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Abstract.We study on the initial-boundary value problem for the coupled degenerate
hyperbolic system with dissipation :
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«

∆v + δ
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with ρ > 0 and δ > 0 and a homogeneous Dirichlet boundary condition. When either
the coefficient ρ or the initial data are appropriately smaller than the coefficient δ, we
show the global-in-time solvability for the system and the optimal decay rate for the
H2-norm for the solutions. Moreover, we derive the sharp decay estimates of their
derivatives.

1 Introduction. In this paper we consider the initial-boundary value problem for the
following coupled degenerate hyperbolic system with dissipation :

ρ
∂2u

∂t2
−

(∫
Ω

|∇u(x, t)|2 dx +
∫

Ω

|∇v(x, t)|2 dx

)
∆u + δ

∂u

∂t
= 0 in Ω × [0,∞) ,(1.1)

ρ
∂2v

∂t2
−

(∫
Ω

|∇u(x, t)|2 dx +
∫

Ω

|∇v(x, t)|2 dx

)
∆v + δ

∂v

∂t
= 0 in Ω × [0,∞)(1.2)

with the initial and boundary conditions

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = u1(x) , v(x, 0) = v0(x) ,

∂v

∂t
(x, 0) = v1(x) in Ω

and

u(x, t) = v(x, t) = 0 on ∂Ω × [0,∞) .

Here u = u(x, t) and v = v(x, t) are unknown real functions, Ω is an open bounded domain
in RN with smooth boundary ∂Ω, ∆ = ∇ · ∇ =

∑N
j=1 ∂2/∂x2

j is the Laplace operator with
the domain H2(Ω) ∩ H1

0 (Ω), the coefficients ρ > 0 and δ > 0 are positive constants.
The coupled degenerate hyperbolic system (1.1)–(1.2) comes from the single hyperbolic

equation :

ρ
∂2u

∂t2
−

(
µ +

∫
Ω

|∇u(x, t)|2 dx

)
∆u + δ

∂u

∂t
= 0 in Ω × [0,∞)(1.3)
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with u(x, 0) = u0(x) and ut(x, t) = u1(x), which is called a non-degenerate equation when
µ > 0 and a degenerate one when µ = 0. When the dimension N is one, it is well-known
that (1.3) describes small amplitude vibrations of an elastic stretched string, and (1.3) with
δ = 0 was introduced by Kirchhoff [7] (also see [3], [5]). The coupled hyperbolic system
(1.1)–(1.2) will be useful for the research of amplitude vibrations of two kinds of elastic
stretched strings.

When µ > 0 and δ > 0, it is easy to see that the energy of the non-degenerate equation
(1.3) has an exponential decay rate.

On the other hand, when µ = 0 and δ > 0, Nishihara and Yamada [14] have shown the
global existence theorem under the assumption that the initial data {u0, u1} belonging to
H2(Ω)∩H1

0 (Ω)×H1
0 (Ω) are sufficiently small and ‖∇u0‖ 6= 0, and they have derived some

decay properties of the solution by using the energy method, e.g., ‖∇u(t)‖2 + ‖∇ut(t)‖2 ≤
C(1 + t)−1 and ‖ut(t)‖2 + ‖utt(t)‖2 ≤ C(t + 1)−2 for t ≥ 0 (also see [10], [21]), where
‖ · ‖ is the norm of L2(Ω). In the previous paper [15], we have improved some decay rates
of the solution as in [14], e.g., ‖∆u(t)‖2 ≤ C(1 + t)−1 and ‖∇ut(t)‖2 ≤ C(1 + t)−3 and
‖utt(t)‖2 ≤ C(1 + t)−4 for t ≥ 0. Moreover, Mizumachi [9] has derived the lower decay
estimate ‖u(t)‖2 ≥ C(1 + t)−1 for t ≥ 0, when the initial data are sufficiently small (cf.
[13], [16] for equations with strong dissipation). And, Ghisi and Gobbino [6] have given
the lower decay estimate ‖∇u(t)‖2 ≥ C(1 + t)−1 for t ≥ 0, too, when the coefficient ρ is
sufficiently small by using another technique as [9] (also see [17]).

