ON ORDERED SEMIGROUPS WHICH ARE COMPLETE CHAINS OF SEMIGROUPS

Niovi Kehayopulu, Michael Tsingelis

Received November 26, 2010

Abstract

Complete chains of semigroups play an essential role in the decomposition of ordered semigroups. In this paper we prove that an ordered semigroup S is a complete chain of semigroups of a given type, say \mathcal{T}, if and only if it is decomposable into pairwise disjoint subsemigroups S_{α} of S indexed by a semilattice Y satisfying, for any $\alpha, \beta \in Y$, the two conditions $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$ and whenever $S_{\alpha} \cap\left(S_{\beta}\right] \neq \emptyset$, then $\alpha=\alpha \beta(=\beta \alpha)$.

1. Introduction and prerequisites. Chains, also complete chains of semigroups play an essential role in the decomposition of ordered semigroups. Chains of semigroups have been already considered in $[3,4]$ dealing with the decomposition of ordered semigroups into their right simple subsemigroups. A complete chain of semigroups in an ordered semigroup S is a complete semilattice congruence σ on S such that the σ-class $(x)_{\sigma}$ of S containing $x(x \in S)$ with the order " \preceq " on the quotient set $S / \sigma:=\left\{(x)_{\sigma} \mid x \in S\right\}$ defined by $"(x)_{\sigma} \preceq(y)_{\sigma}$ if and only if $(x)_{\sigma}=(x y)_{\sigma} "$ is a chain. In the present paper we characterize the complete chains of semigroups of a given ordered semigroup S as partitions of S into its subsemigroups indexed by a semilattice (i.e. commutative and idempotent semigroup) Y. When we need to refer to Y, we also say that S is a complete chain Y of semigroups S_{α} $(\alpha \in Y)$.

Let $(S, ., \leq)$ be an ordered semigroup. An equivalence relation σ on S is called congruence if $(a, b) \in \sigma$ implies $(a c, b c) \in \sigma$ and $(c a, c b) \in \sigma$ for every $c \in S$. A congruence σ on S is called semilattice congruence if $\left(a^{2}, a\right) \in \sigma$ and $(a b, b a) \in \sigma$ for every $a, b \in S$ [1]. A semilattice congruence σ on S is called complete if $a \leq b$ implies $(a, a b) \in \sigma$ [5]. If σ is a complete semilattice congruence on S, then the relation $a \leq a$ implies $\left(a, a^{2}\right) \in \sigma$. So a complete semilattice congruence on S can be also defined as a congruence σ on S such that $(a b, b a) \in \sigma$ for every $a, b \in S$ and whenever $x \leq y$, then $(x, x y) \in \sigma$. If σ is a semilattice congruence on S, then the σ-class $(x)_{\sigma}$ of S containing x is a subsemigroup of S for every $x \in S$ (cf. also [2]). For a subset H of S we denote by (H] the subset of S defined by $(H]:=\{t \in S \mid t \leq h$ for some $h \in H\}$.

2. Main Result

Definition 1. Let $(S, ., \leq)$ be an ordered semigroup. A congruence σ on S is called complete semilattice congruence if (1) $(a b, b a) \in \sigma$ for every $a, b \in S$ and (2) if $x \leq y$ implies $(x, x y) \in \sigma$.
Definition 2. An ordered semigroup S is called a complete chain of semigroups of a given type, say \mathcal{T}, if there exists a complete semilattice congruence σ on S such that the σ-class

