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Abstract. As a continuation of our previous considerations about the operator order
among quasi-arithmetic means [Linear Algebra Appl. 434 (2011), 1228–1237], we study
this order with a different condition on the spectra. As an application we gave the
order among some means. Also, we give similar results for F -order.

1 Introduction We recall some notations and definitions. Let B(H) be the C∗-algebra of
all bounded linear operators on a Hilbert space H and 1H stands for the identity operator.
We define bounds of a self-adjoint operator A ∈ B(H)

(1.1) mA = inf
‖x‖=1

〈Ax, x〉 and MA = sup
‖x‖=1

〈Ax, x〉

for x ∈ H. If Sp(A) denotes the spectrum of A, then Sp(A) is real and Sp(A) ⊆ [mA, MA].

B. Mond and J. Pečarić in [6] proved the following version of Jensen’s operator inequality

(1.2) f

(
n∑

i=1

wiΦi(Ai)

)
≤

n∑
i=1

wiΦi (f(Ai)) ,

for operator convex functions f defined on an interval I, where Φi : B(H) → B(K), i =
1, . . . , n, are unital positive linear mappings, A1, . . . , An are self-adjoint operators with the
spectra in I and w1, . . . , wn are non-negative real numbers with

∑n
i=1 wi = 1.

F. Hansen, J. Pečarić and I. Perić gave in [3] a generalization of (1.2) for unital field of
positive linear mappings. Recently, J.Mićić, J.Pečarić and Y.Seo in [5] gave a generalization
of this results for field of positive linear mappings such that the field t → Φt(1H) is integrable
with

∫
T

Φt(1H) dµ(t) = k1K for some positive scalar k.
Very recently, J. Mićić, Z. Pavić and J. Pečarić [4, Theorem 1] gave the following version

of Jensen’s operator inequality without operator convexity.

Theorem A Let (A1, . . . , An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
bounds mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n-tuple of positive
linear mappings Φi : B(H) → B(K), i = 1, . . . , n, such that

∑n
i=1 Φi(1H) = 1K . If

(1.3) (mA,MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n,

where mA and MA, mA ≤ MA, are bounds of the self-adjoint operator A =
∑n

i=1 Φi(Ai),
then

(1.4) f

(
n∑

i=1

Φi(Ai)

)
≤

n∑
i=1

Φi (f(Ai))
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chaotic order.
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holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi.

If f : I → R is concave, then the reverse inequality is valid in (1.4).

In the same paper [4], we study the quasi-arithmetic operator mean

(1.5) Mϕ(A,Φ, n) = ϕ−1

(
n∑

i=1

Φi (ϕ(Ai))

)
,

where (A1, . . . , An) is an n-tuple of self-adjoint operators in B(H) with the spectra in
I, (Φ1, . . . , Φn) is an n-tuple of positive linear mappings Φi : B(H) → B(K) such that∑n

i=1 Φi(1H) = 1K , and ϕ : I → R is a continuous strictly monotone function.

The following results about the monotonicity of this mean are proven in [4, Theorem 3].

Theorem B Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in the definition of the quasi-arithmetic
mean (1.5). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . , n. Let ϕ,ψ : I → R
be continuous strictly monotone functions on an interval I which contains all mi,Mi. Let
mϕ and Mϕ, mϕ ≤ Mϕ, be the bounds of the mean Mϕ(A,Φ, n), such that

(1.6) (mϕ,Mϕ) ∩ [mi,Mi] = ∅ for i = 1, . . . , n.

If one of the following conditions

(i) ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then

(1.7) Mϕ(A,Φ, n) ≤ Mψ(A,Φ, n).

If one of the following conditions

(ii) ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (1.7).

In this paper we will study the monotonicity of the quasi-arithmetic mean with a condi-
tion on the bounds of operators A1, . . . , An and A =

∑n
i=1 Φi(Ai), but without the bounds

of means which partake in this order. As an application we gave the order among some
means. Also, we give similar results for F -order under the same conditions.