The purpose of this paper is to derive the optimal decay rate for the H2-norm of the
solutions {u(t), v(t)} of the system (1.1)–(1.2) including the lower decay estimate under
weaker conditions. Moreover, when either the coefficient ρ or the initial data {u0, u1, v0, v1}
are appropriately smaller than the coefficient δ, we prove the global existence theorem.

We will use the following function through this paper.

K(t) ≡ ‖u(t)‖2 + ‖v(t)‖2 , L(t) ≡ ‖ut(t)‖2 + ‖vt(t)‖2 ,

M(t) ≡ ‖∇u(t)‖2 + ‖∇v(t)‖2 , X(t) ≡ ‖utt(t)‖2 + ‖vtt(t)‖2 ,

Y (t) ≡ ‖∇ut(t)‖2 + ‖∇vt(t)‖2 , Z(t) ≡ ‖∆u(t)‖2 + ‖∆v(t)‖2 ,

and

H(t) ≡ ρ
Y (t)
M(t)

+ Z(t) .(1.4)

In particular, when t = 0, it means that

H(0) ≡ ρ
‖∇u1‖2 + ‖∇v1‖2

‖∇u0‖2 + ‖∇v0‖2
+ ‖∆u0‖2 + ‖∆v0‖2 .(1.5)

Our main result is as follows.

Theorem 1.1 Let initial data {u0, v0} ∈
(
H2(Ω) ∩ H1

0 (Ω)
)2 and {u1, v1} ∈

(
H1

0 (Ω)
)2 sat-

isfy ‖∇u0‖2 + ‖∇v0‖2 6= 0. Suppose that ρ and {u0, u1, v0, v1} satisfy

ρH(0) < δ2 .(1.6)

Then, the problem (1.1)–(1.2) admits unique global solutions {u(t), v(t)} in the class(
C0([0,∞);H2(Ω) ∩ H1

0 (Ω)) ∩ C1([0,∞);H1
0 (Ω)) ∩ C2([0,∞); L2(Ω))

)2
,(1.7)
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and {u(t), v(t)} satisfy that

C ′(1 + t)−1 ≤ ‖u(t)‖2
H2 + ‖v(t)‖2

H2 ≤ C(1 + t)−1(1.8)

for t ≥ 0. Moreover, when 4ρH(0) < δ2 instead of (1.6), {u(t), v(t)} satisfy that

‖ut(t)‖2
H1 + ‖vt(t)‖2

H1 ≤ C(1 + t)−3 ,(1.9)

‖utt(t)‖2 + ‖vtt(t)‖2 ≤ C(1 + t)−4(1.10)

for t ≥ 0, where C and C ′ are certain positive constants depending on the initial data and
the coefficient ρ > 0.

The above theorem is obtained by gathering Theorems 2.2–4.3 in the following sections.
The notations we use in this paper are standard. The symbol (·, ·) means the inner

product in L2(Ω) or sometimes duality between the space X and its dual X ′, and the norm
of L2(Ω) is often written as ‖ · ‖ = ‖ · ‖L2 for simplicity. Positive constants will be denoted
by C and will change from line to line.

2 Global Existence. By applying the Banach contraction mapping theorem to the prob-
lem (1.1)–(1.2), we obtain the following local existence theorem. The proof is standard and
we omit it here (see [1], [2], [4], [15], [18], [19], [20]).

Proposition 2.1 If the initial data {u0, v0} ∈
(
H2(Ω) ∩ H1

0 (Ω)
)2 and {u1, v1} ∈

(
H1

0 (Ω)
)2

satisfy ‖∇u0‖2 + ‖∇v0‖2 6= 0, then the problem (1.1)–(1.2) admits unique local solutions
{u(t), v(t)} in the class(

C0([0, T ]; H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ]; H1

0 (Ω)) ∩ C2([0, T ]; L2(Ω))
)2

for some T = T (‖u0‖H2 , ‖v0‖H2 , ‖u1‖H1 , ‖v1‖H1) > 0. Moreover, if ‖∇u(t)‖2 +‖∇v(t)‖2 >
0 and ‖u(t)‖2

H2 + ‖v(t)‖2
H2 + ‖u(t)‖2

H1 + ‖v(t)‖2
H1 < ∞ for t ≥ 0, then we can take T = ∞.

