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GLOBAL EXISTENCE AND DECAY RATE FOR A COUPLED
DEGENERATE HYPERBOLIC SYSTEM WITH DISSIPATION
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ABSTRACT.We study on the initial-boundary value problem for the coupled degenerate
hyperbolic system with dissipation :

ou
p3t2 (/|Vu:ct|d:c+/|vat|dw>Au+5§ ,

Ov
8t2 (/|Vuxt|dm—l—/\Vudew)Av—&—&a

with p > 0 and § > 0 and a homogeneous Dirichlet boundary condition. When either
the coefficient p or the initial data are appropriately smaller than the coefficient §, we
show the global-in-time solvability for the system and the optimal decay rate for the
H?-norm for the solutions. Moreover, we derive the sharp decay estimates of their
derivatives.

1 Introduction. In this paper we consider the initial-boundary value problem for the
following coupled degenerate hyperbolic system with dissipation :

(1.1) paa752 </ [Vu(z,t) \zdz+/ |Vou(x t)Zdz> Au+5% =0 inx][0,00),
ov

(1.2) p8t2 (/ Vua:t|2dx+/|vat)|2dx)Av+5aO in  x [0,00)

with the initial and boundary conditions

ou ov

u(z,0) = uo(z), E(x, 0) =wui(x), v(x,0)=uvo(x), a(m,O) =wvi(z) in

and
u(z,t) = v(x,t) =0 on 9N x [0,00).

Here v = u(x,t) and v = v(x,t) are unknown real functions, €2 is an open bounded domain
in RY with smooth boundary 092, A =V -V = Zjvzl 82/890? is the Laplace operator with
the domain H?(2) N H(Q), the coefficients p > 0 and § > 0 are positive constants.

The coupled degenerate hyperbolic system (1.1)—(1.2) comes from the single hyperbolic
equation :

0?u 9 Ou .
(1.3) Poz ~ (qu/Q [Vu(z,t)] da:) Au+§a =0 inx[0,00)
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with u(z,0) = ug(z) and u(x,t) = uy(z), which is called a non-degenerate equation when
> 0 and a degenerate one when p = 0. When the dimension N is one, it is well-known
that (1.3) describes small amplitude vibrations of an elastic stretched string, and (1.3) with
0 = 0 was introduced by Kirchhoff [7] (also see [3], [5]). The coupled hyperbolic system
(1.1)=(1.2) will be useful for the research of amplitude vibrations of two kinds of elastic
stretched strings.

When g > 0 and § > 0, it is easy to see that the energy of the non-degenerate equation
(1.3) has an exponential decay rate.

On the other hand, when p = 0 and § > 0, Nishihara and Yamada [14] have shown the
global existence theorem under the assumption that the initial data {ug,u1} belonging to
H2(Q) N H () x H}(Q) are sufficiently small and || Vug|| # 0, and they have derived some
decay properties of the solution by using the energy method, e.g., [|[Vu(t)||? + | Vu(t)||* <
C(1+ )7t and |lus(t)]|? + |luee(O)|* < C(t + 1)72 for t > 0 (also see [10], [21]), where
| - || is the norm of L?(Q2). In the previous paper [15], we have improved some decay rates
of the solution as in [14], e.g., [|[Au(?)||? < C(1 + )7 and ||V, (t)||*> < C(1 +¢)~3 and
luge (8)||? < C(1 + )~ for t > 0. Moreover, Mizumachi [9] has derived the lower decay
estimate ||u(t)||?> > C(1 +t)~! for t > 0, when the initial data are sufficiently small (cf.
[13], [16] for equations with strong dissipation). And, Ghisi and Gobbino [6] have given
the lower decay estimate |[Vu(t)||? > C(1 +t)~! for t > 0, too, when the coefficient p is
sufficiently small by using another technique as [9] (also see [17]).

The purpose of this paper is to derive the optimal decay rate for the H?-norm of the
solutions {u(t),v(t)} of the system (1.1)—(1.2) including the lower decay estimate under
weaker conditions. Moreover, when either the coefficient p or the initial data {ug, u1, vo, v1}
are appropriately smaller than the coefficient §, we prove the global existence theorem.

