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Abstract. Complete chains of semigroups play an essential role in the decomposition
of ordered semigroups. In this paper we prove that an ordered semigroup S is a
complete chain of semigroups of a given type, say T , if and only if it is decomposable
into pairwise disjoint subsemigroups Sα of S indexed by a semilattice Y satisfying,
for any α, β ∈ Y , the two conditions SαSβ ⊆ Sαβ and whenever Sα ∩ (Sβ] �= ∅, then
α = αβ(= βα).

1. Introduction and prerequisites. Chains, also complete chains of semigroups play
an essential role in the decomposition of ordered semigroups. Chains of semigroups have
been already considered in [3, 4] dealing with the decomposition of ordered semigroups into
their right simple subsemigroups. A complete chain of semigroups in an ordered semigroup
S is a complete semilattice congruence σ on S such that the σ-class (x)σ of S containing
x (x ∈ S) with the order ” � ” on the quotient set S/σ := {(x)σ | x ∈ S} defined by
”(x)σ � (y)σ if and only if (x)σ = (xy)σ” is a chain. In the present paper we characterize
the complete chains of semigroups of a given ordered semigroup S as partitions of S into
its subsemigroups indexed by a semilattice (i.e. commutative and idempotent semigroup)
Y . When we need to refer to Y , we also say that S is a complete chain Y of semigroups Sα

(α ∈ Y ).
Let (S, .,≤) be an ordered semigroup. An equivalence relation σ on S is called congruence

if (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ for every c ∈ S. A congruence σ on S
is called semilattice congruence if (a2, a) ∈ σ and (ab, ba) ∈ σ for every a, b ∈ S [1]. A
semilattice congruence σ on S is called complete if a ≤ b implies (a, ab) ∈ σ [5]. If σ is a
complete semilattice congruence on S, then the relation a ≤ a implies (a, a2) ∈ σ. So a
complete semilattice congruence on S can be also defined as a congruence σ on S such that
(ab, ba) ∈ σ for every a, b ∈ S and whenever x ≤ y, then (x, xy) ∈ σ. If σ is a semilattice
congruence on S, then the σ-class (x)σ of S containing x is a subsemigroup of S for every
x ∈ S (cf. also [2]). For a subset H of S we denote by (H] the subset of S defined by
(H] := {t ∈ S | t ≤ h for some h ∈ H}.

2. Main Result

Definition 1. Let (S, .,≤) be an ordered semigroup. A congruence σ on S is called
complete semilattice congruence if (1) (ab, ba) ∈ σ for every a, b ∈ S and (2) if x ≤ y implies
(x, xy) ∈ σ.

Definition 2. An ordered semigroup S is called a complete chain of semigroups of a given
type, say T , if there exists a complete semilattice congruence σ on S such that the σ-class
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(x)σ of S containing x (x ∈ S) is a subsemigroup of S of type T for every x ∈ S, and the
set S/σ := {(x)σ | x ∈ S} of all σ-classes of S endowed with the order

(x)σ � (y)σ ⇔ (x)σ = (xy)σ

is a chain.

Theorem. An ordered semigroup (S, .,≤) is a complete chain of semigroups of type T if
and only if there exists a semilattice Y at the same time a chain with the order

α � β ⇔ α = αβ(= βα)

α, β ∈ Y , and a family {Sα | α ∈ Y } of subsemigroups of S of type T such that the following
assertions are satisfied:

(A) Sα ∩ Sβ = ∅ for every α, β ∈ Y , α �= β
(B) S =

⋃

α∈Y

Sα

(C) SαSβ ⊆ Sαβ for every α, β ∈ Y
(D) If α, β ∈ Y such that Sα ∩ (Sβ ] �= ∅, then α � β.

Proof. =⇒. Let σ be a complete semilattice congruence on S such that (x)σ is a sub-
semigroup of S of type T for every x ∈ S, and the set S/σ endowed with the order
(x)σ � (y)σ ⇔ (x)σ = (xy)σ is a chain. Since σ is a congruence on S, the set Y := S/σ with
the multiplication (x)σ(y)σ := (xy)σ is a semigroup. Since σ is a semilattice congruence
on S, the semigroup Y is commutative and idempotent i.e. Y is a semilattice. Let now
α, β ∈ Y , α = (x)σ , β = (y)σ for some x, y ∈ S. By hypothesis, we have (x)σ � (y)σ

or (y)σ � (x)σ , that is, (x)σ = (xy)σ or (y)σ = (yx)σ = (xy)σ. If (x)σ = (xy)σ, then
α = (x)σ = (xy)σ = (x)σ(y)σ = αβ. If (y)σ = (xy)σ , similarly we have β = αβ.

For every α ∈ Y , α = (x)σ , x ∈ S, we put Sα := (x)σ .
By hypothesis, Sα is a subsemigroup of S of type T for every α ∈ Y . Moreover, the family
{Sα | α ∈ Y } satisfies conditions (A)–(D). In fact:

(A) Let α, β ∈ Y , α �= β. Suppose α = (x)σ , β = (y)σ for some x, y ∈ S. Then
Sα := (x)σ , Sβ := (y)σ. Since α �= β, we have (x)σ �= (y)σ, then (x)σ ∩ (y)σ = ∅, so
Sα ∩ Sβ = ∅.