By deriving a-priori estimates Y (t) + Z(t) < ∞ and M(t) > 0 for t ≥ 0, we will show
the global-in-time solvability for the system (1.1)–(1.2).

Theorem 2.2 Let the initial data {u0, u1} ∈
(
H2(Ω) ∩ H1

0 (Ω)
)2 and {u1, v1} ∈

(
H1

0 (Ω)
)2

satisfy M(0) > 0. Suppose that ρ and {u0, u1, v0, v1} satisfy (1.6). Then, the problem
(1.1)–(1.2) admits unique global solutions {u(t), v(t)} in the class (1.7) and it holds that

M(t) ≡ ‖∇u(t)‖2 + ‖∇v(t)‖2 > 0(2.1)

and

H(t) ≡ ρ
Y (t)
M(t)

+ Z(t) ≤ H(0)(2.2)

for t ≥ 0.

Proof. Multiplying (1.1) and (1.2) by −2∆ut and −2∆vt, respectively, and integrating
them over Ω, we have

d

dt
ρ‖∇ut(t)‖2 + M(t)

d

dt
‖∆u(t)‖2 + 2δ‖∇ut(t)‖2 = 0



116 K. ONO

and

d

dt
ρ‖∇vt(t)‖2 + M(t)

d

dt
‖∆v(t)‖2 + 2δ‖∇vt(t)‖2 = 0 .

Adding these two equations, we obtain

d

dt
ρY (t) + M(t)

d

dt
Z(t) + 2δY (t) = 0 .(2.3)

Since M(0) > 0, putting

T ≡ sup
{
t ∈ [0,∞)

∣∣ M(s) > 0 for 0 ≤ s < t
}

,

we see that T > 0 and M(t) > 0 for 0 ≤ t < T .
Then, multiplying (2.3) by M(t)−1, we have

d

dt
H(t) + 2

(
δ +

ρ

2
M ′(t)
M(t)

)
Y (t)
M(t)

= 0(2.4)

for 0 ≤ t < T , where H(t) is defined by (1.4). Moreover, since

ρ

2
|M ′(t)|
M(t)

≤ ρ

(
Y (t)
M(t)

)1/2

≤ (ρH(t))1/2
,(2.5)

we obtain

d

dt
H(t) + 2

(
δ − (ρH(t))1/2

) Y (t)
M(t)

≤ 0(2.6)

for 0 ≤ t < T .
If (ρH(0))1/2 < δ, then there exists 0 < T1 ≤ T such that

(ρH(t))1/2 ≤ δ for 0 ≤ t ≤ T1

and we see from (2.6) that H(t) ≤ H(0) for 0 ≤ t ≤ T1, and hence,

H(t) ≤ H(0) for 0 ≤ t < T .(2.7)

Next, we will show that T = ∞. If M(T ) = 0, then limt→T Y (t) = 0, and we see

lim
t→T

E(u(t), v(t)) = 0(2.8)

where

E(u(t), v(t)) ≡ ρ
(
‖ut(t)‖2 + ‖vt(t)‖2

)
+

1
2

(
‖∇u(t)‖2 + ‖∇v(t)‖2

)2
.(2.9)

On the other hand, we perform the change of variable s = T − t or t = T − s, then the
functions U(s) = u(T − t) and V (s) = v(T − t) on [0, T ] satisfy that

ρUss −
(
‖∇U‖2 + ‖∇V ‖2

)
∆U − δUs = 0 ,(2.10)

