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DERIVATIONS OF WEAK BCC-ALGEBRAS
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Abstract. We describe derivations of weak BCC-algebras (called also BZ-algebras) in
which the condition (xy)z = (xz)y is satisfied only in the case when elements x, y belong
to the same branch.

1. Introduction

BCC-algebras were introduced by Y.Komori [9] as a generalization of BCK-algebras.
In view of strongly connections with a BIK+-logic, BCC-algebras are also called BIK+-
algebras (cf. [12] or [13]). Nowadays, many mathematicians, especially from China, Japan
and Korea, have been studying various generalizations of BCC-algebras. All these algebras
have one distinguished element and satisfy some common identities playing a crucial role
in these algebras.

One of very important identities is the identity (xy)z = (xz)y. It holds in BCK-algebras
and in some generalizations of BCK-algebras, but not in BCC-algebras. BCC-algebras
satisfying this identity are BCK-algebras (cf. [2] or [3]). Therefore, it makes sense to
consider such BCC-algebras and some of their generalizations for which this identity is
satisfied only by elements belonging to some subsets. Such study has been initiated by
W.A. Dudek in [4].

In this paper we will study derivations of weak BCC-algebras in which the condition
(xy)z = (xz)y is satisfied only in the case when elements x, y belong to the same branch.

2. Preliminaries

The BCC-operation will be denoted by juxtaposition. Dots will be used only to avoid
repetitions of brackets. For example, the formula ((xy)(zy))(xz) = 0 will be written in the
abbreviated form as (xy · zy) · xz = 0.

Definition 2.1. A weak BCC-algebra is a system (G; ·, 0) of type (2, 0) satisfying the
following axioms:

(i) (xy · zy) · xz = 0,
(ii) xx = 0,

(iii) x0 = x,
(iv) xy = yx = 0 =⇒ x = y.

Weak BCC-algebras are called BZ-algebras by many mathematicians, especially from
China and Korea (cf. [6], [11], [14] or [15]), but we save the first name because it coincides
with the general concept of names presented in the book [7] for algebras of logic.

A weak BCC-algebra satisfying the identity
(v) 0x = 0

is called a BCC-algebra. A BCC-algebra with the condition
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(vi) (x · xy)y = 0
is called a BCK-algebra.

One can prove (see [2] or [3]) that a BCC-algebra is a BCK-algebra if and only if it
satisfies the identity

(vii) xy · z = xz · y.
An algebra (G; ·, 0) of type (2, 0) satisfying the axioms (i), (ii), (iii), (iv) and (vi) is

called a BCI-algebra. A weak BCC-algebra is a BCI-algebra if and only if it satisfies (vii).
In any weak BCC-algebra we can define a natural partial order 6 by putting

x 6 y ⇐⇒ xy = 0.

Directly from the axioms of weak BCC-algebras we can see that the following two impli-
cations
(viii) x 6 y =⇒ xz 6 yz,
(ix) x 6 y =⇒ zy 6 zx

are valid for all x, y, z ∈ G.
The set of all minimal (with respect to 6) elements of G is denoted by I(G). Elements

belonging to I(G) are called initial.
In the investigation of algebras connected with various types of logics an important role

plays the so-called Dudek’s map ϕ defined as ϕ(x) = 0x. The main properties of this map
in the case of weak BCC-algebras are collected in the following theorem proved in [6].

Theorem 2.2. Let G be a weak BCC-algebra. Then
(1) ϕ2(x) 6 x,
(2) x 6 y =⇒ ϕ(x) = ϕ(y),
(3) ϕ3(x) = ϕ(x),
(4) ϕ2(xy) = ϕ2(x)ϕ2(y),

for all x, y ∈ G. ¤
Theorem 2.3. I(G) = {a ∈ G : ϕ2(a) = a}. ¤

The proof of this theorem is given in [5]. Comparing this result with Theorem 2.2 (4)
we obtain

Corollary 2.4. I(G) is a subalgebra of G. ¤
Corollary 2.5. I(G) = ϕ(G) for any weak BCC-algebra G. ¤

The set
B(a) = {x ∈ G : a 6 x},

where a ∈ I(G) is called a branch of G initiated by a. The branch initiated by 0 is the
greatest BCC-algebra contained in G.

Definition 2.6. A weak BCC-algebra G is called solid if (vii) is valid for all x, y belonging
to the same branch and arbitrary z ∈ G.

