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Abstract. In this paper, we introduce the concept of multiplier of subtraction al-
gebras and obtained some properties of subtraction algebras. Also, we introduce the
simple multiplier and characterized the kernel of multipliers of subtraction algebras.

1 Introduction In [4] a partial multiplier on a commutative semigroup (A, ·) has been
introduced as a function F from a nonvoid subset DF of A into A such that F (x)·y = x·F (y)
for all x, y ∈ DF . In this paper, we introduce the concept of multiplier of subtraction
algebras and obtained some properties of subtraction algebras. Also, we introduce the
simple multiplier and characterized the kernel of multipliers of subtraction algebras.

2 Preliminaries We first recall some basic concepts which are used in the paper.
By a subtraction algebra we mean an algebra (X;−) with a single binary operation “−”

that satisfies the following identities: for any x, y, z ∈ X,

(S1) x − (y − x) = x;

(S2) x − (x − y) = y − (y − x);

(S3) (x − y) − z = (x − z) − y.

The last identity permits us to omit parentheses in expressions of the form (x − y) − z.
The subtraction determines an order relation on X: a ≤ b ⇔ a − b = 0, where 0 = a − a
is an element that does not depend on the choice of a ∈ X. The ordered set (X;≤) is
a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a ∧ b = a − (a − b); the relative complement b′ of an element b ∈ [0, a] is a − b; and if
b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a − ((a − b) ∧ (a − c))
= a − ((a − b) − ((a − b) − (a − c))).

In a subtraction algebra, the following properties are true:

(p1) (x − y) − y = x − y.

(p2) x − 0 = x and 0 − x = 0.

(p3) (x − y) − x = 0.

(p4) x − (x − y) ≤ y.

(p5) (x − y) − (y − x) = x − y.

2000 Mathematics Subject Classification. 06F35, 03G25, 08A30.
Key words and phrases. Subtraction algebra, multiplier, simple multiplier.



38 Y. H. YON AND K. H. KIM

(p6) x − (x − (x − y)) = x − y.

(p7) (x − y) − (z − y) ≤ x − z.

(p8) x ≤ y if and only if x = y − w for some w ∈ X.

(p9) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X.

(p10) x, y ≤ z implies x − y = x ∧ (z − y).

(p11) (x ∧ y) − (x ∧ z) ≤ x ∧ (y − z).

(p12) (x − y) − z = (x − z) − (y − z).

A non-empty subset I of a subtraction algebra X is called a subalgebra if x − y ∈ I for
all x, y ∈ I. A mapping d from a subtraction algebra X to a subtraction algebra Y is called
a morphism if d(x− y) = d(x)− d(y) for all x, y ∈ X. A self map d of a subtraction algebra
X which is a morphism is called an endomorphism.

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies

(I1) 0 ∈ I,

(I2) for any x, y ∈ X, y ∈ I and x − y ∈ I implies x ∈ I.

For an ideal I of a subtraction algebra X, it is clear that x ≤ y and y ∈ I imply x ∈ I
for any x, y ∈ X. If x ≤ y implies d(x) ≤ d(y), d is called an isotone maping.

A function f of a semilattice (∧-semilattice) L into itself is a dual closure if f is monotone,
non-expansive(i.e., f(x) ≤ x for all x ∈ L) and idempotent(i.e., f ◦ f = f).

3 Multipliers in subtraction algebra

Definition 3.1. Let (X,−, 0) be a subtraction algebra. A self-map f is called a multiplier
if

f(x − y) = f(x) − y

for all x, y ∈ X.

Example 3.2. Let X = {0, a, b} be a subtraction algebra with the following Cayley table

− 0 a b
0 0 0 0
a a 0 a
b b b 0

Define a map f : X → X by

f(x) =

{
0 if x = 0, a

b if x = b

Then it is easily checked that f is a multiplier of subtraction algebra X.

Example 3.3. Let X = {0, a, b, 1} in which “−” is defined by



MULTIPLIERS IN SUBTRACTION ALGEBRAS 39

− 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

It is easy to check that (X;−, 0) is a subtraction algebra. Define a map f : X → X by

f(x) =

{
0 if x = 0, a

b if x = b, 1

Then f is a multiplier of subtraction algebra X.

Example 3.4. The identity mapping ε, the unit mapping ι : a 7−→ 1 are multipliers of X.

Example 3.5. For p ∈ X, the mapping αp(a) = a − p is multiplier of X.

Proof. Let p ∈ X. Then we have

αp(a − b) = (a − b) − p = (a − p) − b = αp(a) − b.

This completes the proof.

Lemma 3.6. Let f be a multiplier in subtraction algebra X. Then we have f(0) = 0.

Proof. Since 0 = 0 − x for all x ∈ X, we have f(0) = f(0 − f(0)) = f(0) − f(0) = 0.

