GLOBAL EXISTENCE AND DECAY RATE FOR A COUPLED DEGENERATE HYPERBOLIC SYSTEM WITH DISSIPATION

KOSUKE ONO

Received February 10, 2011; revised May 13, 2011

ABSTRACT. We study on the initial-boundary value problem for the coupled degenerate hyperbolic system with dissipation :

$$\begin{cases} & \rho \frac{\partial^2 u}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x,t)|^2 \, dx + \int_{\Omega} |\nabla v(x,t)|^2 \, dx \right) \Delta u + \delta \frac{\partial u}{\partial t} = 0 \,, \\ & \rho \frac{\partial^2 v}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x,t)|^2 \, dx + \int_{\Omega} |\nabla v(x,t)|^2 \, dx \right) \Delta v + \delta \frac{\partial v}{\partial t} = 0 \end{cases}$$

with $\rho > 0$ and $\delta > 0$ and a homogeneous Dirichlet boundary condition. When either the coefficient ρ or the initial data are appropriately smaller than the coefficient δ , we show the global-in-time solvability for the system and the optimal decay rate for the H^2 -norm for the solutions. Moreover, we derive the sharp decay estimates of their derivatives.

1 Introduction. In this paper we consider the initial-boundary value problem for the following coupled degenerate hyperbolic system with dissipation :

(1.1)
$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x,t)|^2 \, dx + \int_{\Omega} |\nabla v(x,t)|^2 \, dx \right) \Delta u + \delta \frac{\partial u}{\partial t} = 0 \quad \text{in } \Omega \times [0,\infty) \,,$$

(1.2)
$$\rho \frac{\partial^2 v}{\partial t^2} - \left(\int_{\Omega} |\nabla u(x,t)|^2 \, dx + \int_{\Omega} |\nabla v(x,t)|^2 \, dx \right) \Delta v + \delta \frac{\partial v}{\partial t} = 0 \quad \text{in } \Omega \times [0,\infty)$$

with the initial and boundary conditions

$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x), \quad v(x,0) = v_0(x), \quad \frac{\partial v}{\partial t}(x,0) = v_1(x) \quad \text{in } \Omega$$

and

$$u(x,t) = v(x,t) = 0$$
 on $\partial \Omega \times [0,\infty)$.

Here u = u(x,t) and v = v(x,t) are unknown real functions, Ω is an open bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, $\Delta = \nabla \cdot \nabla = \sum_{j=1}^N \partial^2 / \partial x_j^2$ is the Laplace operator with the domain $H^2(\Omega) \cap H_0^1(\Omega)$, the coefficients $\rho > 0$ and $\delta > 0$ are positive constants.

The coupled degenerate hyperbolic system (1.1)–(1.2) comes from the single hyperbolic equation :

(1.3)
$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\mu + \int_{\Omega} |\nabla u(x,t)|^2 \, dx\right) \Delta u + \delta \frac{\partial u}{\partial t} = 0 \quad \text{in } \Omega \times [0,\infty)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 35L15, 35B40; Secondary 35L80, 35L20. Key words and phrases. Degenerate hyperbolic system, dissipation, decay rate.

with $u(x,0) = u_0(x)$ and $u_t(x,t) = u_1(x)$, which is called a non-degenerate equation when $\mu > 0$ and a degenerate one when $\mu = 0$. When the dimension N is one, it is well-known that (1.3) describes small amplitude vibrations of an elastic stretched string, and (1.3) with $\delta = 0$ was introduced by Kirchhoff [7] (also see [3], [5]). The coupled hyperbolic system (1.1)–(1.2) will be useful for the research of amplitude vibrations of two kinds of elastic stretched strings.

When $\mu > 0$ and $\delta > 0$, it is easy to see that the energy of the non-degenerate equation (1.3) has an exponential decay rate.

On the other hand, when $\mu = 0$ and $\delta > 0$, Nishihara and Yamada [14] have shown the global existence theorem under the assumption that the initial data $\{u_0, u_1\}$ belonging to $H^2(\Omega) \cap H^1_0(\Omega) \times H^1_0(\Omega)$ are sufficiently small and $\|\nabla u_0\| \neq 0$, and they have derived some decay properties of the solution by using the energy method, e.g., $\|\nabla u(t)\|^2 + \|\nabla u_t(t)\|^2 \leq C(1+t)^{-1}$ and $\|u_t(t)\|^2 + \|u_{tt}(t)\|^2 \leq C(t+1)^{-2}$ for $t \geq 0$ (also see [10], [21]), where $\|\cdot\|$ is the norm of $L^2(\Omega)$. In the previous paper [15], we have improved some decay rates of the solution as in [14], e.g., $\|\Delta u(t)\|^2 \leq C(1+t)^{-1}$ and $\|\nabla u_t(t)\|^2 \leq C(1+t)^{-3}$ and $\|u_{tt}(t)\|^2 \leq C(1+t)^{-4}$ for $t \geq 0$. Moreover, Mizumachi [9] has derived the lower decay estimate $\|u(t)\|^2 \geq C(1+t)^{-1}$ for $t \geq 0$, when the initial data are sufficiently small (cf. [13], [16] for equations with strong dissipation). And, Ghisi and Gobbino [6] have given the lower decay estimate $\|\nabla u(t)\|^2 \geq C(1+t)^{-1}$ for $t \geq 0$, too, when the coefficient ρ is sufficiently small by using another technique as [9] (also see [17]).

