DERIVATIONS OF WEAK BCC-ALGEBRAS

JANUS THOMYS

Received November 9, 2010

Abstract

We describe derivations of weak BCC-algebras (called also BZ-algebras) in which the condition $(x y) z=(x z) y$ is satisfied only in the case when elements x, y belong to the same branch.

1. Introduction

BCC-algebras were introduced by Y.Komori [9] as a generalization of BCK-algebras. In view of strongly connections with a BIK^{+}-logic, BCC -algebras are also called BIK^{+}algebras (cf. [12] or [13]). Nowadays, many mathematicians, especially from China, Japan and Korea, have been studying various generalizations of BCC-algebras. All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these algebras.

One of very important identities is the identity $(x y) z=(x z) y$. It holds in BCK-algebras and in some generalizations of BCK-algebras, but not in BCC-algebras. BCC-algebras satisfying this identity are BCK-algebras (cf. [2] or [3]). Therefore, it makes sense to consider such BCC-algebras and some of their generalizations for which this identity is satisfied only by elements belonging to some subsets. Such study has been initiated by W.A. Dudek in [4].

In this paper we will study derivations of weak BCC-algebras in which the condition $(x y) z=(x z) y$ is satisfied only in the case when elements x, y belong to the same branch.

2. Preliminaries

The BCC-operation will be denoted by juxtaposition. Dots will be used only to avoid repetitions of brackets. For example, the formula $((x y)(z y))(x z)=0$ will be written in the abbreviated form as $(x y \cdot z y) \cdot x z=0$.
Definition 2.1. A weak BCC-algebra is a system $(G ; \cdot, 0)$ of type $(2,0)$ satisfying the following axioms:
(i) $(x y \cdot z y) \cdot x z=0$,
(ii) $x x=0$,
(iii) $x 0=x$,
(iv) $x y=y x=0 \Longrightarrow x=y$.

Weak BCC-algebras are called BZ-algebras by many mathematicians, especially from China and Korea (cf. [6], [11], [14] or [15]), but we save the first name because it coincides with the general concept of names presented in the book [7] for algebras of logic.

A weak BCC-algebra satisfying the identity
(v) $0 x=0$
is called a BCC-algebra. A BCC-algebra with the condition

[^0](vi) $(x \cdot x y) y=0$
is called a BCK-algebra.
One can prove (see [2] or [3]) that a BCC-algebra is a BCK-algebra if and only if it satisfies the identity
(vii) $x y \cdot z=x z \cdot y$.

An algebra $(G ; \cdot, 0)$ of type $(2,0)$ satisfying the axioms $(i),(i i),(i i i),(i v)$ and $(v i)$ is called a BCI-algebra. A weak BCC-algebra is a BCI-algebra if and only if it satisfies (vii). In any weak BCC-algebra we can define a natural partial order \leqslant by putting

$$
x \leqslant y \Longleftrightarrow x y=0
$$

Directly from the axioms of weak BCC-algebras we can see that the following two implications
(viii) $x \leqslant y \Longrightarrow x z \leqslant y z$,
(ix) $x \leqslant y \Longrightarrow z y \leqslant z x$
are valid for all $x, y, z \in G$.
The set of all minimal (with respect to \leqslant) elements of G is denoted by $I(G)$. Elements belonging to $I(G)$ are called initial.

In the investigation of algebras connected with various types of logics an important role plays the so-called Dudek's map φ defined as $\varphi(x)=0 x$. The main properties of this map in the case of weak BCC-algebras are collected in the following theorem proved in [6].
Theorem 2.2. Let G be a weak BCC-algebra. Then
(1) $\varphi^{2}(x) \leqslant x$,
(2) $x \leqslant y \Longrightarrow \varphi(x)=\varphi(y)$,
(3) $\varphi^{3}(x)=\varphi(x)$,
(4) $\varphi^{2}(x y)=\varphi^{2}(x) \varphi^{2}(y)$,
for all $x, y \in G$.
Theorem 2.3. $I(G)=\left\{a \in G: \varphi^{2}(a)=a\right\}$.
The proof of this theorem is given in [5]. Comparing this result with Theorem 2.2 (4) we obtain

Corollary 2.4. $I(G)$ is a subalgebra of G.
Corollary 2.5. $I(G)=\varphi(G)$ for any weak BCC-algebra G.
The set

$$
B(a)=\{x \in G: a \leqslant x\},
$$

where $a \in I(G)$ is called a branch of G initiated by a. The branch initiated by 0 is the greatest BCC-algebra contained in G.
Definition 2.6. A weak BCC-algebra G is called solid if (vii) is valid for all x, y belonging to the same branch and arbitrary $z \in G$.