2 Order among quasi-arithmetic means In Theorem B, we give the order among the
quasi-arithmetic means under the conditions (1.6) which include the bounds of the mean
in the LHS of (1.7). It is interesting to study the case when (1.7) holds only under the
condition placed on the bounds of operators whose means we are considering. We study it
in the following theorem.
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Theorem 2.1 Let (A1, . . . , An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with the
bounds mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n-tuple of positive linear
mappings Φi : B(H) → B(K), i = 1, . . . , n, such that

∑n
i=1 Φi(1H) = 1K . Let

(mA,MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n,

where mA and MA, mA ≤ MA, are the bounds of the operator A =
∑n

i=1 Φi(Ai). Let
f, g : I → R be continuous strictly monotone functions on an interval I which contains all
mi, Mi.
If one of the following conditions
(i) f is convex, f−1 is operator monotone, g is concave, g−1 is operator monotone,
(ii) f is convex, f−1 is operator monotone, g is convex, −g−1 is operator monotone,
(iii) f is concave, −f−1 is operator monotone, g is convex, −g−1 is operator monotone,
(iv) f is concave, −f−1 is operator monotone, g is concave, g−1 is operator monotone,
is satisfied, then

(2.1) Mg(A,Φ, n) ≤ Mf (A,Φ, n).

But, if one of the following conditions
(i’) f is convex, −f−1 is operator monotone, g is concave, −g−1 is operator monotone,
(ii’) f is convex, −f−1 is operator monotone, g is convex, g−1 is operator monotone,
(iii’) f is concave, f−1 is operator monotone, g is convex, g−1 is operator monotone,
(iv’) f is concave, f−1 is operator monotone, g is concave, −g−1 is operator monotone,
is satisfied, then the reverse inequality is valid in (2.1).

Proof. We get this theorem by applying Theorem B. For example, by replacing ψ by
f and ϕ by the identity function I in Theorem B(i) and by replacing ψ by g and ϕ by I in
Theorem B(ii), we obtain (2.1) in the case (i).

But, we can give a direct and clear proof by using Theorem A.
Since f is a convex function and taking into account that (mA,MA) ∩ [mi,Mi] =

∅ for i = 1, . . . , n, holds, we have by using Theorem A

f

(
n∑

i=1

Φi(Ai)

)
≤

n∑
i=1

Φi (f(Ai)) .

Since f−1 is an operator monotone function, it follows from the above inequality

(2.2)
n∑

i=1

Φi(Ai) ≤ f−1

(
n∑

i=1

Φi (f(Ai))

)
.

Similarly to the above case, applying the concave case in Theorem A on g and next using
that g−1 is operator monotone, we obtain

(2.3) g−1

(
n∑

i=1

Φi (g(Ai))

)
≤

n∑
i=1

Φi(Ai).

Combining the two inequalities (2.2) and (2.3), we obtain

g−1

(
n∑

i=1

Φi (g(Ai))

)
≤ f−1

(
n∑

i=1

Φi (f(Ai))

)
,

which is the desired inequality (2.1).
In the remaining cases the proof is essentially the same as in the above case. 2
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Remark 2.2 If we replace ψ by the identity function I and ϕ by f in Theorem B(i), then

f−1

(
n∑

i=1

Φi (f(Ai))

)
≤

n∑
i=1

Φi (Ai)

holds for every strictly monotone function f : I → R provided that f−1 is convex and

(2.4) (mf ,Mf ) ∩ [mi, Mi] = ∅ for i = 1, . . . , n,

where

mf ≤ f−1

(
n∑

i=1

Φi (f(Ai))

)
≤ Mf and mi1H ≤ Ai ≤ Mi1H , i = 1, . . . , n.

We remark that if

(2.5) (mA, MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n,

holds, then (2.4) does not hold for a general function f . (It is enough to put

A1 =
(

2 1/2
1/2 1

)
and A2 =

(
5 1
1 6

)
,

Φ1(B) = Φ2(B) = 1
2B for B ∈ M2(C) and f(t) = t−3. Then (2.5) stands and (2.4) does

not stand.)
So, if f−1 is a general convex function and g−1 is a general concave function, then we

get the order (2.1) under the condition (2.4) (see [4, Corollary 5]), but we can not get it
under the condition (2.5).

Next, we observe some examples. First, we study the following quasi-arithmetic mean

(2.6) MGr,k
(A,Φ, n) :=

√√√√k21H +
n∑

i=1

Φi

(
Ar

i + 2kA
r/2
i

)
− k1H

2/r

, r 6= 0, k ≥ 0,

where (A1, . . . , An) is an n-tuple of strictly positive operators in B(H) and (Φ1, . . . , Φn) is
an n-tuple of positive linear mappings Φi : B(H) → B(K) such that

∑n
i=1 Φi(1H) = 1K .

