GLOBAL EXISTENCE AND DECAY RATE FOR A COUPLED DEGENERATE HYPERBOLIC SYSTEM WITH DISSIPATION

Kosuke Ono

Received February 10, 2011 ; revised May 13, 2011

Abstract. We study on the initial-boundary value problem for the coupled degenerate hyperbolic system with dissipation :

$$
\left\{\begin{aligned}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x+\int_{\Omega}|\nabla v(x, t)|^{2} d x\right) \Delta u+\delta \frac{\partial u}{\partial t}=0 \\
\rho \frac{\partial^{2} v}{\partial t^{2}}-\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x+\int_{\Omega}|\nabla v(x, t)|^{2} d x\right) \Delta v+\delta \frac{\partial v}{\partial t}=0
\end{aligned}\right.
$$

with $\rho>0$ and $\delta>0$ and a homogeneous Dirichlet boundary condition. When either the coefficient ρ or the initial data are appropriately smaller than the coefficient δ, we show the global-in-time solvability for the system and the optimal decay rate for the H^{2}-norm for the solutions. Moreover, we derive the sharp decay estimates of their derivatives.

1 Introduction. In this paper we consider the initial-boundary value problem for the following coupled degenerate hyperbolic system with dissipation :

$$
\begin{align*}
& \rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x+\int_{\Omega}|\nabla v(x, t)|^{2} d x\right) \Delta u+\delta \frac{\partial u}{\partial t}=0 \quad \text { in } \Omega \times[0, \infty), \tag{1.1}\\
& \rho \frac{\partial^{2} v}{\partial t^{2}}-\left(\int_{\Omega}|\nabla u(x, t)|^{2} d x+\int_{\Omega}|\nabla v(x, t)|^{2} d x\right) \Delta v+\delta \frac{\partial v}{\partial t}=0 \quad \text { in } \Omega \times[0, \infty) \tag{1.2}
\end{align*}
$$

with the initial and boundary conditions

$$
u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=u_{1}(x), \quad v(x, 0)=v_{0}(x), \quad \frac{\partial v}{\partial t}(x, 0)=v_{1}(x) \quad \text { in } \Omega
$$

and

$$
u(x, t)=v(x, t)=0 \quad \text { on } \partial \Omega \times[0, \infty)
$$

Here $u=u(x, t)$ and $v=v(x, t)$ are unknown real functions, Ω is an open bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega, \Delta=\nabla \cdot \nabla=\sum_{j=1}^{N} \partial^{2} / \partial x_{j}^{2}$ is the Laplace operator with the domain $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, the coefficients $\rho>0$ and $\delta>0$ are positive constants.

The coupled degenerate hyperbolic system (1.1)-(1.2) comes from the single hyperbolic equation :

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\mu+\int_{\Omega}|\nabla u(x, t)|^{2} d x\right) \Delta u+\delta \frac{\partial u}{\partial t}=0 \quad \text { in } \Omega \times[0, \infty) \tag{1.3}
\end{equation*}
$$

with $u(x, 0)=u_{0}(x)$ and $u_{t}(x, t)=u_{1}(x)$, which is called a non-degenerate equation when $\mu>0$ and a degenerate one when $\mu=0$. When the dimension N is one, it is well-known that (1.3) describes small amplitude vibrations of an elastic stretched string, and (1.3) with $\delta=0$ was introduced by Kirchhoff [7] (also see [3], [5]). The coupled hyperbolic system (1.1)-(1.2) will be useful for the research of amplitude vibrations of two kinds of elastic stretched strings.

When $\mu>0$ and $\delta>0$, it is easy to see that the energy of the non-degenerate equation (1.3) has an exponential decay rate.

On the other hand, when $\mu=0$ and $\delta>0$, Nishihara and Yamada [14] have shown the global existence theorem under the assumption that the initial data $\left\{u_{0}, u_{1}\right\}$ belonging to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ are sufficiently small and $\left\|\nabla u_{0}\right\| \neq 0$, and they have derived some decay properties of the solution by using the energy method, e.g., $\|\nabla u(t)\|^{2}+\left\|\nabla u_{t}(t)\right\|^{2} \leq$ $C(1+t)^{-1}$ and $\left\|u_{t}(t)\right\|^{2}+\left\|u_{t t}(t)\right\|^{2} \leq C(t+1)^{-2}$ for $t \geq 0$ (also see [10], [21]), where $\|\cdot\|$ is the norm of $L^{2}(\Omega)$. In the previous paper [15], we have improved some decay rates of the solution as in [14], e.g., $\|\Delta u(t)\|^{2} \leq C(1+t)^{-1}$ and $\left\|\nabla u_{t}(t)\right\|^{2} \leq C(1+t)^{-3}$ and $\left\|u_{t t}(t)\right\|^{2} \leq C(1+t)^{-4}$ for $t \geq 0$. Moreover, Mizumachi [9] has derived the lower decay estimate $\|u(t)\|^{2} \geq C(1+t)^{-1}$ for $t \geq 0$, when the initial data are sufficiently small (cf. [13], [16] for equations with strong dissipation). And, Ghisi and Gobbino [6] have given the lower decay estimate $\|\nabla u(t)\|^{2} \geq C(1+t)^{-1}$ for $t \geq 0$, too, when the coefficient ρ is sufficiently small by using another technique as [9] (also see [17]).

The purpose of this paper is to derive the optimal decay rate for the H^{2}-norm of the solutions $\{u(t), v(t)\}$ of the system (1.1)-(1.2) including the lower decay estimate under weaker conditions. Moreover, when either the coefficient ρ or the initial data $\left\{u_{0}, u_{1}, v_{0}, v_{1}\right\}$ are appropriately smaller than the coefficient δ, we prove the global existence theorem.