[^0]$(x)_{\sigma}$ of S containing $x(x \in S)$ is a subsemigroup of S of type \mathcal{T} for every $x \in S$, and the set $S / \sigma:=\left\{(x)_{\sigma} \mid x \in S\right\}$ of all σ-classes of S endowed with the order
$$
(x)_{\sigma} \preceq(y)_{\sigma} \Leftrightarrow(x)_{\sigma}=(x y)_{\sigma}
$$
is a chain.
Theorem. An ordered semigroup $(S, ., \leq)$ is a complete chain of semigroups of type \mathcal{T} if and only if there exists a semilattice Y at the same time a chain with the order
$$
\alpha \preceq \beta \Leftrightarrow \alpha=\alpha \beta(=\beta \alpha)
$$
$\alpha, \beta \in Y$, and a family $\left\{S_{\alpha} \mid \alpha \in Y\right\}$ of subsemigroups of S of type \mathcal{T} such that the following assertions are satisfied:
(A) $S_{\alpha} \cap S_{\beta}=\emptyset$ for every $\alpha, \beta \in Y, \alpha \neq \beta$
(B) $S=\bigcup_{\alpha \in Y} S_{\alpha}$
(C) $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$ for every $\alpha, \beta \in Y$
(D) If $\alpha, \beta \in Y$ such that $S_{\alpha} \cap\left(S_{\beta}\right] \neq \emptyset$, then $\alpha \preceq \beta$.

Proof. \Longrightarrow. Let σ be a complete semilattice congruence on S such that $(x)_{\sigma}$ is a subsemigroup of S of type \mathcal{T} for every $x \in S$, and the set S / σ endowed with the order $(x)_{\sigma} \preceq(y)_{\sigma} \Leftrightarrow(x)_{\sigma}=(x y)_{\sigma}$ is a chain. Since σ is a congruence on S, the set $Y:=S / \sigma$ with the multiplication $(x)_{\sigma}(y)_{\sigma}:=(x y)_{\sigma}$ is a semigroup. Since σ is a semilattice congruence on S, the semigroup Y is commutative and idempotent i.e. Y is a semilattice. Let now $\alpha, \beta \in Y, \alpha=(x)_{\sigma}, \beta=(y)_{\sigma}$ for some $x, y \in S$. By hypothesis, we have $(x)_{\sigma} \preceq(y)_{\sigma}$ or $(y)_{\sigma} \preceq(x)_{\sigma}$, that is, $(x)_{\sigma}=(x y)_{\sigma}$ or $(y)_{\sigma}=(y x)_{\sigma}=(x y)_{\sigma}$. If $(x)_{\sigma}=(x y)_{\sigma}$, then $\alpha=(x)_{\sigma}=(x y)_{\sigma}=(x)_{\sigma}(y)_{\sigma}=\alpha \beta$. If $(y)_{\sigma}=(x y)_{\sigma}$, similarly we have $\beta=\alpha \beta$.

For every $\alpha \in Y, \alpha=(x)_{\sigma}, x \in S$, we put $S_{\alpha}:=(x)_{\sigma}$.
By hypothesis, S_{α} is a subsemigroup of S of type \mathcal{T} for every $\alpha \in Y$. Moreover, the family $\left\{S_{\alpha} \mid \alpha \in Y\right\}$ satisfies conditions (A)-(D). In fact:
(A) Let $\alpha, \beta \in Y, \alpha \neq \beta$. Suppose $\alpha=(x)_{\sigma}, \beta=(y)_{\sigma}$ for some $x, y \in S$. Then $S_{\alpha}:=(x)_{\sigma}, S_{\beta}:=(y)_{\sigma}$. Since $\alpha \neq \beta$, we have $(x)_{\sigma} \neq(y)_{\sigma}$, then $(x)_{\sigma} \cap(y)_{\sigma}=\emptyset$, so $S_{\alpha} \cap S_{\beta}=\emptyset$.
(B) $S=\bigcup_{\alpha \in Y} S_{\alpha}$. Indeed:
S_{α} being a subsemigroup, is a subset of S for every $\alpha \in Y$, so $\bigcup_{\alpha \in Y} S_{\alpha} \subseteq S$. Let now $a \in S$. Since $(a)_{\sigma} \in Y$, we have $S_{(a)_{\sigma}}:=(a)_{\sigma}$. Then $a \in S_{(a)_{\sigma}} \subseteq \bigcup_{\alpha \in Y} S_{\alpha}$.
(C) Let $\alpha, \beta \in Y$. Then $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$. Indeed:

Suppose $\alpha=(x)_{\sigma}, \beta=(y)_{\sigma}$ for some $x, y \in S$. Then $S_{\alpha}:=(x)_{\sigma}, S_{\beta}:=(y)_{\sigma}, \alpha \beta \in Y$, $\alpha \beta=(x)_{\sigma}(y)_{\sigma}:=(x y)_{\sigma}$ and $S_{\alpha \beta}:=(x y)_{\sigma}$. Thus we have $S_{\alpha} S_{\beta}=(x)_{\sigma}(y)_{\sigma}=(x y)_{\sigma}=S_{\alpha \beta}$.
(D) Let $\alpha, \beta \in Y$ such that $S_{\alpha} \cap\left(S_{\beta}\right] \neq \emptyset$. Then $\alpha=\alpha \beta$. Indeed:

Suppose $\alpha=(x)_{\sigma}$ and $\beta=(y)_{\sigma}$ for some $x, y \in S$. Then $S_{\alpha}:=(x)_{\sigma}, S_{\beta}:=(y)_{\sigma}$, and $(x)_{\sigma} \cap\left((y)_{\sigma}\right] \neq \emptyset$. Let now $t \in(x)_{\sigma} \cap\left((y)_{\sigma}\right]$. Then $t \in(x)_{\sigma}$ and $t \leq z$ for some $z \in(y)_{\sigma}$. Then we have $(t, x) \in \sigma, t \leq z$ and $(z, y) \in \sigma$. Since σ is complete, we have $(t, t z) \in \sigma$. Since σ is a semilattice congruence, we have $(t z, x z) \in \sigma$ and $(x z, x y) \in \sigma$. Then we have $(t, x y) \in \sigma$, and $\alpha=(x)_{\sigma}=(t)_{\sigma}=(x y)_{\sigma}=(x)_{\sigma}(y)_{\sigma}=\alpha \beta$.
\Longleftarrow. Let Y be a semilattice which is a chain under the order $\alpha \preceq \beta \Leftrightarrow \alpha=\alpha \beta(=\beta \alpha)$ and $\left\{S_{\alpha} \mid \alpha \in Y\right\}$ a family of subsemigroups of S of type \mathcal{T} such that conditions (A)-(D) are satisfied. We consider the relation σ on S defined by

$$
\sigma:=\left\{(x, y) \in S \times S \mid \exists \alpha \in Y: x, y \in S_{\alpha}\right\}
$$

The relation σ is a complete semilattice congruence on S. In fact: The relation σ is clearly reflexive and symmetric. Let $(x, y) \in \sigma$ and $(y, z) \in \sigma$. Then $x, y \in S_{\alpha}, y, z \in S_{\beta}$ for some $\alpha, \beta \in Y$. If $\alpha \neq \beta$, then $y \in S_{\alpha} \cap S_{\beta}=\emptyset$ which is impossible. Thus we have $\alpha=\beta$, and $x, z \in S_{\alpha}$. Since $\alpha \in Y$ and $x, z \in S_{\alpha}$, we have $(x, z) \in \sigma$, so σ is transitive. Let $(x, y) \in \sigma$ and $z \in S$. Suppose $\alpha \in Y$ such that $x, y \in S_{\alpha}$ and $\beta \in Y$ such that $z \in S_{\beta}$. Then $x z, y z \in S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$, where $\alpha \beta \in Y$, so $(x z, y z) \in \sigma$. Similarly we get $(z x, z y) \in \sigma$. Let $x, y \in S, x \in S_{\alpha}, y \in S_{\beta}$ for some $\alpha, \beta \in Y$. Then $x y \in S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$ and $y x \in S_{\beta} S_{\alpha} \subseteq S_{\beta \alpha}=S_{\alpha \beta}$. Since $\alpha, \beta \in Y$ and $x y, y x \in S_{\alpha \beta}$, we have $(x y, y x) \in \sigma$. If $x \leq y$, then $(x, x y) \in \sigma$. Indeed: Let $x \in S_{\alpha}, y \in S_{\beta}, \alpha, \beta \in Y$. Then $x y \in S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$ and $x \in\left(S_{\beta}\right]$. Since $S_{\alpha} \cap\left(S_{\beta}\right] \neq \emptyset$, by condition (D), we have $\alpha=\alpha \beta$. Since $x, x y \in S_{\alpha}$, $\alpha \in Y$, we have $(x, x y) \in \sigma$.