Proposition 3.7. Let f be a multiplier in subtraction algebra. Then f(x) ≤ x for all
x ∈ X,

Proof. Putting x = y in Definition 3.1, we get 0 = f(0) = f(x − x) = f(x) − x, that is,
f(x) ≤ x.

Theorem 3.8. Let f be a multiplier of subtraction algebra X. If x ≤ y for any x, y ∈ X,
then f(x) ≤ f(y).

Proof. Let x ≤ y for all x, y ∈ X. Then by (p8), x = y−w for some w ∈ X. Hence we have

f(x) = f(y − w) = f(y) − w ≤ f(y).

This completes the proof.

Theorem 3.9. Let f be a multiplier of a subtraction algebra X. Then we have f2 = f ◦f =
f.

Proof. Let f be a multiplier of X. Then by definition of multiplier f and Proposition 3.6,
we have

f2(x) = f(f(x)) = f(x ∧ f(x))
= f(x − (x − f(x)))
= f(x) − (x − f(x))
= f(x)

Corollary 3.10. Let f be a multiplier of a subtraction algebra X. Then f is a dual closure
operator on X.
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Proof. It is clear from Proposition 3.7 and Theorem 3.8 and 3.9.

Proposition 3.11. Let f is a non-expansive map on a subtraction algebra X, i.e., f(x) ≤ x
for all x ∈ X. Then f(x) − y ≤ x − f(y) for all x, y ∈ X.

Proof. Suppose that f is a non-expansive map on X and x, y ∈ X. Then f(x) ≤ x and
f(y) ≤ y. Hence f(x) − y ≤ x − y and x − y ≤ x − f(y) by (p9). It follows that
f(x) − y ≤ x − f(y).

Theorem 3.12. Let X be a subtraction algebra. Every multiplier of X is an homomor-
phism.

Proof. Suppose that f is a multiplier of X and x, y ∈ X. Then f(y) ≤ y. It implies

f(x − y) = f(x) − y ≤ f(x) − f(y)

by (p9). Also we have

(f(x) − f(y)) − (f(x) − y)
= (ff(x) − f(y)) − (f(x) − y) (by Theorem 3.9)
= (ff(x) − (f(x) − y)) − f(y) (by (S3))
= f(f(x) − (f(x) − y)) − f(y) (by Definition 3.1)
= f(y − (y − f(x))) − f(y) (by (S2))
≤ f(y) − f(y) (by p(3), Theorem 3.9 and p(9))
= 0

It follows that (f(x)− f(y))− (f(x)− y) = 0 and f(x)− f(y) ≤ f(x)− y = f(x− y). Hence
f(x) − f(y) = f(x − y).

Let X be a subtraction algebra and f1, f2 two self-maps. We define f1 ◦ f2 : X → X by

(f1 ◦ f2)(x) = f1(f2(x))

for all x ∈ X.

Proposition 3.13. Let X be a subtraction algebra and f1, f2 two multipliers. Then f1 ◦ f2

is also a multiplier of X.

Proof. Let X be a subtraction algebra and f1, f2 two multipliers. Then we have

(f1 ◦ f2)(a − b) = f1(f2(a − b))
= (f1(f2(a) − b))
= f1(f2(a)) − b

= (f1 ◦ f2)(a) − b.

This completes the proof.

Let X be a subtraction algebra and f1, f2 two self-maps. We define (f1 ∧ f2)(x) by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x)

for all x ∈ X.
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Proposition 3.14. Let X be a subtraction algebra and f1, f2 two multipliers. Then f1 ∧ f2

is also a multiplier of X.

Proof. Let X be a subtraction algebra and f1, f2 two multipliers. Then we have

(f1 ∧ f2)(a − b) = f1(a − b) ∧ f2(a − b)
= f1(a) − b ∧ f2(a) − b

= f1(a) − b − ((f1(a) − b) − (f2(a) − b))
= f1(a) − b − ((f1(a) − f2(a)) − b)
= (f1(a) − (f1(a) − f2(a))) − b

= (f1(a) ∧ f2(a)) − b

= (f1 ∧ f2)(a) − b.

This completes the proof.

Denote by M(X) the set of all multipliers of X.

Definition 3.15. For any f ∈ M(X), we define the kernel of f as follows:

Kϕ := {x ∈ X | ϕ(x) = 0}.

Proposition 3.16. Let f be a multiplier of X. Then Kϕ is a subalgebra of X.

Proof. Clearly, 0 ∈ Kϕ and so Kϕ is nonempty. For any x, y ∈ Kϕ, we have f(x − y) =
f(x) − y = 0 − y = 0, and so x − y ∈ Kϕ. Hence Kϕ is a subalgebra of X.