Such weak BCC-algebras were introduced in [4].

Definition 2.7. A non-empty subset A of a weak BCC-algebra G is called a BCC-ideal if
(1) 0 ∈ A,
(2) y ∈ A and xy · z ∈ A imply xz ∈ A.

Using (viii) and (ix) it is not difficult to see that B(0) is a BCC-ideal of each weak
BCC-algebra. The relation ∼ defined by

x ∼ y ⇐⇒ xy, yx ∈ B(0)
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is a congruence on G. Its equivalence classes coincide with branches of G, i.e., B(a) = Ca

for any a ∈ I(G) (cf. [5]). So, B(a)B(b) = B(ab) and xy ∈ B(ab) for x ∈ B(a), y ∈ B(b).
In the following part of this paper, we will need those two propositions proved in [5].

Proposition 2.8. Elements x, y ∈ G are in the same branch if and only if xy ∈ B(0). ¤

Proposition 2.9. If x, y ∈ B(a), then also x · xy and y · yx are in B(a). ¤

One of important classes of weak BCC-algebras is the class of group-like weak BCC-
algebras called also anti-grouped BZ-algebras [14], i.e., weak BCC-algebras containing only
one-element branches. A special case of such algebras are group-like BCI-algebras described
in [1].

The conditions under which a weak BCC-algebra is group-like are found in [5] and [14].
Below we present some of these conditions.

Theorem 2.10. A weak BCC-algebra G is group-like if and only if at least one of the
following conditions is satisfied:

(1) ϕ2(x) = x for all x ∈ G,
(2) ϕ(xy) = yx for all x, y ∈ G,
(3) xy · zy = xz for all x, y, z ∈ G,
(4) Ker ϕ = {0}. ¤

3. Derivations of weak BCC-algebras

In the theory of rings, the properties of derivations play an important role. In [8] Jun
and Xin applied the notion of derivations in ring and near-ring theory to BCI-algebras,
and they also introduced a new concept called a regular derivation in BCI-algebras. In [10]
Ch. Prabpayak and U. Leerawat applied the notion of regular derivation in BCI-algebras
to BCC-algebras. Here we give some results for derivations in solid weak BCC-algebras.

Definition 3.1. Let G be a weak BCC-algebra. A map d : G −→ G is called a left-right
derivation (briefly, (l, r)-derivation) of G, if it satisfies the identity

(1) d(xy) = d(x)y ∧ xd(y),

where x ∧ y means y · yx.
If d satisfies the identity

(2) d(xy) = xd(y) ∧ d(x)y,

then it is called a right-left derivation (briefly, (r, l)-derivation) of G. A map d which is
both a (l, r)- and a (r, l)-derivation is called a derivation. Any d with the property d(0) = 0
is called regular.

Example 3.2. Let G = {0, 1, 2, 3} be a weak BCC-algebra with the operation · defined as
follows:

· 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 1 0

Table 3.1.
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Consider two maps d1, d2 : G −→ G defined by

d1(x) =
{

0 if x ∈ {0, 1, 3},
2 if x = 2,

d2(x) =
{

0 if x ∈ {0, 1},
2 if x ∈ {2, 3}.

Then it can be easily checked that d1 is both a (l, r)- and (r, l)-derivation of G and d2 is
a (r, l)-derivation but not a (l, r)-derivation. ¤

Example 3.3. Let G = {0, 1, 2, 3, 4, 5} be a weak BCC-algebra with the operation · defined
as follows:

· 0 1 2 3 4 5
0 0 0 2 2 2 2
1 1 0 2 2 2 2
2 2 2 0 0 0 0
3 3 2 1 0 0 0
4 4 2 1 1 0 1
5 5 2 1 1 1 0

Table 3.2.

Define a map d : G −→ G by

d1(x) =
{

2 if x ∈ {0, 1},
0 if x ∈ {2, 3, 4, 5}.

Then it is easily checked that d is a non-regular derivation of G. ¤

Theorem 3.4. The endomorphism ϕ2, where ϕ is the Dudek’s map, is a regular derivation
of each solid weak BCC-algebra.

Proof. From Theorem 2.2 it follows that the map d(x) = ϕ2(x) is a regular endomorphism
and d(x) = a for all x ∈ B(a). Thus for x ∈ B(a), y ∈ B(b), according to Proposition 2.9,
we have d(xy) = ab.