ρVss −
(
‖∇U‖2 + ‖∇V ‖2

)
∆V − δVs = 0 .(2.11)
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Multiplying (2.10) and (2.11) by 2Us and 2Vs, respectively, and integrating them over Ω,
and adding the resulting equations, we have

d

ds
E(U(s), V (s)) = 2δ

(
‖Us(s)‖2 + ‖Vs(s)‖2

)
≤ 2δ

ρ
E(U(s), V (s))

where E(U(s), V (s)) is defined by (2.9). Thus, since E(U(0), V (0)) = limt→T E(u(t), v(t)) =
0 by (2.8), we obtain

E(U(s), V (s)) ≤ 2δ

ρ

∫ s

0

E(U(τ), V (τ)) dτ ,

and from the Gronwall inequality that

E(U(s), V (s)) = 0 on [0, T ] or E(u(t), v(t)) = 0 on [0, T ]

which contradicts M(0) ≡ ‖∇u0‖2 + ‖∇v0‖2 6= 0. Then, we see that T = ∞, and M(t) > 0
and (2.4)–(2.7) hold true for t ≥ 0, that is, we have that Y (t) + Z(t) < ∞ for t ≥ 0. Thus,
by the second statement of Proposition 2.1, we see that the problem (1.1)–(1.2) admits
unique global solutions {u(t), v(t)}. ˜

3 Optimal Decay Estimates for {u, v}. First, we will derive the upper decay estimate
for ‖u(t)‖2

H2 + ‖v(t)‖2
H2 .

Theorem 3.1 Under the assumption of Theorem 2.2, it holds that

H(t) ≡ ρ
Y (t)
M(t)

+ Z(t) ≤ C(1 + t)−1 ,(3.1)

M(t) ≤ C(1 + t)−1 and Y (t) ≤ C(1 + t)−2(3.2)

for t ≥ 0.

Proof. From (2.2) and (2.4) (or (2.6)) we have

d

dt
H(t) + b

Y (t)
M(t)

≤ 0 for t ≥ 0(3.3)

with b = 2(δ − (ρH(0))1/2) > 0. For any t ≥ 0, integrating (3.3) over [t, t + 1], we obtain

b

∫ t+1

t

Y (s)
M(s)

ds ≤ H(t) − H(t + 1) (≡ bD1(t)2 ) .(3.4)

Then, there exist two numbers t1 ∈ [t, t + 1/4] and t2 ∈ [t + 3/4, t + 1] such that

Y (tj)
M(tj)

≤ 4
∫ t+1

t

Y (s)
M(s)

ds = 4D1(t)2 for j = 1, 2 .(3.5)

On the other hand, multiplying (1.1) and (1.2) by −∆u and −∆v, respectively, and
integrating them over Ω, we have

M(t)‖∆u(t)‖2 +
d

dt
ρ(∇u(t),∇ut(t)) − ρ‖∇ut(t)‖2 + δ(∇u(t),∇ut(t)) = 0 ,

M(t)‖∆v(t)‖2 +
d

dt
ρ(∇v(t),∇vt(t)) − ρ‖∇vt(t)‖2 + δ(∇v(t),∇vt(t)) = 0 .
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Adding these two equations and multiplying the resulting equation by 1/M(t), we observe

Z(t) +
ρ

2
|M ′(t)|2

M(t)2
= ρ

Y (t)
M(t)

− ρ

2
d

dt

M ′(t)
M(t)

− δ

2
M ′(t)
M(t)

,

and integrating it over [t1, t2], we obtain from (2.5), (3.4) and (3.5) that∫ t2

t1

(
Z(s) +

ρ

2
|M ′(s)|2

M(s)2

)
ds

≤
∫ t2

t1

ρ
Y (s)
M(s)

ds +
ρ

2

2∑
j=1

|M ′(tj)|
M(tj)

+
δ

2

∫ t2

t1

|M ′(s)|
M(s)

ds

≤
∫ t+1

t

ρ
Y (s)
M(s)

ds +
ρ

2

2∑
j=1

(
Y (tj)
M(tj)

)1/2

+
δ

2

∫ t+1

t

(
Y (s)
M(s)

)1/2

ds

≤ ρD1(t)2 + CD1(t) ,(3.6)

and moreover, from (3.4) and (3.6) that∫ t2

t1

H(s) ds =
∫ t2

t1

ρ
Y (s)
M(s)

ds +
∫ t2

t1

Z(s) ds

≤ 2ρD1(t)2 + CD1(t) .(3.7)

