0, 1, . . . , l − 1. Let DG0 denote the category of all finite,
reflexive, antisymmetric and strongly connected digraphs with at least two vertices and all
their digraph homomorphisms. Clearly, (W,S0) and (W,S1) belong to DG0.

Let S = (S;≤, τ) be a finite h-space such that Max(S) = {s0}, Cov(s0) = {s1, s2},
Cov(s1) = {s3}, |Cov(s2)| �= 1, and (s2] \ {s2} = (s3] \ {s3} = S \ {si | i = 0, 1, 2, 3} = T .
The h-spaces Q3, Q4 and Q5 of Figure 5 below are instances of such a space S. Observe that
Cov(s2) = Cov(s3) and that any automorphism f satisfies f(si) = si for all i = 0, 1, 2, 3 for
each of these three spaces.

Let S0 be the h-space S/θ where θ is the least equivalence on S with s0θs1 and s2θs3.
For the h-spaces Q3, Q4 and Q5 of Figure 5, their respective quotients R3, R4 and R5 are
also shown in Figure 5. Let S1 be the h-space S/θ1 where θ1 is the equivalence on S whose
only non-singleton class is T . The properties of S immediately imply that both S0 and S1

are quotient h-spaces of S via the maps whose respective kernels are defined above, and
that their associated mappings are h-maps from S onto S0 and S1, respectively

For the variety V = Var(S), we now construct an embedding of DG0 into PHV.
Recalling that T = S \ {s0, . . . , s3}, for any finite digraph G = (X,R) ∈ DG0 define

ΛG = (YG;≤, τ) such that YG = T ∪ (X × {0, 1})∪Ra (we assume that T , X × {0, 1} and
Ra are pairwise disjoint), ≤ is the least partial order such that

(•) if u, v ∈ T then u ≤ v if and only if u ≤ v in (S;≤, τ);
(•) for all u ∈ T and x ∈ X we have u ≤ (x, 0) ≤ (x, 1);
(•) if (x, y) ∈ Ra then (x, 1), (y, 0) ≤ (x, y).

Let τ be the discrete topology on YG. For a digraph homomorphism f : (X,R) → (X ′, R′) ∈
DG0 define Λf by

Λf(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u if u ∈ T,

(f(x), i) if u = (x, i) ∈ X × {0, 1},
(f(x), f(y)) if u = (x, y) ∈ Ra and f(x) �= f(y),
(f(x), 0) if u = (x, y) ∈ Ra and f(x) = f(y).

The lemma below is easily verified.

Lemma 4.3. For every digraph G = (X,R) ∈ DG0,
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(1) YG is finite and ≤ is a partial order;
(2) Max(YG) = Ra and ((x, y)] is isomorphic to S for every (x, y) ∈ Ra;
(3) (YG;≤, τ) is an h-space from PHV.

If f : (X,R) → (X ′, R′) ∈ DG0 is a digraph homomorphism then Λf : Λ(X,R) → Λ(X ′, R′)
is an h-map.

Λ : DG0 → PH(Var(S)) is a faithful functor.

Lemma 4.4. Let G = (X,R) and G′ = (X ′, R′) be digraphs from DG0 and let f : ΛG →
ΛG′ be an h-map, then exactly one of the following possibilities occurs:

(1) f is not injective on T , f(T ) ⊂ T , f(X × {0}) ⊆ T , Im(f) ∩ Max(YG′) = ∅ and
f−1(X ′ × {1}) ⊆ Max(YG);

(2) Im(f) ∩ (R′)a �= ∅, f(X × {0}) ⊆ X ′ × {0}, the mapping f ′ : X → X ′ given by
f(x, 0) = (f ′(x), 0) for all x ∈ X is a non-constant digraph homomorphism from G
to G′, and there exists an automorphism g of S such that f(t) = g(t) for t ∈ T and
f(u) = Λf ′(u) for u ∈ YG \ T ;

(3) Im(f) ∩ (R′)a = ∅, f(X × {0}) is a singleton in X ′ × {0}, | Im(f) ∩ (X ′ × {1})| ≤ 1,
and there exists an automorphism g of S1 such that f(t) = g(t) for all t ∈ T .

Proof. Since f has the h-property, by Lemma 4.3(2) and from the fact that T = (s2]\{s2} =
(s3] \ {s3} we obtain that f(T ) ⊆ T .

If f is not injective on T then f(T ) ⊂ T because T is finite and, by the h-property,
f(X ×{0}) ⊆ T . But then f(X ×{1}) ⊆ T ∪ (X ′ ×{0}) and f(Max(YG))∩Max(YG′) = ∅.
Thus Im(f) ∩ Max(YG′) = ∅ and f−1(X ′ × {1}) ⊆ Max(YG) and this fully describes the
case in (1).

Suppose that (1) fails. Accordingly, we assume that f(T ) = T . Then f is a permutation
of T because of the finiteness of T and f(X × {0}) ⊆ X ′ × {0} because |Cov(x, 0)| �= 1 for
all x ∈ X .

Now also suppose that f(X × {0}) is a singleton. Then f(X × {0}) = {(x1, 0)}. Now
((x0, 0)] and ((x1, 0)] are isomorphic to S1 for any x0 ∈ X and, since f is an h-map, we
see that the permutation g of S1 given by g(t) = f(t) for all t ∈ T and g(s) = s for all
s /∈ T is an automorphism of S1. From the h-property of f it follows that f(X × {0, 1}) ⊆
{(x1, 0), (x1, 1)} and since |((x, y)] ∩ (X ′ × {0})| = 2 for all (x, y) ∈ (R′)a we conclude that
Im(f) ∩ (R′)a = ∅. Thus (3) is fully established.

Suppose that |f(X × {0})| ≥ 2. Since (X,R) is strongly connected, for every x′ ∈ X ′

there exists (x, y) ∈ Ra such that f(x, 0) = (x′, 0) and f(y, 0) = (y′, 0) �= (x′, 0). Then
(x′, 0), (y′, 0) ∈ (f(x, y)] and from x′ �= y′ it follows that f(x, y) = (x′, y′) ∈ (R′)a. Whence
Im(f) ∩ (R′)a �= ∅ and a mapping f ′ : X → X ′ such that f(x, 0) = (f ′(x), 0) for all x ∈ X
is a nonconstant digraph homomorphism from (X,R) into (X ′, R′). Let g : S → S be the
mapping given by

g(x) =

{
x if x ∈ {si | i ∈ 4},
f(x) if x ∈ T.

Since f is an h-map, the mapping g preserves order and has the h-property on T . Since f
is a permutation of T , it maps the set of all maximal elements of T onto itself, so that g
preserves order and has the h-property on S. Since S is finite, g is an h-map and thus it is
an automorphism of S because f is a permutation of T . This proves (2).

For a digraph G = (X,R) ∈ DG0 denote ZG = Ra = Max(ΛG) and define a mapping
µG : Aut(S) → Aut(ΛG) by

µG(f)(u) =

{
f(u) if u ∈ T,

u if u /∈ T
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for all f ∈ Aut(S) and all elements of ΛG. Since f ∈ Aut(S) and ΛG is finite, by a direct
verification we obtain that µG(f) ∈ Aut(ΛG) and hence µG : Aut(S) → Aut(ΛG) is an
injective group homomorphism. Set Z = {ZG | G ∈ (DG0)o} and G = {µG | G ∈ (DG0)o}.
Corollary 4.5. Λ : DG0 → PHV is a faithful functor preserving finiteness such that

(1) if f : G1 → G2 is a non-constant DG0-homomorphism then Λf(ZG1)] ∩ ZG2 �= ∅;
(2) if f : G1 → G2 is a constant DG0-homomorphism then Im(Λf) ∩ ZG2 = ∅;
(3) if f : ΛG1 → ΛG2 is an h-map then either Im(f) ∩ ZG2 �= ∅ and there exist a

non-constant homomorphism g : G1 → G2 of DG0 and φ ∈ Aut(S) such that f =
µG2(φ) ◦ Λg = Λg ◦ µG1(φ), or else Im(f) ∩ ZG2 = ∅ and f is non-injective on T or
f is non-injective on {(x, 0), (y, 0)} for every edge (x, y) of G1 with y �= x.

Consider X = Λ(W,S1), U = [{([(a4, 2j)], 0) | j = 0, 1, . . . , 7}), V = [{([(a4, 10)], 0)}) =
[g10(a4)), C = {([(a4, 10)], [(a4, 2j)]) | j = 0, 1, 2} ∪ {([(a4, 12)], [(a4, 2j)]) | j = 0, 1, 2, 3} ⊆
Sa

1 ,

(ui, vi) = (([(a4, 2i)], 0), ([(a4, 10)], [(a4, 2i)])) for i = 0, 1, 2, and
(ui, vi) = (([(a4, 2(i− 3))], 0), ([(a4, 12)], [(a4, 2(i− 3))])) for i = 3, 4, 5, 6,

and Z = (S1)a. Observe that U and V are increasing sets (thus U is convex), (U ;�) and
(V ;≤) are order connected, Z = MaxΛX and C ⊆ Z. Clearly, (ui, vi) for i = 0, 1, . . . , 6
are f -covering pairs satisfying (u3) and (u4), and thus (U, V, {(ui, vi) | i = 0, 1, . . . 6}) is a
u-triple. Clearly, (x] ∈ PH(Var(S0)) for all x ∈W \Z. Thus to obtain that X is a universal
testing object of V with respect to Var(S0) it remains to prove that X is (U,C,Z)-testing
object. For this it suffices to prove (t5); the other conditions are clearly fulfilled. Since
Λ(W,S0) is a h-subspace of X \ C, consider an h-map f : Λ(W,S0) → X that is not
injective on X \ U . By Lemmas 4.2 and 4.4, either there exists φ ∈ Aut(S) such that
f = µ(W,S1)(φ) ◦ Λι where ι is the identity mapping of W , or Im(f) ∩ ZG2 = ∅ and f is
non-injective on T or on every set {(x, 0), (y, 0)} with (x, y) ∈ Sa

1 . Since in the first case
µ(W,S1)(φ) ◦ Λι is injective we restrict ourselves to the second case. Then for every z ∈ Z,
|Cov(z)| = 2 and Cov(z) ⊆ W × {0, 1}. Hence for every z ∈ Z there exists uz ∈ Cov(z)
such that uz ∈ Im(g) for no h-map g : Λ(W,S0) → X with g � X \U = f � X \U . Thus X is
a (U,C,Z)-testing object of V. If T is finite then X is finite and we conclude, by Corollary
3.10 that in this case X is also a standard Q-testing object. By Theorem 3.9 and Corollary
3.6 we obtain

Corollary 4.6. If T is finite then the variety V is Var(S0)-relatively ff -alg-universal mod-
ulo the group Aut(S). The variety V contains an A-D family and thus it is Q-universal.

We apply Corollary 4.6 to the varieties of Heyting algebras determined by h-spaces Q3,
Q4 and Q5 given on Figure 5. Direct inspection shows that Aut(Q3) is a singleton group
and Aut(Q4) and Aut(Q5) are isomorphic to the cyclic group C2 of order 2. Observe that
if S = Qi then S0 = Ri for i = 3, 4, 5. Altogether, we have

Theorem 4.7. The variety Var(DQ3) is Var(DR3)-relatively ff -alg-universal.
The variety Var(DQ4) is Var(DR4)-relatively ff -alg-universal modulo the group C2.
The variety Var(DQ5) is Var(DR5)-relatively ff -alg-universal modulo the group C2.
Each of the varieties Var(DQ3), Var(DQ4) and Var(DQ5) contains an A-D family and

is therefore Q-universal.

We now turn our attention to three varieties generated by a pair of (finite) subdirectly
irreducible algebras.

To this end, we employ another category DGp of ‘pointed’ digraphs. Its objects are
quadruples (X,R, x0, x1) such that
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R3 R4 R5

Q3 Q4 Q5

Figure 5

(•) (X,R) is a finite connected reflexive antisymmetric digraph,
(•) x0, x1 ∈ X ,
(•) the induced subdigraph of (X,R) on X \ {x0, x1} belongs to DG0, that is, it is a

strongly connected digraph and |X \ {x0, x1}| ≥ 2,
(•) (x0, x) ∈ R only when x = x0,
(•) (x, x1) ∈ R only when x = x1,
(•) (x0, x1), (x1, x0) /∈ R,
(•) there exist x, x′ ∈ X \ {x0, x1} with (x1, x), (x′, x0) ∈ R.

And the DGp-morphisms from (X,R, x0, x1) to (Y, S, y0, y1) are all digraph homomorphisms
f : (X,R) → (Y, S) with f(x0) = y0 and f(x1) = y1.

Recall the digraphs (W,S0) and (W,S1) defined just above Lemma 4.2. Choose distinct
x0, x1 /∈W and set V = W ∪ {x0, x1},

T0 = S0 ∪ {([a0, 0], x0), ([a3, 14], x0), (x1, [a1, 0]), (x1, [a2, 14])}
and T1 = T0 ∪ S1. Then (V, T0, x0, x1), (V, T1, x0, x1) ∈ DGp and, by Lemma 4.2 we obtain

Corollary 4.8. If f : (V, T0, x0, x1) → (V, T1, x0, x1) is a DGp-morphism then f is the
inclusion.

Proof. Let f : (V, T0) → (V, T1) be a DGp-morphism. By the definition of DGp-morphisms
we have f(x0) = x0, f(x1) = x1 and f(W ) ⊆ W , so that f is not constant. But then f is
the identity mapping by Lemma 4.2.

Let POS denote the category of all finite posets and all their order preserving maps
having the h-property.

For X = (X,R, x0, x1) ∈ DGp define a finite poset ΠX = (AX ,≤) such that AX =
{a, b} ∪ (

(X × {0, 1, 2}) \ {(x0, 1)}) ∪ Ra where a and b are new distinct elements (i.e.
a, b /∈ (X × {0, 1, 2}) ∪Ra) where Ra = R \ {(x, x) | x ∈ X}) and

(•) a ≤ (x, 0) ≤ (x, 1) ≤ (x, 2) ≥ b for all x ∈ X \ {x0, x1};
(•) a ≤ (xi, 0) ≤ (xi, 2) ≥ b for i = 0, 1, and (x1, 0) ≤ (x1, 1);
(•) (x, 1) ≤ (x, y) ≥ (y, 0) for all (x, y) ∈ Ra (thus x �= y).
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Clearly,

Lemma 4.9. For every X = (X,R, x0, x1) we have
(1) Max(AX) = X × {2} ∪Ra, Min(AX) = {a, b};
(2) if (u] and (v] are isomorphic for u, v ∈ Max(AX) then either u, v ∈ Ra or u, v ∈

(X \ {x0, x1}) × {2} or u, v ∈ {x0, x1} × {2};
(3) for every u ∈ Max(AX), the only order preserving bijection from (u] onto itself is the

identity map;
(4) |((x, y)]| = 5 for all (x, y) ∈ Ra, |((x, 2)]| = 5 for all x ∈ X \{x0, x1} and |((x, 2)]| = 4

for x ∈ {x0, x1};
(5) [b) = (X × {2}) ∪ {b}, [a) ∩ [b) = X × {2};
(6) if (x0, 0) < u for some u ∈ AX then u covers (x0, 0);
(7) if u ∈ X \ {x0} and (u, 1) < v for a v ∈ AX then v ∈ Max(AX).

For any DGp-morphism f : (X,R, x0, x1) → (Y, S, y0, y1) define Πf : AX → AY by

Πf(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u if u ∈ {a, b},
(f(x), i) if u = (x, i) ∈ (

X × {0, 1, 2}) \ {(x0, 1)},
(f(x), f(y)) if u = (x, y) ∈ Ra and f(x) �= f(y),
(f(x), 1) if u = (x, y) ∈ Ra and f(x) = f(y).

Since (f(x), f(y)) ∈ Sa if (x, y) ∈ Ra, the definition of Πf is correct.
Direct calculations yield

Lemma 4.10. Let f : X = (X,R, x0, x1) → Y = (Y, S, y0, y1) be a DGp-morphism. Then
(1) if u, v ∈ AX with u ≤ v in ΠX then Πf(u) ≤ Πf(v) in ΠY;
(2) (Πf(u)] = Πf((u]) for all u ∈ AX ;
(3) Πf(u) = u for u = a, b and Πf(xi, j) = (yi, j)

for all (i, j) ∈ ({0, 1} × {0, 1, 2}) \ {(0, 1)};
(4) Πf((X \ {x0, x1}) × {i}) ⊆ (Y \ {y0, y1}) × {i} for i = 0, 1, 2.

Thus Π is a faithful functor from DGp to POS.

Next we prove the basic lemma about Π.

Lemma 4.11. Let X = (X,R, x0, x1) and Y = (Y, S, y0, y1) be objects of DGp and let f :
ΠX → ΠY be a POS-morphism such that f

(
(X \{x0, x1})×{2})∩(

(Y \{y0, y1})×{2}) �= ∅.
Then there exists a DGp-morphism g : X → Y with Πg = f .

Proof. By the assumption, there exist x ∈ X \ {x0, x1} and y ∈ Y \ {y0, y1} such that
f(x, 2) = (y, 2). Then, by Lemma 4.9(2), and (3), f(u) = u for u = a, b and f(x, i) = (y, i)
for i = 0, 1, 2. Thus, by Lemma 4.9(5), f(X × {2}) ⊆ Y × {2}. From (f(u)] = f((u]) it
follows that f(X × {0}) ⊆ (Y × {0}) ∪ {a}. Since a and b are incomparable, we infer that
f(u) �= b for all u ∈ AX with a ≤ u. Hence, by Lemma 4.9(1) and (5),

f(AX \ (
(X × {2}) ∪ {b})) ⊆ AY \ (

(Y × {2}) ∪ {b}).
By Lemma 4.9(4), we conclude that for i = 0, 1 there exists ki ∈ {0, 1} such that f(xi, j) =
(yki , j) for j = 0, 2. In particular, f({(xi, 0) | i = 0, 1}) ⊆ {(yi, 0) | i = 0, 1}.