On the other hand,

d(x)y ∧ xd(y) = ay ∧ xb = xb · (xb · ay).

Since, by the assumption, a weak BCC-algebra G is solid and elements xb, ay are in the
same branch, we have

(xb · (xb · ay)) · ay = (xb · ay)(xb · ay) = 0,

which means that
d(x)y ∧ xd(y) = xb · (xb · ay) 6 ay 6 ab,

by (ix). Thus d(x)y ∧ xd(y) 6 ab. This, in view of Corollary 2.4, gives d(x)y ∧ xd(y) = ab.
Hence d(x)y ∧ xd(y) = ab = d(xy).

Now,
xd(y) ∧ d(x)y = xb ∧ ay = ay · (ay · xb)

Since ay, ab ∈ B(ab) we have (ay · (ay · xb)) · ab = (ay · ab)(ay · xb) 6 by · (ay · xb) from
(i) and (viii). But by = 0 and we have 0 · (ay · xb) = 0, because ay · xb ∈ B(0). So,
xd(y) ∧ d(x)y = ab = d(xy). Therefore d is a regular derivation of G. ¤

Corollary 3.5. A map d : G −→ G such that d(x) = a for all x ∈ B(a), is a regular
derivation of each solid weak BCC-algebra. ¤
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Theorem 3.6. For any derivation d of a solid weak BCC-algebra G elements x and d(d(x))
are in the same branch.

Proof. Indeed, let x ∈ B(a) and y = d(x). Then from (1) we obtain

d(xy) = d(x)y ∧ xd(y) = yy ∧ xd(y) = 0 ∧ xd(y) = xd(y) · (xd(y) · 0) = 0.

Thus d(xy) = 0 for y = d(x). This together with (2) and Theorem 2.2 gives

0 = d(xy) = xd(y) ∧ d(x)y = xd(y) ∧ 0 = 0(0 · xd(y)) 6 xd(y).

Hence xd(y) ∈ B(0), which shows (by Proposition 2.8) that elements x and d(y) = d(d(x))
are in the same branch. ¤

Example 3.3 shows that x and d(x) may not be in the same branch if d is not regular.

Theorem 3.7. A (l, r)-derivation d of a solid weak BCC-algebra G is regular if and only
if for every x ∈ G elements x and d(x) belongs to the same branch.

Proof. Let d be a regular (l, r)-derivation of a solid weak BCC-algebra G. Then for any
x ∈ G we have

0 = d(xx) = d(x)x ∧ xd(x) = xd(x) · (xd(x) · d(x)x),
which implies xd(x) 6 xd(x) · d(x)x. From this, by (viii), we obtain

0 = xd(x) · xd(x) 6 (xd(x) · d(x)x) · xd(x) = (xd(x) · xd(x)) · d(x)x = 0 · d(x)x.

So, d(x)x ∈ B(0). This, according to Proposition 2.8, shows that x and d(x) are in the
same branch.

Conversely, if for every x ∈ G elements x and d(x) are in the same branch B(a), then
also d(x), d(d(x)) ∈ B(a). So, xd(x), d(x)x and d(d(x))x are in B(0). Thus 0 = 0 · d(x)x =
0 · xd(x) = 0 · d(d(x))x. Hence

d(0) = d(0 · d(x)x) = (d(0) · d(x)x) ∧ (0 · d(d(x)x))

= (d(0) · d(x)x) ∧ (0 · (d(d(x))x ∧ d(x)d(x)))

= (d(0) · d(x)x) ∧ (0 · (d(d(x))x ∧ 0))

= (d(0) · d(x)x) ∧ (0 · 0(0 · d(d(x))x))

= (d(0) · d(x)x) ∧ 0 = 0(0 · (d(0) · d(x)x))

= ϕ2(d(0) · d(x)x) = ϕ2(d(0)) · ϕ2(d(x)x)

= ϕ2(d(0)) · 0 = ϕ2(d(0)),

by Theorem 2.2. In this way we obtain ϕ2(d(0)) = d(0), which in view of Theorem 2.3
means that d(0) ∈ I(G). Since 0 and d(0) are in the same branch and d(0) ∈ I(G), it must
be d(0) = 0, i.e., d is regular. ¤
Theorem 3.8. A (r, l)-derivation d of a solid weak BCC-algebra G is regular if and only
if for every x ∈ G elements x and d(x) belong to the same branch.