Integrating (2.4) over [t, t2], we have from (2.2) and (2.5) that

H(t) = H(t2) + 2
∫ t2

t

(
δ +

ρ

2
M ′(s)
M(s)

)
Y (s)
M(s)

ds

≤ 2
∫ t2

t1

H(s) ds + C

∫ t+1

t

Y (s)
M(s)

ds

≤ CD1(t)2 + CD1(t)

and since bD1(t)2 ≤ H(t) − H(t + 1) ≤ H(0),

H(t)2 ≤ CD1(t)2 ≤ C(H(t) − H(t + 1)) .(3.8)

Thus, applying Lemma 3.2 to (3.8) we obtain the desired estimates (3.1) and (3.2). ˜

In order to derive the decay estimate of the function H(t), we used the following Nakao
inequality in the proof of Theorem 3.1 (see [10], [11], [12] for the proof).

Lemma 3.2 Let φ(t) be a non-increasing non-negative function on [0,∞) and satisfy

φ(t)1+α ≤ k0 (φ(t) − φ(t + 1))

with certain constants k0 ≥ 0 and α > 0. Then, the function φ(t) satisfies

φ(t) ≤
(
φ(0)−α + αk−1

0 [t − 1]+
)−1/α

for t ≥ 0, where [t − 1]+ = max{t − 1, 0}.

Next, we will derive the lower decay estimate for ‖u(t)‖H2 + ‖v(t)‖H2 .
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Theorem 3.3 Under the assumption of Theorem 2.2, it holds that

K(t) ≡ ‖u(t)‖2 + ‖v(t)‖2 ≥ C ′(1 + t)−1(3.9)

for t ≥ 0 with a positive constant C ′ > 0.

Proof. Multiplying (1.1) and (1.2) by 2ut and 2vt, respectively, and integrating them over
Ω, and adding the resulting equations we have

d

dt
E(t) + 2δL(t) = 0(3.10)

where we put

E(t) ≡ ρL(t) +
1
2
M(t)2 .

Multiplying (1.1) and (1.2) by u and v, respectively, and integrating them over Ω, and
adding the resulting equation, we have

d

dt

1
2

(δK(t) + ρK ′(t)) + ρL(t) + M(t)2 = 0 .(3.11)

Multiplying (3.10) by ρ/δ and adding (3.11), we obtain

d

dt
E∗(t) + ρL(t) + M(t)2 = 0(3.12)

where we put

E∗(t) ≡ ρ

δ
E(t) +

1
2

(δK(t) + ρK ′(t)) .(3.13)

Since L(t) ≤ CM(t)2, M(t) ≤ CK(t), |K ′(t)| ≤ C(L(t) + K(t)), and K(t) ≤ C, we observe

E∗(t) ≤ CK(t)(3.14)

and

ρL(t) + M(t)2 ≤ CM(t)2 ≤ CK(t)2 ≤ C1K(t) .(3.15)

On the other hand, since

|K ′(t)| ≤ 2(L(t)K(t))1/2 ≤ 2ρ

δ
L(t) +

δ

2ρ
K(t)

by the Young inequality, we have

E∗(t) ≥ δ

4
K(t) .(3.16)

Thus, we obtain from (3.12)–(3.16) that

d

dt
E∗(t) +

4
δ
C1E

∗(t)2 ≥ d

dt
E∗(t) +

(
ρL(t) + M(t)2

)
≥ 0

and hence, E∗(t) ≥ C(1 + t)−1 for t ≥ 0 with C > 0, which implies the desired estimate
(3.9). ˜
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4 Sharp Decay Estimates for {ut, vt, utt, vtt}. First we will derive the decay estimate
for L(t).

Theorem 4.1 Under the assumption of Theorem 2.2, if 4ρH(0) < δ2, then it holds that

L(t) ≡ ‖ut(t)‖2 + ‖vt(t)‖2 ≤ C(1 + t)−3(4.1)

for t ≥ 0.