This mean is induced by the function Gr,k(t) = tr + 2ktr/2 for t ∈ (0,∞). Putting k = 0 in
(2.6), we obtain the power mean

(2.7) Mr(A,Φ, n) =

(
n∑

i=1

Φi (Ar
i )

)1/r

, r 6= 0,

and putting n = 2, k = 1, Φ1(B) = (1 − λ)B for B ∈ B(H) and 0 ≤ λ ≤ 1 in (2.6), we
obtain a mean

AmGr,λB =
(√

1H + (1 − λ)
(
Ar + 2Ar/2

)
+ λ

(
Br + 2Br/2

)
− 1H

)2/r

, 0 ≤ λ ≤ 1.

This quasi-arithmetic mean is studied in [2, §4] for −1 ≤ r ≤ 1.
In the following corollary we give the monotonicity of (2.6) on r by using [4, Theorem B]

and Theorem B. We do not get anything new by applying Theorem 2.1.
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Corollary 2.3 Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in the definition of the quasi-
arithmetic mean (2.6).

If either r ≤ s, r 6∈ (−2, 2), s 6∈ (−2, 2), then

(2.8) MGr,k
(A,Φ) ≤ MGs,k

(A,Φ).

Further, let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . , n, and mp,k and
Mp,k, mp,k ≤ Mp,k be the bounds of MGp,k

(A,Φ). If one of the following conditions

(i) (mr,k,Mr,k)∩[mi, Mi] = ∅ for i = 1, . . . , n, and either s ≥ 2 , 0 6= r ≤ s or r ≤ s ≤ −2

(ii) (ms,k,Ms,k)∩ [mi,Mi] = ∅ for i = 1, . . . , n, and either r ≤ −2, r ≤ s 6= 0 or 2 ≤ r ≤ s

is satisfied, then (2.8) holds.

Proof. Without the condition on the bounds of the operators: If r ≤ s ≤ −2 we put
f(t) = tr + 2ktr/2 and g(t) = ts + 2kts/2 for t > 0. Then −g−1(t) = −

(√
k2 + t − k

)2/s
is

operator monotone and g◦f−1(t) =
((√

k2 + t − k
)s/r

+ k
)2

−k2 is operator concave (which
we prove similarly to [2, Proof of Corollary 3.2]). It follows (by applying [4, Theorem B(i’)])
that (2.8) is valid. If 2 ≤ r ≤ s we put f(t) = ts + 2kts/2 and g(t) = tr + 2ktr/2 for t > 0.
Then g−1 is operator monotone and g ◦ f−1 is operator concave and it follows (by applying
[4, Theorem B(ii)]) that (2.8) is valid. Next, since the functions t 7→ t−1 and t 7→ t−1/2 are
operator convex we have MG−2,k

(A,Φ) < MG2,k
(A,Φ). Now, if r ≤ −2 and s ≥ 2, then it

follows from the above results

MGr,k
(A,Φ) ≤ MG−2,k

(A,Φ) < MG2,k
(A,Φ) ≤ MGs,k

(A,Φ),

which gives (2.8).

With the condition on the bounds of the operators: We prove only the case(i). If
(mr,k, Mr,k) ∩ [mi,Mi] = ∅, i = 1, . . . , n, holds, then we put f(t) = tr + 2ktr/2 and
g(t) = ts + 2kts/2 for t > 0. Since

(g ◦ f−1(t))′′ =
s
(√

k2 + t − k
)s/r−2

2r(k2 + t)3/2

(
k

(
(s/r − 1)

√
k2 + t − (

√
k2 + t − k)

)
+

(√
k2 + t − k

)s/r (
(2s/r − 1)

√
k2 + t − (

√
k2 + t − k)

))
,

it follows that g ◦ f−1(t) is convex for s > 0, r < 0 or 0 < r ≤ s. Further, g−1(t) =(√
k2 + t − k

)2/s
is operator monotone for s ≥ 2. By applying Theorem B(i) we obtain

(2.8) for s ≥ 2 , 0 6= r ≤ s. But, g ◦ f−1(t) is concave for r ≤ s < 0 and −g−1(t) is operator
monotone for s ≤ −2. By applying Theorem B(i’) we obtain (2.8) for r ≤ s ≤ −2.

In the case (ii) we put f(t) = ts + 2kts/2 and g(t) = tr + 2ktr/2 for t > 0 and we use the
same technique as in the case (i). 2

The power mean Mr(A,Φ) is monotone on r in a wider region (see [4]).
On the other hand, we can apply Theorem 2.1 to obtain order among some means, as

given in Corollary 2.4 and Corollary 2.5.