The purpose of this paper is to derive the optimal decay rate for the H^2 -norm of the solutions $\{u(t), v(t)\}$ of the system (1.1)–(1.2) including the lower decay estimate under weaker conditions. Moreover, when either the coefficient ρ or the initial data $\{u_0, u_1, v_0, v_1\}$ are appropriately smaller than the coefficient δ , we prove the global existence theorem.

We will use the following function through this paper.

$$\begin{split} K(t) &\equiv \|u(t)\|^2 + \|v(t)\|^2, \quad L(t) \equiv \|u_t(t)\|^2 + \|v_t(t)\|^2, \\ M(t) &\equiv \|\nabla u(t)\|^2 + \|\nabla v(t)\|^2, \quad X(t) \equiv \|u_{tt}(t)\|^2 + \|v_{tt}(t)\|^2, \\ Y(t) &\equiv \|\nabla u_t(t)\|^2 + \|\nabla v_t(t)\|^2, \quad Z(t) \equiv \|\Delta u(t)\|^2 + \|\Delta v(t)\|^2, \end{split}$$

and

(1.4)
$$H(t) \equiv \rho \frac{Y(t)}{M(t)} + Z(t) \,.$$

In particular, when t = 0, it means that

(1.5)
$$H(0) \equiv \rho \frac{\|\nabla u_1\|^2 + \|\nabla v_1\|^2}{\|\nabla u_0\|^2 + \|\nabla v_0\|^2} + \|\Delta u_0\|^2 + \|\Delta v_0\|^2.$$

Our main result is as follows.

Theorem 1.1 Let initial data $\{u_0, v_0\} \in (H^2(\Omega) \cap H^1_0(\Omega))^2$ and $\{u_1, v_1\} \in (H^1_0(\Omega))^2$ satisfy $\|\nabla u_0\|^2 + \|\nabla v_0\|^2 \neq 0$. Suppose that ρ and $\{u_0, u_1, v_0, v_1\}$ satisfy

$$(1.6) \qquad \qquad \rho H(0) < \delta^2 \,.$$

Then, the problem (1.1)–(1.2) admits unique global solutions $\{u(t), v(t)\}$ in the class

(1.7)
$$\left(C^0([0,\infty); H^2(\Omega) \cap H^1_0(\Omega)) \cap C^1([0,\infty); H^1_0(\Omega)) \cap C^2([0,\infty); L^2(\Omega)) \right)^2 ,$$

and $\{u(t), v(t)\}$ satisfy that

(1.8)
$$C'(1+t)^{-1} \le ||u(t)||_{H^2}^2 + ||v(t)||_{H^2}^2 \le C(1+t)^{-1}$$

for $t \geq 0$. Moreover, when $4\rho H(0) < \delta^2$ instead of (1.6), $\{u(t), v(t)\}$ satisfy that

(1.9) $\|u_t(t)\|_{H^1}^2 + \|v_t(t)\|_{H^1}^2 \le C(1+t)^{-3},$

(1.10)
$$\|u_{tt}(t)\|^2 + \|v_{tt}(t)\|^2 \le C(1+t)^{-4}$$

for $t \ge 0$, where C and C' are certain positive constants depending on the initial data and the coefficient $\rho > 0$.

The above theorem is obtained by gathering Theorems 2.2–4.3 in the following sections. The notations we use in this paper are standard. The symbol (\cdot, \cdot) means the inner product in $L^2(\Omega)$ or sometimes duality between the space X and its dual X', and the norm of $L^2(\Omega)$ is often written as $\|\cdot\| = \|\cdot\|_{L^2}$ for simplicity. Positive constants will be denoted by C and will change from line to line.

2 Global Existence. By applying the Banach contraction mapping theorem to the problem (1.1)-(1.2), we obtain the following local existence theorem. The proof is standard and we omit it here (see [1], [2], [4], [15], [18], [19], [20]).

Proposition 2.1 If the initial data $\{u_0, v_0\} \in (H^2(\Omega) \cap H^1_0(\Omega))^2$ and $\{u_1, v_1\} \in (H^1_0(\Omega))^2$ satisfy $\|\nabla u_0\|^2 + \|\nabla v_0\|^2 \neq 0$, then the problem (1.1)–(1.2) admits unique local solutions $\{u(t), v(t)\}$ in the class

$$(C^{0}([0,T]; H^{2}(\Omega) \cap H^{1}_{0}(\Omega)) \cap C^{1}([0,T]; H^{1}_{0}(\Omega)) \cap C^{2}([0,T]; L^{2}(\Omega)))^{2}$$

 $\begin{array}{l} \text{for some } T = T(\|u_0\|_{H^2}, \|v_0\|_{H^2}, \|u_1\|_{H^1}, \|v_1\|_{H^1}) > 0. \ \text{Moreover, if } \|\nabla u(t)\|^2 + \|\nabla v(t)\|^2 > \\ 0 \ \text{and } \|u(t)\|_{H^2}^2 + \|v(t)\|_{H^2}^2 + \|u(t)\|_{H^1}^2 + \|v(t)\|_{H^1}^2 < \infty \ \text{for } t \geq 0, \ \text{then we can take } T = \infty. \end{array}$

By deriving a-priori estimates $Y(t) + Z(t) < \infty$ and M(t) > 0 for $t \ge 0$, we will show the global-in-time solvability for the system (1.1)–(1.2).