Observe that if f(u, 0) = a for some u ∈ X then, by the above, u �= x0, x1 and f(u, 1) ∈
{(y0, 0), (y1, 0)}. Indeed, f(u, 2) ∈ Y × {2} and |f((u, 2)])| ≤ 4 because f(u, 0) = f(a) = a.
By 4.9(5), then f(u, 2) ∈ {(y0, 2), (y1, 2)} and hence f(u, 1) ∈ {(y0, 0), (y1, 0)}.

Next we show that f(v, 1) ∈ {(y0, 0), (y1, 0)} whenever (u, v) ∈ Ra and f(u, 1) ∈
{(y0, 0), (y1, 0)}. Indeed, f(u, 1) ∈ {(y0, 0), (y1, 0)} implies that |(f(u, 1)]| = 2 and hence,
by Lemma 4.9(5), f(u, v) /∈ Sa. Thus f(u, v) ∈ {(y1, 1), (y1, 0), (y0, 0)} and hence f(v, 0) ∈
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{(y0, 0), (y1, 0), a}. If f(v, 0) = a then, by the foregoing part of the proof, f(v, 1) ∈
{(y0, 0), (y1, 0)}. If f(v, 0) = (yj , 0) for some j = 0, 1 then f(v, 2) ∈ Y × {2} implies
f(v, 2) = (yj , 2) because [(yj , 0) ∩ (Y × {2}) = {(yj , 2)}. Since (yj , 0) = f(v, 0) ≤
f(v, 1) ≤ f(v, 2) = (yj , 2), we infer that f(v, 1) = (yj , 0) because f(v, 1) /∈ Y × {2}.
Since the subdigraph of (X,R) on X \ {x0, x1} is strongly connected we deduce that from
f(u, 1) ∈ {(y0, 0), (y1, 0)} if follows that f((X \ {x0, x1})×{1}) ⊆ {(y0, 0), (y1, 0)}, and this
is a contradiction because f(x, 1) = (y, 1) by the assumption.

We claim that f((X \{x0, x1})×{2}) ⊆ (Y \{y0, y1})×{2}. Indeed, if there exists u ∈ X
with f(u, 2) /∈ (Y \ {y0, y1})×{2} then from f(X×{2}) ⊆ Y ×{2} it follows that f(u, 2) ∈
{(y0, 2), (y1, 2)}. Then f(u, 0) ∈ {(y0, 0), (y1, 0), a} and thus f(u, 1) ∈ {(y0, 0), (y1, 0)} and
this is a contradiction. Therefore there exists a mapping g′ : (X \ {x0, x1}) → Y \ {y0, y1}
with f(u, i) = (g′(u), i) for all u ∈ X \ {x0, x1} and i = 0, 1, 2. Let g be an extension of g′

such that g(x0) = y0 and g(x1) = y1.
Next we prove that f(xi, j) = (yi, j) for i = 0, 1 and j = 0, 2. By the assumption,

there exists u ∈ X \ {x0, x1} with (u, x0) ∈ Ra. Then (u, 1) < (u, x0) > (x0, 0). Hence
(g(u), 1) = f(u, 1) ≤ f(u, x0) ≥ f(x0, 0). We know that f(x0, 0) ∈ {(y0, 0), (y1, 0)} and [(Y \
{y0, y1})×{1})∩ [y1, 0) = ∅. Whence f(x0, 0) = (y0, 0) and then f(x0, 2) = (y0, 2). Further,
by the assumption, there exists v ∈ X \{x0, x1} with (x1, v) ∈ Ra. Then (x1, 0) < (x1, 1) <
(x1, v) > (v, 0). If f(x1, 0) = (y0, 0) then, by Lemma 4.9(6), |f{(x1, 0), (x1, 1), (x1, v)}| ≤ 2.
Thus |f(((x1, v)])| ≤ 4 and, by Lemma 4.9(5), f(x1, v) /∈ Sa. Since f(v, 0) = (g(v), 0) ∈
(Y \{y0, y1})×{0} and since [(Y \{y0, y1})×{0})∩ [(y0, 0)) ⊆ Sa we obtain a contradiction.
Whence f(x1, 0) = (y1, 0) and also f(x1, 2) = (y1, 2). Moreover, f(x1, v) ∈ Sa implies that
(y1, 0) < f(x1, 1) < f(x1, v) and thus f(x1, 1) = (y1, 1).

Finally, we prove that g : X → Y is a DGp-morphism and Πg = f . To do this, consider
any (u, v) ∈ Ra. Then (u, 1) < (u, v) > (v, 0) and f(u, 1) = (g(u), 1), f(v, 0) = (g(v), 0). If
g(u) �= g(v) then (g(u), 1) < f(u, v) > (g(v), 0) and thus (g(u), g(v)) ∈ Sa and f(u, v) =
(g(u), g(v)). If g(u) = g(v) then f(u, v) ≥ (g(u), 1) and |(f(u, v)]| ≤ 4 because f(u, 0) =
(g(u), 0) = (g(v), 0) = f(v, 0). Hence f(u, v) /∈ Sa and, by Lemma 4.9(1), f(u, v) /∈
Max(AY ). Hence, by Lemma 4.9(7), f(u, v) = (g(u), 1) and the proof is complete.

We extend the faithful functor Π to embeddings into the categories of h-spaces dual to
some finitely generated varieties of Heyting algebras. Let Vi denote the variety of Heyting
algebras generated by algebras dual to the h-spaces Fi and Gi and let Wi be a variety of
Heyting algebras generated by algebras dual to h-spaces Gi and Hi for i = 0, 1, 2 where Fi,
Gi and Hi for i = 0, 1, 2 are shown in Figure 6 and Figure 7.

F0 F1G0 G1
Figure 6

For X = (X,R, x0, x1), let Π0X = (AX ∪ {c, d};≤, τ) be an extension of ΠX by new
elements c and d such that c ≤ a, b and d ≤ b, and τ is a discrete topology. Then Π0X ∈
PHV0. For a DGp-morphism f : X → Y let Π0f be an extension of Πf such that Π0f(c) = c
and Π0f(d) = d.
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F2 G2 H0 H1 H2
Figure 7

For X = (X,R, x0, x1), let Π1X = (AX ∪ {c, d};≤, τ) be an extension of ΠX by new
elements c and d such that c ≤ a and d ≤ a, b, and τ is the discrete topology. Then
Π1X ∈ PHV1. For a DGp-morphism f : X → Y let Π1f be an extension of Πf such that
Π1f(c) = c and Π1f(d) = d.

For X = (X,R, x0, x1), let Π2X = (AX ∪ {c, d, e};≤, τ) be an extension of ΠX by new
elements c, d and e such that c ≤ a, d ≤ a, b, e ≤ c, d and τ is a discrete topology. Then
Π2X ∈ PHV2. For a DGp-morphism f : X → Y let Π2f be an extension of Πf such that
Π2f(c) = c, Π2f(d) = d and Π2f(e) = e.

Corollary 4.12. For i = 0, 1, 2, Πi is a Z-relatively full embedding of DGp into PHVi

where Z = {Z(X,R,x0,x1) = (X \ {x0, x1}) × {2} | (X,R, x0, x1) ∈ DGp}.
Proof. It is clear that for every i = 0, 1, 2 and every X = (X,R, x0, x1) ∈ DGp we have
ΠiX ∈ PHVi. Let us assume that X = (X,R, x0, x1) and Y = (Y, S, y0, y1) are objects
of DGp and let f : X → Y be a DGp-morphism. Then f(X \ {x0, x1}) ⊆ Y \ {y0, y1}
and thus there exists y ∈ Im(f) \ {y0, y1}. Then (y, 2) ∈ Im(Πf) and ((y, 2)] in Im(Πif)
is isomorphic to Fi for i = 0, 1, 2. Since there exists x ∈ X \ {x0, x1} with (x, x0) ∈ R
we deduce that (f(x), y0) ∈ Sa and f(x, x0) = (f(x), y0) ∈ Im(Πf). Then ((f(x), y0)] ∈
Im(Πif) is isomorphic to Gi for i = 0, 1, 2 and the variety generated by the Heyting algebra
corresponding to the h-subspace of ΠiY on Im(Πif) is Vi for i = 0, 1, 2.

Conversely, assume that f : ΠiX → ΠiY is a h-map. If there exists y ∈ Im(f) such
that (y] is isomorphic to Fi then there exists x ∈ ΠiX such that (x] is isomorphic to (y]
and f(x) = y. Since Fi is automorphism free we infer that f(a) = a, f(b) = b, f(c) = c,
f(d) = d (and if i = 2 then also f(e) = e) and x ≥ a, b. Hence f(AX) ⊆ AY and we apply
Lemma 4.10 to complete the proof.

Set Xi = Πi(V, T1, x0, x1) = (Xi;≤, τ) for i = 0, 1, 2, so that Xi is an h-space from PHVi.
Set Z = Sa

1 , U = [{([(a4, 2j)], 0) | j = 0, 1, . . . , 7}), and

∅ �= C ⊆ {([(a4, 10)], [(a4, 2j)]) | j = 0, 1, 2} ∪ {([(a4, 12)], [(a4, 2j)]) | j = 0, 1, 2, 3}.
Then U is an increasing subset of X (thus it is convex), ∅ �= Z ⊆ Max(U) and C ⊆
U ∩Max(X). Observe that there exists no surjective h-map from Gi onto Fi for i = 0, 1, 2.
For every i = 0, 1, 2 we have C∩Z = ∅ in Xi and (u] in Xi is isomorphic to Gi for every u ∈ C
and (z] in Xi is isomorphic to Fi for every z ∈ Z we deduce that (t4) holds. The condition
(t5) follows from Corollary 4.8 and Lemma 4.11 or Corollary 4.12; we conclude that Xi is
a (U,C,Z)-testing object of Vi for i = 0, 1, 2 because Πi(V, T0, x0, x1) is a h-subspace of
Xi \ C. Set V = [{([(a4, 10)], 0)}) and

(ui, vi) = (([(a4, 2i)], 0), ([(a4, 10)], [(a4, 2i)])) for i = 0, 1, 2, and
(ui, vi) = (([(a4, 2(i− 3))], 0), ([(a4, 12)], [(a4, 2(i− 3))])) for i = 3, 4, 5, 6.
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Observe that V is an increasing set of U , (U ;�) and (V ;≤) are order connected. Clearly,
(ui, vi) for i = 0, 1, . . . , 6 are f -covering pairs satisfying (u3) and (u4), thus (U, V, {(ui, vi) |
i = 0, 1, . . . 6}) is a u-triple. Whence (Xi, U, C) is a universal testing object of Vi with
respect to Wi. Since Xi is finite, by Corollary 3.10 it is also a standard Q-testing object.
By Theorem 3.9 and Corollary 3.6 we then obtain

Theorem 4.13. For i = 0, 1, 2, the variety Vi is Wi-relatively ff -alg-universal and con-
tains an A-D family, so that Vi is Q-universal for i = 0, 1, 2.

Finally let DG1 be the category of all finite antireflexive, antisymmetric, strongly con-
nected digraphs (X,R) such that there exist (x, y), (x, z), (y, z) ∈ R for pairwise distinct
vertices x, y, z ∈ X , and all their digraph homomorphisms. Then the digraphs (W,Sa

0 ) and
(W,Sa

1 ) defined just before Lemma 4.2 belong to DG1.
Consider a variety of Heyting algebras determined by the h-space Q9 given in Figure 8.

Q9 R9

a

b
c

d

e
f

g

Figure 8

We shall construct an embedding of DG1 into Var(DQ9)
For a digraph G = (X,R) ∈DG1 let us define the h-space ΘG = (YG;≤, τ) so that

(•) YG = {a, b, c} ∪ (X × 2) ∪ (R × 4) (we assume that a, b and c are pairwise distinct
elements with a, b, c /∈ (X × 2) ∪ (R× 4) and that (X × 2) ∩ (R× 4) = ∅);

(•) ≤ is the least partial order such that
a < b, c,
b < (x, 0) < (x, 1) > c for all x ∈ X ,
c < (r, 0) < (r, 1) > b for all r ∈ R,
((x, y), 0) < ((x, y), 2) > (x, 1) and ((x, y), 1) < ((x, y), 3) > (y, 0) for all (x, y) ∈ R;

(•) τ is the discrete topology on YG.
For a digraph homomorphism f : (X,R) → (X ′, R′) ∈ DG1 define

Θf (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u if u ∈ {a, b, c},
(f(x), i) if u = (x, i) for x ∈ X and i = 0, 1,
(f(x), f(y), i) if u = ((x, y), i) for (x, y) ∈ R

and i = 0, 1, 2, 3.

Since f is a digraph homomorphism, we conclude that (f(x), f(y)) ∈ R′ for all (x, y) ∈ R
and hence Θf is correctly defined.

Direct calculations give

Lemma 4.14. For every digraph G = (X,R) ∈ DG1 we have
(1) Max(YG) = R× {2, 3} and Min(YG) = {a};
(2) ((r, i)] is isomorphic to Q9 for all r ∈ R and i = 2, 3.
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(3) ΘG is a finite h-space from PH(Var(Q9));
For every digraph homomorphism f : G → G′ ∈ DG1, Θf : ΘG → ΘG′ is an h-map. Thus
Θ : DG1 → PH(Var(Q9)) is a faithful functor.

Lemma 4.15. Let h : (YG;≤, τ) → (YG′ ;≤, τ) be an h-map where (YG;≤, τ) = ΘG,
(YG′ ;≤, τ) = ΘG′ for digraphs G = (X,R),G′ = (X ′, R′) ∈ DG1. Then either there exists
a digraph homomorphism g : G → G′ with h = Θg or else |h({a, b, c})| ≤ 2.

Proof. By Lemma 4.14(1), h(a) = a. Clearly a ∈ Cov(x) for x ∈ YG (or x ∈ YG′) if
and only if x ∈ {b, c} and thus h({b, c}) ⊆ {a, b, c}. Hence h({b, c}) = {b, c} follows from
|h({a, b, c})| = 3. Thus it suffices to investigate the case of h({b, c}) = {b, c}. Observe
that any h-endomorphism of Q9 fixing elements b and c has to fix also d and e, and any
endomorphism of Q9 fixing b, c and f is the identity mapping, see Figure 8. We exploit
these facts in what follows.

Observe that (X × {1}) ∪ (R × {1}) (or (X ′ × {1} ∪ (R′ × {1})) is the set of all least
elements above both b and c. Hence h((X × {1}) ∪ (R × {1})) ⊆ (X ′ × {1}) ∪ (R′ × {1}).
Since Cov(x, 1) = {(x, 0), c} and Cov(r, 1) = {(r, 0), b} for x ∈ X and r ∈ R (or x ∈ X ′ and
r ∈ R′) we infer that one of the following two possibilities occurs:

(a) h(b) = b, h(c) = c, there exist mappings g : X → X ′ and f : R → R′ with h(x, i) =
(g(x), i) for all x ∈ X , i ∈ 2 and h(r, i) = (f(r), i) for all r ∈ R, i ∈ 2;

(b) or h(b) = c, h(c) = b, there exist mappings g : X → R′ and f : R → X ′ with
h(x, i) = (g(x), i) for all x ∈ X , i ∈ 2 and h(r, i) = (f(r), i) for all r ∈ R, i ∈ 2.

If (x, y) ∈ R then h((x, y), 3) > (g(y), 0), (f(x, y), 1) and h((x, y), 2) > (g(x), 1), (f(x, y), 0).
If h(b) = b and h(c) = c then we infer that f(x, y) = (g(x), g(y)) ∈ R′ and h((x, y), i) =
(f(x, y), i) for i = 2, 3. If h(b) = c and h(c) = b then h((x, y), 3) = (g(y), 2), h((x, y), 2) =
(g(x), 3) and g(x) = (u, f(x, y)), g(y) = (f(x, y), v) ∈ R′ for some u, v ∈ X ′.

First consider the case h(b) = c and h(c) = b. Then there exist pairwise distinct x, y, z ∈
X with (x, y), (x, z), (y, z) ∈ R. Thus (x, 1), ((x, y), 0) < ((x, y), 2) and (x, 1), ((x, z), 0) <
((x, z), 2). Then h((x, y), 2) = (r, 3) ≥ (g(x), 1), (f(x, y), 0) and h((x, z), 2) = (r′, 3) ≥
(g(x), 1), (f(x, z), 0) for some r, r′ ∈ R′. Hence r = g(x) = r′, thus h((x, y), 2) = (g(x), 3) =
h((x, z), 2). Hence f(x, y) = f(x, z). From (y, 0), ((x, y), 1) ≤ ((x, y), 3) it follows that
h((x, y), 3) = (r′′, 2) ≥ (g(y), 0), (f(x, y), 1) for some r′′ ∈ R′ and hence r′′ = g(y) =
(f(x, y), 1), v) ∈ R′ for some v ∈ X ′. Analogously, from (z, 0), ((x, z), 1) < ((x, z), 3)
and (z, 0), ((y, z), 1) < ((y, z), 3) it follows that h((x, z), 3) = (g(z), 2) = h((y, z), 3) and
f(x, z) = f(y, z). And then from (y, 1), ((y, z), 0) ≤ ((y, z), 2) it follows that

h((y, z), 2) = (r′′′, 3) ≥ (g(y), 1), (f(y, z), 0)

for some r′′′ ∈ R and hence r′′′ = g(y) = (u, f(y, z)) ∈ R′ for u ∈ X ′. If we combine these
facts we obtain that g(y) = (f(x, y), f(y, z)) ∈ R′ and f(x, y) = f(x, z) = f(y, z) and this
is a contradiction because (X ′, R′) is antireflexive digraph.