Corollary 2.4 Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in the definition of the quasi-
arithmetic mean (2.6). Let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . , n, and
let mA and MA, mA ≤ MA, be the bounds of A =

∑n
i=1 Φi(Ai).
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If k > 0 and (mA,MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n, then

(2.9) MGs,k
(A,Φ, n) ≤ Mr(A,Φ, n)

holds for every r ≥ 1 and s ≤ −2. The reverse inequality is valid in (2.9) for every r ≤ −1
and s ≥ 2.

Proof. Since f(t) = tr is convex, f−1(t) = t1/r is operator monotone for r ≥ 1

and Gs,k(t) = ts + 2kts/2 is convex, −G−1
s,k(t) = −

(√
k2 + t − k

)2/s
is operator monotone

for s ≤ −2, then by applying Theorem 2.1(ii) we obtain (2.9). Similarly, by applying
Theorem 2.1(ii’), we get the reverse inequality in (2.9) for r < −1 and s ≥ 2. 2

We can apply Theorem 2.1 to obtain order among other means. E.g. we observe quasi-
arithmetic means induced by the functions f(t) = exp(t) for t ∈ (0,∞), f(t) = exp(1/t) for
t ∈ (0,∞), t 6= 1 (also known as the radical mean) and f(t) = arctan(t) for t ∈ (0,∞), i.e.

Mexp(A,Φ, n) := log

(
n∑

i=1

Φi (exp(Ai))

)
,(2.10)

Mrad(A,Φ, n) :=

(
log

(
n∑

i=1

Φi

(
exp(A−1

i )
)))−1

,(2.11)

Marctan(A,Φ, n) := tan

(
n∑

i=1

Φi (arctan(Ai))

)
,(2.12)

where (A1, . . . , An) is an n-tuple of strictly positive operators in B(H) and (Φ1, . . . , Φn) is
an n-tuple of positive linear mappings Φi : B(H) → B(K) such that

∑n
i=1 Φi(1H) = 1K .

Corollary 2.5 Let (A1, . . . , An) be an n-tuple of strictly positive operators in B(H) with
the bounds mi and Mi, 0 < mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n-tuple of
positive linear mappings Φi : B(H) → B(K) such that

∑n
i=1 Φi(1H) = 1K . Let mA and

MA, mA ≤ MA, be the bounds of A =
∑n

i=1 Φi(Ai).
If k > 0 and (mA,MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n, then

MGs,k
(A,Φ, n) ≤ Mexp(A,Φ, n) for s ≤ −2,(2.13)

Mr(A,Φ, n) ≤ Mexp(A,Φ, n) for r ≤ −1,(2.14)
Marctan(A,Φ, n) ≤ MGs,k

(A,Φ, n) for s ≥ 2,(2.15)
Marctan(A,Φ, n) ≤ Mr(A,Φ, n) for r ≥ 1.(2.16)

Additionally if max{M1, . . . ,Mn} < 1 or min{m1, . . . ,mn} > 1, then

Mrad(A,Φ, n) ≤ MGs,k
(A,Φ, n) for s ≥ 2,(2.17)

Mrad(A,Φ, n) ≤ Mr(A,Φ, n) for r ≥ 1.(2.18)

Proof. Since f(t) = exp(t) is convex and f−1(t) = log t is operator monotone we obtain
(2.13) and (2.14) by applying Theorem 2.1(ii). Next, we obtain (2.15) and (2.16) by applying
Theorem 2.1(iii’), since f(t) = arctan(t) is concave for t ∈ (0,∞) and f−1(t) = tan(t) is
operator monotone for t ∈ (0, π/2). Finally, we obtain (2.17) and (2.18) by applying of
Theorem 2.1(ii’), since f(t) = exp( 1

t ) is convex and −f−1(t) = −(log t)−1 is operator
monotone for t ∈ (0, 1) or t ∈ (1,∞). 2
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Remark 2.6 The inequalities (2.13)–(2.18) are not valid in general. E.g. we put r = 2,
n = 2, k = 1 and Φ1(B) = Φ2(B) := 1

2B for B ∈ B(H) in (2.6) and (2.10). Then

MG2,1(A,Φ, 2) =

√(
1 0
0 1

)
+

1
2
A2

1 + A1 +
1
2
A2

2 + A2 −
(

1 0
0 1

)
,

Mexp(A,Φ, 2) = log
(

1
2

exp(A1) +
1
2

exp(A2)
)

.