Theorem 2.2 Let the initial data $\{u_0, u_1\} \in (H^2(\Omega) \cap H^1_0(\Omega))^2$ and $\{u_1, v_1\} \in (H^1_0(\Omega))^2$ satisfy M(0) > 0. Suppose that ρ and $\{u_0, u_1, v_0, v_1\}$ satisfy (1.6). Then, the problem (1.1)–(1.2) admits unique global solutions $\{u(t), v(t)\}$ in the class (1.7) and it holds that

(2.1)
$$M(t) \equiv \|\nabla u(t)\|^2 + \|\nabla v(t)\|^2 > 0$$

and

(2.2)
$$H(t) \equiv \rho \frac{Y(t)}{M(t)} + Z(t) \le H(0)$$

for $t \geq 0$.

Proof. Multiplying (1.1) and (1.2) by $-2\Delta u_t$ and $-2\Delta v_t$, respectively, and integrating them over Ω , we have

$$\frac{d}{dt}\rho \|\nabla u_t(t)\|^2 + M(t)\frac{d}{dt}\|\Delta u(t)\|^2 + 2\delta \|\nabla u_t(t)\|^2 = 0$$

and

$$\frac{d}{dt}\rho \|\nabla v_t(t)\|^2 + M(t)\frac{d}{dt}\|\Delta v(t)\|^2 + 2\delta \|\nabla v_t(t)\|^2 = 0.$$

Adding these two equations, we obtain

(2.3)
$$\frac{d}{dt}\rho Y(t) + M(t)\frac{d}{dt}Z(t) + 2\delta Y(t) = 0.$$

Since M(0) > 0, putting

$$T \equiv \sup \left\{ t \in [0, \infty) \mid M(s) > 0 \text{ for } 0 \le s < t \right\} \,,$$

we see that T > 0 and M(t) > 0 for $0 \le t < T$. Then, multiplying (2.3) by $M(t)^{-1}$, we have

(2.4)
$$\frac{d}{dt}H(t) + 2\left(\delta + \frac{\rho}{2}\frac{M'(t)}{M(t)}\right)\frac{Y(t)}{M(t)} = 0$$

for $0 \le t < T$, where H(t) is defined by (1.4). Moreover, since

(2.5)
$$\frac{\rho}{2} \frac{|M'(t)|}{M(t)} \le \rho \left(\frac{Y(t)}{M(t)}\right)^{1/2} \le \left(\rho H(t)\right)^{1/2},$$

we obtain

(2.6)
$$\frac{d}{dt}H(t) + 2\left(\delta - (\rho H(t))^{1/2}\right)\frac{Y(t)}{M(t)} \le 0$$

for $0 \le t < T$.

If $(\rho H(0))^{1/2} < \delta$, then there exists $0 < T_1 \leq T$ such that

$$(\rho H(t))^{1/2} \le \delta$$
 for $0 \le t \le T_1$

and we see from (2.6) that $H(t) \leq H(0)$ for $0 \leq t \leq T_1$, and hence,

(2.7)
$$H(t) \le H(0)$$
 for $0 \le t < T$.

Next, we will show that $T = \infty$. If M(T) = 0, then $\lim_{t \to T} Y(t) = 0$, and we see

(2.8)
$$\lim_{t \to T} E(u(t), v(t)) = 0$$

where

(2.9)
$$E(u(t), v(t)) \equiv \rho \left(\|u_t(t)\|^2 + \|v_t(t)\|^2 \right) + \frac{1}{2} \left(\|\nabla u(t)\|^2 + \|\nabla v(t)\|^2 \right)^2.$$

On the other hand, we perform the change of variable s = T - t or t = T - s, then the functions U(s) = u(T - t) and V(s) = v(T - t) on [0, T] satisfy that

(2.10)
$$\rho U_{ss} - \left(\|\nabla U\|^2 + \|\nabla V\|^2 \right) \Delta U - \delta U_s = 0,$$

(2.11)
$$\rho V_{ss} - \left(\|\nabla U\|^2 + \|\nabla V\|^2 \right) \Delta V - \delta V_s = 0.$$

Multiplying (2.10) and (2.11) by $2U_s$ and $2V_s$, respectively, and integrating them over Ω , and adding the resulting equations, we have

$$\frac{d}{ds}E(U(s), V(s)) = 2\delta\left(\|U_s(s)\|^2 + \|V_s(s)\|^2\right) \le \frac{2\delta}{\rho}E(U(s), V(s))$$

where E(U(s), V(s)) is defined by (2.9). Thus, since $E(U(0), V(0)) = \lim_{t \to T} E(u(t), v(t)) = 0$ by (2.8), we obtain

$$E(U(s), V(s)) \le \frac{2\delta}{\rho} \int_0^s E(U(\tau), V(\tau)) \, d\tau \,,$$

and from the Gronwall inequality that

$$E(U(s), V(s)) = 0$$
 on $[0, T]$ or $E(u(t), v(t)) = 0$ on $[0, T]$

which contradicts $M(0) \equiv \|\nabla u_0\|^2 + \|\nabla v_0\|^2 \neq 0$. Then, we see that $T = \infty$, and M(t) > 0and (2.4)–(2.7) hold true for $t \ge 0$, that is, we have that $Y(t) + Z(t) < \infty$ for $t \ge 0$. Thus, by the second statement of Proposition 2.1, we see that the problem (1.1)–(1.2) admits unique global solutions $\{u(t), v(t)\}$. \Box

3 Optimal Decay Estimates for $\{u, v\}$. First, we will derive the upper decay estimate for $||u(t)||^2_{H^2} + ||v(t)||^2_{H^2}$.