We will use the following function through this paper.

$$
\begin{aligned}
& K(t) \equiv\|u(t)\|^{2}+\|v(t)\|^{2}, \quad L(t) \equiv\left\|u_{t}(t)\right\|^{2}+\left\|v_{t}(t)\right\|^{2}, \\
& M(t) \equiv\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}, \quad X(t) \equiv\left\|u_{t t}(t)\right\|^{2}+\left\|v_{t t}(t)\right\|^{2}, \\
& Y(t) \equiv\left\|\nabla u_{t}(t)\right\|^{2}+\left\|\nabla v_{t}(t)\right\|^{2}, \quad Z(t) \equiv\|\Delta u(t)\|^{2}+\|\Delta v(t)\|^{2},
\end{aligned}
$$

and

$$
\begin{equation*}
H(t) \equiv \rho \frac{Y(t)}{M(t)}+Z(t) \tag{1.4}
\end{equation*}
$$

In particular, when $t=0$, it means that

$$
\begin{equation*}
H(0) \equiv \rho \frac{\left\|\nabla u_{1}\right\|^{2}+\left\|\nabla v_{1}\right\|^{2}}{\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla v_{0}\right\|^{2}}+\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2} \tag{1.5}
\end{equation*}
$$

Our main result is as follows.
Theorem 1.1 Let initial data $\left\{u_{0}, v_{0}\right\} \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2}$ and $\left\{u_{1}, v_{1}\right\} \in\left(H_{0}^{1}(\Omega)\right)^{2}$ satisfy $\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla v_{0}\right\|^{2} \neq 0$. Suppose that ρ and $\left\{u_{0}, u_{1}, v_{0}, v_{1}\right\}$ satisfy

$$
\begin{equation*}
\rho H(0)<\delta^{2} \tag{1.6}
\end{equation*}
$$

Then, the problem (1.1)-(1.2) admits unique global solutions $\{u(t), v(t)\}$ in the class

$$
\begin{equation*}
\left(C^{0}\left([0, \infty) ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, \infty) ; H_{0}^{1}(\Omega)\right) \cap C^{2}\left([0, \infty) ; L^{2}(\Omega)\right)\right)^{2} \tag{1.7}
\end{equation*}
$$

and $\{u(t), v(t)\}$ satisfy that

$$
\begin{equation*}
C^{\prime}(1+t)^{-1} \leq\|u(t)\|_{H^{2}}^{2}+\|v(t)\|_{H^{2}}^{2} \leq C(1+t)^{-1} \tag{1.8}
\end{equation*}
$$

for $t \geq 0$. Moreover, when $4 \rho H(0)<\delta^{2}$ instead of (1.6), $\{u(t), v(t)\}$ satisfy that

$$
\begin{align*}
& \left\|u_{t}(t)\right\|_{H^{1}}^{2}+\left\|v_{t}(t)\right\|_{H^{1}}^{2} \leq C(1+t)^{-3} \tag{1.9}\\
& \left\|u_{t t}(t)\right\|^{2}+\left\|v_{t t}(t)\right\|^{2} \leq C(1+t)^{-4} \tag{1.10}
\end{align*}
$$

for $t \geq 0$, where C and C^{\prime} are certain positive constants depending on the initial data and the coefficient $\rho>0$.

The above theorem is obtained by gathering Theorems 2.2-4.3 in the following sections.
The notations we use in this paper are standard. The symbol (\cdot, \cdot) means the inner product in $L^{2}(\Omega)$ or sometimes duality between the space X and its dual X^{\prime}, and the norm of $L^{2}(\Omega)$ is often written as $\|\cdot\|=\|\cdot\|_{L^{2}}$ for simplicity. Positive constants will be denoted by C and will change from line to line.

2 Global Existence. By applying the Banach contraction mapping theorem to the problem (1.1)-(1.2), we obtain the following local existence theorem. The proof is standard and we omit it here (see [1], [2], [4], [15], [18], [19], [20]).

Proposition 2.1 If the initial data $\left\{u_{0}, v_{0}\right\} \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2}$ and $\left\{u_{1}, v_{1}\right\} \in\left(H_{0}^{1}(\Omega)\right)^{2}$ satisfy $\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla v_{0}\right\|^{2} \neq 0$, then the problem (1.1)-(1.2) admits unique local solutions $\{u(t), v(t)\}$ in the class

$$
\left(C^{0}\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{2}\left([0, T] ; L^{2}(\Omega)\right)\right)^{2}
$$

for some $T=T\left(\left\|u_{0}\right\|_{H^{2}},\left\|v_{0}\right\|_{H^{2}},\left\|u_{1}\right\|_{H^{1}},\left\|v_{1}\right\|_{H^{1}}\right)>0$. Moreover, if $\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}>$ 0 and $\|u(t)\|_{H^{2}}^{2}+\|v(t)\|_{H^{2}}^{2}+\|u(t)\|_{H^{1}}^{2}+\|v(t)\|_{H^{1}}^{2}<\infty$ for $t \geq 0$, then we can take $T=\infty$.

By deriving a-priori estimates $Y(t)+Z(t)<\infty$ and $M(t)>0$ for $t \geq 0$, we will show the global-in-time solvability for the system (1.1)-(1.2).

Theorem 2.2 Let the initial data $\left\{u_{0}, u_{1}\right\} \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{2}$ and $\left\{u_{1}, v_{1}\right\} \in\left(H_{0}^{1}(\Omega)\right)^{2}$ satisfy $M(0)>0$. Suppose that ρ and $\left\{u_{0}, u_{1}, v_{0}, v_{1}\right\}$ satisfy (1.6). Then, the problem (1.1)-(1.2) admits unique global solutions $\{u(t), v(t)\}$ in the class (1.7) and it holds that

$$
\begin{equation*}
M(t) \equiv\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}>0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H(t) \equiv \rho \frac{Y(t)}{M(t)}+Z(t) \leq H(0) \tag{2.2}
\end{equation*}
$$

for $t \geq 0$.
Proof. Multiplying (1.1) and (1.2) by $-2 \Delta u_{t}$ and $-2 \Delta v_{t}$, respectively, and integrating them over Ω, we have

$$
\frac{d}{d t} \rho\left\|\nabla u_{t}(t)\right\|^{2}+M(t) \frac{d}{d t}\|\Delta u(t)\|^{2}+2 \delta\left\|\nabla u_{t}(t)\right\|^{2}=0
$$

and

$$
\frac{d}{d t} \rho\left\|\nabla v_{t}(t)\right\|^{2}+M(t) \frac{d}{d t}\|\Delta v(t)\|^{2}+2 \delta\left\|\nabla v_{t}(t)\right\|^{2}=0
$$