(B) S =
⋃

α∈Y

Sα. Indeed:

Sα being a subsemigroup, is a subset of S for every α ∈ Y , so
⋃

α∈Y

Sα ⊆ S. Let now a ∈ S.

Since (a)σ ∈ Y , we have S(a)σ
:= (a)σ. Then a ∈ S(a)σ

⊆
⋃

α∈Y

Sα.

(C) Let α, β ∈ Y . Then SαSβ ⊆ Sαβ. Indeed:
Suppose α = (x)σ, β = (y)σ for some x, y ∈ S. Then Sα := (x)σ , Sβ := (y)σ, αβ ∈ Y ,
αβ = (x)σ(y)σ := (xy)σ and Sαβ := (xy)σ. Thus we have SαSβ = (x)σ(y)σ = (xy)σ = Sαβ .

(D) Let α, β ∈ Y such that Sα ∩ (Sβ ] �= ∅. Then α = αβ. Indeed:
Suppose α = (x)σ and β = (y)σ for some x, y ∈ S. Then Sα := (x)σ , Sβ := (y)σ, and
(x)σ ∩ ((y)σ ] �= ∅. Let now t ∈ (x)σ ∩ ((y)σ ]. Then t ∈ (x)σ and t ≤ z for some z ∈ (y)σ.
Then we have (t, x) ∈ σ, t ≤ z and (z, y) ∈ σ. Since σ is complete, we have (t, tz) ∈ σ.
Since σ is a semilattice congruence, we have (tz, xz) ∈ σ and (xz, xy) ∈ σ. Then we have
(t, xy) ∈ σ, and α = (x)σ = (t)σ = (xy)σ = (x)σ(y)σ = αβ.

⇐=. Let Y be a semilattice which is a chain under the order α � β ⇔ α = αβ(= βα) and
{Sα | α ∈ Y } a family of subsemigroups of S of type T such that conditions (A)–(D) are
satisfied. We consider the relation σ on S defined by

σ := {(x, y) ∈ S × S | ∃ α ∈ Y : x, y ∈ Sα}.
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The relation σ is a complete semilattice congruence on S. In fact: The relation σ is clearly
reflexive and symmetric. Let (x, y) ∈ σ and (y, z) ∈ σ. Then x, y ∈ Sα, y, z ∈ Sβ for
some α, β ∈ Y . If α �= β, then y ∈ Sα ∩ Sβ = ∅ which is impossible. Thus we have
α = β, and x, z ∈ Sα. Since α ∈ Y and x, z ∈ Sα, we have (x, z) ∈ σ, so σ is transitive.
Let (x, y) ∈ σ and z ∈ S. Suppose α ∈ Y such that x, y ∈ Sα and β ∈ Y such that
z ∈ Sβ . Then xz, yz ∈ SαSβ ⊆ Sαβ , where αβ ∈ Y , so (xz, yz) ∈ σ. Similarly we get
(zx, zy) ∈ σ. Let x, y ∈ S, x ∈ Sα, y ∈ Sβ for some α, β ∈ Y . Then xy ∈ SαSβ ⊆ Sαβ

and yx ∈ SβSα ⊆ Sβα = Sαβ. Since α, β ∈ Y and xy, yx ∈ Sαβ , we have (xy, yx) ∈ σ. If
x ≤ y, then (x, xy) ∈ σ. Indeed: Let x ∈ Sα, y ∈ Sβ, α, β ∈ Y . Then xy ∈ SαSβ ⊆ Sαβ

and x ∈ (Sβ ]. Since Sα ∩ (Sβ ] �= ∅, by condition (D), we have α = αβ. Since x, xy ∈ Sα,
α ∈ Y , we have (x, xy) ∈ σ.

If x ∈ S and x ∈ Sα for some α ∈ Y , then (x)σ = Sα. In fact: Let y ∈ (x)σ . Since
(y, x) ∈ σ, there exists β ∈ Y such that y, x ∈ Sβ . If α �= β, then x ∈ Sα ∩ Sβ = ∅ which
is impossible. Thus we have α = β, and y ∈ Sα. Conversely, let t ∈ Sα. Since x, t ∈ Sα,
α ∈ Y , we have (x, t) ∈ σ, so t ∈ (x)σ . As a consequence, (x)σ is a subsemigroup of S of
type T for every x ∈ S.

Finally, let x, y ∈ S. Then (x)σ = (xy)σ or (y)σ = (xy)σ . In fact: Let x ∈ Sα,
y ∈ Sβ for some α, β ∈ Y . By hypothesis, we have α = αβ or β = αβ. If α = αβ, then
Sα = Sαβ ⊇ SαSβ . On the other hand, since x ∈ Sα, y ∈ Sβ and α, β ∈ Y , we have
Sα = (x)σ and Sβ = (y)σ. Hence we have (x)σ ⊇ (x)σ(y)σ := (xy)σ , and (x, xy) ∈ σ. If
β = αβ, similarly we obtain (y)σ = (xy)σ. �
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