Theorem 3.1 Under the assumption of Theorem 2.2, it holds that

(3.1)
$$H(t) \equiv \rho \frac{Y(t)}{M(t)} + Z(t) \le C(1+t)^{-1},$$

(3.2)
$$M(t) \le C(1+t)^{-1}$$
 and $Y(t) \le C(1+t)^{-2}$

for $t \geq 0$.

Proof. From (2.2) and (2.4) (or (2.6)) we have

(3.3)
$$\frac{d}{dt}H(t) + b\frac{Y(t)}{M(t)} \le 0 \qquad \text{for } t \ge 0$$

with $b = 2(\delta - (\rho H(0))^{1/2}) > 0$. For any $t \ge 0$, integrating (3.3) over [t, t+1], we obtain

(3.4)
$$b \int_{t}^{t+1} \frac{Y(s)}{M(s)} \, ds \le H(t) - H(t+1) \qquad (\equiv bD_1(t)^2) \, .$$

Then, there exist two numbers $t_1 \in [t, t+1/4]$ and $t_2 \in [t+3/4, t+1]$ such that

(3.5)
$$\frac{Y(t_j)}{M(t_j)} \le 4 \int_t^{t+1} \frac{Y(s)}{M(s)} \, ds = 4D_1(t)^2 \quad \text{for } j = 1, 2.$$

On the other hand, multiplying (1.1) and (1.2) by $-\Delta u$ and $-\Delta v$, respectively, and integrating them over Ω , we have

$$M(t) \|\Delta u(t)\|^{2} + \frac{d}{dt} \rho(\nabla u(t), \nabla u_{t}(t)) - \rho \|\nabla u_{t}(t)\|^{2} + \delta(\nabla u(t), \nabla u_{t}(t)) = 0,$$

$$M(t) \|\Delta v(t)\|^{2} + \frac{d}{dt} \rho(\nabla v(t), \nabla v_{t}(t)) - \rho \|\nabla v_{t}(t)\|^{2} + \delta(\nabla v(t), \nabla v_{t}(t)) = 0.$$

Adding these two equations and multiplying the resulting equation by 1/M(t), we observe

$$Z(t) + \frac{\rho}{2} \frac{|M'(t)|^2}{M(t)^2} = \rho \frac{Y(t)}{M(t)} - \frac{\rho}{2} \frac{d}{dt} \frac{M'(t)}{M(t)} - \frac{\delta}{2} \frac{M'(t)}{M(t)} \,,$$

and integrating it over $[t_1, t_2]$, we obtain from (2.5), (3.4) and (3.5) that

$$\begin{aligned} \int_{t_1}^{t_2} \left(Z(s) + \frac{\rho}{2} \frac{|M'(s)|^2}{M(s)^2} \right) ds \\ &\leq \int_{t_1}^{t_2} \rho \frac{Y(s)}{M(s)} ds + \frac{\rho}{2} \sum_{j=1}^2 \frac{|M'(t_j)|}{M(t_j)} + \frac{\delta}{2} \int_{t_1}^{t_2} \frac{|M'(s)|}{M(s)} ds \\ &\leq \int_{t}^{t+1} \rho \frac{Y(s)}{M(s)} ds + \frac{\rho}{2} \sum_{j=1}^2 \left(\frac{Y(t_j)}{M(t_j)} \right)^{1/2} + \frac{\delta}{2} \int_{t}^{t+1} \left(\frac{Y(s)}{M(s)} \right)^{1/2} ds \\ (3.6) &\leq \rho D_1(t)^2 + C D_1(t) \,, \end{aligned}$$

and moreover, from (3.4) and (3.6) that

(3.7)
$$\int_{t_1}^{t_2} H(s) \, ds = \int_{t_1}^{t_2} \rho \frac{Y(s)}{M(s)} \, ds + \int_{t_1}^{t_2} Z(s) \, ds \\ \leq 2\rho D_1(t)^2 + CD_1(t) \, .$$

Integrating (2.4) over $[t, t_2]$, we have from (2.2) and (2.5) that

$$\begin{split} H(t) &= H(t_2) + 2 \int_t^{t_2} \left(\delta + \frac{\rho}{2} \frac{M'(s)}{M(s)} \right) \frac{Y(s)}{M(s)} \, ds \\ &\leq 2 \int_{t_1}^{t_2} H(s) \, ds + C \int_t^{t+1} \frac{Y(s)}{M(s)} \, ds \\ &\leq C D_1(t)^2 + C D_1(t) \end{split}$$

and since $bD_1(t)^2 \le H(t) - H(t+1) \le H(0)$,

(3.8)
$$H(t)^2 \le CD_1(t)^2 \le C(H(t) - H(t+1))$$

Thus, applying Lemma 3.2 to (3.8) we obtain the desired estimates (3.1) and (3.2). \Box

In order to derive the decay estimate of the function H(t), we used the following Nakao inequality in the proof of Theorem 3.1 (see [10], [11], [12] for the proof).

