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Abstract. Various generalizations of Hardy’s theorem and Morgan’s theorem, which
assert that a function on � and its Fourier transform cannot both be very small, are
known. We give two theorems which improve various generalizations known so far.

1 Introduction For an integrable function f on R, we define the Fourier transform f̂ by

f̂(y) =
∫ +∞

−∞
f(x)e−ixydx, y ∈ R.

Classical Hardy’s theorem [4] reads as follows: if a, b > 0, ab = 1/4, and if f is a measurable
function on R such that

f(x)eax2 ∈ L∞(R) and f̂(y)eby2 ∈ L∞(R),(1)

then f is a constant multiple of e−ax2
. An immediate corollary of this theorem is the

following: if a, b > 0, ab > 1/4, and if f is a measurable function on R satisfying (1), then
f = 0 almost everywhere. The examples f(x) = eax2

P (x) with P (x) polynomials show that
there are infinitely many f ’s that satisfy (1) for ab < 1/4. Morgan [6] proved the following
variant of Hardy’s theorem: if 1 < β < 2 < α < ∞, 1/α + 1/β = 1, a, b > 0, and

(aα)1/α(bβ)1/β > (sin(π(β − 1)/2))1/β ,(2)

and if f is a measurable function on R satisfying

f(x)ea|x|α ∈ L∞(R) and f̂(y)eb|y|β ∈ L∞(R),(3)

then f = 0 almost everywhere. He also obtained that the condition (2) is optimal; if
(aα)1/α(bβ)1/β = (sin(π(β−1)/2))1/β, then for any m ∈ R and m′ = (2m−α+2)/(2α−2),
there exists a measurable function f on R such that (1 + |x|)−mf(x)ea|x|α ∈ L∞(R) and
(1 + |y|)−m′

f̂(y)eb|y|β ∈ L∞(R). Therefore, there are infinitely many f ’s that satisfy (3).
Various generalizations of Hardy’s theorem and Morgan’s theorem are known. Cowling

and Price [2] proved that, if in Hardy’s theorem the assumption (1) is replaced by

f(x)eax2 ∈ Lp(R) and f̂(y)eby2 ∈ Lq(R)

with 1 � p, q � ∞ and with at least one of p and q finite, then f = 0. The third author
proved that (see [5], Theorem 1), if a, b > 0, ab = 1/4, and if f is a measurable function on
R such that

f(x)eax2 ∈ L1(R) + L∞(R) and
∫ +∞

−∞
log+ |f̂(y)eby2 |

C
dy < ∞
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for some C > 0, then f is a constant multiple of e−ax2
. Here L1(R) + L∞(R) is the set of

functions of the form f = f1 + f2, f1 ∈ L1(R), f2 ∈ L∞(R), and log+ x = log x if x > 1
and log+ x = 0 if x ≤ 1. Ben Farah and Mokni [1] proved that, if we replace L∞ in the
assumptions of Morgan’s theorem by Lp and Lq, 1 ≤ p, q ≤ ∞, then f = 0 and the condition
(2) is optimal.

The purpose of the present paper is to give further generalizations of the above theorems.
Our results are the following two theorems.

Theorem 1 Let 1 < α, β < ∞, 1/α + 1/β = 1, a, b > 0, and

(aα)1/α(bβ)1/β > c(α, β)(4)

with

c(α, β) =
{

(sin(π(β − 1)/2))1/β if β < 2,
(sin(π(α − 1)/2))1/α if β > 2.

(5)

Suppose f is a measurable function on R such that

ea|x|αf(x) ∈ L1(R) + L∞(R)(6)

and

∫ +∞

−∞
log+ |f̂(y)|eb|y|β

C

dy

1 + |y| < ∞(7)

for some C > 0. Then f = 0 almost everywhere.

Theorem 2 If a, b > 0, ab = 1/4, and if f is a measurable function on R that satisfies (6)
and (7) with α = β = 2, then f(x) is a constant multiple of e−ax2

.

Remark 3 (a) If the conditions (4) and (6) are satisfied and if we take a′ < a sufficiently
near to a, then (4) is still satisfied with a′ in place of a and the condition (6) implies

f(x)ea′|x|α = f(x)ea|x|αe(a′−a)|x|α ∈ L1(R).