We will use the following function through this paper.

K(t) = [lu@®” + o, L) = [lus@®)? + [lo: (DI,

M(t) = [[Vu@®)||? + [IVo@1*, X (1) = llua®)]® + [lva @),

Y(t) = [Vu @ + Vo ))1?, Z(1) = [ Au(t)]® + | Av(®)]?,
and

(1.4) H(t) = p]}\;((l;)) +Z(t).

In particular, when ¢ = 0, it means that

I 2 4 [V 2
1.5 H(0) =
(15) ) = P Fuo [+ Vo 2

+ | Aug|1? + [ Avo|1? .
Our main result is as follows.

Theorem 1.1 Let initial data {u,vo} € (H*(2) N H&(Q))2 and {uy, v} € (H&(Q))2 sat-
isfy || Vuol||* + [[Vuol|? # 0. Suppose that p and {ug,u1,ve,v1} satisfy

(1.6) pH(0) < 6°.
Then, the problem (1.1)—(1.2) admits unique global solutions {u(t),v(t)} in the class

(1.7) (CO([0,00); H2 () N HE () 1 CH([0,00); HE () N C2([0, 00); L*(2)))”
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and {u(t),v(t)} satisfy that
(1.8) C'(1+ )7 <lu®)fe + lv@®)lF <CA+7
fort > 0. Moreover, when 4pH (0) < 6% instead of (1.6), {u(t),v(t)} satisfy that

(1.9) lue @z + e (@®)]Fn < CA+1)72,
(1.10) luse (B + oa(D]* < CA+ 67

for t >0, where C and C' are certain positive constants depending on the initial data and
the coefficient p > 0.

The above theorem is obtained by gathering Theorems 2.2—4.3 in the following sections.

The notations we use in this paper are standard. The symbol (-,-) means the inner
product in L?(£2) or sometimes duality between the space X and its dual X', and the norm
of L?(f2) is often written as || - || = || - || 2 for simplicity. Positive constants will be denoted
by C and will change from line to line.

2 Global Existence. By applying the Banach contraction mapping theorem to the prob-
lem (1.1)—(1.2), we obtain the following local existence theorem. The proof is standard and
we omit it here (see [1], [2], [4], [15], [18], [19], [20]).

Proposition 2.1 If the initial data {uo,vo} € (H*(Q) N H} (Q))2 and {uy,v1} € (Hg (Q))2
satisfy ||Vuol|® + ||[Vuol|? # 0, then the problem (1.1)—(1.2) admits unique local solutions
{u(t),v(t)} in the class

(CO([0, T); HA(€2) 1 HE () N C([0, T]; H () N C2((0, T); L2(©2)))*

for some T = T(||uol| &2, ||voll 2, [[w1llms [[vil g2 ) > 0. Moreover, if | Vu(t)||? + || Vv(t)||? >
0 and ||u(t)||32 + v %2 + w(@®)]]3: + [[v(@)]|3: < oo fort >0, then we can take T = co.

By deriving a-priori estimates Y (t) + Z(t) < oo and M (t) > 0 for t > 0, we will show
the global-in-time solvability for the system (1.1)—(1.2).

Theorem 2.2 Let the initial data {uo,u1} € (H*(Q) N H&(Q))2 and {ui,v1} € (H&(Q))2
satisfy M(0) > 0. Suppose that p and {ug,u1,vo,v1} satisfy (1.6). Then, the problem
(1.1)—(1.2) admits unique global solutions {u(t),v(t)} in the class (1.7) and it holds that

(2.1) M(t) = [Vu@®)|? + [[Vo@®)|? > 0
and

(2.2) H(t) = p]\};((tt)) + Z(t) < H(0)
fort > 0.

Proof.  Multiplying (1.1) and (1.2) by —2Au; and —2Auw;, respectively, and integrating
them over €2, we have

d d
ZPIVu O + M (1) (| Au(®) | + 28] Ve (5)]* = 0
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and

d 2 d 2 2

S PIVue @I + M(8) 2 [Av(t)| + 26 Ve (t)[|° = 0.
Adding these two equations, we obtain

(2.3) %pY(t) + M(t)%Z(t) 126V () = 0.