Lemma 3.2 Let $\phi(t)$ be a non-increasing non-negative function on $[0,\infty)$ and satisfy

$$\phi(t)^{1+\alpha} \le k_0 (\phi(t) - \phi(t+1))$$

with certain constants $k_0 \ge 0$ and $\alpha > 0$. Then, the function $\phi(t)$ satisfies

$$\phi(t) \le \left(\phi(0)^{-\alpha} + \alpha k_0^{-1} [t-1]^+\right)^{-1/\alpha}$$

for $t \ge 0$, where $[t-1]^+ = \max\{t-1, 0\}$.

Next, we will derive the lower decay estimate for $||u(t)||_{H_2} + ||v(t)||_{H^2}$.

Theorem 3.3 Under the assumption of Theorem 2.2, it holds that

(3.9)
$$K(t) \equiv ||u(t)||^2 + ||v(t)||^2 \ge C'(1+t)^{-1}$$

for $t \ge 0$ with a positive constant C' > 0.

Proof. Multiplying (1.1) and (1.2) by $2u_t$ and $2v_t$, respectively, and integrating them over Ω , and adding the resulting equations we have

(3.10)
$$\frac{d}{dt}E(t) + 2\delta L(t) = 0$$

where we put

$$E(t) \equiv \rho L(t) + \frac{1}{2}M(t)^2.$$

Multiplying (1.1) and (1.2) by u and v, respectively, and integrating them over Ω , and adding the resulting equation, we have

(3.11)
$$\frac{d}{dt}\frac{1}{2}\left(\delta K(t) + \rho K'(t)\right) + \rho L(t) + M(t)^2 = 0.$$

Multiplying (3.10) by ρ/δ and adding (3.11), we obtain

(3.12)
$$\frac{d}{dt}E^*(t) + \rho L(t) + M(t)^2 = 0$$

where we put

(3.13)
$$E^*(t) \equiv \frac{\rho}{\delta} E(t) + \frac{1}{2} \left(\delta K(t) + \rho K'(t) \right) \,.$$

Since $L(t) \leq CM(t)^2$, $M(t) \leq CK(t)$, $|K'(t)| \leq C(L(t) + K(t))$, and $K(t) \leq C$, we observe

$$(3.14) E^*(t) \le CK(t)$$

and

(3.15)
$$\rho L(t) + M(t)^2 \le CM(t)^2 \le CK(t)^2 \le C_1 K(t) \,.$$

On the other hand, since

$$|K'(t)| \le 2(L(t)K(t))^{1/2} \le \frac{2\rho}{\delta}L(t) + \frac{\delta}{2\rho}K(t)$$

by the Young inequality, we have

(3.16)
$$E^*(t) \ge \frac{\delta}{4} K(t) \,.$$

Thus, we obtain from (3.12)-(3.16) that

$$\frac{d}{dt}E^{*}(t) + \frac{4}{\delta}C_{1}E^{*}(t)^{2} \ge \frac{d}{dt}E^{*}(t) + \left(\rho L(t) + M(t)^{2}\right) \ge 0$$

and hence, $E^*(t) \ge C(1+t)^{-1}$ for $t \ge 0$ with C > 0, which implies the desired estimate (3.9). \Box

4 Sharp Decay Estimates for $\{u_t, v_t, u_{tt}, v_{tt}\}$. First we will derive the decay estimate for L(t).

Theorem 4.1 Under the assumption of Theorem 2.2, if $4\rho H(0) < \delta^2$, then it holds that

(4.1)
$$L(t) \equiv ||u_t(t)||^2 + ||v_t(t)||^2 \le C(1+t)^{-3}$$

for $t \geq 0$.

Proof. The proof is divided in three steps.

Step 1. We will derive the boundedness of $\int_0^t X(s)/M(s) ds$. Differentiating (1.1) and (1.2) once with respect to t and multiplying the resulting equations by $2u_{tt}$ and $2v_{tt}$, respectively, and integrating them over Ω , and adding the resulting equations, we have

(4.2)
$$\frac{d}{dt}\rho X(t) + M(t)\frac{d}{dt}Y(t) + \frac{d}{dt}\frac{1}{2}|M'(t)|^2 - 2M'(t)Y(t) + 2\delta X(t) = 0.$$

Moreover, multiplying (4.2) by $M(t)^{-2}$, we observe

$$\frac{d}{dt} \left(\rho \frac{X(t)}{M(t)^2} + \frac{Y(t)}{M(t)} + \frac{1}{2} \frac{|M'(t)|^2}{M(t)^2} \right) + 2 \left(\delta + \rho \frac{M'(s)}{M(s)} \right) \frac{X(t)}{M(t)^2} \\ = \frac{M'(t)Y(t)}{M(t)^2} - \frac{|M'(t)|^2 M'(t)}{M(t)^3} \le C(1+t)^{-3/2}$$

where we used the facts that

$$\frac{|M'(t)|}{M(t)} \le 2 \left(\frac{Y(t)}{M(t)}\right)^{1/2} \quad \text{and} \qquad \frac{Y(t)}{M(t)} \le C(1+t)^{-1} \,.$$

Thus, if $4\rho H(0) < 1$, then since it follows from (2.2) and (2.5) that

$$\delta + \rho \frac{M'(s)}{M(s)} \geq \delta - 2(\rho H(0))^{1/2} > 0$$

we have

(4.3)
$$\int_0^t \frac{X(s)}{M(s)^2} \, ds \le C + C \int_0^\infty (1+t)^{-3/2} \, dt \le C \, .$$