Such weak BCC-algebras were introduced in [4].
Definition 2.7. A non-empty subset A of a weak BCC-algebra G is called a $B C C$-ideal if
(1) $0 \in A$,
(2) $y \in A$ and $x y \cdot z \in A$ imply $x z \in A$.

Using (viii) and (ix) it is not difficult to see that $B(0)$ is a BCC-ideal of each weak BCC-algebra. The relation \sim defined by

$$
x \sim y \Longleftrightarrow x y, y x \in B(0)
$$

is a congruence on G. Its equivalence classes coincide with branches of G, i.e., $B(a)=C_{a}$ for any $a \in I(G)$ (cf. [5]). So, $B(a) B(b)=B(a b)$ and $x y \in B(a b)$ for $x \in B(a), y \in B(b)$.

In the following part of this paper, we will need those two propositions proved in [5].
Proposition 2.8. Elements $x, y \in G$ are in the same branch if and only if $x y \in B(0)$.
Proposition 2.9. If $x, y \in B(a)$, then also $x \cdot x y$ and $y \cdot y x$ are in $B(a)$.
One of important classes of weak BCC-algebras is the class of group-like weak BCCalgebras called also anti-grouped BZ-algebras [14], i.e., weak BCC-algebras containing only one-element branches. A special case of such algebras are group-like BCI-algebras described in [1].

The conditions under which a weak BCC-algebra is group-like are found in [5] and [14]. Below we present some of these conditions.

Theorem 2.10. A weak BCC-algebra G is group-like if and only if at least one of the following conditions is satisfied:
(1) $\varphi^{2}(x)=x$ for all $x \in G$,
(2) $\varphi(x y)=y x$ for all $x, y \in G$,
(3) $x y \cdot z y=x z$ for all $x, y, z \in G$,
(4) $\operatorname{Ker} \varphi=\{0\}$.

3. Derivations of weak BCC-algebras

In the theory of rings, the properties of derivations play an important role. In [8] Jun and Xin applied the notion of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. In [10] Ch. Prabpayak and U. Leerawat applied the notion of regular derivation in BCI-algebras to BCC-algebras. Here we give some results for derivations in solid weak BCC-algebras.

Definition 3.1. Let G be a weak BCC-algebra. A map $d: G \longrightarrow G$ is called a left-right derivation (briefly, (l, r)-derivation) of G, if it satisfies the identity

$$
\begin{equation*}
d(x y)=d(x) y \wedge x d(y) \tag{1}
\end{equation*}
$$

where $x \wedge y$ means $y \cdot y x$.
If d satisfies the identity

$$
\begin{equation*}
d(x y)=x d(y) \wedge d(x) y \tag{2}
\end{equation*}
$$

then it is called a right-left derivation (briefly, (r, l)-derivation) of G. A map d which is both a (l, r) - and a (r, l)-derivation is called a derivation. Any d with the property $d(0)=0$ is called regular.

Example 3.2. Let $G=\{0,1,2,3\}$ be a weak BCC-algebra with the operation \cdot defined as follows:

\cdot	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

Table 3.1.

Consider two maps $d_{1}, d_{2}: G \longrightarrow G$ defined by

$$
\begin{aligned}
& d_{1}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in\{0,1,3\}, \\
2 & \text { if } & x=2
\end{array}\right. \\
& d_{2}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in\{0,1\} \\
2 & \text { if } & x \in\{2,3\}
\end{array}\right.
\end{aligned}
$$

Then it can be easily checked that d_{1} is both a (l, r) - and (r, l)-derivation of G and d_{2} is a (r, l)-derivation but not a (l, r)-derivation.

