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Abstract. The purpose of the paper is to consider a necessary and sufficient con-
straint qualification for local optimality conditions in DC programming problems with
convex inequality constraints. Also, we consider necessary and sufficient constraint
qualifications for local optimality conditions in fractional programming problems and
weakly convex programming problems.

1 Introduction We consider the following DC programming problem:

minimize f(x) − g(x),
subject to hi(x) ≤ 0, i ∈ I,

where X is a real locally convex Hausdorff topological vector space, I is an arbitrary index
set, f , hi : X → R ∪ {+∞}, i ∈ I, are lower semicontinuous (lsc) proper convex functions
and g : X → R is a lsc convex function. Hiriart-Urruty [6] established characterization
theorems for local and global optimality in unconstrained DC programming problems by
using subdifferential and ε-subdifferential. Jeyakumar and Glover [9] gave global optimal-
ity conditions for DC optimization problems with convex inequality constraints by using
ε-subdifferential. In addition, they applied their results to weakly convex programming
problems and fractional programming problems. Research of DC programming problems
and fractional programming problems have been widely studied, for example, see [1, 2, 3, 4].

For convex programming problems, it is well known that the Slater condition is a con-
straint qualification for global optimality conditions. Li, Ng and Pong [10] studied con-
straint qualifications for global optimality conditions in convex programming problems and
established that the basic constraint qualification (the BCQ) is a necessary and sufficient
constraint qualification for global optimality conditions in convex programming problems.
Similar research have been developed recently, see [5, 7, 8].

In this paper, we show that the BCQ is a necessary and sufficient constraint qualification
for local optimality conditions in DC programming problems with convex inequality con-
straints. Also, we apply the result of DC programming problems to fractional programming
problems and weakly convex programming problems.

The paper is organized as follows. In the next section, we introduce a theorem, the
BCQ is a necessary and sufficient constraint qualification for global optimality conditions
in convex programming problems, by Li, Ng and Pong [10], and also we introduce a charac-
terization result for local optimality in unconstrained DC programming problems by Hiriart-
Urruty [6]. We show that the BCQ is a necessary and sufficient constraint qualification for
local optimality conditions in DC programming problems with convex inequality constraints.
In section 4, we show that the BCQ is also necessary and sufficient constraint qualification
for local optimality conditions in fractional programming problems and weakly convex pro-
gramming problems. In the last section, we summarize our results.
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2 Preliminaries Let X be a real locally convex Hausdorff topological vector space and
X∗ denote the continuous dual space of X. Let 〈x∗, x〉 denote the value of a functional x∗

in X∗ at x ∈ X, that is, 〈x∗, x〉 = x∗(x). Let Z be a subset of X∗. The convex hull and
conical hull of Z are denoted by coZ and coneZ, respectively. Let A be a convex set in X.
The normal cone of A at z0 ∈ A, denoted by NA(z0), is defined by

NA(z0) = {x∗ ∈ X∗ | 〈x∗, z − z0〉 ≤ 0 for each z ∈ A}.

The indicator function δA is defined by

δA(x) =
{

0 x ∈ A,
+∞ otherwise.

Let f : X → R∪ {+∞} be a proper convex function. The effective domain and epigraph of
f are defined by

domf = {x ∈ X | f(x) < +∞},

and

epif = {(x, r) ∈ X × R | f(x) ≤ r},

respectively. The conjugate function of f , f∗ : X∗ → R ∪ {+∞}, is defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) | x ∈ X}

for each x∗ ∈ X∗. The subdifferential of f at x ∈ domf , denoted by ∂f(x), is defined by

∂f(x) = {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y) − f(x) for each y ∈ X}.

In this paper, we consider mathematical programming problems under the following
constraint set:

S = {x ∈ X | hi(x) ≤ 0 for each i ∈ I},

where I is an arbitrary index set and hi : X → R ∪ {+∞}, i ∈ I, are lsc proper convex
functions.

First, we introduce the basic constraint qualification (the BCQ) that is a necessary and
sufficient constraint qualification for global optimality conditions in convex programming
problems by Li, Ng and Pong [10].

Definition 2.1 ([10]). Let {hi | i ∈ I} be a family of lsc proper convex functions from X
to R ∪ {+∞}. The family {hi | i ∈ I} is said to satisfy the BCQ at x̄ ∈ S if

NS(x̄) = cone co
∪

i∈I(x̄)

∂hi(x̄),

where I(x̄) = {i ∈ I | hi(x̄) = 0}.