Adding these two equations, we obtain

$$
\begin{equation*}
\frac{d}{d t} \rho Y(t)+M(t) \frac{d}{d t} Z(t)+2 \delta Y(t)=0 \tag{2.3}
\end{equation*}
$$

Since $M(0)>0$, putting

$$
T \equiv \sup \{t \in[0, \infty) \mid M(s)>0 \text { for } 0 \leq s<t\}
$$

we see that $T>0$ and $M(t)>0$ for $0 \leq t<T$.
Then, multiplying (2.3) by $M(t)^{-1}$, we have

$$
\begin{equation*}
\frac{d}{d t} H(t)+2\left(\delta+\frac{\rho}{2} \frac{M^{\prime}(t)}{M(t)}\right) \frac{Y(t)}{M(t)}=0 \tag{2.4}
\end{equation*}
$$

for $0 \leq t<T$, where $H(t)$ is defined by (1.4). Moreover, since

$$
\begin{equation*}
\frac{\rho}{2} \frac{\left|M^{\prime}(t)\right|}{M(t)} \leq \rho\left(\frac{Y(t)}{M(t)}\right)^{1 / 2} \leq(\rho H(t))^{1 / 2} \tag{2.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{d}{d t} H(t)+2\left(\delta-(\rho H(t))^{1 / 2}\right) \frac{Y(t)}{M(t)} \leq 0 \tag{2.6}
\end{equation*}
$$

for $0 \leq t<T$.
If $(\rho H(0))^{1 / 2}<\delta$, then there exists $0<T_{1} \leq T$ such that

$$
(\rho H(t))^{1 / 2} \leq \delta \quad \text { for } 0 \leq t \leq T_{1}
$$

and we see from (2.6) that $H(t) \leq H(0)$ for $0 \leq t \leq T_{1}$, and hence,

$$
\begin{equation*}
H(t) \leq H(0) \quad \text { for } 0 \leq t<T \tag{2.7}
\end{equation*}
$$

Next, we will show that $T=\infty$. If $M(T)=0$, then $\lim _{t \rightarrow T} Y(t)=0$, and we see

$$
\begin{equation*}
\lim _{t \rightarrow T} E(u(t), v(t))=0 \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
E(u(t), v(t)) \equiv \rho\left(\left\|u_{t}(t)\right\|^{2}+\left\|v_{t}(t)\right\|^{2}\right)+\frac{1}{2}\left(\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}\right)^{2} \tag{2.9}
\end{equation*}
$$

On the other hand, we perform the change of variable $s=T-t$ or $t=T-s$, then the functions $U(s)=u(T-t)$ and $V(s)=v(T-t)$ on $[0, T]$ satisfy that

$$
\begin{align*}
\rho U_{s s}-\left(\|\nabla U\|^{2}+\|\nabla V\|^{2}\right) \Delta U-\delta U_{s} & =0 \tag{2.10}\\
\rho V_{s s}-\left(\|\nabla U\|^{2}+\|\nabla V\|^{2}\right) \Delta V-\delta V_{s} & =0 \tag{2.11}
\end{align*}
$$

Multiplying (2.10) and (2.11) by $2 U_{s}$ and $2 V_{s}$, respectively, and integrating them over Ω, and adding the resulting equations, we have

$$
\frac{d}{d s} E(U(s), V(s))=2 \delta\left(\left\|U_{s}(s)\right\|^{2}+\left\|V_{s}(s)\right\|^{2}\right) \leq \frac{2 \delta}{\rho} E(U(s), V(s))
$$

where $E(U(s), V(s))$ is defined by (2.9). Thus, since $E(U(0), V(0))=\lim _{t \rightarrow T} E(u(t), v(t))=$ 0 by (2.8), we obtain

$$
E(U(s), V(s)) \leq \frac{2 \delta}{\rho} \int_{0}^{s} E(U(\tau), V(\tau)) d \tau
$$

and from the Gronwall inequality that

$$
E(U(s), V(s))=0 \text { on }[0, T] \quad \text { or } \quad E(u(t), v(t))=0 \text { on }[0, T]
$$

which contradicts $M(0) \equiv\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla v_{0}\right\|^{2} \neq 0$. Then, we see that $T=\infty$, and $M(t)>0$ and (2.4)-(2.7) hold true for $t \geq 0$, that is, we have that $Y(t)+Z(t)<\infty$ for $t \geq 0$. Thus, by the second statement of Proposition 2.1, we see that the problem (1.1)-(1.2) admits unique global solutions $\{u(t), v(t)\}$.

3 Optimal Decay Estimates for $\{\boldsymbol{u}, \boldsymbol{v}\}$. First, we will derive the upper decay estimate for $\|u(t)\|_{H^{2}}^{2}+\|v(t)\|_{H^{2}}^{2}$.