Step 2. We will derive the boundedness of M(t)/K(t). From the equations (1.1) and (1.2), it follows that

$$\frac{d}{dt}\delta\frac{M(t)}{K(t)} = \frac{\delta}{K(t)}\left(M'(t) - \frac{M(t)}{K(t)}K'(t)\right) \\
= \frac{-2}{K(t)}\left(\left(\Delta u + \frac{M(t)}{K(t)}, \,\delta u_t\right) + \left(\Delta v + \frac{M(t)}{K(t)}v, \,\delta v_t\right)\right) \\
= \frac{2\rho}{K(t)}\left(\left(\Delta u + \frac{M(t)}{K(t)}u, \,u_{tt}\right) + \left(\Delta v + \frac{M(t)}{K(t)}v, \,v_{tt}\right)\right) \\
- \frac{2M(t)}{K(t)}\left(\left(\Delta u + \frac{M(t)}{K(t)}u, \,\Delta u\right) + \left(\Delta v + \frac{M(t)}{K(t)}v, \,\Delta v\right)\right).$$
(4.4)

Since we observe

$$\left(\Delta u + \frac{M(t)}{K(t)} u \,,\, \Delta u \right) = \|\Delta u + \frac{M(t)}{K(t)} u\|^2 + \frac{M(t)}{K(t)} \left(\|\nabla u\|^2 - \frac{M(t)}{K(t)} \|u\|^2 \right) \,,$$
$$\left(\Delta v + \frac{M(t)}{K(t)} v \,,\, \Delta v \right) = \|\Delta v + \frac{M(t)}{K(t)} v\|^2 + \frac{M(t)}{K(t)} \left(\|\nabla v\|^2 - \frac{M(t)}{K(t)} \|v\|^2 \right) \,,$$

and hence,

(4.5)

$$\left(\Delta u + \frac{M(t)}{K(t)}u, \Delta u\right) + \left(\Delta v + \frac{M(t)}{K(t)}v, \Delta v\right) = \|\Delta u + \frac{M(t)}{K(t)}u\|^2 + \|\Delta v + \frac{M(t)}{K(t)}v\|^2,$$

we have from (4.4) and (4.5) that

$$\frac{d}{dt}\delta\frac{M(t)}{K(t)} + 2\frac{M(t)}{K(t)}\left(\|\Delta u + \frac{M(t)}{K(t)}u\|^2 + \|\Delta v + \frac{M(t)}{K(t)}v\|^2\right) \\
= \frac{2\rho}{K(t)}\left(\left(\Delta u + \frac{M(t)}{K(t)}u, u_{tt}\right) + \left(\Delta v + \frac{M(t)}{K(t)}v, v_{tt}\right)\right) \\
\leq \frac{2\rho}{K(t)}\left(\|\Delta u + \frac{M(t)}{K(t)}u\|^2 + \|\Delta v + \frac{M(t)}{K(t)}v\|^2\right)^{1/2}X(t)^{1/2}.$$

Thus, from the Young inequality we obtain

$$\frac{d}{dt}\delta\frac{M(t)}{K(t)} \le \rho^2 \frac{M(t)}{K(t)} \frac{X(t)}{M(t)^2} \,,$$

and hence, from (4.3) that

(4.6)
$$\frac{M(t)}{K(t)} \le \frac{M(0)}{K(0)} \exp\left(\frac{\rho^2}{\delta} \int_0^\infty \frac{X(t)}{M(t)^2} dt\right) \le C.$$

Step 3. We will derive the decay estimate (4.1). From (3.10) it follows that

(4.7)
$$\frac{d}{dt}\rho L(t) + M(t)M'(t) + 2\delta L(t) = 0.$$

Multiplying (4.7) by $M(t)^{-2}$, we have

$$\frac{d}{dt}\rho\frac{L(t)}{M(t)^2} + 2\left(\delta + \rho\frac{M'(s)}{M(s)}\right)\frac{L(t)}{M(t)^2} = -\frac{M'(t)}{M(t)}$$

and from (2.2) and (2.4) (or (2.6)) that

$$\frac{d}{dt}\rho \frac{L(t)}{M(t)^2} + b \frac{L(t)}{M(t)^2} \le 2 \frac{L(t)^{1/2}}{M(t)} Z(t)^{1/2}$$

with $b = 2(\delta - (\rho H(0))^{1/2}) > 0$, and from the Young inequality and (3.1) that

$$\frac{d}{dt}\rho \frac{L(t)}{M(t)^2} + \frac{b}{2} \frac{L(t)}{M(t)^2} \le CZ(t) \le C(1+t)^{-1} \,,$$

and hence, we obtain

(4.8)
$$\frac{L(t)}{M(t)^2} \le C(1+t)^{-1}$$

which gives the desired estimate (4.1). \Box

The following generalized Nakao type inequality is useful to derive decay estimates of the solutions (see [8] for the proof).

Lemma 4.2 Let $\phi(t)$ be a non-negative function on $[0,\infty)$ satisfying

$$\sup_{t \le s \le t+1} \phi(s)^{1+\alpha} \le k_1 (1+t)^\beta (\phi(t) - \phi(t+1)) + k_2 (1+t)^{-\gamma}$$

with certain constants $k_1 > 0$, $k_2 \ge 0$, $\alpha > 0$, $\beta < 1$, and $\gamma > 0$. Then, it holds that

$$\phi(t) \le C_0 (1+t)^{-\theta}, \qquad \theta = \min\left\{\frac{1-\beta}{\alpha}, \frac{\gamma}{1+\alpha}\right\}$$

for $t \ge 0$, where C_0 is a positive constant depending on $\phi(0)$ and other known quantities.