Therefore h(b) = b and h(c) = c. Then g : (X,R) → (X ′, R′) is a digraph homomorphism
and clearly h = Θg.

For G = (X,R) ∈ DG1 set ZG = R × {2, 3} = Max(ΘG). Since Aut(Q9) is a singleton
group, we can omit G and set Z = {ZG | G ∈ (DG1)o}. Thus

Corollary 4.16. The functor Θ : DG1 → PH(Var(Q9)) is a Z-relatively full embedding.

Now we set

X = Θ(W, (S1)a), U = [{([(a4, 2j)], 0) | j = 0, 1, . . . , 6}), V = [{([(a4, 10)], 0)}),
C = {(([(a4, 10)], [(a4, 2j)]), 3) | j = 0, 1, 2} ∪ {(([(a4, 12)], [(a4, 2j)]), 3) | j = 0, 1, 2, 3},
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Z = (S1)a × {2, 3}, and

(ui, vi) =

{
(([(a4, 2i)], 0), (([(4, 10)], [(a4, 2i)]), 3)) if i = 0, 1, 2,
(([(a4, 2(i− 3))], 0), (([(a4, 12)], [(a4, 2(i− 3))]), 3)) if i = 3, . . . , 6.

Thus (U, V, {(ui, vi) | i = 0, 1, . . .6}) is a u-triple and (x] ∈ PH(Var(R5) for all x ∈ W \ Z.
Combine Lemma 4.2 and the fact that Θ(W,Sa

0 ) is an h-subspace of X \C and Lemmas 4.14
and 4.15 we obtain that X is a (U,C,Z)-testing object of Var(Q9) because {a, b, c} ⊆ (x]
for every x ∈ Max(X ). Hence X is a universal testing object of Var(Q9) with respect to
Var(R9). Since X is finite, by Corollary 3.10, it is also standard Q-universal testing object.
By Theorem 3.9 and Corollary 3.6, we obtain

Corollary 4.17. The variety Var(DQ9) is Var(DR9)-relatively ff -alg-universal. It also
contains an A-D family and thus it is Q-universal.

5. Undirected graphs

In this section we shall construct testing objects using undirected graphs. First we recall
several notions for undirected graphs.

An undirected graph (or a graph) is a pair G = (V,E) where V is a set (of the vertices
of G) and E is a set of two-element subsets of V (the edges of G). A graph homomorphism
from (V,E) to (V ′, E′) is a mapping f : V → V ′ such that {f (v), f(w)} ∈ E′ for every
{v, w} ∈ E. A path between u, v ∈ V of length k in a graph G = (V,E) is a sequence
P = {u = x0, x1, . . . , xk = v} of vertices of G such that {xi, xi+1} ∈ E for i = 0, 1, . . . , k−1
and these edges are pairwise distinct. If, moreover, {xk, x0} ∈ E then it is a cycle of length
k + 1. A graph (V,E) is connected if for every pair of vertices u, v ∈ V there exists a path
between u and v. In [22] it is shown that the graph F = (T, F ) shown in Fig 9 is rigid (that
is, only the identity mapping is a graph homomorphism from F to itself).

a

b

d

Figure 9

Let us define F0 = (T0, F0), where
(•) T0 = (T × 22)/θ ∪D where D = {ci | i ∈ 11} and θ is the least equivalence on T × 22

such that (b, i)θ(a, i + 1) for all i ∈ 21 (we assume that ci for i ∈ 11 are pairwise
distinct new vertices, that is, ci /∈ (T × 22)/θ for every i ∈ 11);

(•) if [x] is the class of θ containing a vertex x ∈ T × 22 then

F0 = {{[x], [y]} | ∃i ∈ 22, {u, v} ∈ F, x = (u, i), y = (v, i)}
∪ {{[(d, i)], ci}, {[(d, i+ 11)], ci} | i ∈ 11}.

A graph (V,E) is bipartite if there exist disjoint sets V1, V2 ⊆ V such that V1 ∪ V2 = V
and |e ∩ V1| = |e ∩ V2| = 1 for every e ∈ E. Then {V1, V2} is a bipartite decomposition of
(V,E).

For a bipartite graph B = (D,B), we define FB = (T0, F0 ∪B). Then
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Lemma 5.1. For every bipartite graph B = (D,B) the identity mapping ι : T0 → T0 is the
only graph homomorphism from F0 to FB.

Proof. Since F0 ⊆ F0 ∪B, the identity mapping ι : T0 → T0 is obviously a graph homomor-
phism from F0 to FB. Conversely assume that f : F0 → FB is a graph homomorphism.
Since the shortest odd cycle of F has length 7 and because every cycle of FB containing
ci for some i ∈ 11 contains a path between (d, k) and (d, l) in FB for distinct k, l ∈ 22
and this path has length at least 6), the shortest odd cycle of FB has length 7. If short-
est odd cycles in two graphs have the same length, then graph homomorphisms between
these graphs preserve shortest odd cycles. For every s, t ∈ T , either there exists a cycle
of length 7 containing s and t or there exist two cycles C1, C2 of length 7 such that C1

contains s, C2 contains t and C1 and C2 have a common edge. Hence the image of a graph
homomorphism from F to FB has also this property. By a routine inspection, we obtain
that {[(t, i)] | t ∈ T } for i ∈ 22 are all the subsets of FB with this property. Moreover,
the subgraph of FB induced on the set {[(t, i)] | t ∈ T } is isomorphic to F for all i ∈ 22.
For every i ∈ 22 the mapping gi : T → T0 such that gi(t) = [(t, i)] for all t ∈ T is a graph
homomorphism from F to F0. Since F is a rigid graph we deduce that for every i ∈ 22
there exists j(i) ∈ 22 with f ◦gi = gj(i), hence f([(t, i)]) = [(t, j(i))] for all t ∈ T and i ∈ 22.
From the definition of θ it follows that j(i + 1) = j(i) + 1 for all i ∈ 22 (with the usual
addition) and thus j(i) = i. Thus f([(t, i)]) = [(t, i)] for all t ∈ T and i ∈ 22. Since for
every i ∈ 11 there exist exactly two edges of F0 or F0 ∪B between ci and (T × 22)/θ – the
edges {[(d, i)], ci} and {[(d, i + 9)], ci}, we conclude that f(ci) = ci for all i ∈ 11 and f is
the identity mapping of T0.

A graph (V,E) has chromatic number 3 if it is not bipartite and there exists a graph
homomorphism f : (V,E) → ({0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}}) = K3, the complete graph on
three vertices. By a direct verification, there exists a graph homomorphism f : F → K3

such that f(a) = f(b). Assume that f(d) = l ∈ {0, 1, 2}. Let B = (D,B) be a bipartite
graph with a bipartite decomposition {D1, D2} and define a mapping g : T0 → {0, 1, 2} by
g([(u, i)]) = f(u) for all u ∈ T and g(d) = l′ for d ∈ D1 and g(d) = l′′ for d ∈ D2 where
{l, l′, l′′} = {0, 1, 2}. Since f(a) = f(b), the definition of g is correct and, by a routine
calculation, we obtain that g : FB → K3 is a graph homomorphism. Thus F, F0 and FB

for any bipartite graph B = (D,B) have a chromatic number 3. We exploit these graphs
to construct special embeddings into duals of some finitely generated varieties of Heyting
algebras.

Let GR be the category of all finite connected graphs with at least two vertices having
the chromatic number 3. Let TGR be a category whose object are triples (V,E, f) where
(V,E) is a finite connected graph with chromatic number 3 and f : (V,E) → K3 is a
graph homomorphism, and whose morphisms from (V,E, f) into (V ′, E′, f ′) are all graph
homomorphisms g : (V,E) → (V ′, E′) with f = f ′ ◦ g.

We consider the h-space Q8 given in Figure 10.
We shall construct a Z-relatively full embedding of GR into PH(VarQ8). For a graph

G = (V,E) ∈ GR, let us define ΓG = (XG;≤, τ) where XG = {a, b} ∪ V ∪ (E × 2) (we
assume that the latter union is disjoint), and ≤ be the least partial order such that

(•) a < b < (e, 1) for all e ∈ E;
(•) a < v for all v ∈ V ;
(•) v < (e, 0) < (e, 1) for all v ∈ e ∈ E;

and τ is the discrete topology on XG. Denote ZG = E × {1}.



206 VÁCLAV KOUBEK AND JIŘÍ SICHLER

Q8 R8
Figure 10

For a graph homomorphism f : (V,E) → (V ′, E′), let us define

Γf(u) =

⎧⎪⎨
⎪⎩
u if u ∈ {a, b},
f(v) if u = v ∈ V,

({f(v), f(w)}, i) if u = ({v, w}, i) for {v, w} ∈ E and i = 0, 1.

By a direct verification, we obtain

Lemma 5.2. For every graph G = (V,E) ∈ GR,
(1) ≤ is a partial order, XG is finite and ΓG is an h-space;
(2) Max(ΓG) = E × {1} = ZG;
(3) (x] is isomorphic Q8 for x ∈ XG if and only if x = (e, 1) for e ∈ E.

If f : G → G′ is a graph homomorphism then Γf is an h-map. Thus Γ : GR →
PH(Var(Q8)) is a faithful functor.

Lemma 5.3. Let G0 = (V0, E0) and G1 = (V1, E1) belong to GR and let f : ΓG0 → ΓG1

be an h-map. Then one of the following cases occurs:
(1) there exists a graph homomorphism g : G0 → G1 with Γg = f ;
(2) Im(f) ⊆ {a, b};
(3) f(b) = a, Im(f) ∩ (E1 × {1}) = ∅, and f(e, 0) �= f(e, 1) implies that f(e, 0) = a and

f(e, 1) ∈ V ∪ {b} for all e ∈ E0;
(4) f(b) ∈ V1 and Im(f) ⊆ ({(e, 0) | e ∈ E1, f(b) ∈ e}].

Proof. Since f has the h-property we conclude that f(a) = a, f({b}∪V0) ⊆ {a, b}∪V1 and
f(E0 × {0}) ∩ (E1 × {1}) = ∅.

First assume that f(b) = a. Then |f(((e, 1)])| < 6 = |((e′, 1)]| for all e ∈ E0 and all e′ ∈
E1 thus Im(f) is disjoint with E1×{1}. Since a ∈ Min(XG1) and ((e, 1)] = ((e, 0)]∪{b, (e, 1)}
we conclude that f(((e, 1)]) = f(((e, 0)]) ∪ {f (e, 1)} because f has the h-property. Thus if
|Cov(f (e, 1))| = 2 then f(e, 0) = f(e, 1). Since for y ∈ XG1 we have |Cov(y)| ≤ 1 if and
only if y /∈ E1 ×{0, 1} and since E1 ×{1} ∩ Im(f) = ∅ we infer that if f(e, 1) �= f(e, 0) then
f(e, 1) ∈ {b} ∪ V1 and hence f(e, 0) = a, and (3) holds.

Assume that f(b) ∈ V1. Then for all e ∈ E0 we have f(e, 1) ∈ [f(b)) because b ≤ (e, 1)
for all e ∈ E0 and Max([v)) = {(e′, 1) | e′ ∈ E1, v ∈ e′} for all v ∈ V1. Since |V0| ≥ 2 and G0

is connected, for every v ∈ V0 there exists an edge e ∈ E0 with v ∈ e. If f(u) = b for some
u ∈ V0 then for an edge e = {u, v} ∈ E0 we infer that (f(e, 0)] = (b] because |((e, 0)]| = 4,
|((e′, 1)]| = 6 for all e′ ∈ E1 and [b) = {b}∪(E1×{1}) in ΓG1. Then f((e, 0)), f(b) < f((e, 1))
and hence f((e, 1)) ∈ E1×{1} but |f(((e, 1)])| ≤ 4 – this is a contradiction. Thus b /∈ f(V0)
and hence f((e, 1)) /∈ E1 × {1}. Therefore Im(f) ⊆ ({(e, 0) | e ∈ E1, f(b) ∈ e}], and (4)
holds.

Assume that f(b) = b. If f(v) ∈ {a, b} for some v ∈ V0 then for an edge e ∈ E0 with
v ∈ e we have |f(((e, 1)])| < 6 and hence f(e, 1) = b. Then f([(e, 1))) = {a, b} and, from the
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connectedness of G0, we conclude that Im(f) = {a, b} and (2) holds. Thus we can assume
that f(b) = b and f(V0) ⊆ V1. Let {v, w} ∈ E0. Then b, v, w < ({v, w}, 1) implies that
b, f(v), f(w) ≤ f({v, w}, 1) and from f(v) ∈ V1 we conclude that f({v, w}, 1) ∈ E1 × {1}.
By the h-property of f we obtain that f(v) �= f(w), {f (v), f(w)} ∈ E1 and f({v, w}, 1) =
({f(v), f(w)}, 1). Whence the domain-range restriction g of f to V0 and V1 is a graph
homomorphism from G0 to G1 with Γg = f , and hence (1) follows.

Corollary 5.4. The functor Γ : GR → PH(Var(Q8)) is a Z-relatively full embedding.

Let B = {{ci, c5} | i ∈ 5} ∪ {{ci+6, c10} | i ∈ 4}. Then B = (D,B) is a bipartite graph
with a bipartite decomposition {D1 = {ci | i ∈ 5} ∪ {ci+6 | i ∈ 4}, D2 = {c5, c10}}. Let us
define a graph F1 = (T0, F1) where F1 = F0 ∪ B. Set X = ΓF1, Z = {(e, 1) | e ∈ F1} =
Max(ΓF1), U = {ci | i ∈ 11} ∪ {b} ∪ {({ci, c5}, j) | i ∈ 5, j = 0, 1} ∪ {({ci+6, c10}, j) |
i ∈ 4, j = 0, 1}, V = {c10} ∪ {({ci+6, c10}, j) | i ∈ 4, j = 0, 1}, C = [{({ci, c5}, 1) | i ∈
4} ∪ {({ci+6, c10}, 1) | i ∈ 3}),

(ui, vi) =

{
(b, ({ci+6, c10}, 1)) for i = 0, 1, 2,
(b, ({ci−3, c5}, 1)) for i = 3, 4, 5, 6.

By a direct verification, C ⊆ Max(U) and V ⊆ U , V is an increasing subset of U and U is a
convex subset of X , thus U is functorial. Further (V ;≤) and (U \V,�) are order connected
and (ui, vi) is a f -covering pair in U(X ) for all i ∈ 7, thus (U(X ), V, {(ui, vi) | i ∈ 7}) is a
u-triple. By Lemma 5.1, X is automorphism free. Since |Cov(c)| ≥ 2 for every c ∈ C we
obtain, by Lemmas 5.1 and 5.3, that X is a (U,C)-representing object from Var(Q8). To
prove that X is a (U,C,Z)-testing object from Var(Q8) it suffices to verify (t5). Observe
that Γ(T0, F0) is a h-subspace of X \ C. Consider h-map f : Γ(T0, F0) → X . On the set
X \ U we recognize whether f = Γg for some graph homomorphism g : (T0, F0) → (T0, F1)
(by Lemma 5.1, g is the identity) or Im(f) = {a, b} then for z = (e, 1) ∈ Z we choose
uz = (e, 0) or b /∈ Im(f) then for z ∈ Z we choose uz = b. By Lemma 5.2, the other
possibilities do not occur and for every h-map g : X \C → X with f � X \U = g � X \U we
have uz /∈ Im g for all z ∈ Z. Thus (t5) holds and X is a (U,C, V )-testing object of Var(Q8).
Therefore X is a finite universal testing object of (Var(Q8)) with respect to Var(R8) and,
by Corollary 3.10, X is also a standard Q-universal testing object. Hence, by Corollary 3.6
and Theorem 3.9 we obtain

Corollary 5.5. The variety Var(DQ8) is Var(DR8)-relatively ff -alg-universal and has an
A-D family, so it is also Q-universal.

Next we describe a Z-relatively full embedding of GR into PH(Var(Q10)) for the h-space
Q10 given in Figure 11.

Q10

b

c
d

a

Figure 11

For a graph G = (V,E) ∈ GR define ΞG = (YG;≤, τ) where YG = {a, b, c, d} ∪ V ∪
E ∪ {(v, e) | v ∈ e ∈ E} (we assume that a, b, c, and d are pairwise distinct elements and
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{a, b, c, d}, V , E, and {(v, e) | v ∈ e ∈ E} are pairwise disjoint sets), ≤ is the least partial
order such that

(•) a ≤ b ≤ c and a ≤ d;
(•) c ≤ v ≥ d for all v ∈ V and b ≤ e ≤ d for all e ∈ E;
(•) v ≤ (v, e) ≥ e for all e ∈ E and v ∈ e;

and τ is a discrete topology on YG. For a graph homomorphism f : (V,E) → (V ′, E) define

Ξf(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u if u ∈ {a, b, c, d},
f(v) if u = v ∈ V,

{f (v), f(w)} if u = {v, w} ∈ E,

(f(v), {f (v), f(w)}) if u = (v, {v, w}) for {v, w} ∈ E.

By a direct inspection we obtain

Lemma 5.6. For every graph G = (V,E) ∈ GR,
(1) ΞG is a finite h-space;
(2) Max(YG) = {(v, e) | v ∈ e ∈ E};
(3) (x] is isomorphic to Q10 for x ∈ YG if and only if x = (v, e) for some e = {v, w} ∈ E;
(4) {a, b, c, d} ⊆ ((v, e)] for all e ∈ E and v ∈ e;
(5) |(e]| = 4 for all e ∈ E and |(v]| = 5 for all v ∈ V ;
(6) (e] is isomorphic to R8 from Figure 10 for all e ∈ E.