Theorem 3.1 Under the assumption of Theorem 2.2, it holds that

$$
\begin{align*}
& H(t) \equiv \rho \frac{Y(t)}{M(t)}+Z(t) \leq C(1+t)^{-1} \tag{3.1}\\
& M(t) \leq C(1+t)^{-1} \quad \text { and } \quad Y(t) \leq C(1+t)^{-2} \tag{3.2}
\end{align*}
$$

for $t \geq 0$.
Proof. From (2.2) and (2.4) (or (2.6)) we have

$$
\begin{equation*}
\frac{d}{d t} H(t)+b \frac{Y(t)}{M(t)} \leq 0 \quad \text { for } t \geq 0 \tag{3.3}
\end{equation*}
$$

with $b=2\left(\delta-(\rho H(0))^{1 / 2}\right)>0$. For any $t \geq 0$, integrating (3.3) over $[t, t+1]$, we obtain

$$
\begin{equation*}
b \int_{t}^{t+1} \frac{Y(s)}{M(s)} d s \leq H(t)-H(t+1) \quad\left(\equiv b D_{1}(t)^{2}\right) \tag{3.4}
\end{equation*}
$$

Then, there exist two numbers $t_{1} \in[t, t+1 / 4]$ and $t_{2} \in[t+3 / 4, t+1]$ such that

$$
\begin{equation*}
\frac{Y\left(t_{j}\right)}{M\left(t_{j}\right)} \leq 4 \int_{t}^{t+1} \frac{Y(s)}{M(s)} d s=4 D_{1}(t)^{2} \quad \text { for } j=1,2 \tag{3.5}
\end{equation*}
$$

On the other hand, multiplying (1.1) and (1.2) by $-\Delta u$ and $-\Delta v$, respectively, and integrating them over Ω, we have

$$
\begin{aligned}
& M(t)\|\Delta u(t)\|^{2}+\frac{d}{d t} \rho\left(\nabla u(t), \nabla u_{t}(t)\right)-\rho\left\|\nabla u_{t}(t)\right\|^{2}+\delta\left(\nabla u(t), \nabla u_{t}(t)\right)=0 \\
& M(t)\|\Delta v(t)\|^{2}+\frac{d}{d t} \rho\left(\nabla v(t), \nabla v_{t}(t)\right)-\rho\left\|\nabla v_{t}(t)\right\|^{2}+\delta\left(\nabla v(t), \nabla v_{t}(t)\right)=0
\end{aligned}
$$

Adding these two equations and multiplying the resulting equation by $1 / M(t)$, we observe

$$
Z(t)+\frac{\rho}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}}=\rho \frac{Y(t)}{M(t)}-\frac{\rho}{2} \frac{d}{d t} \frac{M^{\prime}(t)}{M(t)}-\frac{\delta}{2} \frac{M^{\prime}(t)}{M(t)},
$$

and integrating it over $\left[t_{1}, t_{2}\right]$, we obtain from (2.5), (3.4) and (3.5) that

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}\left(Z(s)+\frac{\rho}{2} \frac{\left|M^{\prime}(s)\right|^{2}}{M(s)^{2}}\right) d s \\
& \quad \leq \int_{t_{1}}^{t_{2}} \rho \frac{Y(s)}{M(s)} d s+\frac{\rho}{2} \sum_{j=1}^{2} \frac{\left|M^{\prime}\left(t_{j}\right)\right|}{M\left(t_{j}\right)}+\frac{\delta}{2} \int_{t_{1}}^{t_{2}} \frac{\left|M^{\prime}(s)\right|}{M(s)} d s \\
& \quad \leq \int_{t}^{t+1} \rho \frac{Y(s)}{M(s)} d s+\frac{\rho}{2} \sum_{j=1}^{2}\left(\frac{Y\left(t_{j}\right)}{M\left(t_{j}\right)}\right)^{1 / 2}+\frac{\delta}{2} \int_{t}^{t+1}\left(\frac{Y(s)}{M(s)}\right)^{1 / 2} d s \\
& \quad \leq \rho D_{1}(t)^{2}+C D_{1}(t) \tag{3.6}
\end{align*}
$$

and moreover, from (3.4) and (3.6) that

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} H(s) d s & =\int_{t_{1}}^{t_{2}} \rho \frac{Y(s)}{M(s)} d s+\int_{t_{1}}^{t_{2}} Z(s) d s \\
& \leq 2 \rho D_{1}(t)^{2}+C D_{1}(t) \tag{3.7}
\end{align*}
$$

Integrating (2.4) over $\left[t, t_{2}\right]$, we have from (2.2) and (2.5) that

$$
\begin{aligned}
H(t) & =H\left(t_{2}\right)+2 \int_{t}^{t_{2}}\left(\delta+\frac{\rho}{2} \frac{M^{\prime}(s)}{M(s)}\right) \frac{Y(s)}{M(s)} d s \\
& \leq 2 \int_{t_{1}}^{t_{2}} H(s) d s+C \int_{t}^{t+1} \frac{Y(s)}{M(s)} d s \\
& \leq C D_{1}(t)^{2}+C D_{1}(t)
\end{aligned}
$$

and since $b D_{1}(t)^{2} \leq H(t)-H(t+1) \leq H(0)$,

$$
\begin{equation*}
H(t)^{2} \leq C D_{1}(t)^{2} \leq C(H(t)-H(t+1)) \tag{3.8}
\end{equation*}
$$

Thus, applying Lemma 3.2 to (3.8) we obtain the desired estimates (3.1) and (3.2).
In order to derive the decay estimate of the function $H(t)$, we used the following Nakao inequality in the proof of Theorem 3.1 (see [10], [11], [12] for the proof).

Lemma 3.2 Let $\phi(t)$ be a non-increasing non-negative function on $[0, \infty)$ and satisfy

$$
\phi(t)^{1+\alpha} \leq k_{0}(\phi(t)-\phi(t+1))
$$

with certain constants $k_{0} \geq 0$ and $\alpha>0$. Then, the function $\phi(t)$ satisfies

$$
\phi(t) \leq\left(\phi(0)^{-\alpha}+\alpha k_{0}^{-1}[t-1]^{+}\right)^{-1 / \alpha}
$$

for $t \geq 0$, where $[t-1]^{+}=\max \{t-1,0\}$.
Next, we will derive the lower decay estimate for $\|u(t)\|_{H_{2}}+\|v(t)\|_{H^{2}}$.