Since M (0) > 0, putting
T =sup {t € [0,00) | M(s) >0 for 0 <s<t},

we see that 7> 0 and M (t) >0for 0 <¢ < T.
Then, multiplying (2.3) by M (t)~!, we have

d pM(t)\ Y(t)
(2.4) ZH(b) +2 <5+ 5 M(t)>

M(t)

for 0 <t < T, where H(t) is defined by (1.4). Moreover, since

! 1/2
(2:5) ’2’%((3' <p (%) < (pH(E)'?
we obtain
(2.6) %H(t) +2 (5 - (,;H(t))l/?) AZ((’?) <0
for0<t<T.

If (pH(0))'/? < §, then there exists 0 < Ty < T such that
(pH))Y? <6  for0<t<T,

and we see from (2.6) that H(t) < H(0) for 0 <t < T3, and hence,
(2.7) H(t) < H(0) for0<t<T.

Next, we will show that T' = co. If M(T') = 0, then lim; ,7 Y (¢) = 0, and we see

(2.8) }LH%E(u(t), v(t)) =0
where
(2.9) E(u(t),v(t)) = p ([lue (@)1 + [[os(0)]1%) + % (Ivu®)1? + [Vo@)2)* .

On the other hand, we perform the change of variable s =T — ¢ or t = T — s, then the
functions U(s) = u(T —t) and V(s) = v(T —t) on [0, T satisfy that

(2.10) pUss — (IVU|? + [|[VV]]?) AU - §U, = 0,
(2.11) pVss = (IVUI? + | VV|?) AV — 6V, = 0.
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Multiplying (2.10) and (2.11) by 2U, and 2V, respectively, and integrating them over ,
and adding the resulting equations, we have

d

S EU(s),V(5) = 26 ([T ()I* + IVa(9)]*) < %E(U(SLV(S))

where E(U(s), V(s)) is defined by (2.9). Thus, since E(U(0), V(0)) = lim;—1 E(u(t),v(t)) =
0 by (2.8), we obtain

25 [°
PO V) <2 [ BUE@ Vi)
and from the Gronwall inequality that
E(U(s),V(s))=0o0n [0,T] or E(u(t),v(t)) =0 on [0,T]

which contradicts M (0) = || Vug||? + |[[Vuvo||? # 0. Then, we see that T' = oo, and M (t) > 0
and (2.4)—(2.7) hold true for ¢ > 0, that is, we have that Y (¢) + Z(t) < oo for ¢ > 0. Thus,
by the second statement of Proposition 2.1, we see that the problem (1.1)-(1.2) admits
unique global solutions {u(t),v(t)}. O

3 Optimal Decay Estimates for {u,v}. First, we will derive the upper decay estimate
for [lu(®)|[7> + l[lv(®)lI2-

Theorem 3.1 Under the assumption of Theorem 2.2, it holds that

(3.1) H(t) = p;;((?) +ZH) <C+t)7t,
(3.2) M) <CA+t)™" and Y() <O +1t)72
fort>0.

Proof. From (2.2) and (2.4) (or (2.6)) we have

d Y (t)
. — < >
(3.3) dtH(t)er 0 <0 fort>0
with b = 2(6 — (pH(0))'/?) > 0. For any ¢ > 0, integrating (3.3) over [t,t 4 1], we obtain
()
4 <H@t)-H(t+1 =bD;(1)).
(3.4) V[ i ds S HO-H@+D) (D107

Then, there exist two numbers ¢; € [t,t + 1/4] and t2 € [t + 3/4,t + 1] such that

Yit) _, [ Y

(3:3) M) <t M)

ds =4D.(t)>  forj=1,2.