Example 3.3. Let $G=\{0,1,2,3,4,5\}$ be a weak BCC-algebra with the operation \cdot defined as follows:

\cdot	0	1	2	3	4	5
0	0	0	2	2	2	2
1	1	0	2	2	2	2
2	2	2	0	0	0	0
3	3	2	1	0	0	0
4	4	2	1	1	0	1
5	5	2	1	1	1	0

Table 3.2.
Define a map $d: G \longrightarrow G$ by

$$
d_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \in\{0,1\} \\
0 & \text { if } & x \in\{2,3,4,5\}
\end{array}\right.
$$

Then it is easily checked that d is a non-regular derivation of G.
Theorem 3.4. The endomorphism φ^{2}, where φ is the Dudek's map, is a regular derivation of each solid weak BCC-algebra.

Proof. From Theorem 2.2 it follows that the map $d(x)=\varphi^{2}(x)$ is a regular endomorphism and $d(x)=a$ for all $x \in B(a)$. Thus for $x \in B(a), y \in B(b)$, according to Proposition 2.9, we have $d(x y)=a b$.

On the other hand,

$$
d(x) y \wedge x d(y)=a y \wedge x b=x b \cdot(x b \cdot a y)
$$

Since, by the assumption, a weak BCC-algebra G is solid and elements $x b$, $a y$ are in the same branch, we have

$$
(x b \cdot(x b \cdot a y)) \cdot a y=(x b \cdot a y)(x b \cdot a y)=0
$$

which means that

$$
d(x) y \wedge x d(y)=x b \cdot(x b \cdot a y) \leqslant a y \leqslant a b
$$

by $(i x)$. Thus $d(x) y \wedge x d(y) \leqslant a b$. This, in view of Corollary 2.4, gives $d(x) y \wedge x d(y)=a b$. Hence $d(x) y \wedge x d(y)=a b=d(x y)$.

Now,

$$
x d(y) \wedge d(x) y=x b \wedge a y=a y \cdot(a y \cdot x b)
$$

Since $a y, a b \in B(a b)$ we have $(a y \cdot(a y \cdot x b)) \cdot a b=(a y \cdot a b)(a y \cdot x b) \leqslant b y \cdot(a y \cdot x b)$ from (i) and (viii). But by $=0$ and we have $0 \cdot(a y \cdot x b)=0$, because $a y \cdot x b \in B(0)$. So, $x d(y) \wedge d(x) y=a b=d(x y)$. Therefore d is a regular derivation of G.

Corollary 3.5. A map $d: G \longrightarrow G$ such that $d(x)=$ a for all $x \in B(a)$, is a regular derivation of each solid weak BCC-algebra.

Theorem 3.6. For any derivation d of a solid weak BCC-algebra G elements x and $d(d(x))$ are in the same branch.
Proof. Indeed, let $x \in B(a)$ and $y=d(x)$. Then from (1) we obtain

$$
d(x y)=d(x) y \wedge x d(y)=y y \wedge x d(y)=0 \wedge x d(y)=x d(y) \cdot(x d(y) \cdot 0)=0
$$

Thus $d(x y)=0$ for $y=d(x)$. This together with (2) and Theorem 2.2 gives

$$
0=d(x y)=x d(y) \wedge d(x) y=x d(y) \wedge 0=0(0 \cdot x d(y)) \leqslant x d(y)
$$

Hence $x d(y) \in B(0)$, which shows (by Proposition 2.8) that elements x and $d(y)=d(d(x))$ are in the same branch.

Example 3.3 shows that x and $d(x)$ may not be in the same branch if d is not regular.
Theorem 3.7. $A(l, r)$-derivation d of a solid weak $B C C$-algebra G is regular if and only if for every $x \in G$ elements x and $d(x)$ belongs to the same branch.

Proof. Let d be a regular (l, r)-derivation of a solid weak BCC-algebra G. Then for any $x \in G$ we have

$$
0=d(x x)=d(x) x \wedge x d(x)=x d(x) \cdot(x d(x) \cdot d(x) x),
$$

which implies $x d(x) \leqslant x d(x) \cdot d(x) x$. From this, by (viii), we obtain

$$
0=x d(x) \cdot x d(x) \leqslant(x d(x) \cdot d(x) x) \cdot x d(x)=(x d(x) \cdot x d(x)) \cdot d(x) x=0 \cdot d(x) x
$$

So, $d(x) x \in B(0)$. This, according to Proposition 2.8, shows that x and $d(x)$ are in the same branch.