Theorem 3.3 Under the assumption of Theorem 2.2, it holds that

$$
\begin{equation*}
K(t) \equiv\|u(t)\|^{2}+\|v(t)\|^{2} \geq C^{\prime}(1+t)^{-1} \tag{3.9}
\end{equation*}
$$

for $t \geq 0$ with a positive constant $C^{\prime}>0$.
Proof. Multiplying (1.1) and (1.2) by $2 u_{t}$ and $2 v_{t}$, respectively, and integrating them over Ω, and adding the resulting equations we have

$$
\begin{equation*}
\frac{d}{d t} E(t)+2 \delta L(t)=0 \tag{3.10}
\end{equation*}
$$

where we put

$$
E(t) \equiv \rho L(t)+\frac{1}{2} M(t)^{2}
$$

Multiplying (1.1) and (1.2) by u and v, respectively, and integrating them over Ω, and adding the resulting equation, we have

$$
\begin{equation*}
\frac{d}{d t} \frac{1}{2}\left(\delta K(t)+\rho K^{\prime}(t)\right)+\rho L(t)+M(t)^{2}=0 \tag{3.11}
\end{equation*}
$$

Multiplying (3.10) by ρ / δ and adding (3.11), we obtain

$$
\begin{equation*}
\frac{d}{d t} E^{*}(t)+\rho L(t)+M(t)^{2}=0 \tag{3.12}
\end{equation*}
$$

where we put

$$
\begin{equation*}
E^{*}(t) \equiv \frac{\rho}{\delta} E(t)+\frac{1}{2}\left(\delta K(t)+\rho K^{\prime}(t)\right) \tag{3.13}
\end{equation*}
$$

Since $L(t) \leq C M(t)^{2}, M(t) \leq C K(t),\left|K^{\prime}(t)\right| \leq C(L(t)+K(t))$, and $K(t) \leq C$, we observe

$$
\begin{equation*}
E^{*}(t) \leq C K(t) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho L(t)+M(t)^{2} \leq C M(t)^{2} \leq C K(t)^{2} \leq C_{1} K(t) \tag{3.15}
\end{equation*}
$$

On the other hand, since

$$
\left|K^{\prime}(t)\right| \leq 2(L(t) K(t))^{1 / 2} \leq \frac{2 \rho}{\delta} L(t)+\frac{\delta}{2 \rho} K(t)
$$

by the Young inequality, we have

$$
\begin{equation*}
E^{*}(t) \geq \frac{\delta}{4} K(t) \tag{3.16}
\end{equation*}
$$

Thus, we obtain from (3.12)-(3.16) that

$$
\frac{d}{d t} E^{*}(t)+\frac{4}{\delta} C_{1} E^{*}(t)^{2} \geq \frac{d}{d t} E^{*}(t)+\left(\rho L(t)+M(t)^{2}\right) \geq 0
$$

and hence, $E^{*}(t) \geq C(1+t)^{-1}$ for $t \geq 0$ with $C>0$, which implies the desired estimate (3.9).

4 Sharp Decay Estimates for $\left\{u_{t}, v_{t}, u_{t t}, v_{t t}\right\}$. First we will derive the decay estimate for $L(t)$.

Theorem 4.1 Under the assumption of Theorem 2.2, if $4 \rho H(0)<\delta^{2}$, then it holds that

$$
\begin{equation*}
L(t) \equiv\left\|u_{t}(t)\right\|^{2}+\left\|v_{t}(t)\right\|^{2} \leq C(1+t)^{-3} \tag{4.1}
\end{equation*}
$$

for $t \geq 0$.
Proof. The proof is divided in three steps.
Step 1. We will derive the boundedness of $\int_{0}^{t} X(s) / M(s) d s$.
Differentiating (1.1) and (1.2) once with respect to t and multiplying the resulting equations by $2 u_{t t}$ and $2 v_{t t}$, respectively, and integrating them over Ω, and adding the resulting equations, we have

$$
\begin{equation*}
\frac{d}{d t} \rho X(t)+M(t) \frac{d}{d t} Y(t)+\frac{d}{d t} \frac{1}{2}\left|M^{\prime}(t)\right|^{2}-2 M^{\prime}(t) Y(t)+2 \delta X(t)=0 . \tag{4.2}
\end{equation*}
$$

Moreover, multiplying (4.2) by $M(t)^{-2}$, we observe

$$
\begin{aligned}
& \frac{d}{d t}\left(\rho \frac{X(t)}{M(t)^{2}}+\frac{Y(t)}{M(t)}+\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)^{2}}\right)+2\left(\delta+\rho \frac{M^{\prime}(s)}{M(s)}\right) \frac{X(t)}{M(t)^{2}} \\
& \quad=\frac{M^{\prime}(t) Y(t)}{M(t)^{2}}-\frac{\left|M^{\prime}(t)\right|^{2} M^{\prime}(t)}{M(t)^{3}} \leq C(1+t)^{-3 / 2}
\end{aligned}
$$

where we used the facts that

$$
\frac{\left|M^{\prime}(t)\right|}{M(t)} \leq 2\left(\frac{Y(t)}{M(t)}\right)^{1 / 2} \quad \text { and } \quad \frac{Y(t)}{M(t)} \leq C(1+t)^{-1}
$$

Thus, if $4 \rho H(0)<1$, then since it follows from (2.2) and (2.5) that

$$
\delta+\rho \frac{M^{\prime}(s)}{M(s)} \geq \delta-2(\rho H(0))^{1 / 2}>0
$$

we have

$$
\begin{equation*}
\int_{0}^{t} \frac{X(s)}{M(s)^{2}} d s \leq C+C \int_{0}^{\infty}(1+t)^{-3 / 2} d t \leq C \tag{4.3}
\end{equation*}
$$