Hence the essential claim of Theorem 1 remains unchanged if the assumption (6) is replaced
by the seemingly stronger assumption f(x)ea|x|α ∈ L1(R).
(b) It is easy to see that (3) or its Lp-Lq-version implies (6) and (7). Therefore, Lp-Lq

Morgan’s theorem follows from Theorem 1.
(c) Theorem 2 is an improvement of the third author’s Theorem 1 in [5], where the condition
(7) was assumed with dy instead of dy/(1 + |y|).
(d) Similarly as Morgan’s result, the condition (4) is optimal.

In §3 we shall prove Theorems 1 and 2. Part of the argument will be only a slight mod-
ification of that of [5]. Since the paper [5] was published in a proceedings of a local seminar
in Japan and is not easy to refer, we shall repeat some argument of [5] for convenience of
the reader.
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2 Key lemmas For −∞ < α < β < ∞, we write

D(α, β) = {z | α < arg z < β},
which is the domain in the Riemann surface of log z. We shall give three lemmas. The first
lemma is an improvement of Lemma 1 of [5], where the integral (8) below is taken with
respect to ds instead of ds/s.

Lemma 4 Let −∞ < α < β < ∞ and f be a bounded holomorphic function on D(α, β).
Then for each θ with α < θ < β,

sup
0<r<∞

log |f(reiθ)|(8)

≤ c+(α, β, θ)
∫ ∞

0

log+ |f(seiα)|ds

s
+ c−(α, β, θ)

∫ ∞

0

log+ |f(seiβ)|ds

s
,

where

c±(α, β, θ) =
1 ± cos π(θ−α)

β−α

2(β − α) sin π(θ−α)
β−α

and f(seiα) and f(seiβ) denote the nontangential boundary values of f(z).

Proof. Let δ = (β − α)/π. For z = reiθ ∈ D(α, β), we make a change of variables as
z = eiαwδ. Then w ∈ D(0, π) and g(w) = f(z) = f(eiαwδ) is a bounded holomorphic
function on the upper half plane. Let Pw(t) = �w/(π|w− t|2) be the Poisson kernel for the
upper half plane. Then Jensen’s inequality (cf. [3], Chap. II, §4, p.65) gives

log |f(z)| = log |g(w)| ≤
∫ ∞

−∞
Pw(t) log |g(t)|dt

≤
∫ ∞

−∞
Pw(t) log+ |g(t)|dt

=
∫ ∞

−∞
Pw(t) log+ |f(eiαtδ)|dt

=
∫ ∞

0

Pw(t) log+ |f(eiαtδ)|dt +
∫ ∞

0

Pw(−t) log+ |f(eiβtδ)|dt

=
1
δ

∫ ∞

0

Pw(t1/δ)t1/δ log+ |f(eiαt)|dt

t

+
1
δ

∫ ∞

0

Pw(−t1/δ)t1/δ log+ |f(eiβt)|dt

t
.

If we write w = (rei(θ−α))1/δ = u + iv, then

max
0<s<∞

{sPw(±s)} =
[ vs

π((u ∓ s)2 + v2)

]
s=

√
u2+v2

=
v

2π(
√

u2 + v2 ∓ u)
=

√
u2 + v2 ± u

2πv
= δc±(α, β, θ).

Hence the desired inequality follows.

Lemma 5 Let 0 < β − α < π/ρ and f be a holomorphic function on D(α, β). Suppose that
there exist constants A,B > 0 such that

|f(z)| ≤ AeB|z|ρ

for all z ∈ D(α, β). Then (8) holds for each θ with α < θ < β.
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Proof. By a rotation of the variable, we may suppose that α = −β and 0 < β < π/(2ρ).
Take a γ such that γ > ρ and γβ < π/2. For ε > 0, set fε(z) = f(z)e−εzγ

. Then fε is
holomorphic on D = D(−β, β). Moreover, if z ∈ D and φ = arg z, then

|fε(z)| = |f(z)|e−ε|z|γ cos γφ ≤ AeB|z|ρ−ε|z|γ cos γβ .

Since γ > ρ and cos γβ > 0, it follows that fε is bounded on D. Hence (8) holds with f
replaced by fε. We note that |fε(z)| ≤ |f(z)| on D and fε(z) → f(z) as ε → 0. Hence,
letting ε → 0, we have the desired inequality.

The last lemma is well known as the Phragmén-Lindelöf theorem, which can be proved
by an application of Lemma 5 to f(z)/M .

Lemma 6 Let α, β, ρ and f satisfy the same assumptions as in Lemma 5. Assume in
addition that there exists a constant M such that |f(z)| ≤ M on the boundary of D(α, β).
Then |f(z)| ≤ M for all z ∈ D(α, β).