Proof. The proof is divided in three steps.
Step 1. We will derive the boundedness of

∫ t

0
X(s)/M(s) ds.

Differentiating (1.1) and (1.2) once with respect to t and multiplying the resulting equa-
tions by 2utt and 2vtt, respectively, and integrating them over Ω, and adding the resulting
equations, we have

d

dt
ρX(t) + M(t)

d

dt
Y (t) +

d

dt

1
2
|M ′(t)|2 − 2M ′(t)Y (t) + 2δX(t) = 0 .(4.2)

Moreover, multiplying (4.2) by M(t)−2, we observe

d

dt

(
ρ

X(t)
M(t)2

+
Y (t)
M(t)

+
1
2
|M ′(t)|2

M(t)2

)
+ 2

(
δ + ρ

M ′(s)
M(s)

)
X(t)
M(t)2

=
M ′(t)Y (t)

M(t)2
− |M ′(t)|2M ′(t)

M(t)3
≤ C(1 + t)−3/2

where we used the facts that

|M ′(t)|
M(t)

≤ 2
(

Y (t)
M(t)

)1/2

and
Y (t)
M(t)

≤ C(1 + t)−1 .

Thus, if 4ρH(0) < 1, then since it follows from (2.2) and (2.5) that

δ + ρ
M ′(s)
M(s)

≥ δ − 2(ρH(0))1/2 > 0

we have ∫ t

0

X(s)
M(s)2

ds ≤ C + C

∫ ∞

0

(1 + t)−3/2 dt ≤ C .(4.3)

Step 2. We will derive the boundedness of M(t)/K(t).
From the equations (1.1) and (1.2), it follows that

d

dt
δ
M(t)
K(t)

=
δ

K(t)

(
M ′(t) − M(t)

K(t)
K ′(t)

)
=

−2
K(t)

((
∆u +

M(t)
K(t)

, δut

)
+

(
∆v +

M(t)
K(t)

v , δvt

))
=

2ρ

K(t)

((
∆u +

M(t)
K(t)

u , utt

)
+

(
∆v +

M(t)
K(t)

v , vtt

))
− 2M(t)

K(t)

((
∆u +

M(t)
K(t)

u , ∆u

)
+

(
∆v +

M(t)
K(t)

v , ∆v

))
.(4.4)



DEGENERATE HYPERBOLIC SYSTEM WITH DISSIPATION 121

Since we observe(
∆u +

M(t)
K(t)

u , ∆u

)
= ‖∆u +

M(t)
K(t)

u‖2 +
M(t)
K(t)

(
‖∇u‖2 − M(t)

K(t)
‖u‖2

)
,(

∆v +
M(t)
K(t)

v , ∆v

)
= ‖∆v +

M(t)
K(t)

v‖2 +
M(t)
K(t)

(
‖∇v‖2 − M(t)

K(t)
‖v‖2

)
,

and hence,

(
∆u +

M(t)
K(t)

u , ∆u

)
+

(
∆v +

M(t)
K(t)

v , ∆v

)
= ‖∆u +

M(t)
K(t)

u‖2 + ‖∆v +
M(t)
K(t)

v‖2 ,

(4.5)

we have from (4.4) and (4.5) that

d

dt
δ
M(t)
K(t)

+ 2
M(t)
K(t)

(
‖∆u +

M(t)
K(t)

u‖2 + ‖∆v +
M(t)
K(t)

v‖2

)
=

2ρ

K(t)

((
∆u +

M(t)
K(t)

u , utt

)
+

(
∆v +

M(t)
K(t)

v , vtt

))
≤ 2ρ

K(t)

(
‖∆u +

M(t)
K(t)

u‖2 + ‖∆v +
M(t)
K(t)

v‖2

)1/2

X(t)1/2 .