Conversely, if for every $x \in G$ elements x and $d(x)$ are in the same branch $B(a)$, then also $d(x), d(d(x)) \in B(a)$. So, $x d(x), d(x) x$ and $d(d(x)) x$ are in $B(0)$. Thus $0=0 \cdot d(x) x=$ $0 \cdot x d(x)=0 \cdot d(d(x)) x$. Hence

$$
\begin{aligned}
d(0) & =d(0 \cdot d(x) x)=(d(0) \cdot d(x) x) \wedge(0 \cdot d(d(x) x)) \\
& =(d(0) \cdot d(x) x) \wedge(0 \cdot(d(d(x)) x \wedge d(x) d(x))) \\
& =(d(0) \cdot d(x) x) \wedge(0 \cdot(d(d(x)) x \wedge 0)) \\
& =(d(0) \cdot d(x) x) \wedge(0 \cdot 0(0 \cdot d(d(x)) x)) \\
& =(d(0) \cdot d(x) x) \wedge 0=0(0 \cdot(d(0) \cdot d(x) x)) \\
& =\varphi^{2}(d(0) \cdot d(x) x)=\varphi^{2}(d(0)) \cdot \varphi^{2}(d(x) x) \\
& =\varphi^{2}(d(0)) \cdot 0=\varphi^{2}(d(0)),
\end{aligned}
$$

by Theorem 2.2. In this way we obtain $\varphi^{2}(d(0))=d(0)$, which in view of Theorem 2.3 means that $d(0) \in I(G)$. Since 0 and $d(0)$ are in the same branch and $d(0) \in I(G)$, it must be $d(0)=0$, i.e., d is regular.

Theorem 3.8. $A(r, l)$-derivation d of a solid weak BCC-algebra G is regular if and only if for every $x \in G$ elements x and $d(x)$ belong to the same branch.

Proof. The proof is analogous to the proof of the previous theorem.
Corollary 3.9. A derivation d of a solid weak BCC-algebra G is regular if and only if for every $x \in G$ elements x and $d(x)$ are in the same branch.

Theorem 3.10. Let d be a self-map of a weak BCC-algebra G. Then the following holds:
(1) if d is a regular (l, r)-derivation of G, then $d(x)=d(x) \wedge x$,
(2) if d is a (r, l)-derivation of G, then $d(x)=x \wedge d(x)$ for all $x \in G$ if and only if d is regular.

Proof. (1) Let d be a regular (l, r)-derivation of G. Then for any $x \in G$ we have $d(x)=$ $d(x 0)=d(x) 0 \wedge x d(0)=d(x) \wedge x$.
(2) If d is a (r, l)-derivation of G and $d(x)=x \wedge d(x)$ for all $x \in G$, then, in particular, $d(0)=0 \wedge d(0)=0$. Hence d is regular.

Conversely, if $d(0)=0$, then $d(x)=d(x 0)=x d(0) \wedge d(x) 0=x \wedge d(x)$.
Corollary 3.11. For a derivation d of solid weak BCC-algebra G the following conditions are equivalent:
(1) d is regular,
(2) $d(x) \leqslant x$ for every $x \in G$,
(3) $d(a)=a$ for every $a \in I(G)$.

Proof. (1) $\Longrightarrow(2)$ For any regular derivation d from Theorem 3.10 (2) we have

$$
d(x) x=(x \wedge d(x)) \cdot x=(d(x) \cdot d(x) x) \cdot x=d(x) x \cdot d(x) x=0
$$

because elements x and $d(x)$ belong to the same branch (Corollary 3.9). This proves (2).
Implications $(2) \Longrightarrow(3)$ and $(3) \Longrightarrow(1)$ are obvious.
Corollary 3.12. $d(B(a)) \subset B(a)$ for any regular derivation d of a solid weak BCC-algebra G.

Proof. Let $x \in B(a)$. Since, by Theorem 3.7, x and $d(x)$ are in the same branch, we have $d(x) \in B(a)$. Thus $d(B(a)) \subset B(a)$.

In general $d(B(a)) \neq B(a)$. A simple example of a derivation with this property is a derivation $d=\varphi^{2}$ used in Theorem 3.4.