3 Proof of Theorem 1 We shall use the notation

l(θ) = {reiθ | r > 0}, θ ∈ R.

Let a, b, α, β, and f satisfy the assumptions of Theorem 1. As noted in Remark 3 (a),
by replacing a with a smaller constant if necessary, we may assume that f(t)ea|t|α ∈ L1(R).
Thus f(t), t ∈ R, is of the form f(t) = f1(t)e−a|t|α with f1 ∈ L1(R).

We define f̂(z) for z ∈ C by

f̂(z) =
∫ +∞

−∞
f(t)e−iztdt.(9)

For z = x + iy ∈ C,

|f̂(z)| ≤
∫ ∞

−∞
|f1(t)|e−a|t|αeytdt.

Using Young’s inequality uα/α + vβ/β ≥ uv for u, v > 0 with u = (αa)1/α|t| and v =
|y|/(αa)1/α, we have a|t|α + |y|β/(β(aα)β/α) ≥ |y||t| and thus∫ ∞

−∞
|f1(t)|e−a|t|αe|y||t|dt ≤ e|y|

β/(β(aα)β/α)‖f1‖1.

Combining the above inequalities, we see that there exists a constant c such that

|f̂(x + iy)| ≤ ceA|y|β , A = 1/(β(aα)β/α).(10)

It is also easy to see that f̂(z) is an entire holomorphic function.
We shall consider the two cases β < 2 and β > 2 separately.
Case I: 1 < β < 2. In this case the condition (4) with (5) implies

A(− cos πβ/2) < b.

Since − cosπβ/2 > 0, we can take a sufficiently small ε > 0 such that 0 < ε < π/2β and

A <(− cosπβ/2)−1b
( tan(πβ/2 + βε)

tan πβ/2
sin2 πβ/2 + cos2 πβ/2

)

= − b tan(πβ/2 + βε) sin πβ/2 − b cosπβ/2
=v sinπβ/2 − b cosπβ/2,(11)
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where we set

v = −b tan(πβ/2 + βε).(12)

We set
θε = π/2 − π/2β + ε.

Notice that 0 < θε < π/2.
We shall prove that f̂ is bounded on l(θε). To prove this, consider the function

g(z) = f̂(z)e(b+iv)zβ

, z ∈ D(0, π/2).

By (10), there exists B > 0 such that

|g(z)| ≤ ceB|z|β(13)

for z ∈ D(0, π/2). Since g(x), x ∈ R, is bounded on a neighborhood of x = 0, the condition
(7) implies that there exists a constant C′ > 0 such that

∫ ∞

0

log+ |g(x)|
C′

dx

x
< ∞.(14)

For z = reiπ/2, r > 0, from (10) and (11) we have

|g(z)| ≤ cerβ(A+b cos πβ/2−v sin πβ/2) ≤ c.(15)

Since π/2 < π/β, we can apply Lemma 5 to g on D(0, π/2) to see that g(z) is bounded on
each half line l(θ) with 0 < θ < π/2. For z = reiθε , r > 0, (12) gives

|f̂(z)| = |g(z)||e−(b+iv)zβ | = |g(z)|e−rβ{b cos βθε−v sin βθε}

= |g(z)|e−rβ{b sin(πβ/2+βε)+v cos(πβ/2+βε)} = |g(z)|.

Thus, since g is bounded on l(θε), f̂ is bounded on l(θε).
Applying the same argument to ¯̂

f(z̄), f̂(−z), ¯̂
f(−z̄), we see that f̂ is also bounded on

l(−θε), l(θε + π), and l(−θε + π). By (10), f̂ is also bounded on l(0) and l(π). Notice that
the 6 half lines l(±θε), l(±θε + π), l(0), and l(π) divide the complex plane into 6 sectors
each of which has angle less than π/β. Thus using Lemma 6, we conclude that f̂ is bounded
on the whole plane. Thus by Liouville’s theorem f̂ is a constant. Obviously the constant
must be 0 and hence f̂ = 0 and f = 0. This completes the proof for the case β < 2.

Case II: 2 < β < ∞. Define v by

v = A(sinπ/2β)β .(16)

Consider

g(z) = f̂(z)e(b+iv)zβ

, z ∈ D(0, π/2β).