On the other hand, multiplying (1.1) and (1.2) by —Awu and —Aw, respectively, and
integrating them over 2, we have

M)l Au(t)|® + %p(VU(t), Vur(t) = pl Vue(®)]* + 5(Vu(t), Vue(t) = 0,

M)l Av(B)]* + %p(W(t% Vue(t)) = pllVee()II° +6(Vo(t), Vue(t)) = 0.
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Adding these two equations and multiplying the resulting equation by 1/M (t), we observe

pIM'O)P _ Y(E) pdM(t) M)
20+ 5 M6?  PM@) " 2di M) 2 M)

and integrating it over [¢,t3], we obtain from (2.5), (3.4) and (3.5) that
t 4 2
? p|M'(s)] )
Z(s)+ c—F+ | ds
INCER S
" Y(s) P IMIE)] 6 [ M (s)]
< p ds+ = A / ds
/tl M(s) 2 Z M(t;)  2J), M(s)

[t s R i) T )

(3.6) < pD(t)? +CD1(t),

and moreover, from (3.4) and (3.6) that

tQH(s)ds: t2 A);((S))d —l—/tQZ(s)ds

(3.7) < 20Dy (t)* + CDy(t).
Integrating (2.4) over [t,t3], we have from (2.2) and (2.5) that
_ U M) V()
H(t) —H(t2)+2/t (5+ (S)) S

to t+1 Y
<2 H(s)ds+C / ) 4
t M(s)

< CD;(t)? + CDs(t)

and since bD;(t)? < H(t) — H(t + 1) < H(0),
(3.8) H(t)? <CDy(t)> <C(H(t) — H(t+1)).

Thus, applying Lemma 3.2 to (3.8) we obtain the desired estimates (3.1) and (3.2). O

In order to derive the decay estimate of the function H(t), we used the following Nakao
inequality in the proof of Theorem 3.1 (see [10], [11], [12] for the proof).

Lemma 3.2 Let ¢(t) be a non-increasing non-negative function on [0,00) and satisfy
P(t) 7 < ko (o(t) — o(t + 1))
with certain constants ko > 0 and o > 0. Then, the function ¢(t) satisfies

-1/

6(t) < (6(0)™* +aky [t —1]")
for t >0, where [t — 1]T = max{t — 1,0}.

Next, we will derive the lower decay estimate for ||u(t)| g, + ||v(t)] g2-
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Theorem 3.3 Under the assumption of Theorem 2.2, it holds that
(3.9) K@) = [lu®)]? + Jo@®]* = C"(1+ )7
for t > 0 with a positive constant C' > 0.

Proof. Multiplying (1.1) and (1.2) by 2u; and 2wv;, respectively, and integrating them over
), and adding the resulting equations we have

(3.10) %E(t) +20L(t) =0

where we put
1
E(t) = pL(t) + 5M(t)2 .
Multiplying (1.1) and (1.2) by u and v, respectively, and integrating them over 2, and

adding the resulting equation, we have

(3.11) %% (SK(8) + pK' (1)) + pL(t) + M(t)* = 0.

Multiplying (3.10) by p/é and adding (3.11), we obtain

(3.12) %E*(t) +pL() + M()? = 0

where we put

(3.13) (1) = 2B0) + % GK(t) + pK'(2)) -

Since L(t) < CM(t)%, M(t) < CK(t), |[K'(t)] < C(L(t) + K(t)), and K(t) < C, we observe

(3.14) E*(t) < CK(t)
and
(3.15) pL(t) + M(t)? < CM(t)* < CK(t)* < C1 K (t).

On the other hand, since

K ()] < 2(L(OK ()2 < ?L(t) + 5 K(t)

by the Young inequality, we have
(3.16) E*(t) >

Thus, we obtain from (3.12)—(3.16) that

d 4 d
—E*(t) + =C1E*(t)* > —E*(t) + (pL(t) + M(t)*) >0
dt 5 dt

and hence, E*(t) > C(1+t)~! for t > 0 with C > 0, which implies the desired estimate
(3.9). O
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4 Sharp Decay Estimates for {u¢, v, Uts, 4 b First we will derive the decay estimate
for L(t).

Theorem 4.1 Under the assumption of Theorem 2.2, if 4pH (0) < 82, then it holds that
(4.1) L(t) = lue(@)]* + o ()* < CA+ )77
fort>0.

Proof. The proof is divided in three steps.
Step 1. We will derive the boundedness of fo (s)/M(s)ds

Differentiating (1.1) and (1.2) once with respect to ¢t and multiplying the resulting equa-
tions by 2uy and 2vy, respectively, and integrating them over ), and adding the resulting
equations, we have

d d d1

(4.2) ZPX() + M) ZY (£) + 25 [M (O] —2M' ()Y () + 26X () = 0.