Step 2. We will derive the boundedness of $M(t) / K(t)$.
From the equations (1.1) and (1.2), it follows that

$$
\begin{align*}
\frac{d}{d t} \delta \frac{M(t)}{K(t)}= & \frac{\delta}{K(t)}\left(M^{\prime}(t)-\frac{M(t)}{K(t)} K^{\prime}(t)\right) \\
= & \frac{-2}{K(t)}\left(\left(\Delta u+\frac{M(t)}{K(t)}, \delta u_{t}\right)+\left(\Delta v+\frac{M(t)}{K(t)} v, \delta v_{t}\right)\right) \\
= & \frac{2 \rho}{K(t)}\left(\left(\Delta u+\frac{M(t)}{K(t)} u, u_{t t}\right)+\left(\Delta v+\frac{M(t)}{K(t)} v, v_{t t}\right)\right) \\
& -\frac{2 M(t)}{K(t)}\left(\left(\Delta u+\frac{M(t)}{K(t)} u, \Delta u\right)+\left(\Delta v+\frac{M(t)}{K(t)} v, \Delta v\right)\right) . \tag{4.4}
\end{align*}
$$

Since we observe

$$
\begin{aligned}
& \left(\Delta u+\frac{M(t)}{K(t)} u, \Delta u\right)=\left\|\Delta u+\frac{M(t)}{K(t)} u\right\|^{2}+\frac{M(t)}{K(t)}\left(\|\nabla u\|^{2}-\frac{M(t)}{K(t)}\|u\|^{2}\right), \\
& \left(\Delta v+\frac{M(t)}{K(t)} v, \Delta v\right)=\left\|\Delta v+\frac{M(t)}{K(t)} v\right\|^{2}+\frac{M(t)}{K(t)}\left(\|\nabla v\|^{2}-\frac{M(t)}{K(t)}\|v\|^{2}\right),
\end{aligned}
$$

and hence,
(4.5)

$$
\left(\Delta u+\frac{M(t)}{K(t)} u, \Delta u\right)+\left(\Delta v+\frac{M(t)}{K(t)} v, \Delta v\right)=\left\|\Delta u+\frac{M(t)}{K(t)} u\right\|^{2}+\left\|\Delta v+\frac{M(t)}{K(t)} v\right\|^{2}
$$

we have from (4.4) and (4.5) that

$$
\begin{aligned}
& \frac{d}{d t} \delta \frac{M(t)}{K(t)}+2 \frac{M(t)}{K(t)}\left(\left\|\Delta u+\frac{M(t)}{K(t)} u\right\|^{2}+\left\|\Delta v+\frac{M(t)}{K(t)} v\right\|^{2}\right) \\
& \quad=\frac{2 \rho}{K(t)}\left(\left(\Delta u+\frac{M(t)}{K(t)} u, u_{t t}\right)+\left(\Delta v+\frac{M(t)}{K(t)} v, v_{t t}\right)\right) \\
& \quad \leq \frac{2 \rho}{K(t)}\left(\left\|\Delta u+\frac{M(t)}{K(t)} u\right\|^{2}+\left\|\Delta v+\frac{M(t)}{K(t)} v\right\|^{2}\right)^{1 / 2} X(t)^{1 / 2}
\end{aligned}
$$

Thus, from the Young inequality we obtain

$$
\frac{d}{d t} \delta \frac{M(t)}{K(t)} \leq \rho^{2} \frac{M(t)}{K(t)} \frac{X(t)}{M(t)^{2}},
$$

and hence, from (4.3) that

$$
\begin{equation*}
\frac{M(t)}{K(t)} \leq \frac{M(0)}{K(0)} \exp \left(\frac{\rho^{2}}{\delta} \int_{0}^{\infty} \frac{X(t)}{M(t)^{2}} d t\right) \leq C \tag{4.6}
\end{equation*}
$$

Step 3. We will derive the decay estimate (4.1).
From (3.10) it follows that

$$
\begin{equation*}
\frac{d}{d t} \rho L(t)+M(t) M^{\prime}(t)+2 \delta L(t)=0 . \tag{4.7}
\end{equation*}
$$

Multiplying (4.7) by $M(t)^{-2}$, we have

$$
\frac{d}{d t} \rho \frac{L(t)}{M(t)^{2}}+2\left(\delta+\rho \frac{M^{\prime}(s)}{M(s)}\right) \frac{L(t)}{M(t)^{2}}=-\frac{M^{\prime}(t)}{M(t)}
$$

and from (2.2) and (2.4) (or (2.6)) that

$$
\frac{d}{d t} \rho \frac{L(t)}{M(t)^{2}}+b \frac{L(t)}{M(t)^{2}} \leq 2 \frac{L(t)^{1 / 2}}{M(t)} Z(t)^{1 / 2}
$$

with $b=2\left(\delta-(\rho H(0))^{1 / 2}\right)>0$, and from the Young inequality and (3.1) that

$$
\frac{d}{d t} \rho \frac{L(t)}{M(t)^{2}}+\frac{b}{2} \frac{L(t)}{M(t)^{2}} \leq C Z(t) \leq C(1+t)^{-1}
$$

and hence, we obtain

$$
\begin{equation*}
\frac{L(t)}{M(t)^{2}} \leq C(1+t)^{-1} \tag{4.8}
\end{equation*}
$$

which gives the desired estimate (4.1).
The following generalized Nakao type inequality is useful to derive decay estimates of the solutions (see [8] for the proof).

Lemma 4.2 Let $\phi(t)$ be a non-negative function on $[0, \infty)$ satisfying

$$
\sup _{t \leq s \leq t+1} \phi(s)^{1+\alpha} \leq k_{1}(1+t)^{\beta}(\phi(t)-\phi(t+1))+k_{2}(1+t)^{-\gamma}
$$

with certain constants $k_{1}>0, k_{2} \geq 0, \alpha>0, \beta<1$, and $\gamma>0$. Then, it holds that

$$
\phi(t) \leq C_{0}(1+t)^{-\theta}, \quad \theta=\min \left\{\frac{1-\beta}{\alpha}, \frac{\gamma}{1+\alpha}\right\}
$$

for $t \geq 0$, where C_{0} is a positive constant depending on $\phi(0)$ and other known quantities.
Next, we will derive the decay estimates of $X(t)$ and $Y(t)$.
Theorem 4.3 Under the assumption of Theorem 4.1, it holds that