Theorem 2.1 ([10]). Let {hi | i ∈ I} be a family of lsc proper convex functions from X
to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.
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(ii) For each lsc proper convex function f : X → R ∪ {+∞} such that domf ∩ S 6= ∅ and
epif∗ + epiδ∗S is weak∗-closed, x̄ is a minimizer of f in S if and only if there exists
λ ∈ R(I)

+ such that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄),

where R(I)
+ is the set of nonnegative real tuples λ = (λi)i∈I with only finitely many λi 6= 0.

This theorem shows that the BCQ is a necessary and sufficient constraint qualification
for global optimality conditions in convex programming problems.

Next, we introduce the following characterization result for local optimality in uncon-
strained DC programming problems by Hiriart-Urruty [6].

Theorem 2.2 ([6]). Let f : X → R∪{+∞} be a lsc proper convex function and g : X → R
be a lsc convex function. If x̄ ∈ X is a local minimizer of f − g in X, then

∂g(x̄) ⊂ ∂f(x̄).

By using this theorem, we show that the BCQ is a necessary and sufficient constraint
qualification for local optimality conditions in DC programming problems with convex in-
equality constraints in the next section.

3 DC Programming In this section, we consider again the DC programming problem:

minimize f(x) − g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R ∪ {+∞} is a lsc proper convex function and g : X → R is a lsc convex
function.

Theorem 3.1. Let {hi | i ∈ I} be a family of lsc proper convex functions from X to
R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.

(ii) For each lsc proper convex function f : X → R ∪ {+∞} such that domf ∩ S 6= ∅
and epif∗ + epiδ∗S is weak∗-closed, and lsc convex function g : X → R, if x̄ is a local
minimizer of f − g in S, then for each v ∈ ∂g(x̄), there exists λ ∈ R(I)

+ such that
λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).

Proof. First, we prove (i) implies (ii). Assume that (i) holds. Let f be a lsc proper convex
function from X to R ∪ {+∞} such that domf ∩ S 6= ∅ and epif∗ + epiδ∗S is weak∗-closed,
and g be a lsc convex function from X to R. The point x̄ is a local minimizer of f − g in S
if and only if x̄ is a local minimizer of (f + δS) − g in X. We have from Theorem 2.2 that
if x̄ is a local minimizer of (f + δS) − g in X, then

∂g(x̄) ⊂ ∂(f + δS)(x̄).
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By the assumption of f , the subdifferential sum formula holds, that is,

∂(f + δS)(x̄) = ∂f(x̄) + ∂δS(x̄).

Since ∂δS(x̄) = NS(x̄) and the assumption (i) holds,

∂f(x̄) + ∂δS(x̄) = ∂f(x̄) + cone co
∪

i∈I(x̄)

∂hi(x̄).

Hence, if x̄ is a local minimizer of f − g in S, then

∂g(x̄) ⊂ ∂f(x̄) + cone co
∪

i∈I(x̄)

∂hi(x̄).

This implies that (ii) holds.
Next, we prove (ii) implies (i). Assume that (ii) holds and let x∗ ∈ NS(x̄). Then x̄ is

a minimizer of −x∗ in S. By setting f = −x∗ and g = 0 in assumption (ii), there exist
λ ∈ R(I)

+ such that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ −x∗ +
∑
i∈I

λi∂hi(x̄).

Therefore, we have

x∗ ∈
∑
i∈I

λi∂hi(x̄) =
∑

i∈I(x̄)

λi∂hi(x̄) ⊂ cone co
∪

i∈I(x̄)

∂hi(x̄),

and hence NS(x̄) ⊂ cone co
∪

i∈I(x̄) ∂hi(x̄) holds. Since the converse inclusion is always
satisfied, (i) holds. This completes the proof.

This theorem shows that the BCQ is a necessary and sufficient constraint qualification for
local optimality conditions in DC programming problems with convex inequality constraints.

4 Applications In this section, we apply the result of previous section to fractional pro-
gramming problems and weakly convex programming problems. In particular, we consider
weakly convex programming problems in a smooth real Banach space.

4.1 Fractional Programming We consider the following fractional programming prob-
lem:

minimize f(x)/g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R ∪ {+∞} is a lsc proper convex function and g : X → R is a lsc convex
function such that f is nonnegative and g is positive on S.

Theorem 4.1.1. Let {hi | i ∈ I} be a family of lsc proper convex functions from X to
R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.
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(ii) For each lsc proper convex function f : X → R ∪ {+∞} such that domf ∩ S 6= ∅,
epif∗ + epiδ∗S is weak∗-closed and f is nonnegative on S, and lsc convex function
g : X → R such that g is positive on S, if x̄ is a local minimizer of f/g in S, then
there exists λ0 ≥ 0 such that for each v ∈ λ0∂g(x̄), there exists λ ∈ R(I)

+ such that
λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).