For every graph homomorphism f : G → G′ ∈ GR the mapping Ξf : ΞG → ΞG′ is an
h-map. Thus Ξ : GR → PH(Var(Q10)) is a faithful functor.

The proof of Z-relative fulness is based on the following lemma.

Lemma 5.7. If f : ΞG → ΞG′ is an h-map for G = (V,E),G′ = (V ′, E′) ∈ GR then
either there exists a graph homomorphism g : G → G′ with Ξg = f or f(c) ∈ {a, b, d} and
Im(f) ⊆ (E′] ∪ {c} or Im(f) ⊆ {a, b, c}.
Proof. Let G = (V,E) and G′ = (V ′, E′) be graphs from GR and let f : (YG;≤, τ) →
(YG′ ;≤, τ) be an h-map where ΞG = (YG;≤, τ) and ΞG′ = (YG′ ;≤, τ). From the h-
property it follows that f(a) = a, f({b, d}) ⊆ {a, b, d} and, by Lemma 5.6(5), f(c) ∈
{a, b, c, d}.

First assume that f(c) = c and f(d) = d. Then f(b) = b. Since E (or E′) is the set of
minimal elements in [b) ∩ [d) we conclude that f(E) ⊆ E′. Analogously, V (or V ′) is the
set of minimal elements in [c) ∩ [d) and hence f(V ) ⊆ V ′. From v, {v, w} ≤ (v, {v, w}) for
all {v, w} ∈ E it follows that f(v), f({v, w}) ≤ f(v, {v, w}) and whence f({(v, {v, w}) | v ∈
{v, w} ∈ E}) ⊆ {(v′, {v′, w′}) | v′ ∈ {v′, w′} ∈ E′} and if f(v, {v, w}) = (v′, {v′, w′}) then
f(v) = v′, f({v, w}) = {v′, w′} because

((v, {v, w})] = {a, b, c, d, v, {v, w}, (v, {v, w})} and
((v′, {v′, w′})] = {a, b, c, d, v′, {v′, w′}, (v′, {v′, w′})}.

If g is the domain-range restriction of f to V and V ′ then {g(v), g(w)} = f({v, w}) ∈ E′

for all {v, w} ∈ E. Whence g : (V,E) → (V ′, E′) is a graph homomorphism and Ξg = f . If
f(c) ∈ {a, b, d} then |(f(v)]| ≤ 4 for all v ∈ V and hence, by Lemma 5.6(5), f(V ) ∪ f(E) ⊆
(E′] ∪ {c} and, by the h-property, Im(f) ⊆ (E′] ∪ {c}. If f(c) = c and f(d) ∈ {a, b} then
clearly Im(f) ⊆ {a, b, c} and the proof is complete.

For a graph G = (V,E) ∈ GR set ZG = {(v, e) | v ∈ e ∈ E} and Z = {ZG | G ∈ GR}.
Corollary 5.8. The functor Ξ : GR → PH(Var(Q10)) is a Z-relatively full embedding.
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Let B = {{ci, cj} | i ∈ 8, j = 8, 9} ∪ {{ci, c10} | i ∈ 4} then B = (D,B) is a bipartite
graph with a bipartite decomposition {D1 = {ci | i ∈ 8}, D2 = {c8, c9, c10}}. Let us define
F2 = F0 ∪ B and F2 = (T0, F2). Set X = ΞF2, Z = {(v, e) | v ∈ e ∈ F2} = Max(ΞF2),
U = [D ∪B), V = [{c10}), C = {(c10, {ci, c10}) | i ∈ 3} ∪ {(c9, {ci, c9}) | i ∈ 4},

(ui, vi) =

{
({ci, c10}, (ci, {ci, c10})) for i = 0, 1, 2,
({ci−3, c9}, (ci−3, {ci−3, c9})) for i = 3, 4, 5, 6.

By a direct verification, C ⊆ Max(U) ⊆ Max(X ) = Z and V ⊆ U , V and U are increasing
(thus U is convex), U is functorial, (V ;≤) and (U \ V ;�) are order connected and (ui, vi)
are f -covering pairs for all i ∈ 7, thus (U(X ), V, {(ui, vi) | i ∈ 7}) is a u-triple. Clearly, ΞF0

is a h-subspace of X \ C. By Lemmas 5.1 and 5.7, if f : ΞF0 → X is an h-map then either
there exists a graph homomorphism g : F0 → F2 with f = Ξg (by Lemma 5.1, g is the
identity) or f is not injective on {a, b, c, d}. By Lemma 5.6, {a, b, c, d} ⊆ (z] for every z ∈ Z
and thus (t5) is satisfied. Thus X is a (U,C,Z)-testing object of Var(Q10). Thus X is a
finite universal testing object of (Var(DQ10)) with respect to Var(DR8) and by Corollary
3.10 X is also a standard Q-universal testing object. Whence by Corollary 3.6 and Theorem
3.9 we obtain

Corollary 5.9. The variety Var(DQ10) is Var(DR8)-relatively ff -alg-universal and has
an A-D family, thus it is also Q-universal.

Next we investigate the varieties of Heyting algebras determined by h-spaces Q6 and Q7

given in Figure 12. We apply some ideas from [9].

R6 R7

Q6 Q7

Figure 12

Let V be the variety of Heyting algebras generated by DQ7. First we shall construct
a functor Ω : TGR → PHV. For a TGR-object (G = (V,E)), f) set Ω(G, f) = (ZG;≤, τ)
where ZG = {t, 0, 1, 2} ∪ V ∪ E (we assume that t is distinct from 0, 1 and 2, and that
{t, 0, 1, 2}, V and E are pairwise disjoint), ≤ is the least partial order such that

(•) t < i for all i ∈ {0, 1, 2};
(•) i < v for i ∈ {0, 1, 2} and v ∈ V just when i �= f(v);
(•) v < e for v ∈ V and e ∈ E just when v ∈ e;
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and τ is the discrete topology on ZG. For a TGR-morphism g : ((V,E), f) → ((V ′, E′), f ′)
let us define

Ωg(u) =

⎧⎪⎨
⎪⎩
u if u ∈ {t, 0, 1, 2},
g(v) if u = v ∈ V,

{g(v), g(w)} if u = {v, w} ∈ E.

By a direct verification we obtain that ≤ is a partial order, and because ZG is finite we
conclude

Lemma 5.10. For every TGR-object G = ((V,E), f) we have
(1) ZG is finite and Ω(G, f) = (ZG;≤, τ) is an h-space;
(2) Max(ZG) = E and Min(ZG) = {t};
(3) (x] is isomorphic to Q7 for x ∈ ZG if and only if x ∈ E.

If g : (G, f) → (G′, f ′) is a TGR-morphism then Ωg is an h-map. Thus Ω : TGR →
PH(Var(Q7)) is a faithful functor.

Lemma 5.11. Let G = ((V,E), f) and G′ = ((V ′, E′), f ′) be TGR-objects and let g :
ΩG → ΩG′ be an h-map. Then g(t) = t, g({0, 1, 2}) ⊆ {t, 0, 1, 2} and one of the following
cases occurs:

(1) there exists i ∈ {0, 1, 2} such that i /∈ {g(0), g(1), g(2)} and then Im(g) ∩ E′ = ∅ and
g−1({v′ ∈ V ′ | f ′(v′) �= i}) ⊆ E;

(2) g(E) ⊆ E′, g(V ) ⊆ V ′, g({0, 1, 2}) = {0, 1, 2} and the domain-range restriction g′

of g to {0, 1, 2} and the domain-range restriction g′′ of g to V and V ′ are such that
g′′ : G → G′ is a graph homomorphism and g′ ◦ f = f ′ ◦ g′′.

Proof. Since g is an h-map we have that g(t) = t, g({0, 1, 2}) ⊆ {t, 0, 1, 2} and g(V ) ⊆
V ′ ∪ {t, 0, 1, 2}. Assume that i /∈ {g(0), g(1), g(2)} for some i ∈ {0, 1, 2}. Consider v′ ∈ V ′

with f ′(v′) �= i. Then i < v′. If v ∈ V with g(v) = v′ then i ∈ (g(v)] = g((v]) but

g((v]) ⊆ g({v, t, 0, 1, 2}) ⊆ {v′, t} ∪ ({0, 1, 2} \ {i})
and this is a contradiction with the h-property of g. Hence g−1(v′) ∩ V = ∅ and thus
g−1(v′) ⊆ E. Since |g({t, 0, 1, 2}| ≤ 3 we infer |(e]| = 7 > |g(e])| for all e ∈ E and
thus E′ ∩ Im(g) = ∅ and (1) is proved. Suppose that g({0, 1, 2}) = {0, 1, 2}. Then the
domain-range restriction g′ of g to {0, 1, 2} is a permutation of {0, 1, 2}. Since Cov(v) =
{i ∈ {0, 1, 2} | f(v) �= i} for all v ∈ V we have g(V ) ⊆ V ′. For every e = {v, w} ∈ E,
Cov(e) = {v, w} and f(v) �= f(w). Hence g(v) �= g(w) and therefore g(e) ∈ E′. Thus
g(E) ⊆ E′. Let g′′ be the restriction of g to V and V ′. For every e = {v, w} ∈ E we
have v, w < e, hence g(v), g(w) ≤ g(e) and thus g(e) = {g(v), g(w)} ∈ E′. Therefore g′′

is a graph homomorphism from G to G′. Since f ′(g′′(v)) �< g′′(v) for all v ∈ V we have
g′ ◦ f(v) = g(f(v)) = f ′(g(v)) = f ′ ◦ g′′(v) for all v ∈ V and (2) is proved.

Fix a graph homomorphism f : F2 → K3 (it exists because the chromatic number of F2

is 3). By Lemma 5.1, f is also a graph homomorphism of F0 onto K3 and, by Lemmas 5.1
and 5.11, if g : Ω(F0, f

′) → Ω(F2, f) is an h-map then either g = Ω1T0 or |g{t, 0, 1, 2}| ≤ 3.
Thus we set X = Ω(F2, f), Z = F2 = Max(Ω(F2, f)), U = [D), V = [{c10}), C =

{{ci, c10} | i ∈ 3} ∪ {{ci, c9} | i ∈ 4}),

(ui, vi) =

{
(ci, {ci, c10}) for i = 0, 1, 2,
(ci−3, {ci−3, c9}) for i = 3, 4, 5, 6.

Analogously as above we obtain that (U(X ), V, {(ui, vi) | i ∈ 7}) is a u-triple.
By Lemmas 5.1 and 5.11, we conclude that X is a (U,C,Z)-testing object of Var(DQ7).

Thus X is a finite universal testing object of (Var(DQ7)) with respect to Var(DR7) and,
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by Corollary 3.10, X is also standard Q-universal testing object. By Corollary 3.6 and
Theorem 3.9 we obtain

Corollary 5.12. The variety Var(DQ7) is Var(DR7)-relatively ff -alg-universal and has
an A-D family, thus it is also Q-universal.

By Lemma 5.10, X = Ω(F2, f) has the least element t and X \{t} is an h-space from the
variety of Heyting algebras Var(DQ6). Clearly, t /∈ U . Since C ⊆ U we have t /∈ C. Also
Ω(F0, f) has the least element and hence Ω(F0, f)\{t} is an h-space. If g : Ω(F0, f)\{t} →
Ω(F2, f) \ {t} is an h-map then the extension g′ of g with g′(t) = t is an h-map from
Ω(F0, f) to Ω(F2, f). Conversely, if g : Ω(F0, f) → Ω(F2, f) is an h-map with g−1{t} = {t}
then the domain-range restriction g′ of g to Ω(F0, f) \ {t} and Ω(F2, f) \ {t} is an h-map.
Thus X \{t} is a finite universal testing object of Var(DQ6) with respect to Var(DR6) and
a standard Q-universal testing object. Thus, by Corollary 3.6 and Theorem 3.9, we obtain

Theorem 5.13. The variety Var(DQ6) is Var(DR6)-relatively ff -alg-universal and has
an A-D family, thus it is also Q-universal.

6. Special cases

This section is devoted to three varieties of Heyting algebras that need to be treated
separately. First we consider posets Q0 and Q1 shown in Figure 13 (or in Figure 1).

Q0 Q1

a

b0 b1 b2

c

Figure 13

To begin with Q0, we consider h-spaces X0 = (X0;≤, τ), X1 = (X1;≤, τ) and X2 =
(X2;≤, τ) such that X0 = {a0, a1}∪{bi, ci | i ∈ 41}, X1 = X0∪{a2}, X2 = X1∪{a3, a4, a5}
and ≤ is the least partial order such that

(•) a0 < bi for all i ∈ 41;
(•) bi, bi+1, bi+2 < ci for i ∈ 41 where the addition is modulo 41;
(•) b0, b1, b11 < a1;
(•) b13+3i, b14+3i, b27+3i < a2+i for all i ∈ 4;

and discrete topology τ . Clearly, by Corollary 2.6, X0,X1,X2 ∈ Var(DQ0).

Lemma 6.1. Let h : X0 → Xi be an h-map for i = 1, 2. Then either h is the inclu-
sion or Im(h) ∩ Max(Xi) = ∅ and for every j ∈ 41, |{h(bj), h(bj+1), h(bj+2)}| ≤ 2 and
if |{h(bj), h(bj+1), h(bj+2)}| = 2 then a0 ∈ {h(bj), h(bj+1), h(bj+2)} where the addition is
modulo 41. The inclusion from X0 into Xi for i = 1, 2 is an h-map.

Proof. Since X0 is a decreasing subset in Xi for i = 1, 2, the inclusion is an h-map from X0

to Xi.
Conversely, assume that h : X0 → Xi for i = 1, 2 is an h-map. Let us denote B = {bk |

k ∈ 41}. Observe that |(u]| ∈ {1, 2, 5} for every u ∈ X2 and that u ∈ Max(Xi) if and
only if |(u]| = 5. From the h-property of h it follows h(a0) = a0 and h(B) ⊆ B ∪ {a0}.
Since (cj ] = {cj, bj , bj+1, bj+2, a0} for every j ∈ 41 we conclude that h(cj) ∈ Max(Xi) if
and only if h(bj), h(bj+1) and h(bj+2) are three distinct elements from the set B. Thus
for every j ∈ 41 either |{h(bj), h(bj+1), h(bj+2)} ∩ B| = 3 or there exists l ∈ 41 with
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{h(bj), h(bj+1), h(bj+2), h(cj)} ⊆ {a0, bl}. Since |(cj ] ∩ (cj+1]| = 3 for every j ∈ 41 (the
addition is modulo 41) we infer that either h(Max(X0)) ⊆ Max(Xi) or Im(h)∩Max(Xi) = ∅
for every j ∈ 41 |{h(bj), h(bj+1), h(bj+2)}| ≤ 2 and if |{h(bj), h(bj+1), h(bj+2)}| = 2 then
a0 ∈ {h(bj), h(bj+1), h(bj+2)} where the addition is modulo 41.

It remains to restrict ourselves to the case of h(Max(X0)) ⊆ Max(Xi). Then h(B) ⊆ B.
For j ∈41, let gi,j : Xi \ [bj) → {a, b0, b1, b2, c} be a mapping such that gi,j(a0) = a,
gi,j(Max(Xi) \ [bj)) = c and

gi,j(bk) =

{
bkmod3 if k < j,

bk+1mod3 if k > j.

By a direct calculation, we obtain that gi,j : Xi \ [bj) → Q0 is an h-map for every j ∈ 41
and i = 1, 2. Moreover, if x ∈ Max(X2)\ [bj) then gi,j(x] = A = {a, b0, b1, b2, c}. Conversely
assume that there exists a surjective h-map g : X0 → Q0. Then for every j ∈ 41 either
g((cj ]) = A or there exists l ∈ {0, 1, 2} with g((cj ]) = {a, bl}. From |(cj ] ∩ (cj+1]| = 3 for
all j ∈ 41 (the addition is modulo 41) it follows that either g({bj, bj+1, bj+2}) = {b0, b1, b2}
for all j ∈ 41 or c /∈ Im(g) and this is a contradiction. If

g({bj, bj+1, bj+2}) = g({bj+1, bj+2, bj+3}) = {b0, b1, b2}
then necessarily g(bj) = g(bj+3). Hence g(b0) = g(b41mod3) = g(b2) and this is a contradic-
tion. Thus there exists no surjective h-map from X0 onto Q0. If h(Max(X0)) ⊆ Max(Xi)
and there exists j ∈ 41 with bj /∈ h(B) then gi,j ◦ h is a surjective h-map from X0 onto Q0

and this is a contradiction. Hence h(B) = B and h is injective on B.
Consider j ∈ 41. If h(cj) = al for l ∈ {2, 3, 4, 5} then, by the h-property of h we infer that

h({bj, bj+1, bj+2}) = {b13+2(l−2), b14+2(l−2), b27+2(l−2)}. Hence there exists j′ ∈ {j, j + 1}
with b27+2(l−2) ∈ h({bj′ , bj′+1}). If j′ = j then set k = j − 1, if j′ = j + 1 then set
k = j + 1. In both cases b27+2(l−2) ∈ h({bk, bk+1, bk+2}) and {b13+2(l−2), b14+2(l−2)} ∩
h({bk, bk+1, bk+2}) �= ∅. So h(ck) = al and h({bk, bk+1, bk+2}) = h({bj, bj+1, bj+2}) and
this contradicts the injectivity of h on B. If h(cj) = a1 then analogously we obtain that
h({bj, bj+1, bj+2}) = {b0, b1, b11} and there exists k ∈ {j − 1, j + 1} with h(ck) = a1 and
h({bk, bk+1, bk+2}) = h({bj, bj+1, bj+2}) and this again contradicts the injectivity of h on
B. Hence we conclude that for every j ∈ 41 there exists k(j) ∈ 41 such that h(cj) = ck(j)

and h({bj, bj+1, bj+2}) = {bk(j), bk(j)+1, bk(j)+2}.
If h(bj+2) = bk(j)+1 then set l = j − 1, if h(bj) = bk(j)+1 then set l = j + 1. By

the assumption, we infer that h({bl, bl+1, bl+2}∩ {bj, bj+1, bj+2}) = {bk(j), bk(j)+2} and this
implies h({bl, bl+1, bl+2}) = h({bj, bj+1, bj+2}) and this is a contradiction with the injectivity
of h on B. Thus either h(bj) = bk(j), h(bj+1) = bk(j)+1, h(bj+2) = bk(j)+2 or h(bj) = bk(j)+2,
h(bj+1) = bk(j)+1, h(bj+2) = bk(j). In the first case, by the injectivity of h on B we infer that
h(bj+3) = bk(j)+3 and h(cj+1) = ck(j)+1 in the second case we infer that h(bj+3) = bk(j)−1

and h(cj+1) = ck(j)−1. By induction we deduce that there exists k(0) ∈ 41 such that either
h(bj) = bk(0)+j for all j ∈ 41 or h(bj) = bk(0)−j for all j ∈ 41 (the addition is modulo 41).
Then h(a1) = a1 because the differences between indices are preserved and thus we obtain
that h(bj) = bj for all j ∈ 41. Therefore h is the inclusion.