If

A1 =
(

1 0
0 4

)
and A2 =

1
2

(
1 1
1 1

)
,

then

Mexp(A,Φ, 2) =
(

0.705353 0.0687674
0.0687674 3.33028

)
6≥

(
0.797617 0.136284
0.136284 2.70559

)
= MG2,1(A,Φ, 2).

Given the above, there is no relation between Mexp(A,Φ, 2) and MG2,1(A,Φ, 2).

3 Result for F -order In this section we give results for F -order similar to the ones
given in the above section and [4] for the usual operator order.

We recall that F -order (denoted by A ≤F B) defined for a monotone function F and
self-adjoint operators A, B by F (A) ≤ F (B) in the usual operator order. Putting F ≡ log
we have log-order ¿ (i.e. the chaotic order) among positive operators.

We also define that a function f is F -monotone if the composition F ◦ f is defined and
operator monotone.

In [2, §2] a chaotic mean m is defined. In the same way, a mean M(A, n) is called an
F -type main if M(A, n) is an n−ary operation on an n-tuple of strictly positive operators
(A1, . . . , An) satisfying:

monotonicity Ai ≤ Bi, i = 1, . . . , n, imply M(A, n) ≤F M(B, n),

semi-continuity A1,j ↓ A1,. . . , An,j ↓ An, imply M(Aj , n) ↓↓ M(A, n),

normalization Ai = A, i = 1, . . . , n, imply M(A, n) = A.

Here ↓↓ denote F -decreasing convergence according to the following definition. A sequence
{Bj} of positive operators is called F -decreasing and denoted by Bj ↓↓ if Bj ≤F Bj+1 for
all j. If a F -decreasing convergence sequence {Bj} is lower bounded (i.e. Bj ≥F c1H for
some scalars c), then it converges to some positive operator B, which is denoted by Bj ↓↓ B.

If F ≡ log then log-type mean is called a chaotic mean.

The following obvious theorem is a generalization of [1, Theorem 2.3] and [2, Lemma 2.2].

Theorem 3.1 Let (A1, . . . , An) be an n-tuple of strictly positive operators in B(H) and
(Φ1, . . . , Φn) be an n-tuple of positive linear mappings Φi : B(H) → B(K) such that∑n

i=1 Φi(1H) = 1K . If f is operator monotone and f−1 is F -monotone, then the quasi-
arithmetic mean Mf (A,Φ, n) is an F -type mean.

By using Theorem 3.1 and taking into account that Gr,k(t) = tr + 2kt
r
2 is operator

monotone for 0 < r ≤ 1 and log G−1
r,k(t) = 2

r log
(√

k2 + t − k
)

is operator monotone for
r > 0, we get the following corollary.
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Corollary 3.2 Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in Theorem 3.1. The mean
MGr,k

(A,Φ, n) defined by (2.6) is a chaotic mean for r ∈ [−1, 1], r 6= 0 and k ≥ 0.

Remark 3.3 The mean MGr,k
(A,Φ, n) defined by (2.6) is not a chaotic mean for r 6∈

[−1, 1]. E.g. we put A1 =
(

7 0
0 4

)
, B1 =

(
3 2
2 3

)
, A2 = 2A1 and B2 = 2A1. Then

Ai < Bi, i = 1, 2, but A2
i 6< B2

i . So MG2,1(A,Φ, 2) 6¿ MG2,1(B,Φ, 2), where Φ1(C) =
Φ2(C) := 1

2C for C ∈ B(H).

Similarly to Theorem B, we obtain F -monotonicity of the quasi-arithmetic mean.

Theorem 3.4 Let (A1, . . . , An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
bounds mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n-tuple of positive linear
mappings Φi : B(H) → B(K), i = 1, . . . , n, such that

∑n
i=1 Φi(1H) = 1K . Let f, g : I → R

be continuous strictly monotone functions on an interval I which contains all mi,Mi. Let
mf and Mf , mf ≤ Mf , be the bounds of the mean Mf (A,Φ, n), such that

(mf ,Mf ) ∩ [mi, Mi] = ∅ for i = 1, . . . , n.

If one of the following conditions

(i) g ◦ f−1 is convex and g−1 is F -monotone,

(i’) g ◦ f−1 is concave and −g−1 is F -monotone,

is satisfied, then

(3.1) Mf (A,Φ, n) ≤F Mg(A,Φ, n).