Proof. The proof is analogous to the proof of the previous theorem. ¤
Corollary 3.9. A derivation d of a solid weak BCC-algebra G is regular if and only if for
every x ∈ G elements x and d(x) are in the same branch. ¤
Theorem 3.10. Let d be a self-map of a weak BCC-algebra G. Then the following holds:

(1) if d is a regular (l, r)-derivation of G, then d(x) = d(x) ∧ x,
(2) if d is a (r, l)-derivation of G, then d(x) = x ∧ d(x) for all x ∈ G if and only if d

is regular.
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Proof. (1) Let d be a regular (l, r)-derivation of G. Then for any x ∈ G we have d(x) =
d(x0) = d(x)0 ∧ xd(0) = d(x) ∧ x.

(2) If d is a (r, l)-derivation of G and d(x) = x ∧ d(x) for all x ∈ G, then, in particular,
d(0) = 0 ∧ d(0) = 0. Hence d is regular.

Conversely, if d(0) = 0, then d(x) = d(x0) = xd(0) ∧ d(x)0 = x ∧ d(x). ¤

Corollary 3.11. For a derivation d of solid weak BCC-algebra G the following conditions
are equivalent:

(1) d is regular,
(2) d(x) 6 x for every x ∈ G,
(3) d(a) = a for every a ∈ I(G).

Proof. (1) =⇒ (2) For any regular derivation d from Theorem 3.10 (2) we have

d(x)x = (x ∧ d(x)) · x = (d(x) · d(x)x) · x = d(x)x · d(x)x = 0,

because elements x and d(x) belong to the same branch (Corollary 3.9). This proves (2).
Implications (2) =⇒ (3) and (3) =⇒ (1) are obvious. ¤

Corollary 3.12. d(B(a)) ⊂ B(a) for any regular derivation d of a solid weak BCC-algebra
G.

Proof. Let x ∈ B(a). Since, by Theorem 3.7, x and d(x) are in the same branch, we have
d(x) ∈ B(a). Thus d(B(a)) ⊂ B(a). ¤

In general d(B(a)) 6= B(a). A simple example of a derivation with this property is a
derivation d = ϕ2 used in Theorem 3.4.

Corollary 3.13. Let d be a regular derivation of solid weak BCC-algebra G. Then:
(1) d(x)y 6 xd(y),
(2) d(xy) = d(x)y

for all x, y ∈ G.

Proof. (1) Applying (viii) and (ix) to Corollary 3.11 (2) we obtain

d(x)y 6 xy 6 xd(y)

which proves (1).
(2) From the above

d(xy) = xd(y) ∧ d(x)y = d(x)y · (d(x)y · xd(y)) = d(x)y · 0 = d(x)y.

This completes the proof. ¤

Theorem 3.14. A solid weak BCC-algebra G is group-like if and only if Ker d = {0} for
each regular derivation d of G.

Proof. In a group-like weak BCC-algebra B(0) = {0}. Since for any x ∈ Ker d we have
d(x) = 0 and 0 ∈ B(0), Corollary 3.9 implies x ∈ B(0), So, x = 0, i.e., Ker d = {0}.

Conversely, let Ker d = {0} for any regular derivation d of G. Then, in particular, for
d = ϕ2 (Theorem 3.4) we have Kerϕ2 = {0}. But, as it is not difficult to see, B(0) ⊂
Ker ϕ2. Hence B(0) = {0}. Theorem 2.10 (4) completes the proof. ¤

Theorem 3.15. A derivation d of a solid weak BCC-algebra G is regular if and only if
d(A) ⊂ A for all BCC-ideals A of G.
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Proof. For a regular derivation of a solid weak BCC-algebra by Theorem 3.10 (2) and
Corollary 3.9 we have d(x) = x ∧ d(x) 6 x for all x ∈ G. Let x ∈ A. Then d(x)x = 0 ∈ A,
and consequently d(x) ∈ A because A is a BCC-ideal. Hence d(A) ⊂ A for any BCC-ideal
A of G.

Conversely, if d(A) ⊂ A for each BCC-ideal A of G, then also for A = {0}. Thus
d({0}) ⊂ {0}. Hence d(0) = 0, i.e., d is regular. ¤
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