Next, we will derive the decay estimates of X(t) and Y(t).

Theorem 4.3 Under the assumption of Theorem 4.1, it holds that

(4.9)
$$X(t) \equiv \|u_{tt}(t)\|^2 + \|v_{tt}(t)\|^2 \le C(1+t)^{-4},$$

(4.10)
$$Y(t) \equiv \|\nabla u_t(t)\|^2 + \|\nabla v_t(t)\|^2 \le C(1+t)^{-3}$$

for $t \geq 0$.

Proof. Multiplying (4.2) by $M(t)^{-1}$, we have

(4.11)
$$\frac{d}{dt}G(t) + 2\left(\delta + \frac{\rho}{2}\frac{M'(t)}{M(t)}\right)\frac{X(t)}{M(t)} = \frac{M'(t)}{M(t)}\left(2Y(t) - \frac{1}{2}\frac{|M'(t)|^2}{M(t)}\right),$$

where we put

(4.12)
$$G(t) \equiv \rho \frac{X(t)}{M(t)} + Y(t) + \frac{1}{2} \frac{|M'(t)|^2}{M(t)}$$

Since $|M'(t)|^2 \leq 2L(t)Z(t)$ and $|M'(t)|^2 \leq 2Y(t)M(t)$, we observe from (3.1) and (4.8) that

(4.13) (R.H.S) of (4.11)
$$\leq C \left(\frac{L(t)}{M(t)^2} Z(t)\right)^{1/2} Y(t) \leq C(1+t)^{-1} Y(t),$$

and from (2.2) and (2.5) that

(4.14)
$$\frac{d}{dt}G(t) + b\frac{X(t)}{M(t)} \le C(1+t)^{-1}Y(t)$$

with $b = 2(\delta - (\rho H(0))^{1/2}) > 0$. Moreover, since $Y(t) \le C(1+t)^{-3}$, we see

$$(4.15) G(t) \le C for t \ge 0.$$

For any $t \ge 0$, integrating (4.14) over [t, t + 1], we obtain

(4.16)
$$b \int_{t}^{t+1} \frac{X(s)}{M(s)} ds \le G(t) - G(t+1) + C(1+t)^{-1} \sup_{t \le s \le t+1} Y(s) \qquad (\equiv bD_2(t)^2).$$

Then, there exist two numbers $t_1 \in [t, t+1/4]$ and $t_2 \in [t+3/4, t+1]$ such that

(4.17)
$$\frac{X(t_j)}{M(t_j)} \le 4 \int_t^{t+1} \frac{X(s)}{M(s)} \, ds \le 4D_2(t)^2 \qquad \text{for } j = 1, 2.$$

Moreover, there exists $t_* \in [t_1, t_2]$ such that

(4.18)
$$G(t_*) \le 2 \int_{t_1}^{t_2} G(s) \, ds \, .$$

On the other hand, differentiating (1.1) and (1.2) once with respect to t and multiplying the resulting equations by u_t and v_t , respectively, and integrating them over Ω , and adding the resulting equations, we have

(4.19)
$$\frac{d}{dt}\frac{\rho}{2}L'(t) - \rho X(t) + M(t)Y(t) + \frac{1}{2}|M'(t)|^2 + \frac{\delta}{2}L'(t) = 0.$$

Moreover, multiplying (4.19) by $M(t)^{-1}$, we observe that

(4.20)
$$Y(t) + \frac{1}{2} \frac{|M'(t)|^2}{M(t)} = \rho \frac{X(t)}{M(t)} - \frac{d}{dt} \frac{\rho}{2} \frac{L'(t)}{M(t)} - \frac{1}{2} \left(\delta + \rho \frac{M'(s)}{M(s)}\right) \frac{L'(t)}{M(t)}.$$

And integrating (4.20) over $[t_1, t_2]$, we have from (3.1), (3.2), (4.8) and (4.15)–(4.17) that

$$\int_{t_1}^{t_2} \left(Y(s) + \frac{1}{2} \frac{|M'(s)|^2}{M(s)} \right) ds \\
\leq \int_{t_1}^{t_2} \rho \frac{X(s)}{M(s)} ds + \frac{\rho}{2} \sum_{j=1}^2 \frac{|L'(t_j)|}{M(t_j)} + \frac{1}{2} \int_{t_1}^{t_2} \left(\delta + \rho \frac{|M'(s)|}{M(s)} \right) \frac{|L'(s)|}{M(s)} ds \\
\leq \int_{t}^{t+1} \rho \frac{X(s)}{M(s)} ds + C(1+t)^{-1} \sum_{j=1}^2 \left(\frac{X(t_j)}{M(t_j)} \right)^{1/2} + C(1+t)^{-1} \int_{t}^{t+1} \left(\frac{X(s)}{M(s)} \right)^{1/2} ds$$
(4.21)

$$\leq \rho D_2(t)^2 + C(1+t)^{-1} D_2(t) \,,$$

where we used the fact that

$$\frac{|L'(t)|}{M(t)} \leq 2 \frac{(L(t)M(t))^{1/2}}{M(t)} \leq C(1+t)^{-1} \left(\frac{X(t)}{M(t)}\right)^{1/2}$$