If one of the following conditions

(ii) g ◦ f−1 is concave and g−1 is F -monotone,

(ii’) g ◦ f−1 is convex and −g−1 is F -monotone,

is satisfied, then the reverse inequality is valid in (3.1).

Proof. The proof is quite similar to [4, Theorem 3]. We omit the details. 2

As special cases of the above theorem, we get the following corollary.

Corollary 3.5 Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in Theorem 3.1. The mean
MGr,k

(A,Φ, n) defined by (2.6) is chaotic monotone on r, i.e.

(3.2) MGr,k
(A,Φ, n) ¿ MGs,k

(A,Φ, n)

for r, s ∈ R, r ≤ s, rs 6= 0 and k ≥ 0.

Proof. Let 0 < r ≤ s or r < 0 < s . We put f(t) = tr + 2ktr/2 and g(t) =

ts + 2kts/2. Then g ◦ f−1 =
((√

k2 + t − k
)s/r

+ k
)2

− k2 is convex and log
(
g−1(t)

)
=

1
s log

(√
k2 + t − k

)
is operator monotone. Applying Theorem 3.4(i) we have (3.2). Simi-

larly, if r ≤ s < 0 we get (3.2) putting f(t) = ts + 2ts/2 and g(t) = tr + 2tr/2 in Theo-
rem 3.4(ii’). 2

By using Theorem 3.4, we obtain the following result which is similar to Theorem 2.1.



QUASI-ARITHMETIC OPERATOR MEANS 111

Theorem 3.6 Let (A1, . . . , An) and (Φ1, . . . , Φn) be as in Theorem 3.4. Let mi and Mi,
mi ≤ Mi be the bounds of Ai, i = 1, . . . , n, and let mA and MA, mA ≤ MA, be the bounds
of A =

∑n
i=1 Φi(Ai), such that

(mA,MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n.

Let f, g : I → R be continuous strictly monotone functions on an interval I which contains
all mi,Mi.
If one of the following conditions
(i) f is convex, f−1 is F -monotore, g is concave, g−1 is F -monotore,
(ii) f is convex, f−1 is F -monotore, g is convex, −g−1 is F -monotore,
(iii) f is concave, −f−1 is F -monotore, g is convex, −g−1 is F -monotore,
(iv) f is concave, −f−1 is F -monotore, g is concave, g−1 is F -monotore,
is satisfied, then

(3.3) Mg(A,Φ, n) ≤F Mf (A,Φ, n).

But, if one of the following conditions
(i’) f is convex, −f−1 is F -monotore, g is concave, −g−1 is F -monotore,
(ii’) f is convex, −f−1 is F -monotore, g is convex, g−1 is F -monotore,
(iii’) f is concave, f−1 is F -monotore, g is convex, g−1 is F -monotore,
(iv’) f is concave, f−1 is F -monotore, g is concave, −g−1 is F -monotore,
is satisfied, then the reverse inequality is valid in (2.1).

By applying Theorem 3.6 we can obtain the chaotic order among the means (2.6),
(2.10)–(2.12).

Corollary 3.7 Let (A1, . . . , An) be an n-tuple of strictly positive operators in B(H) with
the bounds mi and Mi, 0 < mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . , Φn) be an n-tuple of
positive linear mappings Φi : B(H) → B(K) such that

∑n
i=1 Φi(1H) = 1K . Let mA and

MA, mA ≤ MA, be the bounds of A =
∑n

i=1 Φi(Ai).
If k ≥ 0 and (mA, MA) ∩ [mi,Mi] = ∅ for i = 1, . . . , n, then

MGs,k
(A,Φ, n) ¿ Mr(A,Φ, n) for r ≥ 1 and s ≤ 1, s 6= 0,

Mr(A,Φ, n) ¿ MGs,k
(A,Φ, n) for r ≤ 1, r 6= 0 and s ≥ 1,

Marctan(A,Φ, n) ¿ MGs,k
(A,Φ, n) for s ≥ 1,

MGs,k
(A,Φ, n) ¿ Mexp(A,Φ, n) for s ≤ 1, s 6= 0, .

Additionally if max{M1, . . . ,Mn} < 1 or min{m1, . . . ,mn} > 1, then

Mrad(A,Φ, n) ¿ MGs,k
(A,Φ, n) for s ≥ 1.
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