Theorem 3.17. Let ϕ be a multiplier of X. If y ∈ Kϕ and x ≤ y, then x ∈ Kϕ.

Proof. Let y ∈ Kϕ and x ≤ y. Then

f(x) = f(x − 0) = f(x − (x − y))
= f(y − (y − x)) = f(y) − (y − x)
= 0 − (y − x) = 0

since f(y) = 0 and x − y = 0. This completes the proof.

Theorem 3.18. Let ϕ be a multiplier and a homomorphism of X. Then Kϕ is an ideal of
X.

Proof. Clearly, 0 ∈ Kϕ since ϕ(0) = 0. Let y ∈ Kϕ and x − y ∈ Kϕ. Then 0 = ϕ(x − y) =
ϕ(x) − ϕ(y) = ϕ(x) − 0 = ϕ(x), and so x ∈ ϕ(y). This completes the proof.

Proposition 3.19. Let f be a multiplier in subtraction algebra and Ff = {x ∈ X | f(x) =
x}. Then Ff is a subalgebra of X.

Proof. Let x, y ∈ Ff . Then we have f(x) = x and f(y) = y. Hence f(x − y) = f(x) − y =
x − y, and so x − y ∈ Ff . This proves that Ff is a subalgebra of X.

Proposition 3.20. Let X be a subtraction algebra and f a multiplier. If x ∈ F, then
x ∧ y ∈ F.
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Proof. Let x ∈ F. Then we have f(x) = x, and so

f(x ∧ y) = f(x − (x − y)
= f(x) − x − y

= x − (x − y)
= x ∧ y.

This completes the proof.

Proposition 3.21. Let X be a subtraction algebra and f a multiplier. If y ∈ F and x ≤ y,
then x ∈ F.

Proof. Let X be a subtraction algebra. If y ∈ F and x ≤ y, then we have

f(x) = f(x − 0) = f((x − (x − y))
= f(y − (y − x)) = f(y) − (y − x)
= y − (y − x) = x − (x − y)
= x − 0 = x.

This completes the proof.

We call the derivation αp(a) = a − p of Example 3.5 as simple multiplier.

Proposition 3.22. For every p ∈ X, the simple multiplier αp is an endomorphism of X.

Proof. Let a, b ∈ X. Using (P12), we have

αp(a − b) = (a − b) − p = (a − p) − (b − p) = αp(a) − αp(b).

Hence αp is an endomorphism of X..

Proposition 3.23. The simple multiplier α0 is an identity function of X.

Proof. For every a ∈ X,α0(a) = a − 0 = a. This completes the proof.

Proposition 3.24. Let X be a subtraction algebra. Then, for each p ∈ X, we have αp(x∧
p) = 0.

Proof. For each p ∈ X, we have

αp(x ∧ p) = αp((x − (x − p)) = (x − (x − p)) − p

= (x − p) − (x − p) = 0.

This completes the proof.

Denote by M(X) by the set of all multipliers of X. That is,

M(X) = {f | f is a multiplier on X}.

Define a binary operation “◦” and a map 1 on M(X) as follows:

(α ◦ β)(x) = α(x)β(x) and 1(x) = 1

for all α, β ∈ M(X) and x ∈ X.
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Proposition 3.25. Let X be an subtraction algebra. Then M(X) is a subtraction algebra
with the above binary operation “◦”.

Proof. It is easy to prove that M(X) is a subtraction algebra with the above binary oper-
ation “◦”.

Let S(X) be the set of all simple multipliers on X, i.e.,

S(X) = {αp ∈ M(X) | p ∈ X}

and M(X) = {f | f : X → X : multiplier}. Then It is clear that S(X) ⊆ M(X).

Proposition 3.26. Let X be a subtraction algebra. If θ : X → M(X) is map defined by
θ(p) = αp for all p ∈ X, where αp is a simple map on X, then θ is a homomorphism of X.

Proof. Let f ∈ M(X) and p, q ∈ H. Then we have θ(p − q) = αp−q. But αp−q(x) =
(p−q)−x = (p−x)−(q−x) = αp(x)−αq(x) = (αp−αq)(x). Hence we have αp−q = αp−αq,
i.e., θ(p − q) = θ(p) − θ(q). This completes the proof.

Proposition 3.27. Let X be a subtraction algebra and M(X) = {f | f is a multiplier on X}.
If θ : X → M(X) is map defined by θ(p) = αp for all p ∈ X, where αp is a simple map on
X, then θ is an isotone mapping.

Proof. Let p ≤ q. Then we have p − q = 0, and θ(p) − θ(q) = θ(p − q) = θ(0) = 0 since θ is
an homomorphism from Proposition 3.26. Hence θ(p)− θ(q) = 0, that is, θ(p) ≤ θ(q). This
completes the proof.
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