Moreover, multiplying (4.2) by M (t)~2, we observe

() Y 1) M(s)\ X(0)
at (pM<t>2+M<>+ M (1)? >+2<5+pM(s)>M(t)2

o M'(t) M )

A%ﬁ) | 5\}'@3 ®) < v

where we used the facts that

M (t)] Y(H)\"? Y (1) .
M) SQ(-M(t)) and m§0(1+t) .

Thus, if 4pH (0) < 1, then since it follows from (2.2) and (2.5) that

6+ p%/((j)) > 6 —2(pH(0))2 >0

we have

(4.3) /Ot ]\i[(((j)L ds§C+C/OOO(1+t)3/2dt§C.

Step 2. 'We will derive the boundedness of M (t)/K(t).
From the equations (1.1) and (1.2), it follows that

d M) & LM,
& KD = KG (M 0~ %0 (t))

Au+ A}?((;) , 5ut> + <Av L MO, m)

(
(30 20, ) 1 (30 20, )
)

_QK(t) (( jf‘?((f))u,Au>+(Av+A;(<gu, v))
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Since we observe

M(t) _ M(t) M(t) M)
(Au+ SOM Au> = ||Au + K(t)u||2 + 0 (Ilwn2 - K(t)IIuIQ) ;
M(t) _ M@E) o M) 2 M@)o
(Av+ K(t)v’ Av) = ||Av + K(t)UH + KD <|VU|| - ml\vll ) ,
and hence,
(4.5)
M(t) M(t) _ M(t) 12 M®) )12
<Au+ Wu, Au) + (AU+ K(t)v’ AU) = [[Au + mull +[[Av + WUH )

we have from (4.4) and (4.5) that

d _M(t) M) M(t) M(t)

2 (30 200 )+ (304 2000)

2p uy M@ o o M@)o i 1/2
< oo (1au+ TP+ 180+ 0 ) X012,

Thus, from the Young inequality we obtain

d M(t)
dt K(t)

(t) X()
(t) M(t)*”

M
<y’ e
and hence, from (4.3) that

M(t) _ M(0) Pt X(®)
(4.6) m < mexp (5/0 M (1)? dt) <C.

Step 3. We will derive the decay estimate (4.1).
From (3.10) it follows that

(@7) %pL(t) + M(6)M(t) + 25L(t) = 0.

Multiplying (4.7) by M (t)~2, we have

d Lt M'(s)\ L(t) _ M'(t)
o +2 (0 i) i~

and from (2.2) and (2.4) (or (2.6)) that

d L)

L(t)
at’ M)

M(t)?

L(t)1/2
M(t)

1/2
s +b <2 Z(t)Y

with b = 2(6 — (pH(0))*/?) > 0, and from the Young inequality and (3.1) that

d L) b L{t)

%pM(t)z + 3 (1) <CZH)<CA+t)t,
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and hence, we obtain

(4.8)

which gives the desired estimate (4.1). O

The following generalized Nakao type inequality is useful to derive decay estimates of
the solutions (see [8] for the proof).

Lemma 4.2 Let ¢(t) be a non-negative function on [0,00) satisfying

sup  ¢(s)' T <k (1+1)7(6(t) — p(t + 1)) + ko (1+1) 7"
t<s<t+1

with certain constants k1 >0, ko >0, « >0, 8 <1, and v > 0. Then, it holds that

—0 _ . 1_5 Y
o) <Co(1+1t)7", Q—mln{a71+a}

fort >0, where Cy is a positive constant depending on ¢(0) and other known quantities.

Next, we will derive the decay estimates of X (¢) and Y (¢).

Theorem 4.3 Under the assumption of Theorem 4.1, it holds that

(4.9) X () = [luse (O] + [lowe (> < CL+ 1)1,
(4.10) Y(t) = [Vu@* + Vo @)]* < CA+1)7°
fort>0.