Corollary 3.13. Let d be a regular derivation of solid weak BCC-algebra G. Then:
(1) $d(x) y \leqslant x d(y)$,
(2) $d(x y)=d(x) y$
for all $x, y \in G$.
Proof. (1) Applying (viii) and (ix) to Corollary 3.11 (2) we obtain

$$
d(x) y \leqslant x y \leqslant x d(y)
$$

which proves (1).
(2) From the above

$$
d(x y)=x d(y) \wedge d(x) y=d(x) y \cdot(d(x) y \cdot x d(y))=d(x) y \cdot 0=d(x) y
$$

This completes the proof.
Theorem 3.14. A solid weak BCC-algebra G is group-like if and only if $\operatorname{Ker} d=\{0\}$ for each regular derivation d of G.

Proof. In a group-like weak BCC-algebra $B(0)=\{0\}$. Since for any $x \in \operatorname{Ker} d$ we have $d(x)=0$ and $0 \in B(0)$, Corollary 3.9 implies $x \in B(0)$, So, $x=0$, i.e., $\operatorname{Ker} d=\{0\}$.

Conversely, let Ker $d=\{0\}$ for any regular derivation d of G. Then, in particular, for $d=\varphi^{2}$ (Theorem 3.4) we have $\operatorname{Ker} \varphi^{2}=\{0\}$. But, as it is not difficult to see, $B(0) \subset$ $\operatorname{Ker} \varphi^{2}$. Hence $B(0)=\{0\}$. Theorem 2.10 (4) completes the proof.

Theorem 3.15. A derivation d of a solid weak BCC-algebra G is regular if and only if $d(A) \subset A$ for all $B C C$-ideals A of G.

Proof. For a regular derivation of a solid weak BCC-algebra by Theorem 3.10 (2) and Corollary 3.9 we have $d(x)=x \wedge d(x) \leqslant x$ for all $x \in G$. Let $x \in A$. Then $d(x) x=0 \in A$, and consequently $d(x) \in A$ because A is a BCC-ideal. Hence $d(A) \subset A$ for any BCC-ideal A of G.

Conversely, if $d(A) \subset A$ for each BCC-ideal A of G, then also for $A=\{0\}$. Thus $d(\{0\}) \subset\{0\}$. Hence $d(0)=0$, i.e., d is regular.

References

[1] W.A. Dudek, On group-like BCI-algebras, Demonstratio Math., 21 (1988), 369 - 376.
[2] W.A. Dudek, On BCC-algebras, Logique et Analyse, 129-130 (1990), 103-111.
[3] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica, 20 (1992), 137 - 150.
[4] W.A. Dudek, Solid weak BCC-algebras, Intern. J. Computer Math. (in print).
[5] W.A. Dudek, B. Karamdin, S.A. Bhatti, Branches and ideals of weak BCC-algebras, Algebra Coll. (2011), in print.
[6] W.A.Dudek, X.H.Zhang, Y.Q.Wang, Ideals and atoms of BZ-algebras, Math. Slovaca, 59 (2009), 387 404.
[7] A. Iorgulescu, Algebras of logic as BCK algebras, Acad. Econom. Studies, Bucharest, 2008.
[8] Y.B. Jun, X.L. Xin, On derivators of BCI-algebras, Information Sciences, 159 (2004), 167-176.
[9] Y. Komori, The class of BCC-algebras is not variety, Math. Japonica, 29 (1984), $391-394$.
[10] Ch. Prabpayak, U. Lerrawat, On derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43 (2009), 398 401.
[11] R.F. Ye, On BZ-algebras, Selected Papers on BCI, BCK-algebras and Computer Logics, Shanghai Jiaotong Univ. Press, (1991), $21-24$.
[12] X.H. Zhang, BIK+_logic and non-commutative fuzzy logics, Fuzzy Systems Math. 21 (2007), $31-36$.
[13] X.H. Zhang, W.A. Dudek, Fuzzy BIK ${ }^{+}$-logic and non-commutative fuzzy logics, Fuzzy Systems Math. 23 (2009), $9-20$.
[14] X.H. Zhang, R. Ye, BZ-algebras and groups, J. Math. Phys. Sci. 29 (1995), $223-233$.
[15] X.H. Zhang, Y.Q. Wang, W.A. Dudek, T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math. 34 (2003), $1559-1570$.

Hinueberstrasse 13a, 30175 Hannover, Germany
E-mail address: janus.thomys@htp-tel.de

[^0]: 2000 Mathematics Subject Classification. 03G25, 06F35.
 Key Words and Phrases. weak BCC-algebra; solid weak BCC-algebra; BZ-algebra; derivation.