Thus, from the Young inequality we obtain

d

dt
δ
M(t)
K(t)

≤ ρ2 M(t)
K(t)

X(t)
M(t)2

,

and hence, from (4.3) that

M(t)
K(t)

≤ M(0)
K(0)

exp
(

ρ2

δ

∫ ∞

0

X(t)
M(t)2

dt

)
≤ C .(4.6)

Step 3. We will derive the decay estimate (4.1).
From (3.10) it follows that

d

dt
ρL(t) + M(t)M ′(t) + 2δL(t) = 0 .(4.7)

Multiplying (4.7) by M(t)−2, we have

d

dt
ρ

L(t)
M(t)2

+ 2
(

δ + ρ
M ′(s)
M(s)

)
L(t)

M(t)2
= −M ′(t)

M(t)

and from (2.2) and (2.4) (or (2.6)) that

d

dt
ρ

L(t)
M(t)2

+ b
L(t)

M(t)2
≤ 2

L(t)1/2

M(t)
Z(t)1/2

with b = 2(δ − (ρH(0))1/2) > 0, and from the Young inequality and (3.1) that

d

dt
ρ

L(t)
M(t)2

+
b

2
L(t)

M(t)2
≤ CZ(t) ≤ C(1 + t)−1 ,
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and hence, we obtain

L(t)
M(t)2

≤ C(1 + t)−1(4.8)

which gives the desired estimate (4.1). ˜

The following generalized Nakao type inequality is useful to derive decay estimates of
the solutions (see [8] for the proof).

Lemma 4.2 Let φ(t) be a non-negative function on [0,∞) satisfying

sup
t≤s≤t+1

φ(s)1+α ≤ k1(1 + t)β(φ(t) − φ(t + 1)) + k2(1 + t)−γ

with certain constants k1 > 0, k2 ≥ 0, α > 0, β < 1, and γ > 0. Then, it holds that

φ(t) ≤ C0(1 + t)−θ , θ = min
{

1 − β

α
,

γ

1 + α

}
for t ≥ 0, where C0 is a positive constant depending on φ(0) and other known quantities.

Next, we will derive the decay estimates of X(t) and Y (t).

Theorem 4.3 Under the assumption of Theorem 4.1, it holds that

X(t) ≡ ‖utt(t)‖2 + ‖vtt(t)‖2 ≤ C(1 + t)−4 ,(4.9)

Y (t) ≡ ‖∇ut(t)‖2 + ‖∇vt(t)‖2 ≤ C(1 + t)−3(4.10)

for t ≥ 0.

Proof. Multiplying (4.2) by M(t)−1, we have

d

dt
G(t) + 2

(
δ +

ρ

2
M ′(t)
M(t)

)
X(t)
M(t)

=
M ′(t)
M(t)

(
2Y (t) − 1

2
|M ′(t)|2

M(t)

)
,(4.11)

where we put

G(t) ≡ ρ
X(t)
M(t)

+ Y (t) +
1
2
|M ′(t)|2

M(t)
.(4.12)

Since |M ′(t)|2 ≤ 2L(t)Z(t) and |M ′(t)|2 ≤ 2Y (t)M(t), we observe from (3.1) and (4.8) that

(R.H.S) of (4.11) ≤ C

(
L(t)

M(t)2
Z(t)

)1/2

Y (t) ≤ C(1 + t)−1Y (t) ,(4.13)

and from (2.2) and (2.5) that

d

dt
G(t) + b

X(t)
M(t)

≤ C(1 + t)−1Y (t)(4.14)

with b = 2(δ − (ρH(0))1/2) > 0. Moreover, since Y (t) ≤ C(1 + t)−3, we see

G(t) ≤ C for t ≥ 0 .(4.15)
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For any t ≥ 0, integrating (4.14) over [t, t + 1], we obtain

b

∫ t+1

t

X(s)
M(s)

ds ≤ G(t) − G(t + 1) + C(1 + t)−1 sup
t≤s≤t+1

Y (s)
(
≡ bD2(t)2

)
.(4.16)

Then, there exist two numbers t1 ∈ [t, t + 1/4] and t2 ∈ [t + 3/4, t + 1] such that

X(tj)
M(tj)

≤ 4
∫ t+1

t

X(s)
M(s)

ds ≤ 4D2(t)2 for j = 1, 2 .(4.17)