By (10) and (7), there exist constants B and C′ for which g satisfies (13) for z ∈ D(0, π/2β)
and (14). For z = reiπ/2β , r > 0, it follows from (10) and (16) that

|g(z)| ≤ cerβ{A(sin π/2β)β−v} = c.
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Hence, by Lemma 5, g is bounded on l(θ) for each θ ∈ (0, π/2β). Thus we proved

sup
r>0

{|f̂(reiθ)|erβ(b cos βθ−v sin βθ)} < ∞(17)

for each θ ∈ (0, π/2β).
Applying the same argument with ¯̂

f(z̄) in place of f̂(z), we also have

sup
r>0

{|f̂(re−iθ)|erβ(b cos βθ−v sin βθ)} < ∞(18)

for each θ ∈ (0, π/2β).
Take a θ0 satisfying 0 < θ0 < π/2β and set

b′ = b − v tan βθ0.

Consider the function h(z) = f̂(z)eb′zβ

on D0 = D(−θ0, θ0). For z = re±iθ0 , r > 0, we
have

|h(z)| = |f̂(re±iθ0 )|eb′rβ cos βθ0

= |f̂(re±iθ0 )|erβ(b cos βθ0−v sin βθ0).

Thus, by (17) and (18), the function h(z) is bounded on l(±θ0). By (10), h(z) satisfies the
global estimate |h(z)| ≤ ceB′|z|β on D0. Since 2θ0 < π/β, we can use Lemma 6 to see that
h(z) is bounded on D0. Thus, in particular, f̂(y)eb′yβ

is bounded for y > 0.
Applying the same argument to f̂(−z), we see that f̂(−y)eb′yβ

is also bounded for y > 0.
Thus we conclude that f̂(y)eb′|y|β is bounded for y ∈ R.

Now the conditions (6) and (7) are satisfied with f, α, β, a, b replaced by f̂ , β, α, b′, a.
Notice that b′ → b as θ0 → 0. Hence if we take θ0 sufficiently small the condition (4) is
satisfied with α, β, a, b replaced by β, α, b′, a. Therefore, applying the result of Case I, we
conclude that f = 0. This completes the proof of Theorem 1.

4 Proof of Theorem 2 By dilation of variables, we may assume that a = b = 1/2. We
define f̂(z) by (9). From (6) with a = 1/2 and α = 2, it follows that, for z = x + iy ∈ C,

|f̂(z)| ≤
∫ ∞

−∞
|f(t)|etydt

= ey2/2

∫ ∞

−∞
|f(t)|et2/2e−(t−y)2/2dt ≤ cey2/2,(19)

where c is a constant independent of z. It is also easy to see that f̂ is an entire holomorphic
function. We consider g(z) = f̂(z)ez2/2, which is also an entire function. We shall prove
that g(z) is bounded.

For ε ∈ (0, π/2), we set

vε = (tan ε)/4 = (sin ε)2/2 sin 2ε, θε = π/2 − ε

and
gε(z) = f̂(z)e(1/2+ivε)z

2
.

By (19), there exists a constant Bε such that

|gε(z)| ≤ ceBε|z|2 , z ∈ C.
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For x ∈ R, |gε(x)| = |f̂(x)ex2/2| satisfies (14) for some sufficiently large C′ which is inde-
pendent of ε. For z = reiθε , r > 0, (19) implies

|gε(z)| ≤ ce(r2/2)((sin θε)
2+cos 2θε−2vε sin 2θε)

= ce(r2/2)((cos θε)
2−2vε sin 2θε)

= ce(r2/2)((sin ε)2−2vε sin 2ε) = c.

If 0 < θ < θε, then using Lemma 5 we have

sup
r>0

|gε(reiθ)| � c(θ, ε),

where the constant c(θ, ε) remains bounded if θ ∈ (0, π/2) is fixed and ε → 0. Since, as
ε → 0, vε → 0 and gε(z) → g(z), we conclude that g(z) is bounded on each half line l(θ)
with 0 < θ < π/2.

Applying the same argument to ḡ(−z̄), g(−z), ḡ(z̄), we see that g is also bounded on
the half lines l(θ) for π/2 < θ < π, π < θ < 3π/2, and 3π/2 < θ < 2π. Thus we can find,
say, 5 half lines that divide the complex plane into 5 sectors each of which has angle less
than π/2 and g(z) is bounded on each half line. Thus, using Lemma 6, we can conclude
that g is bounded on the whole complex plane. Since g is entire, it must be constant and
thus f(x) is a constant multiple of e−x2/2.
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