If we set X = X2, Z = Max(X2), C = {a2, a3, a4, a5}, U = [{bi | i = 13, 14, . . . , 33}),
then X \ C = X0 and, by Lemma 6.1, Aut(X ) is a singleton group and if h : X0 → X2

is an h-map then either h is the inclusion or Im(h) ∩ Max(X2) = ∅, for every j ∈ 41,
|{h(bj), h(bj+1), h(bj+2)}| ≤ 2 and if |{h(bj), h(bj+1), h(bj+2)}| = 2 then

a0 ∈ {h(bj), h(bj+1), h(bj+2)}
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where the addition is modulo 41. Thus every h-map h : X0 → X that is not the inclusion is
non-injective on X \U . For every z ∈ Z there exists i ∈ 41 with bi, bi+1 < z and bi /∈ Im(h)
or bi+1 /∈ Im(h). Choose uz ∈ {bi, bi+1} such that uz /∈ Im(h). Then for every h-map
g : X1 → X with h � X \ U = g � X \ U we have uz /∈ Im(g) for all z ∈ Z. Thus (t5) is
fulfilled and hence X is a (U,C,Z)-testing object of Var(Q0). Let V = [{b31, b32, b33}), then
V is increasing, order connected set. Let us define (u0, v0) = (b17, a4), (u1, v1) = (b18, a4),
(u2, v2) = (b19, a5), (u3, v3) = (b13, a2), (u4, v4) = (b14, a2), (u5, v5) = (b15, a3), (u6, v6) =
(b16, a3). Then (U \V,�) is order connected and (ui, vi) for i ∈ 7 are f -covering pairs. Thus
(U, V, {(ui, vi) | i ∈ 7}) is a u-triple. Let Hi be the variety of Heyting algebras generated
by the Heyting algebra that is an i-element chain for i = 2, 3. If x ∈ X2 \ Max(X2) then
(x] ∈ PHH3 and thus X is a finite universal testing object of Var(DQ0) with respect to H3

and, by Corollary 3.10, X is a standard Q-universal testing object. By Corollary 3.6 and
Theorem 3.9 we obtain

Theorem 6.2. The variety Var(DQ0) is H3-relatively ff -alg-universal and contains an
A-D family, so it is Q-universal.

Clearly, X has a unique minimal element a0 and X \ {a0} is an h-space from the variety
Var(DQ1). Clearly a0 /∈ U and thus a0 /∈ C. Also Min(X0) = {a0} and hence X0 has the
least element and X1\{a0} is an h-space from Var(DQ1). If g : X0\{a0} → X2\{a0} is an h-
map then the extension g′ of g given by g′(a0) = a0 is an h-map from X0 to X2. Conversely,
if g : X0 → X2 is an h-map with g−1{a0} = {a0} then the domain-range restriction g′ of g
to X0 \ {a0} and X2 \ {a0} is an h-map. Thus X \{a0} is a finite universal testing object of
Var(DQ1) with respect to the variety H2 of Boolean algebras and a standard Q-universal
testing object. Thus, by Corollary 3.6 and Theorem 3.9, we obtain

Theorem 6.3. The variety Var(DQ1) is H2-relatively ff -alg-universal and contains an
A-D family, so that it is Q-universal.

Finally, we consider the Heyting space Q2 given in Figure 14 (or in Figure 2).

Q2 R2
Figure 14

Although we do not know whether V = Var(Q2) is Var(R2)-relatively ff -alg-universal,
we at least prove that V = Var(Q2) is Var(R2)-relatively alg-universal.

The proof is based on ideas from [10].
Let us denote N the set of all natural numbers, and let Z denote the set of all integers.

Let us define disjoint posets A = {ai | i ∈ N}, B = {bi | i ∈ N}, T = {ti | i ∈ Z} and
W = {wi | i ∈ Z} so that

a2i < a2i+1 > a2i+2 and b2i < b2i+1 > b2i+2 for all i ∈ N,
t2i < t2i+1 > t2i+2 and w2i < w2i+1 > w2i+2 for all i ∈ Z.

Let U = {ni | i ∈ 24} ∪ {ei | i ∈ 15} be such that n3i > n3i+1 < n3i+2 for i = 0, 1, . . . , 7
and n3j+1 < e3j+i > n3i+16 for j ∈ 5 and i ∈ 3. Set V = [n22) = {n22} ∪ {e3j+2 | j ∈ 5}.
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Then V is an increasing subset of U . Let us define (ui, vi) = (n3i+1, e3i+2) for i ∈ 3 and
(ui+3, vi+3) = (n3i+1, e3i+1) for i ∈ 4 and set

C = {e3i+j | i ∈ 3, j = 1, 2} ∪ {e10} = {ei | i ∈ 11 is not divisible by 3}.
By an easy calculation, we verify that (U, V, {(ui, vi) | i = 0, 1, . . . , 6}) with C satisfies

the conditions (u1)–(u4) and hence (U, V, {(ui, vi) | i = 0, 1, . . . , 6}) is a u-triple. Let us
define S = {si | i ∈ 8}. Let (X ;≤) be the poset on the disjoint union X of A, B, T , W , U
and S, and ≤ is the least partial order that is the union of partial orders on A, B, T , W ,
and U that also satisfies

(•) s0 < s1, s2;
(•) s1 < s3, s6, n3k+1, a4i+2, b4i, w4j+2, t4j for all k ∈ 5, i ∈ N and j ∈ Z;
(•) s2 < s4, s7, n3k+16, a4i, b4i+2, w4j , t4j+2 for all k ∈ 3, i ∈ N and j ∈ Z;
(•) a0 < s6, b0 < s7, s3 < s5, s4 < s5;
(•) w60i < n3i, t60i+2 < n3i+2 for i ∈ 5;
(•) w60i+2 < n3i, t60i < n3i+2 for i = 5, 6, 7.
A straightforward calculation gives

Lemma 6.4. (X ;≤) is a poset such that
(1) Max(U) = {s5, s6, s7} ∪ {a2i+1, b2i+1 | i ∈ N} ∪ {w2i+1, t2i+1 | i ∈ Z} ∪ {n3i, n3i+2 |

i ∈ 8} ∪ {ei | i ∈ 15};
(2) U is a finite increasing subset of X and C ⊆ Max(X) ∩ U ;
(3) for every x ∈ Max(X) \ {s6, s7}, (x] is isomorphic to Q2 while (s6] and (s7] are

isomorphic to R2.

Let (Y ;≤) be the subposet of (X ;≤) on the set

Y = X \ {el | l ∈ 15}
and let us denote

X3 = {a4i+2, b4i | i ∈ N} ∪ {w4j+2, t4j | j ∈ Z} ∪ {n3k+1 | k ∈ 5} ∪ {s3},
X4 = {a4i, b4i+2 | i ∈ N} ∪ {w4j , t4j+2 | j ∈ Z} ∪ {n3k+1 | k = 5, 6, 7} ∪ {s4}.

Observe also that the subposet (S′;≤) of (X ;≤) on the set S′ = {si | i ∈ 6} is isomorphic
to Q2.

Lemma 6.5. Let f : Y → X be an order preserving mapping having the h-property. Then
one of the following posibilities occurs:

(1) f(si) = si for i = 0, 1, 2, 6, 7, f(a0) = a0, f(b0) = b0, f(A) ⊆ A ∪ {s1, s6}, f(B) ⊆
B ∪ {s2, s7} and f(Max(Y )) ⊆ Max(X);

(2) f(s0) = s0, f(si) = s3−i for i = 1, 2, f(sj) = s13−j for j = 6, 7, f(a0) = b0,
f(b0) = a0, f(A) ⊆ B ∪ {s2, s7}, f(B) ⊆ A ∪ {s1, s6}, f(Max(Y )) ⊆ Max(X);

(3) f(s0) = s0, f({s1, s2}) ⊂ {s0, s1, s2},
f(Max(Y )) ∩ Max(X) ⊆ {s6, s7}

and f({s1, s2}) �= {s1, s2}, and if s1 ∈ f({s1, s2}) then Im(f) ⊆ X3 ∪ (s6], if s2 ∈
f({s1, s2}) then Im(f) ⊆ X4 ∪ (s7], if {s0} = f({s1, s2}) then Im(f) ⊆ X3 ∪ X4 ∪
{s0, s1, s2}.

Proof. Since Min(Y ) = Min(X) = {s0} we obtain f(s0) = s0. Hence f({s1, s2}) ⊆
{s0, s1, s2}. If f({s1, s2}) = {s1, s2} then f(Max(Y )) ⊆ Max(X) because {y ∈ Y |
s1, s2 ∈ (y]} = Max(Y ) and {x ∈ X | s1, s2 ∈ (x]} = Max(X). By Lemma 6.4(3),
f({s6, s7}) ⊆ {s6, s7}. Since Cov(s6) = {s1, a0}, Cov(s7) = {s2, b0} it follows that
f(s1) = s1 implies f(si) = si for i = 1, 2, 6, 7, f(a0) = a0 and f(b0) = b0 and since
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f has the h-property we deduce that f(A) ⊆ A ∪ {s1, s6} and f(B) ⊆ B ∪ {s2, s7} (if
f(a2i) = a2j for j > 0 then f({a2i−1, a2i+1}) ⊆ {a2j−1, a2j+1}, if f(a2i) = a0 then
f({a2i−1, a2i+1}) ⊆ {s6, a1} and an analogous claim holds for bi). Similarly f(s1) = s2
implies f(s2) = s1, f(s6) = s7, f(s7) = s6, f(a0) = b0 and f(b0) = a0 and since f has the
h-property we deduce that f(B) ⊆ A ∪ {s1, s6} and f(A) ⊆ B ∪ {s2, s7}. Thus (1) and
(2) hold. Finally assume that f({s1, s2}) �= {s1, s2} then |(f(x))]| ≤ 5 for all x ∈ Max(Y )
and thus f(Max(Y )) ∩ Max(X) ⊆ {s6, s7}. Observe that every 4-element chain in (Y ;≤)
contains either s1 or s2. Hence if s1 ∈ f({s1, s2}) then there exists no 4-element chain con-
taining s2 in Im(f) and thus s7 /∈ Im(f). Further for every x ∈ Max(Y ) we have f(x) ≥ s1,
thus f(x) ∈ X3 ∪ {s6, s1} and we conclude that Im(f) ⊆ X3 ∪ (s6]. If s2 ∈ f({s1, s2})
then there exists no 4-element chain containing s1 in Im(f) and thus s6 /∈ Im(f). Further,
for every x ∈ Max(Y ) we have f(s) ≥ s2, thus f(x) ∈ X4 ∪ {s7, s2} and we conclude that
Im(f) ⊆ X3∪ (s7]. If {s0} = f({s1, s2}) then there exists no 4-element chain in Im(f), thus
s6, s7 /∈ Im(f) and whence Im(f) ⊆ X3 ∪X4 ∪ {s0, s1, s2}. We obtain (3).

Let us denote H4 = Var(DR2) and V = Var(DQ2). Our next goal is to define a topology
τ on X so that X = (X ;≤, τ) is an h-space, U is an open set and if h : (Y ;≤, τ) → (X ;≤, τ)
is an h-map and h({s1, s2}) = {s1, s2} then h is the inclusion and satisfies (t5). Then X will
be a (U,C,Z)-testing object of V, for Z = Max(X) \ {s6, s7} since (Y ;≤, τ) is a h-subspace
of X \C. Hence X will be a universal testing object of V with respect to H4 and Theorem
3.9 will conclude the proof that the variety V is a H4-relatively alg-universal.

To define a topology consider a decomposition M = {Mj | j ∈ Z} of N such that
(o1) Mj is infinite for all j ∈ Z;
(o2) if j ≡ 0 mod 4 then n ≡ 0 mod 4 for all n ∈Mj ;
(o3) if j ≡ 2 mod 4 then n ≡ 2 mod 4 for all n ∈Mj ;
(o4) if j is odd then n is odd for all n ∈Mj;
(o5) the symmetric difference ∆({n ∈ N | n − 1 ∈ Mj or n + 1 ∈ Mj},Mj−1 ∪Mj+1) is

finite for all j ∈ Z.
For a set Q ⊆ X let us denote A(Q) = {i ∈ N | ai ∈ Q} and B(Q) = {i ∈ N | bi ∈ Q}. Let
CM be the family of all subsets Q of X such that
(o6) if wj ∈ Q then Mj \ A(Q) is finite;
(o7) if Mj ∩ A(Q) is infinite for j ∈ Z then wj ∈ Q;
(o8) if tj ∈ Q then Mj \ B(Q) is finite;
(o9) if Mj ∩ B(Q) is infinite for j ∈ Z then tj ∈ Q;

(o10) if s3 ∈ Q then the sets {i ∈ Z | i ≡ 2 mod 4, Mi \ A(Q) �= ∅} and {i ∈ Z | i ≡
0 mod 4, Mi \ B(Q) �= ∅} are finite;

(o11) if {i ∈ Z | i ≡ 2 mod 4, Mi∩A(Q) �= ∅} is infinite or {i ∈ Z | i ≡ 0 mod 4, Mi∩B(Q) �=
∅} is infinite then s3 ∈ Q;

(o12) if s4 ∈ Q then the sets {i ∈ Z | i ≡ 0 mod 4, Mi \ A(Q) �= ∅} and {i ∈ Z | i ≡
2 mod 4, Mi \ B(Q) �= ∅} are finite;

(o13) if {i ∈ Z | i ≡ 0 mod 4, Mi∩A(Q) �= ∅} is infinite or {i ∈ Z | i ≡ 2 mod 4, Mi∩B(Q) �=
∅} is infinite then s4 ∈ Q;

(o14) if s5 ∈ Q then the sets {i ∈ Z | i is odd, Mi \ A(Q) �= ∅} and {i ∈ Z | i is odd,Mi \
B(Q) �= ∅} are finite;

(o15) if {i ∈ Z | i is odd, Mi ∩ (A(Q) ∪ B(Q)) �= ∅} is infinite then s5 ∈ Q.

Lemma 6.6. The family CM is closed under complements and finite unions and intersec-
tions and contains ∅ and X.

Proof. Consider Q ⊆ X . Observe that Mj \ A(Q) is finite if and only if Mj ∩ A(X \Q) is
finite and Mj \ B(Q) is finite if and only if Mj ∩ B(X \Q) is finite for all j ∈ Z. Hence, by
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a standard calculation we obtain that if Q ⊆ X satisfies (o6)-(o9) then also X \Q satisfies
(o6)-(o9). Analogously, Mj ⊆ A(Q) if and only if Mj ∩ A(X \Q) = ∅ and, by a standard
calculation, we obtain that if Q ⊆ X satisfies (o10)-(o15) then also X \ Q satisfies (o10)-
(o15). Whence CM is closed under complements. The proof that if Q1, Q2 ⊆ X satisfies
(o6)-(o15) then also Q1 ∪Q2 satisfies (o6)-(o15) is direct. Hence CM is closed under finite
unions and, by deMorgan rules, it is also closed under finite intersections. Clearly, ∅ and X
satisfy (o6)-(o15), and the proof is complete.

Consider the topology τ on X with basis CM. By Lemma 6.6, any set Q ∈ CM is clopen
in τ . If Q and X \ Q are open in τ then, by (o10), (o12) and (o14), we conclude that
Q ∈ CM. Thus CM is the Boolean algebra of all τ -clopen sets.

Proposition 6.7. The triple X = (X ;≤, τ) is an h-space belonging to PHV.