Proof. We first prove (i) implies (ii). Let f be a lsc proper convex function from X to
R ∪ {+∞} such that domf ∩ S 6= ∅, epif∗ + epiδ∗S is weak∗-closed and f is nonnegative on
S, and g be a lsc convex function from X to R such that g is positive on S. In addition,
let x̄ be a local minimizer of f/g in S. By putting λ0 = f(x̄)/g(x̄), x̄ is a local minimizer
of f − λ0g in S. Because f − λ0g is a DC function, we can prove (i) implies (ii) by using
Theorem 3.1. Also, it is clear that (ii) implies (i) by taking f = −x∗+〈x∗, x̄〉 and g = 1.

This theorem shows that the BCQ is also a necessary and sufficient constraint qualification
for the fractional programming problems.

4.2 Weakly Convex Programming Let X be a real Banach space with norm ‖·‖.
The norm of X∗ is also denoted by ‖·‖ for convenience. The duality mapping of X, the
multivalued operator J : X → X∗, is defined by

J(x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}

for each x ∈ X. Let S(X) denote the unit sphere of X, that is, S(X) = {x ∈ X | ‖x‖ = 1}.
Then X is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S(X). In this case, because the duality mapping J of X is single
valued, J(x) is identified with the element of J(x) for each x ∈ X; see [11].

Recall that a function p is weakly convex if it can be written as p = q − ρ
2‖·‖

2 for
some convex function q and ρ ≥ 0. We consider the following weakly convex programming
problem:

minimize f(x) − ρ
2‖x‖

2,
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R ∪ {+∞} is a lsc proper convex function and ρ ≥ 0.
We show the following theorem in a smooth real Banach space.

Theorem 4.2.1. Let {hi | i ∈ I} be a family of lsc proper convex functions from X to
R ∪ {+∞}, and x̄ ∈ S. Assume that X is smooth. Then the following statements are
equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.

(ii) For each lsc proper convex function f : X → R ∪ {+∞} such that domf ∩ S 6= ∅ and
epif∗ + epiδ∗S is weak∗-closed, and ρ ≥ 0, if x̄ is a local minimizer of f − ρ

2‖·‖
2 in S,

then there exists λ ∈ R(I)
+ such that λihi(x̄) = 0 for each i ∈ I, and

ρJ(x̄) ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).
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Proof. Since X is smooth, J is single valued. By taking g as ρ
2‖·‖

2 in Theorem 3.1, we can
prove (i) implies (ii) because ∂g(x̄) = ρJ(x̄). Also, it is clear that (ii) implies (i).

Example 4.2.1. Consider the problem:

minimize 1
4x4 + |x| − x2,

subject to max{0,−x} ≤ 0.

Let X = R, I = {1}, f(x) = 1
4x4 + |x|, ρ = 2, h1(x) = max{0,−x} and S = [0,+∞). Then

f and h1 are continuous convex functions and {hi | i ∈ I} satisfies the BCQ at each point of
S. Let x̄ be a local minimizer of f(x)− ρ

2x2 in S. By Theorem 4.2.1, there exists λ1 ≥ 0 such
that ρx̄ ∈ ∂f(x̄) + λ1∂h1(x̄) and λ1h1(x̄) = 0, because J is an identity map for X. When
x̄ > 0, since ∂f(x̄) = x̄3 + {1} and ∂h1(x̄) = {0}, x̄ must be 1 or −1+

√
5

2 . They also satisfy
λ1h1(x̄) = 0. Otherwise, when x̄ = 0, since ∂f(x̄) = x̄3 + [−1, 1] and ∂h1(x̄) = [−1, 0],
x̄ ∈ [−λ1 − 1, 1] holds whenever λ1 ≥ 0. Also, x̄ = 0 satisfies λ1h1(x̄) = 0. Therefore 0,
1 and −1+

√
5

2 have possibilities for local minimizers, and actually, 0 is the global minimizer
and 1 is a local minimizer. But −1+

√
5

2 is neither a minimizer nor a local minimizer.

5 Conclusions In this paper we show that the BCQ is a necessary and sufficient con-
straint qualification for local optimality conditions in DC programming problems with con-
vex inequality constraints. Also, we show that the BCQ is necessary and sufficient constraint
qualification for local optimality conditions in fractional programming problems and weakly
convex programming problems. In other words, we find the weakest condition under which
local optimality conditions are valid for each mathematical programming problems appeared
in this paper.
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[1] R.I. Boţ, I.B. Hodrea, G. Wanka, Farkas-type results for fractional programming problems,
Nonlinear Anal. 67 (2007) 1690–1703.
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