Proof. Multiplying (4.2) by M (t)~!, we have
(4.11) %G(t) 12 (5 + pM(t)) X _ MY <2Y(t) -

where we put

1M’(t)|2)
2 M) )’

(4.12) G(t) = pji((tt)) FY(0) 43 'Z‘]@((’?)' .

Since |M'(t)|?> < 2L(t)Z(t) and |M’(t)|? < 2Y (t)M(t), we observe from (3.1) and (4.8) that

1/2
(4.13) (R.H.S) of (4.11) < C ( Z(t)) Y(t)<CA+t)7'Y (1),

M(t)?
and from (2.2) and (2.5) that

(4.14) %G(t) + bX((?) <CA+t)7 'y ()

with b = 2(6 — (pH(0))/?) > 0. Moreover, since Y (t) < C(1 +t)~3, we see

(4.15) Git)<C fort>0.
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For any ¢ > 0, integrating (4.14) over [t,t + 1], we obtain

(4.16) b/ttH A);((SS)) ds GO~ G+ )+ O+ s V) (S0Da(07)

Then, there exist two numbers ¢; € [t,t + 1/4] and t2 € [t + 3/4,t + 1] such that

(4.17) ]\)2((2)) < 4/:H 1\)2((83)) ds < 4Dy(1)?  forj=1,2.

Moreover, there exists t, € [t1,%2] such that
ta
(4.18) G(t.) <2 G(s)ds.

t1

On the other hand, differentiating (1.1) and (1.2) once with respect to ¢t and multiplying
the resulting equations by u; and v, respectively, and integrating them over €2, and adding
the resulting equations, we have

(4.19) —ZL'(t) — pX(t) + M()Y () + %|M’(t)\2 + gL’(t) =0.

Moreover, multiplying (4.19) by M (t)~!, we observe that

MM X(@t) dpL'(t) 1 M'(s)\ L'(t)
(4200 Y(O)+ = = - or —<5+pM(s)> TI0R

2 M@t) "M@ T a2M@) 2

And integrating (4.20) over [t1, 2], we have from (3.1), (3.2), (4.8) and (4.15)—(4.17) that
to 1 |MI(S)|2
Y ———|d
[ (o35 o

2 X(s L'(t;
[ e s

B ) ()]
<5 TN s) > M(s)

< /f+1 p])\;((i)) ds+C(1+t)? Z <A§((Z))>1/Q +O(+t)? /tt+1 (ﬁg)m ds

(4.21)
< pDy(t)? 4+ C(14+t) ' Dy(t),

where we used the fact that

1L _ (LH)M(2))'? X))
@ < g <o+ (i)

(see (3.2) and (4.8)). Then we have from (4.12), (4.16) and (4.21) that

& _ (" X(s) 2 LM ()Y
/t1 G(s)ds-/t1 p]\/‘l,(s)clg—&—/t1 (Y(s)—|—2 ) )d
(4.22) < 2pDy(t)? + C(1+ 1) Do(t).
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For T € [t,t+1], integrating (4.11) over [, t.] (or [t«, 7]), we have from (4.13), (4.16), (4.18)
and (4.22) that

o) = G(t) + / ( (5+ (s>) X(s)  M(s) (ms) _ 1IM<>I>> ds

. M(s) ) M(s) — M(s) 2 M(s)
<2 [ as) ds+C/+ ((SS))d +c/+ 1Y (s) ds
<CDy(t)* +C(L+t) ' Do(t) + C(1+t)~" sup Y(s).

t<s<t+1

Moreover, since Y (t) < G(t) and Y (t) < C(1 +t)~2, it follows from (4.16) and the Young
inequality that

(4.23) sup G(s)2 < C(G(t) + (1+6)72) (G(t) — Gt +1)) + C(1 + 1)~

t<s<t+1

Applying Lemma 4.2 to (4.23) together with (4.15), we have

(4.24) Gt)y<c@@+t)™'  fort>0,

and again, applying Lemma 4.2 to (4.23) together with (4.24), we have

(4.25) Gt)y<C@l+t)™2 fort>0,

and hence, applying Lemma 4.2 to (4.23) together with (4.25), we obtain
Gty<c@a+t)y™2  fort>0,

which implies the desired estimates (4.9) and (4.10). O
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