$$
\begin{align*}
& X(t) \equiv\left\|u_{t t}(t)\right\|^{2}+\left\|v_{t t}(t)\right\|^{2} \leq C(1+t)^{-4} \tag{4.9}\\
& Y(t) \equiv\left\|\nabla u_{t}(t)\right\|^{2}+\left\|\nabla v_{t}(t)\right\|^{2} \leq C(1+t)^{-3} \tag{4.10}
\end{align*}
$$

for $t \geq 0$.
Proof. Multiplying (4.2) by $M(t)^{-1}$, we have

$$
\begin{equation*}
\frac{d}{d t} G(t)+2\left(\delta+\frac{\rho}{2} \frac{M^{\prime}(t)}{M(t)}\right) \frac{X(t)}{M(t)}=\frac{M^{\prime}(t)}{M(t)}\left(2 Y(t)-\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)}\right) \tag{4.11}
\end{equation*}
$$

where we put

$$
\begin{equation*}
G(t) \equiv \rho \frac{X(t)}{M(t)}+Y(t)+\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)} \tag{4.12}
\end{equation*}
$$

Since $\left|M^{\prime}(t)\right|^{2} \leq 2 L(t) Z(t)$ and $\left|M^{\prime}(t)\right|^{2} \leq 2 Y(t) M(t)$, we observe from (3.1) and (4.8) that

$$
\begin{equation*}
\text { (R.H.S) of }(4.11) \leq C\left(\frac{L(t)}{M(t)^{2}} Z(t)\right)^{1 / 2} Y(t) \leq C(1+t)^{-1} Y(t) \tag{4.13}
\end{equation*}
$$

and from (2.2) and (2.5) that

$$
\begin{equation*}
\frac{d}{d t} G(t)+b \frac{X(t)}{M(t)} \leq C(1+t)^{-1} Y(t) \tag{4.14}
\end{equation*}
$$

with $b=2\left(\delta-(\rho H(0))^{1 / 2}\right)>0$. Moreover, since $Y(t) \leq C(1+t)^{-3}$, we see

$$
\begin{equation*}
G(t) \leq C \quad \text { for } t \geq 0 \tag{4.15}
\end{equation*}
$$

For any $t \geq 0$, integrating (4.14) over $[t, t+1]$, we obtain

$$
\begin{equation*}
b \int_{t}^{t+1} \frac{X(s)}{M(s)} d s \leq G(t)-G(t+1)+C(1+t)^{-1} \sup _{t \leq s \leq t+1} Y(s) \quad\left(\equiv b D_{2}(t)^{2}\right) \tag{4.16}
\end{equation*}
$$

Then, there exist two numbers $t_{1} \in[t, t+1 / 4]$ and $t_{2} \in[t+3 / 4, t+1]$ such that

$$
\begin{equation*}
\frac{X\left(t_{j}\right)}{M\left(t_{j}\right)} \leq 4 \int_{t}^{t+1} \frac{X(s)}{M(s)} d s \leq 4 D_{2}(t)^{2} \quad \text { for } j=1,2 \tag{4.17}
\end{equation*}
$$

Moreover, there exists $t_{*} \in\left[t_{1}, t_{2}\right]$ such that

$$
\begin{equation*}
G\left(t_{*}\right) \leq 2 \int_{t_{1}}^{t_{2}} G(s) d s \tag{4.18}
\end{equation*}
$$

On the other hand, differentiating (1.1) and (1.2) once with respect to t and multiplying the resulting equations by u_{t} and v_{t}, respectively, and integrating them over Ω, and adding the resulting equations, we have

$$
\begin{equation*}
\frac{d}{d t} \frac{\rho}{2} L^{\prime}(t)-\rho X(t)+M(t) Y(t)+\frac{1}{2}\left|M^{\prime}(t)\right|^{2}+\frac{\delta}{2} L^{\prime}(t)=0 \tag{4.19}
\end{equation*}
$$

Moreover, multiplying (4.19) by $M(t)^{-1}$, we observe that

$$
\begin{equation*}
Y(t)+\frac{1}{2} \frac{\left|M^{\prime}(t)\right|^{2}}{M(t)}=\rho \frac{X(t)}{M(t)}-\frac{d}{d t} \frac{\rho}{2} \frac{L^{\prime}(t)}{M(t)}-\frac{1}{2}\left(\delta+\rho \frac{M^{\prime}(s)}{M(s)}\right) \frac{L^{\prime}(t)}{M(t)} \tag{4.20}
\end{equation*}
$$

And integrating (4.20) over $\left[t_{1}, t_{2}\right]$, we have from (3.1), (3.2), (4.8) and (4.15)-(4.17) that

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}}\left(Y(s)+\frac{1}{2} \frac{\left|M^{\prime}(s)\right|^{2}}{M(s)}\right) d s \\
& \quad \leq \int_{t_{1}}^{t_{2}} \rho \frac{X(s)}{M(s)} d s+\frac{\rho}{2} \sum_{j=1}^{2} \frac{\left|L^{\prime}\left(t_{j}\right)\right|}{M\left(t_{j}\right)}+\frac{1}{2} \int_{t_{1}}^{t_{2}}\left(\delta+\rho \frac{\left|M^{\prime}(s)\right|}{M(s)}\right) \frac{\left|L^{\prime}(s)\right|}{M(s)} d s \\
& \quad \leq \int_{t}^{t+1} \rho \frac{X(s)}{M(s)} d s+C(1+t)^{-1} \sum_{j=1}^{2}\left(\frac{X\left(t_{j}\right)}{M\left(t_{j}\right)}\right)^{1 / 2}+C(1+t)^{-1} \int_{t}^{t+1}\left(\frac{X(s)}{M(s)}\right)^{1 / 2} d s
\end{aligned}
$$

$$
\begin{equation*}
\leq \rho D_{2}(t)^{2}+C(1+t)^{-1} D_{2}(t) \tag{4.21}
\end{equation*}
$$

where we used the fact that

$$
\frac{\left|L^{\prime}(t)\right|}{M(t)} \leq 2 \frac{(L(t) M(t))^{1 / 2}}{M(t)} \leq C(1+t)^{-1}\left(\frac{X(t)}{M(t)}\right)^{1 / 2}
$$