Proof. First we prove that the topology τ on X is compact. Let {Oi | i ∈ I} be an open
covering of X . Then there exist i0, i1, i2 ∈ I with s3+j ∈ Oij for j = 0, 1, 2. Since CM is a
basis of τ there exist Qij ∈ CM for j = 0, 1, 2 such that s3+j ∈ Qij ⊆ Oij . By (o10), (o12)
and (o14), the sets {i ∈ Z | i ≡ 2 mod 4, Mi \ A(Qi0 ) �= ∅}, {i ∈ Z | i ≡ 0 mod 4, Mi \
B(Qi0) �= ∅}, {i ∈ Z | i ≡ 0 mod 4, Mi \ A(Qi1) �= ∅}, {i ∈ Z | i ≡ 2 mod 4, Mi \ B(Qi1) �=
∅}, {i ∈ Z | i is odd, Mi \ A(Qi2) �= ∅}, {i ∈ Z | i id odd, Mi \ B(Qi2) �= ∅} are finite. If
Mi ⊆ A(Qij ) for some i ∈ Z and j = 0, 1, 2 then, by (o7), wi ∈ Qij , if Mi ⊆ B(Qij ) for some
i ∈ Z and j = 0, 1, 2 then, by (o9), ti ∈ Qij . Hence the sets T \⋃2

j=0Oij , W \⋃2
j=0Oij are

also finite. Thus there exists a finite subset I1 ⊆ I with i0, i1, i2 ∈ I1 and T ∪W ⊆ ⋃
i∈I1

Oi.
By (o6) and (o8), A \ ⋃

i∈I1
Oi and B \ ⋃

i∈I1
Oi are finite and thus X \ ⋃

i∈I1
Oi is finite.

Whence (X, τ) is compact.
To prove that (X ;≤, τ) is a Priestley space it remains to show that for x, y ∈ X with y �≤ x

there exists a clopen decreasing set Q with x ∈ Q and y /∈ Q. First observe that (x] is clopen
for all x ∈ A∪B ∪ (U \ {n3i, n3i+2 | i ∈ 8})∪ {s0, s1, s2, s6, s7} and [x) is clopen for all x ∈
A∪B∪U ∪{s6, s7}. The remaining case is that x ∈ T ∪W ∪{n3i, n3i+2 | i ∈ 8}∪{s3, s4, s5}
and y ∈ (S \ {s6, s7}) ∪ T ∪W . Observe that {tj} ∪ {bi | i ∈Mj} and {wj} ∪ {ai | i ∈Mj}
are clopen for all j ∈ Z. By (o5), the sets [{tj} ∪ {bi | i ∈ Mj}), ({tj} ∪ {bi | i ∈ Mj}],
[{wj} ∪ {ai | i ∈ Mj}), and ({wj} ∪ {ai | i ∈ Mj}] are clopen for all j ∈ Z, by (o5)
because finite subsets of A ∪ B are clopen. Since ({tj} ∪ {bi | i ∈ Mj}] ∩ S = (tj ] ∩ S
and ({wj} ∪ {ai | i ∈ Mj}] = (wj ] ∩ S for all j ∈ Z we conclude that the required
clopen decreasing set exists for x ∈ T ∪W or y ∈ T ∪W . Since (n3i] ∪ {aj | j ∈ M60i},
(n3i+2] ∪ {bj | j ∈M60i+2} for i ∈ 4 and (n3i] ∪ {aj | j ∈M60i+2}, (n3i+2] ∪ {bj | j ∈M60i}
for i = 4, 5, 6 are clopen decreasing we can restrict to the case that x ∈ {s3, s4, s5} and
y ∈ S \ {s6, s7}. The fact that the disjoint sets

{s3, s1, s0} ∪ {wj | j ≡ 2 mod 4} ∪ {tj | j ≡ 0 mod 4} ∪ {ai | i ∈Mj for j ≡ 2 mod 4}
∪ {bi | i ∈Mj for j ≡ 0 mod 4} and

{s4, s2, s0} ∪ {wj | j ≡ 0 mod 4} ∪ {tj | j ≡ 2 mod 4} ∪ {ai | i ∈Mj for j ≡ 0 mod 4}
∪ {bi | i ∈Mj for j ≡ 2 mod 4}

are clopen and decreasing and the fact that (s5] = {s0, s1, s2, s3, s4, s5} is isomorphic to Q2

complete the proof that (X ;≤, τ) is a Priestley space.
Next we prove that (X ;≤, τ) is an h-space. Consider Q ∈ CM. For k = 0, 2 observe that

[{tj | j ≡ k mod 4}) = {tj | j �≡ (k + 2) mod 4} and [{wj | j ≡ k mod 4}) = {wj | j �≡
(k + 2) mod 4}. By a routine calculation, we obtain that

[s1) = X \ ({s2, s4} ∪ {n3k+1 | k = 4, 5, 6} ∪ {ai, bi+2 | i ∈ N, i ≡ 0 mod 4}
∪ {wi, ti+2 | i ∈ Z, i ≡ 0 mod 4})
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and

[s2) = X \ ({s1, s3} ∪ {n3k+1 | k ∈ 4} ∪ {ai+2, bi | i ∈ N, i ≡ 0 mod 4}
∪ {wi+2, ti | i ∈ Z, i ≡ 0 mod 4}).

Thus [Q) satisfies (o10)–(o15), and, by (o5), [Q) satisfies also (o6)–(o9). Whence [Q) ∈ CM
and (X ;≤, τ) is an h-space since CM is a base of τ consisting of clopen sets. Since R2 ∈ PHV

we obtain, by Theorem 2.5 and Lemma 6.4(3), that X ∈ PHV.

It is clear that the ordered space Y = (Y ;≤, τ) obtained from X by removing its clopen
subset {el | l ∈ 15} of Max(X ) is an h-space and that Y ∈ PHV.

Lemma 6.8. Let f : Y → X be an h-map such that f({s1, s2}) = {s1, s2}. Then f(s5) =
s5, f−1{x} is finite for all x ∈ X and

(1) if f(s1) = s1 then f(si) = si for all i ∈ 8, A ⊆ f(A), B ⊆ f(B), W = f(W ), and
T = f(T );

(2) if f(s1) = s2 then f(s5) = s5, f(si) = s3−i for i = 1, 2, f(si) = s7−i for i = 3, 4,
f(si) = s13−i for i = 6, 7, A ⊆ f(B), B ⊆ f(A), W = f(T ), and T = f(W ).

Proof. Let f : Y → X be an h-map with f({s1, s2}) = {s1, s2}. First let f(s1) = s1.
Then, by Lemma 6.5(1), f(A) ⊆ A ∪ {s1, s6} and f(B) ⊆ B ∪ {s2, s7}. Observe that the
singletons {s1}, {s2}, {s6}, and {s7} are clopen sets. From the definition of CM it follows
that

⋂{Q | Q ∈ CM, A ⊆ Q} = A ∪ W ∪ {s3, s4, s5} and
⋂{Q | Q ∈ CM, B ⊆ Q} =

B∪T ∪{s3, s4, s5}. Thus the closure of A is the set {s3, s4, s5}∪W ∪A and the closure of B
is the set {s3, s4, s5}∪T ∪B. Hence f(A∪W ∪{s3, s4, s5}) ⊆ A∪W ∪{s1, s3, s4, s5, s6} and
f(B ∪ T ∪ {s3, s4, s5}) ⊆ B ∪ T ∪ {s2, s3, s4, s5, s7}. Thus f({s3, s4, s5}) ⊆ {s3, s4, s5} and,
by Lemma 6.5(1), we deduce that f(si) = si for all i ∈ 8. By Lemma 6.5, f(Max(Y )) ⊆
Max(Y ) and hence

f({ai | i ∈ N, i is odd}) ⊆ {s5, s6} ∪ {ai | i ∈ N, i is odd} ∪ {wi | i ∈ Z, i is odd}
f({bi | i ∈ N, i is odd}) ⊆ {s5, s7} ∪ {bi | i ∈ N, i is odd} ∪ {ti | i ∈ Z, i is odd}.

If for some odd i ∈ N we have f(ai) = s5 then f({ai−1, ai+1}) = {s3, s4} and thus
f(ai+2), f(ai−2) = s5. From this it follows that f(a0) ∈ {s3, s4} and this is a contra-
diction with Lemma 6.5(1). Analogously, we obtain that f(ai) /∈ {wj | j ∈ Z, j is odd} and
f(bi) /∈ {s5} ∪ {tj | j ∈ Z, j is odd}. Since every finite subset of A or B is closed we con-
clude f(A) and f(B) are infinite. By Lemma 6.5(1), we infer that A ⊆ f(A) and B ⊆ f(B)
because A and B are one-way infinite zig-zags. From this it follows that f(W ) = W and
f(T ) = T because for every j ∈ Z the closure of {ai | i ∈ Mj} (or {bi | i ∈ Mj}) is
{ai | i ∈Mj} ∪ {wj} (or {bi | i ∈Mj} ∪ {tj}, respectively).

Let f(s1) = s2. Then, by Lemma 6.5(2), f(A) ⊆ B ∪ {s2, s7} and f(B) ⊆ A ∪ {s1, s6}.
Hence f(A∪W ∪{s3, s4, s5}) ⊆ B ∪T ∪{s2, s3, s4, s5, s7} and f(B ∪T ∪{s3, s4, s5}) ⊆ A∪
W ∪{s1, s3, s4, s5, s6}. Thus f({s3, s4, s5}) ⊆ {s3, s4, s5} and, by Lemma 6.5(2), f(s5) = s5,
f(si) = s3−i for i = 1, 2, f(si) = s7−i for i = 3, 4, and f(si) = s13−i for i = 6, 7. From the
closedness of finite sets we obtain again A ⊆ f(B) and B ⊆ f(A) and whence f(W ) = T
and f(T ) = W .

Consider x ∈ A ∪ B. Since every element of A ∪ B is clopen we obtain that any subset
of A ∪ B is open and compactness of X implies that the closure of any infinite subset of
A∪B contains an element of W ∪T ∪{s3, s4, s5}. We have f−1{x} ⊆ A∪B∪{s1, s2, s6, s7}
and claim that this set is finite. From

⋂{Q | Q ∈ CM, W ⊆ Q} = W ∪ {s3, s4, s5} and⋂{Q | Q ∈ CM, T ⊆ Q} = T ∪ {s3, s4, s5} it follows that the closure of W is the set
W ∪ {s3, s4, s5} and the closure of T is the set T ∪ {s3, s4, s5}. Since for every x ∈ W ∪ T
there exists an open set O such that {x} = O∩ (W ∪T ), the compactness of X implies that
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the closure of any infinite subset of W ∪T contains an element of {s3, s4, s5}. Thus f−1{x}
is finite for all x ∈ W ∪ T because f−1{x} ⊆ W ∪ T . Thus f−1{x} ∩ (A ∪ B ∪W ∪ T ) is
finite for all x ∈ X and hence f−1{x} is finite for all x ∈ X .

Lemma 6.9. Let f : Y → X be an h-map such that {f (s1), f(s2)} = {s1, s2}. Then
(1) if f(s1) = s1 then for every j ∈ Z there exists νj ∈ N such that if f(wj) = wj′ then

for every i ∈ Mj with i ≥ νj there exists i′ ∈ Mj′ with f(ai) = ai′ and if f(tj) = tj′
then for every i ∈Mj with i ≥ νj there exists i′ ∈Mj′ with f(bi) = bi′ ;

(2) if f(s1) = s1 then for every j ∈ Z there exists µj ∈ N such that for every i ∈ Mj

with i ≥ µj we have A(f−1{ai}) ⊆
⋃{Mj′ | f(wj′ ) = wj} and B(f−1{bi}) ⊆

⋃{Mj′ |
f(tj′ ) = tj};

(3) if f(s1) = s2 then for every j ∈ Z there exists νj ∈ N such that if f(wj) = tj′ then
for every i ∈ Mj with i ≥ νj there exists i′ ∈ Mj′ with f(ai) = bi′ and if f(tj) = wj′

then for every i ∈Mj with i ≥ νj there exists i′ ∈Mj′ with f(bi) = ai′ ;
(4) if f(s1) = s2 then for every j ∈ Z there exists µj ∈ N such that for every i ∈ Mj

with i ≥ µj we have A(f−1{bi}) ⊆
⋃{Mj′ | f(wj′ ) = tj} and B(f−1{ai}) ⊆

⋃{Mj′ |
f(tj′ ) = wj};

(5) if f(ai) = aj (or f(ai) = bj) then j ≤ i, if f(bi) = bj (or f(bi) = aj) then j ≤ i;
(6) if f(ai) = ak (or f(ai) = bk) and f(aj) = al (or f(aj) = bl) for i ≤ j then {an | k ≤

n ≤ l or l ≤ n ≤ k} ⊆ {f (an) | i ≤ n ≤ j} (or {bn | k ≤ n ≤ l or l ≤ n ≤ k} ⊆
{f (an) | i ≤ n ≤ j}) and hence |k − l| ≤ |i − j|, if f(bi) = bk (or f(bi) = ak) and
f(bj) = bl (or f(bj) = al) then {bn | k ≤ n ≤ l or l ≤ n ≤ k} ⊆ {f (bn) | i ≤ n ≤ j}
(or {an | k ≤ n ≤ l or l ≤ n ≤ k} ⊆ {f (bn) | i ≤ n ≤ j}) and hence |k − l| ≤ |i− j|.

Proof. Let j ∈ Z. Then by (o6) and (o7), wj is a member of the closure of Q ⊆ A if and
only if A(Q)∩Mj is infinite. By (o10)–(o15), the intersection of {s3, s4, s5} with the closure
of a set Q ⊆ A is non-empty if and only if the set {j ∈ Z | Mj ∩ A(Q) �= ∅} is infinite.
Analogously, tj is a member of the closure of Q ⊆ B if and only if B(Q)∩Mj is infinite and
the intersection of {s3, s4, s5} with the closure of a set Q ⊆ B is non-empty if and only if
the set {j ∈ Z |Mj ∩ B(Q) �= ∅} is infinite.

Since every h-map f : Y → X is closed, for every j ∈ Z the set f({wj}∪{ai | i ∈Mj}) is
closed. Since {f (wj)} = f({wj} ∪ {ai | i ∈Mj}) \ (A ∪B) we conclude that if f(wj) = wj′

(or f(wj) = tj′) then the set {i ∈ Mj | f(ai) /∈ {ak | k ∈ Mj′}} (or {i ∈ Mj | f(ai) /∈
{bk | k ∈ Mj′}}) is finite and hence, by Lemma 6.8, the clauses (1) and (3) are proved.
Since each h-map is continuous and {wj} ∪ {ai | i ∈ Mj} and {tj} ∪ {bi | i ∈ Mj} are
clopen sets for each j ∈ Z, by Lemma 6.8 and (o6)-(o15) we obtain that the difference sets
of f−1({ai | i ∈ Mj}) and {ai | i ∈ Mj′ , f(wj′ ) = wj} ∪ {bi | i ∈ Mj′ , f(tj′ ) = wj}, and of
f−1({bi | i ∈ Mj}) and {ai | i ∈ Mj′ , f(wj′) = tj} ∪ {bi | i ∈ Mj′ , f(tj′) = tj} are finite.
Whence (2) and (4) follow.

By Lemma 6.5(1) and (2), we obtain (5) because any order preserving mapping maps a
zig-zag of length k onto a zig-zag of length at most k. Since every order preserving mapping
preserves connectedness we obtain (6).

To complete the proof we now specify the sets Mj with j ∈ Z. Let {ni}∞i=0 and {mi}∞i=0

be two increasing sequences of natural numbers and set

I = {(i, j) | i ∈ N, j ∈ Z, −ni ≤ j ≤ mi}.
For (i, j) ∈ I, let us define

suc(i, j) =

{
(i, j + 1) if j < mi,

(i+ 1,−ni+1) if j = mi.
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Consider the lexicographical order ≤ on I (in which (i, j) ≤ (i′, j′) just when either i < i′

or i = i′ and j ≤ j′). Then suc is the successor function on I with respect to ≤. For
a finite interval J of natural numbers, let l(J) = minJ and u(J) = maxJ ; then J =
{i ∈ N | l(J) ≤ i ≤ u(J)}. Let {R(i,j) | (i, j) ∈ I} be a family of finite non-empty
intervals of natural numbers such that l(i, j) ≤ u(i, j) = l(suc(i, j))− 1 for all (i, j) ∈ I and
l(0,−n0) = 0. Then we define M4j+r for j ∈ Z by M4j = {4k | ∃i, (i, j) ∈ I, k ∈ R(i,j)},
M4j+2 = {4k + 2 | ∃i, (i, j) ∈ I, k ∈ R(i,j)}, M4j+1 = {k | k − 1, k + 1 ∈ M4j ∪M4j+2},
M4j+3 = {k | k − 1 ∈M4j+2, k + 1 /∈M4j}.
Lemma 6.10. The family {Mj | j ∈ Z} satisfies the conditions (o1)–(o5).

Proof. Since for every j ∈ Z there exist infinitely many i ∈ N with (i, j) ∈ I and since
R(i,j) �= ∅ for all (i, j) ∈ I, the set Mj is infinite for every j ∈ Z and (o1) is true. The
conditions (o2)–(o4) immediately follow from the definition. Clearly, the sets M4j+1 and
M4j+2 satisfy (o5) for all j ∈ Z. Consider n ∈M4j+3. Then n−1 ∈M4j+2 and n+1 /∈M4j+4

if and only if there exists i ∈ N such that j = mi and n = u(Ri,j). But for given j ∈ Z
there exists at most one i ∈ N with j = mi because {mi}i∈N is an increasing sequence.
Analogously, if n ∈ M4j then n + 1 ∈ M4j+1 and n − 1 /∈ M4j−1 = M(4j−1)+3 if and only
if there exists i ∈ N such that j = −ni and n = l(Ri,j). Again for a given j ∈ Z there
exists at most one i ∈ N with j = −ni because {ni}i∈I is an increasing sequence. Thus
(o5) holds.