(see (3.2) and (4.8)). Then we have from (4.12), (4.16) and (4.21) that

(4.22)
$$\int_{t_1}^{t_2} G(s) \, ds = \int_{t_1}^{t_2} \rho \frac{X(s)}{M(s)} \, ds + \int_{t_1}^{t_2} \left(Y(s) + \frac{1}{2} \frac{|M'(s)|^2}{M(s)} \right) \, ds$$
$$\leq 2\rho D_2(t)^2 + C(1+t)^{-1} D_2(t) \, .$$

For $\tau \in [t, t+1]$, integrating (4.11) over $[\tau, t_*]$ (or $[t_*, \tau]$), we have from (4.13), (4.16), (4.18) and (4.22) that

$$\begin{split} G(\tau) &= G(t_*) + \int_{\tau}^{t_*} \left(2\left(\delta + \frac{\rho}{2}\frac{M'(s)}{M(s)}\right)\frac{X(s)}{M(s)} - \frac{M'(s)}{M(s)}\left(2Y(s) - \frac{1}{2}\frac{|M'(s)|^2}{M(s)}\right)\right) \, ds \\ &\leq 2\int_{t_1}^{t_2} G(s) \, ds + C\int_t^{t+1}\frac{X(s)}{M(s)} \, ds + C\int_t^{t+1}(1+s)^{-1}Y(s) \, ds \\ &\leq CD_2(t)^2 + C(1+t)^{-1}D_2(t) + C(1+t)^{-1}\sup_{t \le s \le t+1}Y(s) \, . \end{split}$$

Moreover, since $Y(t) \leq G(t)$ and $Y(t) \leq C(1+t)^{-2}$, it follows from (4.16) and the Young inequality that

(4.23)
$$\sup_{t \le s \le t+1} G(s)^2 \le C \left(G(t) + (1+t)^{-2} \right) \left(G(t) - G(t+1) \right) + C(1+t)^{-6}.$$

Applying Lemma 4.2 to (4.23) together with (4.15), we have

(4.24)
$$G(t) \le C(1+t)^{-1}$$
 for $t \ge 0$,

and again, applying Lemma 4.2 to (4.23) together with (4.24), we have

(4.25)
$$G(t) \le C(1+t)^{-2}$$
 for $t \ge 0$,

and hence, applying Lemma 4.2 to (4.23) together with (4.25), we obtain

$$G(t) \le C(1+t)^{-3}$$
 for $t \ge 0$,

which implies the desired estimates (4.9) and (4.10). \Box

Acknowledgment. This work was in part supported by Grant-in-Aid for Science Research (C) 21540186 of JSPS.

References

- Arosio, A.; Garavaldi, S. On the mildly degenerate Kirchhoff string. Math. Methods Appl. Sci. 14 (1991) 177–195.
- [2] Arosio, A.; Panizzi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. 348 (1996) 305–330.
- [3] Carrier, G.F. On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 3 (1945) 157-165.
- [4] Crippa, H.R. On local solutions of some mildly degenerate hyperbolic equations. Nonlinear Anal. 21 (1993) 565–574.
- [5] Dickey, R.W. Infinite systems of nonlinear oscillation equations with linear damping. SIAM J. Appl. Math. 19 (1970) 208–214.
- [6] Ghisi, M.; Gobbino, M. Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates. J. Differential Equations 245 (2008) 2979–3007.
- [7] Kirchhoff G. Vorlesungen über Mechanik. Teubner, Leipzig, 1883.
- [8] Kawashima, S.; Nakao, M.; Ono, K. On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term. J. Math. Soc. Japan 47 (1995) 617–653.
- Mizumachi T. Decay properties of solutions to degenerate wave equations with dissipative terms. Adv. Differential Equations 2 (1997) 573–592.

- [10] Nakao, M. Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60 (1977) 542–549.
- [11] Nakao, M. A difference inequality and its application to nonlinear evolution equations. J. Math. Soc. Japan 30 (1978) 747–762.
- [12] Nakao, M.; Ono, K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations. Math. Z. 214 (1993) 325–342.
- [13] Nishihara, K. Decay properties of solutions of some quasilinear hyperbolic equations with strong damping. Nonlinear Anal. 21 (1993) 17–21.
- [14] Nishihara, K.; Yamada, Y. On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkcial. Ekvac. 33 (1990) 151–159.
- [15] Ono, K. Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings. Funkcial. Ekvac. 40 (1997) 255–270.
- [16] Ono, K. Asymptotic behavior for degenerate nonlinear Kirchhoff type equations with damping. Funkcial. Ekvac. 43 (2000) 381–393.
- [17] Ono, K. On sharp decay estimates of solutions for mildly degenerate dissipative wave equations of Kirchhoff type. Math. Methods Appl. Sci. (in press).
- [18] Strauss, W.A. On continuity of functions with values in various Banach spaces. Pacific J. Math. 19 (1966) 543–551.
- [19] Strauss, W.A. Nonlinear wave equations. CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1989.
- [20] Temam, R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, (Applied Mathematical Sciences), Vol.68, New York, 1988.
- [21] Yamada, Y. On the decay of solutions for some nonlinear evolution equations of second order. Nagoya Math. J. 73 (1979) 67–98.

communicated by Atsushi Yagi;

DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKUSHIMA, TOKUSHIMA 770-8502, JAPAN E-mail : ono@ias.tokushima-u.ac.jp