Moreover, there exists t∗ ∈ [t1, t2] such that

G(t∗) ≤ 2
∫ t2

t1

G(s) ds .(4.18)

On the other hand, differentiating (1.1) and (1.2) once with respect to t and multiplying
the resulting equations by ut and vt, respectively, and integrating them over Ω, and adding
the resulting equations, we have

d

dt

ρ

2
L′(t) − ρX(t) + M(t)Y (t) +

1
2
|M ′(t)|2 +

δ

2
L′(t) = 0 .(4.19)

Moreover, multiplying (4.19) by M(t)−1, we observe that

Y (t) +
1
2
|M ′(t)|2

M(t)
= ρ

X(t)
M(t)

− d

dt

ρ

2
L′(t)
M(t)

− 1
2

(
δ + ρ

M ′(s)
M(s)

)
L′(t)
M(t)

.(4.20)

And integrating (4.20) over [t1, t2], we have from (3.1), (3.2), (4.8) and (4.15)–(4.17) that∫ t2

t1

(
Y (s) +

1
2
|M ′(s)|2

M(s)

)
ds

≤
∫ t2

t1

ρ
X(s)
M(s)

ds +
ρ

2

2∑
j=1

|L′(tj)|
M(tj)

+
1
2

∫ t2

t1

(
δ + ρ

|M ′(s)|
M(s)

)
|L′(s)|
M(s)

ds

≤
∫ t+1

t

ρ
X(s)
M(s)

ds + C(1 + t)−1
2∑

j=1

(
X(tj)
M(tj)

)1/2

+ C(1 + t)−1

∫ t+1

t

(
X(s)
M(s)

)1/2

ds

≤ ρD2(t)2 + C(1 + t)−1D2(t) ,

(4.21)

where we used the fact that

|L′(t)|
M(t)

≤ 2
(L(t)M(t))1/2

M(t)
≤ C(1 + t)−1

(
X(t)
M(t)

)1/2

(see (3.2) and (4.8)). Then we have from (4.12), (4.16) and (4.21) that∫ t2

t1

G(s) ds =
∫ t2

t1

ρ
X(s)
M(s)

ds +
∫ t2

t1

(
Y (s) +

1
2
|M ′(s)|2

M(s)

)
ds

≤ 2ρD2(t)2 + C(1 + t)−1D2(t) .(4.22)
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For τ ∈ [t, t+1], integrating (4.11) over [τ, t∗] (or [t∗, τ ]), we have from (4.13), (4.16), (4.18)
and (4.22) that

G(τ) = G(t∗) +
∫ t∗

τ

(
2

(
δ +

ρ

2
M ′(s)
M(s)

)
X(s)
M(s)

− M ′(s)
M(s)

(
2Y (s) − 1

2
|M ′(s)|2

M(s)

))
ds

≤ 2
∫ t2

t1

G(s) ds + C

∫ t+1

t

X(s)
M(s)

ds + C

∫ t+1

t

(1 + s)−1Y (s) ds

≤ CD2(t)2 + C(1 + t)−1D2(t) + C(1 + t)−1 sup
t≤s≤t+1

Y (s) .

Moreover, since Y (t) ≤ G(t) and Y (t) ≤ C(1 + t)−2, it follows from (4.16) and the Young
inequality that

sup
t≤s≤t+1

G(s)2 ≤ C
(
G(t) + (1 + t)−2

)
(G(t) − G(t + 1)) + C(1 + t)−6 .(4.23)

Applying Lemma 4.2 to (4.23) together with (4.15), we have

G(t) ≤ C(1 + t)−1 for t ≥ 0 ,(4.24)

and again, applying Lemma 4.2 to (4.23) together with (4.24), we have

G(t) ≤ C(1 + t)−2 for t ≥ 0 ,(4.25)

and hence, applying Lemma 4.2 to (4.23) together with (4.25), we obtain

G(t) ≤ C(1 + t)−3 for t ≥ 0 ,

which implies the desired estimates (4.9) and (4.10). ˜
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