Next we define intervals Ri,j for (i, j) ∈ I. Let {pi}i∈N be a sequence of integers such
that
(s1) −ni ≤ pi ≤ mi for every i ∈ N;
(s2) for every finite set K ⊆ Z and for l, q ∈ N there exists i > l such that pi+m /∈ K for

all m = 0, 1, . . . , q;
(s3) for every k1, k2, j ∈ Z with k1 < k2 and l, q ∈ N there exists i > l such that pi �= j

and k1 ≤ pi+m ≤ k2 for all m = 0, 1, . . . , q;
(s4) for every j, k ∈ Z and l, q ∈ N there exists i > l such that pi = j and pi+m �= k for all

m = 1, 2, . . . , q.
From (s4) it follows that for every j ∈ Z there exist infinitely many i ∈ N with pi = j.
Choose a natural number α > 0. Then for (i, j) ∈ I with j �= pi we set u(Ri,j) − l(Ri,j) =
α− 1 and for (i, j) ∈ I with j = pi we set u(Ri,j) − l(Ri,j) =

∏i2

k=0(mk + nk)α − 1. Thus
α and the sequence {pi}i∈N uniquely determine a family {Ri,j | (i, j) ∈ I} of intervals of
natural numbers.

Lemma 6.11. If f : Y → X is an h-map such that {f (s1), f(s2)} = {s1, s2} then either
(1) f(ai) = ai, f(bi) = bi for all i ∈ N and f(wi) = wi, f(ti) = ti for all i ∈ Z or
(2) f(ai) = bi, f(bi) = ai for all i ∈ N and f(wi) = ti, f(ti) = wi for all i ∈ Z.

Proof. By Lemma 6.5(1) and (2), it suffices to prove that
(i) if f(a0) = a0 then f(ai) = ai for all i ∈ N and f(wi) = wi for all i ∈ Z;
(ii) if f(a0) = b0 then f(ai) = bi for all i ∈ N and f(wi) = ti for all i ∈ Z;
(iii) if f(b0) = b0 then f(bi) = bi for all i ∈ N and f(ti) = ti for all i ∈ Z;
(iv) if f(b0) = a0 then f(bi) = ai for all i ∈ N and f(ti) = wi for all i ∈ Z.

Observe that if f(a0) = a0 then for every i ∈ N there exists i′ ∈ N with f(a4i) = a4i′ . Let
us define g(i) = i′ and for every j ∈ Z there exists j′ ∈ Z with f(w4j) = w4j′ , let us define
h(j) = j′. If f(a0) = b0 then for every i ∈ N there exists i′ ∈ N with f(a4i) = b4i′ , let us
define g(i) = i′ and for every j ∈ Z there exists j′ ∈ Z with f(w4j) = t4j′ , let us define
h(j) = j′. Once we prove that both g and h are the identity then (i) and (ii) are proved,
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The proof of (iii) and (iv) is by symmetry. To prove that both g and h are the identity
mapping, denote Rj =

⋃{R(i,j) | ∃i ∈ I with (i, j) ∈ I}. We claim the following properties
of g and h.

(1) if g(i) = i′ for i ∈ N then g(i + 1) ∈ {i′ − 1, i′, i′ + 1}, if h(j) = j′ for j ∈ Z then
h(j − 1), h(j + 1) ∈ {j′ − 1, j′, j′ + 1};

(2) g(0) = 0 and if g(i) = i′ for i ∈ N then i′ ≤ i;
(3) if i < j and g(i) = i′, g(j) = j′ then {l | i′ ≤ l ≤ j′ or j′ ≤ l ≤ i′} ⊆ g({l | i ≤ l ≤ j});
(4) g(N) = N, h(Z) = Z;
(5) g−1{i} and h−1{j} are finite sets for all i ∈ N and j ∈ Z;
(6) if h(j) = j′ then g(Rj) \Rj′ is a finite set for all j ∈ Z;
(7) g−1(Rj) \ (

⋃
k∈h−1(j) Rk) is a finite set for all j ∈ Z.

Indeed, the h-property of f implies (1), Lemmas 6.5 and 6.9(5) imply (2), Lemma 6.9(6)
implies (3), Lemma 6.8 implies (4) and {5), Lemma 6.9(1) and (3) implies (6) and Lemma
6.9(2) and (4) implies (7).

Choose j ∈ Z. Since ni and mi form increasing sequences, there exists ι0 ∈ N such that
−ni < j − 1 < j + 1 < mi for every i ≥ ι0, thus (i, j − 1), (i, j), (i, j + 1) ∈ I for every
i ≥ ι0. By (7), there exists ι1 ∈ N with ι1 ≥ ι0 and g−1(Ri,j) ⊆

⋃
k∈h−1(j)Rk for all i ≥ ι1.

By (5), there exists ι2 ∈ N such that for every i ≥ ι2 and for every k ∈ h−1{j} we have
(i, k − 1), (i, k), (i, k + 1) ∈ I and, by (1), (5) and (6), we can assume that g(Ri,k−1) ⊆
Rh(k−1), g(Ri,k+1) ⊆ Rh(k+1) and g(Ri,k) ⊆ ⋃

i≥ι1
Ri,j . Since (i, j − 1), (i, j + 1) ∈ I for all

i ≥ ι0 and ι1 ≥ ι0 and since Ri,j−1 and Ri,j+1 are non-empty intervals we conclude that
for every i ≥ ι2 and every k ∈ h−1{j} there exists φ(i, k) > ι1 with g(Ri,k) ⊆ Rφ(i,k),j . By
(2), φ(i, k) ≤ i because g(i) ≤ i for all i ∈ N. If h(k) = j and i > ι2 then h(k − 1) �= j (or
h(k + 1) �= j) implies that Rj ∩Rh(k−1) = ∅ and g(Ri,k−1) ⊆ Rh(k−1) (or Rj ∩Rh(k+1) = ∅
and g(Ri,k+1) ⊆ Rh(k+1)). Hence if i, i′ ≥ ι2 and k, k′ ∈ h−1{j} are such that (i, k) < (i′, k′)
and there exists no (i′′, k′′) ∈ I with (i, k) < (i′′, k′′) < (i′, k′) and k′′ ∈ h−1{j} then one of
the following possibilities occurs:

(a) if (i′, k′) = suc(i, k) then φ(i, k) = φ(i′, k′);
(b) if (i′, k′) �= suc(i, k), h(k+ 1) = j− 1 and h(k′ − 1) = j+ 1 then φ(i′, k′) = φ(i, k)− 1;
(c) if (i′, k′) �= suc(i, k), h(k + 1) = j − 1 and h(k′ − 1) = j − 1 then φ(i′, k′) = φ(i, k);
(d) if (i′, k′) �= suc(i, k), h(k + 1) = j + 1 and h(k′ − 1) = j + 1 then φ(i′, k′) = φ(i, k);
(e) if (i′, k′) �= suc(i, k), h(k+ 1) = j+ 1 and h(k′ − 1) = j− 1 then φ(i′, k′) = φ(i, k)+ 1.

Hence there exists an integer β such that φ(i + 1, k) = φ(i, k) + β for all i ≥ ι2 and
k ∈ h−1{j}. By (4), g(N) = N and β > 0.

Since {ni}∞i=0 and {mi}∞i=0 are increasing sequences, we deduce that {mi + ni}∞i=0 is an
increasing sequence of natural numbers. Since

∏i2

k=0(mk + nk)α − 1 depends only on i we
obtain that

(mi + ni)α+
i2∏

k=0

(mk + nk)α− 1 ≤ l(Ri+1,j) − l(Ri,j)

≤ (mi+1 + ni+1)α+
(i+1)2∏
k=0

(mk + nk)α− 1,

whenever −ni ≤ j ≤ mi. Hence we deduce that if −ni ≤ j ≤ mi then for every integer k > 0
we have l(Ri+k+1,j)− l(Ri+k,j) > l(Ri+1,j)− l(Ri,j). Thus if k ∈ h−1{j} is such that β > 1
then there exists i with φ(i, k) > i. Then l(Ri+1,k) − l(Ri,k) < l(Rφ(i+1,k),j) − l(Rφ(i,k),j)
and this contradicts (3). Hence β = 1. Since φ(i, k) ≤ i for all i ≥ ι2 and k ∈ h−1{j}, there
exists a natural number γk such that φ(i, k) = i− γk for all i ≥ ι2.



ON RELATIVE UNIVERSALITY AND Q-UNIVERSALITY 221

First assume that there exist k,m ∈ h−1{j} such that k < m, there exists no k′ ∈ h−1{j}
with k < k′ < m and φ(i,m) = φ(i, k)+1 for every i ≥ ι2. By (s2), there exists i1 ∈ N such
that i1 = φ(i, k) for some i ≥ ι2, pi1 �= j, and either pi < k or pi > m. Hence i1 ≥ ι1 ≥ ι0.
Then g(Ri,k) ⊆ Ri1,j and g(Ri,m) ⊆ Ri1+1,j and, by (3),

{l | u(Ri1,j) < l < l(Ri1+1,j)} =
⋃{Rα,β | (α, β) ∈ I, (i1, j) < (α, β) < (i1 + j)}

⊆ {g(l) | u(Ri,k) < l < l(Ri,m)} = g
( ⋃{Rα,β | ∃(α, β) ∈ I, (i, k) < (α, β) < (i,m)}).

By the construction of the family {Ri,j | (i, j) ∈ I}, we have

l(Ri1+1,j) − u(Ri1,j) =
(
mi1 + ni1+1 − 2 +

i21∏
l=0

(ml + nl)
)
α− 1

and l(Ri,m)−u(Ri,k) = (m−k−1)α−1. Then m−k < mι0 +nι0 < mi1 +ni1+1, and hence
l(Ri1+1,j)−u(Ri1,j) > l(Ri,m)−u(Ri,k) and this is a contradiction. Hence φ(i, k) = φ(i,m)
for all k,m ∈ h−1{j} and φ(i+ 1,minh−1{j}) = φ(i,max h−1{j}) + 1 because β = 1. Thus
γk = γm for all k,m ∈ h−1{j}.

Assume that |h−1{j}| ≥ 2 and set k = max h−1{j}, m = minh−1{j}. By (s3), there
exists i1 ∈ N such that φ(i, k) = i1 for some i ≥ ι2, i1 > γk, pi1 �= j and m ≤ pi ≤ k. Then
g(Ri,k) ⊆ Ri1,j and g(Ri+1,m) ⊆ Ri1+1,j and, by (3),

{l | u(Ri1,j) < l < l(Ri1+1,j)} =
⋃

{Rα,β | (α, β) ∈ I, (i1, j) < (α, β) < (i1 + j)}
⊆ g({l | u(Ri,k) < l < l(Ri+1,m}) = g(

⋃
{Rα,β | (i, k) < (α, β) < (i+ 1, m)}).

By the construction of the family {Ri,j | (i, j) ∈ I}, we have

l(Ri1+1,j) − u(Ri1,j) =
(
mi1 + ni1+1 − 2 +

i21∏
l=0

(ml + nl)
)
α− 1

and l(Ri+1,m)− u(Ri,k) < (mi + ni+1 − 1)α− 1. Since i1 = i− γk and i1 > γk we conclude

that i21 > i+1. Then (mi +ni+1 −1)α <
∏i21

l=0(ml +nl)α and hence l(Ri1+1,j)−u(Ri1,j) >
l(Ri+1,m) − u(Ri,k) and this is a contradiction. Thus |h−1{j}| = 1.

Finally we prove that γ = 0 and h−1{j} = {j}. Assume the contrary. Thus if h−1{j} =
{k} then k �= j or γk �= 0. By (s4), there exists i1 ∈ N such that φ(i, k) = i1 for some i ≥ ι2,
pi1 = j and pi �= k. Then, by (3), g(Ri,k) = Ri1,j . But |Ri1,j | =

∏i21
l=0(ml+nl)α > α = |Ri,k|

– this is a contradiction. Thus h(j) = j and for every i ≥ ι2 we have g(Ri,j) = Ri,j . By
(2), for every l ∈ N there exists i ∈ N with i > l and g(i) = i. From (2) and (3) it follows
that g(l) = l for all l ∈ N. Since j is arbitrary we have h(j) = j for all j ∈ Z.

Lemma 6.12. If f : Y → X is an h-map with {f (s1), f(s2)} = {s1, s2} then f is the
inclusion.

Proof. If f(s1) = s1 then, by Lemma 6.11, f is the inclusion. Assume that f(s2) = s1. By
Lemma 6.11, f(wj) = tj and f(tj) = wj for all j ∈ Z. Then w60i < n3i > n3i+1 < n3i+2 >
t60i+2. Thus t60i < f(n3i) > f(n3i+1) < f(n3i+2) > w60i+2, but no such zig-zag exists in
(X ;≤) – a contradiction. Thus f(s1) = s2 is impossible, and the proof is complete.

Finally, it remains to construct a sequence {pi}i∈N satisfying the conditions (s1)–(s4).
We shall construct this sequence by induction. Let κ and λ be natural numbers. At the
initial step we set λ = 1, κ = m0 and p0 = −n0. If δ is the greatest natural number such
that pi was constructed for all i ∈ δ then we apply the following step:

if pδ−1 < κ then pδ = pδ+1 = · · · = pδ+λ = pδ−1 + 1, if pδ−1 = κ then we increase λ
by 1, set κ = mδ and pδ = pδ+1 = · · · = pδ+λ = −nδ.
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From the construction it immediately follows that the sequence {pi}i∈N satisfies the condi-
tions (s1)-(s4).

Thus, by Lemmas 6.5 and 6.12, X is a (U,C,Z)-testing object of V because {s0, s1, s2} ⊆
(z] for all z ∈ Z. By Lemma 6.4, (x] ∈ PHH4 for all x ∈ X \ Z, and thus X is a universal
testing object of V with respect to H4. Since X is automorphism-free, Theorem 3.9 gives

Corollary 6.13. The variety V of Heyting algebras is H4-relatively alg-universal.

To prove the Q-universality of the variety V, we use the technique from [18] in order to
construct a standard Q-universal testing object for V.

Let (A;≤) be a poset where A = {ai | i ∈ 80} and a2i < a2i+1 > a2i+2 for all i ∈ 40
where the addition is modulo 80. For j ∈ 4, let (Dj ;≤) be a poset with Dj = {di,j | i ∈ 21}
and d2i,j > d2i+1,j < d2i+2,j for all i ∈ 10 and each j ∈ 4 (we assume that Dj ∩Dj′ = ∅
for distinct j, j′ ∈ 4 and A ∩Dj = ∅ for all j ∈ 4). Let (X ;≤) be a new poset that is the
union of posets (A;≤), (Dj ;≤) for j ∈ 4 and the set S = {si | i ∈ 10}, whose members are
related as follows:

(•) s0 < s1, s2; a0 < s3 > s2; a26 < s4 > s1; a56 < s5 > s2;
(•) s1 < a4i, d4j+1,k, d4j+3,l for i ∈ 20, j ∈ 4, k = 0, 2, l = 1, 3;
(•) s2 < a4i+2, d4j+3,k , d4j+1,l for i ∈ 20, j ∈ 4, k = 0, 2, l = 1, 3;
(•) a30+2i < d0,i and a76−2i < d20,i for i ∈ 4;
(•) d9,0 < s6 > d9,1; d9,0 < s7 > d9,3; d9,2 < s8 > d9,1; d9,2 < s9 > d9,3.

Let us denote U = [{d9,i | i ∈ 4}) = {dj,i | j = 8, 9, 10, i ∈ 4}∪{sj | j = 6, 7, 8, 9}, C = {s9}
and (a, b) = (d9,3, s9). The topology τ is discrete. By a direct verification we obtain

Lemma 6.14. For X = (X ;≤, τ) we have
(1) Max(X) = {a2i+1 | i ∈ 39} ∪ {d2i,j | i ∈ 11, j ∈ 4} ∪ {sk | k = 3, 4, . . . , 9};
(2) (x] is isomorphic to Q2 for all x ∈ Max(X) \ {s3, s4, s5} and (x] is isomorphic to R2

for x ∈ {s3, s4, s5};
(3) [s1) ∩ [s2) = Max(X);
(4) X belongs to PHV;
(5) U ⊆ X is functorial, C ⊆ Max(U) and (d9,3, s9) is an f -covering pair.

Set Y = X \ {s6, s7, s8, s9}. Since X is finite and s6, s7, s8, s9 ∈ Max(X) we conclude
that Y = (Y ;≤, τ) is an h-space and Y ∈ PHV. We will investigate h-maps from Y to X .

Lemma 6.15. Let f : Y → X be an h-map. Then f(s0) = s0, f({si | i = 1, 2}) ⊆
{s0, s1, s2} and either f({s1, s2}) = {s1, s2}, f(Max(Y )) = Max(X) and f({s3, s4, s5}) ⊆
{s3, s4, s5} or there exists i = 1, 2 such that si /∈ f({sj | j ∈ 3}) and Im(f) ∩ Max(Y ) ⊆
{s3, s4, s5}.
Proof. Since Min(X) = Min(Y ) = {s0}, we have f(s0) = s0. To demonstrate that f({si |
i = 1, 2}) ⊆ {si | i ∈ 3} observe that Cov(y) = {s0} in Y for y ∈ Y if and only if y ∈ {s1, s2},
and Cov(x) = {s0} in X for x ∈ X if and only if x ∈ {s1, s2}. Thus f({si | i = 1, 2}) ⊆ {si |
i ∈ 3}. Next observe that s1, s2 ∈ (x] for x ∈ X (or x ∈ Y ) if and only if x ∈ Max(X) (or
x ∈ Max(Y )). Hence if f({s1, s2}) = {s1, s2} then f(Max(Y )) ⊆ Max(X) and, by Lemma
6.14(2), f({s3, s4, s5}) ⊆ {s3, s4, s5}. If |f({si | i ∈ 3})| ≤ 2 then f is not injective on (x] for
all x ∈ Max(Y ) because {si | i ∈ 3} ⊆ (x] for all x ∈ Max(Y ). By Lemma 6.14(2), |(x]| = 6
if and only if x ∈ Max(X) \ {s3, s4, s5} and hence Im(f) ∩ (Max(X) \ {s3, s4, s5} = ∅ and
the proof is complete.