(see (3.2) and (4.8)). Then we have from (4.12), (4.16) and (4.21) that

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} G(s) d s & =\int_{t_{1}}^{t_{2}} \rho \frac{X(s)}{M(s)} d s+\int_{t_{1}}^{t_{2}}\left(Y(s)+\frac{1}{2} \frac{\left|M^{\prime}(s)\right|^{2}}{M(s)}\right) d s \\
& \leq 2 \rho D_{2}(t)^{2}+C(1+t)^{-1} D_{2}(t) \tag{4.22}
\end{align*}
$$

For $\tau \in[t, t+1]$, integrating (4.11) over $\left[\tau, t_{*}\right]$ (or $\left[t_{*}, \tau\right]$), we have from (4.13), (4.16), (4.18) and (4.22) that

$$
\begin{aligned}
G(\tau) & =G\left(t_{*}\right)+\int_{\tau}^{t_{*}}\left(2\left(\delta+\frac{\rho}{2} \frac{M^{\prime}(s)}{M(s)}\right) \frac{X(s)}{M(s)}-\frac{M^{\prime}(s)}{M(s)}\left(2 Y(s)-\frac{1}{2} \frac{\left|M^{\prime}(s)\right|^{2}}{M(s)}\right)\right) d s \\
& \leq 2 \int_{t_{1}}^{t_{2}} G(s) d s+C \int_{t}^{t+1} \frac{X(s)}{M(s)} d s+C \int_{t}^{t+1}(1+s)^{-1} Y(s) d s \\
& \leq C D_{2}(t)^{2}+C(1+t)^{-1} D_{2}(t)+C(1+t)^{-1} \sup _{t \leq s \leq t+1} Y(s)
\end{aligned}
$$

Moreover, since $Y(t) \leq G(t)$ and $Y(t) \leq C(1+t)^{-2}$, it follows from (4.16) and the Young inequality that

$$
\begin{equation*}
\sup _{t \leq s \leq t+1} G(s)^{2} \leq C\left(G(t)+(1+t)^{-2}\right)(G(t)-G(t+1))+C(1+t)^{-6} \tag{4.23}
\end{equation*}
$$

Applying Lemma 4.2 to (4.23) together with (4.15), we have

$$
\begin{equation*}
G(t) \leq C(1+t)^{-1} \quad \text { for } t \geq 0 \tag{4.24}
\end{equation*}
$$

and again, applying Lemma 4.2 to (4.23) together with (4.24), we have

$$
\begin{equation*}
G(t) \leq C(1+t)^{-2} \quad \text { for } t \geq 0 \tag{4.25}
\end{equation*}
$$

and hence, applying Lemma 4.2 to (4.23) together with (4.25), we obtain

$$
G(t) \leq C(1+t)^{-3} \quad \text { for } t \geq 0
$$

which implies the desired estimates (4.9) and (4.10).
Acknowledgment. This work was in part supported by Grant-in-Aid for Science Research (C) 21540186 of JSPS.

References

[1] Arosio, A.; Garavaldi, S. On the mildly degenerate Kirchhoff string. Math. Methods Appl. Sci. 14 (1991) 177-195.
[2] Arosio, A.; Panizzi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. 348 (1996) 305-330.
[3] Carrier, G.F. On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3 (1945) 157-165.
[4] Crippa, H.R. On local solutions of some mildly degenerate hyperbolic equations. Nonlinear Anal. 21 (1993) 565-574.
[5] Dickey, R.W. Infinite systems of nonlinear oscillation equations with linear damping. SIAM J. Appl. Math. 19 (1970) 208-214.
[6] Ghisi, M.; Gobbino, M. Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates. J. Differential Equations 245 (2008) 2979-3007.
[7] Kirchhoff G. Vorlesungen über Mechanik. Teubner, Leipzig, 1883.
[8] Kawashima, S.; Nakao, M.; Ono, K. On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term. J. Math. Soc. Japan 47 (1995) 617-653.
[9] Mizumachi T. Decay properties of solutions to degenerate wave equations with dissipative terms. Adv. Differential Equations 2 (1997) 573-592.
[10] Nakao, M. Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60 (1977) 542-549.
[11] Nakao, M. A difference inequality and its application to nonlinear evolution equations. J. Math. Soc. Japan 30 (1978) 747-762.
[12] Nakao, M.; Ono, K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations. Math. Z. 214 (1993) 325-342.
[13] Nishihara, K. Decay properties of solutions of some quasilinear hyperbolic equations with strong damping. Nonlinear Anal. 21 (1993) 17-21.
[14] Nishihara, K.; Yamada, Y. On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkcial. Ekvac. 33 (1990) 151-159.
[15] Ono, K. Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings. Funkcial. Ekvac. 40 (1997) 255-270.
[16] Ono, K. Asymptotic behavior for degenerate nonlinear Kirchhoff type equations with damping. Funkcial. Ekvac. 43 (2000) 381-393.
[17] Ono, K. On sharp decay estimates of solutions for mildly degenerate dissipative wave equations of Kirchhoff type. Math. Methods Appl. Sci. (in press).
[18] Strauss, W.A. On continuity of functions with values in various Banach spaces. Pacific J. Math. 19 (1966) 543-551.
[19] Strauss, W.A. Nonlinear wave equations. CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1989.
[20] Temam, R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. SpringerVerlag, (Applied Mathematical Sciences), Vol.68, New York, 1988.
[21] Yamada, Y. On the decay of solutions for some nonlinear evolution equations of second order. Nagoya Math. J. 73 (1979) 67-98.
communicated by Atsushi Yagi;
Department of Mathematical Sciences, The University of Tokushima, Tokushima 770-8502, JAPAN
E-mail : ono@ias.tokushima-u.ac.jp