If $x \in S$ and $x \in S_{\alpha}$ for some $\alpha \in Y$, then $(x)_{\sigma}=S_{\alpha}$. In fact: Let $y \in(x)_{\sigma}$. Since $(y, x) \in \sigma$, there exists $\beta \in Y$ such that $y, x \in S_{\beta}$. If $\alpha \neq \beta$, then $x \in S_{\alpha} \cap S_{\beta}=\emptyset$ which is impossible. Thus we have $\alpha=\beta$, and $y \in S_{\alpha}$. Conversely, let $t \in S_{\alpha}$. Since $x, t \in S_{\alpha}$, $\alpha \in Y$, we have $(x, t) \in \sigma$, so $t \in(x)_{\sigma}$. As a consequence, $(x)_{\sigma}$ is a subsemigroup of S of type \mathcal{T} for every $x \in S$.

Finally, let $x, y \in S$. Then $(x)_{\sigma}=(x y)_{\sigma}$ or $(y)_{\sigma}=(x y)_{\sigma}$. In fact: Let $x \in S_{\alpha}$, $y \in S_{\beta}$ for some $\alpha, \beta \in Y$. By hypothesis, we have $\alpha=\alpha \beta$ or $\beta=\alpha \beta$. If $\alpha=\alpha \beta$, then $S_{\alpha}=S_{\alpha \beta} \supseteq S_{\alpha} S_{\beta}$. On the other hand, since $x \in S_{\alpha}, y \in S_{\beta}$ and $\alpha, \beta \in Y$, we have $S_{\alpha}=(x)_{\sigma}$ and $S_{\beta}=(y)_{\sigma}$. Hence we have $(x)_{\sigma} \supseteq(x)_{\sigma}(y)_{\sigma}:=(x y)_{\sigma}$, and $(x, x y) \in \sigma$. If $\beta=\alpha \beta$, similarly we obtain $(y)_{\sigma}=(x y)_{\sigma}$.

The research has been supported by the Special Research Account of the University of Athens (No. 70/4/5630).

References

[1] N. Kehayopulu, Remark on ordered semigroups, Math. Japon. 35, no. 6 (1990), 1061-1063.
[2] N. Kehayopulu, On right regular and right duo ordered semigroups, Math. Japon. 36, no. 2 (1991), 201-206.
[3] N. Kehayopulu, The chain of right simple semigroups in ordered semigroups, Math. Japon. 36, no. 2 (1991), 207-209.
[4] N. Kehayopulu, J. S. Ponizovskii, The chain of right simple semigroups in ordered semigroups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 227 (1995), Voprosy Teor. Predstav. Algebr i Grupp. 4, 83-88, 158; translation in J. Math. Sci. (New York) 89 (1998), no. 2, 1133-1137.
[5] N. Kehayopulu, M. Tsingelis, Remark on ordered semigroups. In: Partitions and holomorphic mappings of semigroups (Russian), 50-55, Obrazovanie, St. Petersburg, 1992.

University of Athens
Department of Mathematics
15784 Panepistimiopolis
Athens, Greece
e-mail: nkehayop@math.uoa.gr

[^0]: 2000 Mathematics Subject Classification. 06F05 (20M10).
 Key words and phrases. Ordered semigroup, chain of semigroups, semilattice congruence, complete semilattice congruence, complete chain of semigroups.