Finally, we investigate h-maps f : Y → X with {f (s1), f(s2)} = {s1, s2} in more detail.
Let us denote S0 = {si | i = 6, 7, 8, 9} ∪ {d9,k | k ∈ 4}.
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Lemma 6.16. Let f : Y → X be an h-map such that {f (s1), f(s2)} = {s1, s2}. Then one
of the following possibilities occurs:

(1) f is the inclusion;
(2) f is not injective on the set {ai | i ∈ 56} and Im(f) ∩ S0 = ∅.

Proof. First observe that Cov(s3) ∩ {s1, s2} = Cov(s5) ∩ {s1, s2} = {s2} and Cov(s4) ∩
{s1, s1} = s2. From f({s3, s4, s5}) ⊆ {s3, s4, s5} it follows that f is injective on (si] for
i = 3, 4, 5 and hence either f({s3, s5}) ⊆ {s3, s5} and f(s4) = s4 or f(s3) = f(s5) = s4
and f(s4) ∈ {s3, s5}. Moreover, if f({s3, s5}) ⊆ {s3, s5} then f(s1) = s1 and f(s2) = s2,
if f(s3) = f(s5) = s4 then f(s1) = s2 and f(s2) = s1. By Lemma 6.15, if x ∈ Max(Y ) \
{s3, s4, s5} and f(x) �= s3, s4, s5 then f is injective on (x] because, by Lemma 6.14(2),
|(x]| = 6 = |(f(x)]|. If x ∈ Max(Y ) \ {s3, s4, s5} and f(x) ∈ {s3, s5} then f is injective
on (x] \ f−1(s2) and |(x] ∩ f−1(s2)| = 2, and from f(x) = s4 it follows that f satisfies
f(Cov(x)) = Cov(f (x)) for every x ∈ Max(Y ).

Define posets (P1,≤) and (P2,≤) where P1 = A ∪ (
⋃3

j=0Dj) ∪ {s3, s4, s5} and P2 =
P1∪{s6, s7, s8, s9} and p ≤ q in P1 or P2 just when p ∈ Cov(q) in (X,≤). Then f(P1) ⊆ P2

and the domain-range restriction g of f to P1 and P2 is a h-map from (P1,≤) to (P2,≤) such
that g(Max(P1)) ⊆ Max(P2) and either g({s3, s5}) ⊆ {s3, s5} and g(si) = si for i = 1, 2, 4
or else g(s3) = g(s5) = s4, g(s4) ∈ {s3, s5}, g(s1) = s2, and g(s2) = s1.

For i = 1, 2 and p, q ∈ Pi let distPi(p, q) be length of the shortest sequence x0, x1, . . . , xk

such that p = x0, q = xk and xj and xj+1 are comparable for all j = 0, 1, . . . , k − 1.
Such a sequence x0, x1, . . . , xk is called a path between p and q. Then distP2(g(p), g(q)) ≤
distP1(p, q) for all p, q ∈ P1.

Observe that distPi(s3, s4) = 29 and distPi(s5, s4) = 31 for i = 1, 2. Thus either
s3 ∈ g({s3, s5}) ⊆ {s3, s5} and g(s4) = s4 or g(s3) = g(s5) = s4 and g(s4) = s3. Since
s3, a0, a1, . . . , a26, s4 is the unique shortest path between s3 and s4 then in the first case
g(ai) = ai for i ∈ 27 and in the second case g(ai) = a26−i for i ∈ 27. Observe that
s5, s2, s3, a0, a1, . . . , a26, s4 is the unique shortest path between s5 and s4 and that

s5, a56, a55, . . . , a26, s4

is the unique path between s5 and s4 of length 33. If g(s5) = s3 then g(s2) = s2 and
hence g(a56) = a0. Thus g({a56−i | i ∈ 30}) ⊆ {aj | j ∈ 28} ∪ {s1, s2, s3, s4, a78, a79}. If
g(s5) = s5 then g(a56) = a56 and hence g(a55) ∈ {a55, a57, s5}. Since 31 = distP2(s5, s4) =
distP2(a55, s4) < distP2(a57, s4) and since a55, a54, . . . , a25, s4 is the unique shortest path
between a55 and s4 we conlcude that either g(a55) = s5, g(a54) = s2, g(a53) = s3, g(a52−i) =
ai for i ∈ 27 or g(a55−i) = a55−i for i ∈ 30. If g(s5) = g(s3) = s4 then g(a56) = a26 and
g(a26) = a0. Since between a0 and a26 every path of length at most 30 contains ai for i ∈ 26
we conlcude that g({a56−i | i ∈ 30}) ⊆ {ai | i ∈ 28} ∪ {s1, s2, s3, s4, a79, a78}. From the
above we infer that one of the following four cases occurs:

(1) g(ai) = ai for i ∈ 57 and g(si) = si for i = 1, 2, 3, 4, 5;
(2) g(si) = si for i = 1, 2, 3, 4, 5, g(ai) = ai for i ∈ 27, g(a56) = a56, g(a55) = s5,

g(a54) = s2, g(a53) = s3 and g(a52−i) = ai for i ∈ 27;
(3) g(si) = si for i = 1, 2, 3, 4, g(s5) = s3, g(ai) = ai for i ∈ 27, g({a56−i | i ∈ 30}) ∈ {aj |

j ∈ 28} ∪ {s1, s2, s3, s4, a78, a79};
(4) g(s3) = g(s5) = s4, g(s4) = s3, g(s2) = s1, g(s1) = s2, g(a26−i) = ai for i ∈ 27 and

g({a56−i | i ∈ 30}) = {aj | j ∈ 28} ∪ {s1, s2, s3, s4, a78, a79}.
We now consider these four cases.

Case (1). Direct observation shows that

s3, a79, a78, a77, a76, d20,0, d19,0, . . . , d0,0, a30, a29



224 VÁCLAV KOUBEK AND JIŘÍ SICHLER

is the unique shortest path between s3 and a29 and hence g(ai) = ai for i = 76, 77, 78, 79
and g(di,0) = di,0 for all i ∈ 21. Since

a77−2i, a76−2i, d20,i, d19,i, . . . , d0,i, a30+2i, a31+2i

is the unique shortest path between a77−2i and a31+2i for i = 1, 2, 3 we infer that g(ai) = ai

for i = 75, 74, . . . , 70 and g(di,j) = di,j for all i ∈ 21 and j = 1, 2, 3. There are ex-
actly two shortest paths s5, s2, s3, a0, a79, a78, . . . , a69 and s5, a56, a57, . . . , a69 between s5
and a69. Since g(a56) = a56 we conclude that g(a57) �= s3 and therefore g maps the path
s5, a56, a57, . . . , a69 into itself. Thus g(ai) = ai for all i ∈ 80 and g(di,j) = di,j for all i ∈ 21
and j ∈ 4. In this case f is the inclusion.

Case (2). We know that g is not injective on {ai | i ∈ 56}, and hence f is also not
injective on {ai | i ∈ 57}. By the assumption, g(a29) = a23. Since distP1(a29, a77) = 25 and
distP1(s3, a77) = 5 we conclude that g(a77) ∈ {a79, a1, a3, s3}. From distP1(a69, a77) = 9
it follows that g({ai | i = 79, 77, . . . , 69}) is a subset of B0 ∪ D0 where B0 = {ai | i =
1, 3, . . . , 11} ∪ {51, 53, . . . , 61} ∪ {71, 73, 75, 77, 79}} and

D0 = {d20,0, d18,0, d16,0d20,2, d18,2, d20,4, s3, s5}.
Thus g({ai | i ∈ 57, 59, . . . , 69}) is a subset B0∪D0∪{ai | i = 63, 49}. Hence S0∩Im(g) = ∅
and thus also S0 ∩ Im(f) = ∅.

Case (3). Again, g is not injective on {ai | i ∈ 57} and hence also f is not injective on
{ai | i ∈ 57}. From g(s5) = s3 we infer that g(a56) = a0 and hence g(a55) ∈ {a79, a1, s3}. If
g(a55) = a79 then g(a54) = a78 and hence g(a53) ∈ {a77, a79}. Since distP1(a53, s4) = 29 and
distP2(a77, s4) = 31, we obtain g(a53) = a79, g(a52−i) = ai for i ∈ 27. If g(a55) = s3 then
g(a54) = s2 and hence g(a53) ∈ {s3, s5}. From distP1(a53, s4) = 29 and distP2(s5, s4) = 31
we infer that g(a53) = s3 and g(a52−i) = ai for i ∈ 27. If g(a55) = a1 then g(a54) = a2

and g(a53) ∈ {a1, a3}. Hence g(a52−i) ∈ {ai, ai+4} for i ∈ 27 which is even and g(a52−i) ∈
{ai, ai+2, ai+4} for i ∈ 27 vhich is odd. In particular, g(a29) ∈ {a23, a25, a27, s4}. From
distP1(a29, a77) = 25 and distP1(s3, a77) = 5 we get g(a77) ∈ {a79, a1, a3, s3}. ¿From
distP1(a69, a77) = 9 it follows that g({ai | i = 79, 77, . . . , 69}) is a subset of B0 ∪ D0

where B0 = {ai | i = 1, 3, . . . , 11} ∪ {51, 53, . . . , 61} ∪ {71, 73, 75, 77, 79}} and D0 =
{d20,0, d18,0, d16,0, d20,2, d18,2, d20,4, s3, s5}. Thus g({ai | i ∈ 57, 59, . . . , 69}) is a subset of
B0 ∪D0 because g(s5) = s3. Hence S0 ∩ Im(g) = ∅ and thus S0 ∩ Im(f) = ∅.

Case (4). We know that g, and also f , is not injective on {ai | i ∈ 57}. From g(s5) = s4
we get that g(a56) = a26 and thus g(a55) ∈ {a25, a27, s4}. If g(a55) ∈ {s4, a27} then
g(a54) ∈ {a28, s1}, but

distP2(a28, s3) = distP2(s1, s3) = distP1(a54, s4) = 30

and hence g(a53) = g(a55) and g(a52−i) = ai for i ∈ 27. If g(a55) = a25 then g(a54) = a24

and g(a53) ∈ {a23, a25}. Hence g(a52−i) ∈ {ai, ai−4} for i ∈ 27 which is even and g(a52−i) ∈
{ai, ai−2, ai−4} for i ∈ 27 which is odd. From distP1(a29, a77) = 25 and distP1(s3, a77) =
5 it follows that g(a77) ∈ {a27, a25, a23, s4}. From distP1(a69, a77) = 9 it follows that
g({ai | i = 79, 77, . . . , 69}) is a subset of B1 ∪ D1 where B1 = {ai | i = 15, 17, . . . , 35}
and D1 = {d0,0, d2,0, d4,0, d0,2, d2,2, d0,4, s4}. Thus g({ai | i ∈ 57, 59, . . . , 69}) is a subset of
B1 ∪D1 because g(s5) = s4. Hence S0 ∩ Im(g) = ∅ and thus S0 ∩ − Im(f) = ∅.

Thus in the case (1), we conclude that 6.16(1) holds and in the cases (2), (3) and (4)
that 6.16(2) holds.

If we set Z = {s9} then C ⊆ Z and to obtain that X is a standard Q-testing object it
remains to prove that X is a finite (U,C,Z)-testing object. Since Y is an h-subspace of X \C
and

⋃
c∈C Cov(c) ⊆ S0, we obtain, by Lemmas 6.15 and 6.16 that X is a (U,C,Z)-testing

object. Since X is finite the proof is complete. Then, by Corollary 3.6, we obtain
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Corollary 6.17. The variety V contains an A-D family and hence it is Q-universal.

7. Conclusion

Theorem 1.3 follows from Theorems 4.7, 4.13, 5.13, 6.2, 6.3 and Corollaries 4.17, 5.5, 5.9,
5.12, 6.13, 6.16.

Next we give the proof of Corollaries 1.4 and 1.5. First we give an auxiliary notion. From
Priestley duality it follows that if H ∈ PHV and if f : H′ → H is an injective h-map and
g : H → H′′ is a surjective h-map then H′,H′′ ∈ PHV. This fact motivates the following
notion. Let (X ;≤, τ) be an h-space then an equivalence θ on X is called an h-congruence
if a quotient space (X ;≤, τ)/θ = (X/θ,�, σ) (it means that (X/θ,�) is a quotient poset of
(X,≤) by θ and (X,σ) is a quotient topological space of (X, τ) by θ) is an h-space and the
associated canonical quotient mapping is an h-map. This implies that every class of θ is
closed and convex. If (X ;≤, τ) is finite then, by a standard calculation, an equivalence θ is
an h-congruence if and only if

(1) every class of θ is convex;
(2) if x, y ∈ X with xθy and z ≤ x for z ∈ X then there exists u ∈ X with u ≤ y and

uθz.
If V is a variety and H ∈ PHV and θ is an h-congruence of H then H/θ ∈ PHV.

Proof of Corollary 1.4 Referring to Fig. 3 and Fig. 1, we show that every variety Var(DSi)
with i = 0, 1, . . . , 11 contains one of the varieties Var(DQj) with j = 0, 1, . . . , 10.

(0) on S0, the equivalence θ collapsing only the minimal elements in the middle and on
the right is an h-congruence with S0/θ ∼= Q3;

(1) on S1, the h-congruence θ collapsing only all minimal elements gives S1/θ ∼= Q0;
(2) on S2, the h-congruence θ collapsing only the least element and its three covers gives

S2/θ ∼= Q0;
(3) for S3, its subposet (x] where x is the cover of the minimal element on the right is

isomorphic to Q3;
(4) on S4, the h-congruence θ that collapses only the minimal element on the right and

its two covers gives S4/θ ∼= Q3;
(5) on S5, the h-congruence θ collapsing only the least element and its cover on the left

gives S5/θ ∼= Q9;
(6) on S6, the h-congruence θ collapsing only the two covers of the minimal element on

the right produces S6/θ ∼= Q3;
(7) for S7, the subposet (x] where x is the cover of the minimal element on the left is

isomorphic to Q3;
(8) for S8, the subposet (x] where x is either element covered by the maximal element is

isomorphic to Q3;
(9) for S9, the subposet (x] for either element x covering the minimal element on the left

is isomorphic to Q3;
(10) on S10, the h-congruence θ collapsing only the least element and the element covering

it on the left gives S10/θ ∼= Q10;
(11) on S11, the h-congruence θ collapsing only the least element and its cover on the left

gives S11/θ ∼= Q2.
Theorem 1.3 completes the proof because if a variety V contains a W-relatively alg-universal
variety V′ then V is also W-relatively alg-universal, if V contains a variety V′ having an
A-D family then V also has an A-D family.

Proof of Corollary 1.5 Let (X ;≤, τ) be a finite h-space with the greatest element such
that there exists an antichain A of (X ;≤) with |A| ≥ 3. Then we can assume that either
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A ⊆ Min(X) or A ∩ Min(X) = ∅ or |Min(X)| = 2 and |A ∩ Min(X)| = 1. Indeed, if
|Min(X)| ≥ 3 or Min(X) is a singleton then we can choose an antichain A ⊆ X such that
|A| ≥ 3 and either A ∩ Min(X) = ∅ or A ⊆ Min(X). If |Min(X)| = 2 then either there
exists an antichain A ⊆ X with |A| ≥ 3 and A ∩ Min(X) = ∅ or every antichain A ⊆ X
with |A| ≥ 3 satisifies A∩Min(X) �= ∅. In the second case necessarily |A∩Min(X)| = 1 for
every antichain A ⊆ X with |A| ≥ 3.

Let x0, x1, x2 be pairwise distinct elements of A such that if A ∩ Min(X) �= ∅ then
x0 ∈ Min(X). Let θ be the least equivalence on X such that uθv for all u, v ∈ X with
(u] ∩ {x0, x1, x2} = (v] ∩ {x0, x1, x2}. It is then straightforward to verify that θ is an h-
congruence on H and H/θ is isomorphic to one of the h-spaces Q0, Q1, Q6, Q7, Q8, S0,
S1, S2, S3, S4, S6, S7, S8, and S9. By Theorem 1.3 and Corollary 1.4, if (X ;≤, τ) ∈ PHV

for a variety V of Heyting algebras then V is var-relatively alg-universal modulo a group
and contains an A-D family.

M. E. Adams and W. Dziobiak [4] have improved Theorem 4.13 by showing that the
variety Var{DG0,DH0} is a minimal Q-universal variety. It is an open question whether
Var{DG0,DH0} is var-relatively alg-universal. Both questions appear to be open for the
varieties Var{DG1,DH1} and Var{DG2,DH2}: we do not know whether or not these
varieties are Q-universal or var-relatively alg-universal.

Another interesting question is whether or not the varieties from Theorem 1.3 are mini-
mal. Using the result of Adams and Dziobiak and the results from [11] we obtain that the
variety Var(DQi) is a minimal Q-universal variety for i = 0, 1, . . . , 9. A more complicated
is the question concerning minimal var-relatively alg-universal varieties. Here it is clear
that the varieties Var(DQi) for i = 0, 1, 3, 6 are minimal var-relatively alg-universal. For
the other varieties this question is open. But we still conjecture that all varieties Var(DQi)
with i = 0, 1, . . . , 10 will show to be both minimal Q-universal and minimal var-relatively
alg-universal.
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[22] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semi-

groups and Categories, North Holland, Amsterdam, 1980.
[23] M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172–180.

communicated by Klaus Denecke ;

Department of Theoretical Computer Science and Mathematical Logic
and Institute of Theoretical Computer Science
The Faculty of Mathematics and Physics
Charles University
Malostranské nám. 25
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