REFINEMENTS OF THE HARDY AND MORGAN UNCERTAINTY PRINCIPLES

T. Kawazoe, J. Liu, A. Miyachi

Received December 8, 2010

Abstract

Various generalizations of Hardy's theorem and Morgan's theorem, which assert that a function on \mathbb{R} and its Fourier transform cannot both be very small, are known. We give two theorems which improve various generalizations known so far.

1 Introduction For an integrable function f on \mathbb{R}, we define the Fourier transform \hat{f} by

$$
\hat{f}(y)=\int_{-\infty}^{+\infty} f(x) e^{-i x y} d x, \quad y \in \mathbb{R}
$$

Classical Hardy's theorem [4] reads as follows: if $a, b>0, a b=1 / 4$, and if f is a measurable function on \mathbb{R} such that

$$
\begin{equation*}
f(x) e^{a x^{2}} \in L^{\infty}(\mathbb{R}) \quad \text { and } \quad \hat{f}(y) e^{b y^{2}} \in L^{\infty}(\mathbb{R}) \tag{1}
\end{equation*}
$$

then f is a constant multiple of $e^{-a x^{2}}$. An immediate corollary of this theorem is the following: if $a, b>0, a b>1 / 4$, and if f is a measurable function on \mathbb{R} satisfying (1), then $f=0$ almost everywhere. The examples $f(x)=e^{a x^{2}} P(x)$ with $P(x)$ polynomials show that there are infinitely many f 's that satisfy (1) for $a b<1 / 4$. Morgan [6] proved the following variant of Hardy's theorem: if $1<\beta<2<\alpha<\infty, 1 / \alpha+1 / \beta=1, a, b>0$, and

$$
\begin{equation*}
(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi(\beta-1) / 2))^{1 / \beta} \tag{2}
\end{equation*}
$$

and if f is a measurable function on \mathbb{R} satisfying

$$
\begin{equation*}
f(x) e^{a|x|^{\alpha}} \in L^{\infty}(\mathbb{R}) \quad \text { and } \quad \hat{f}(y) e^{b|y|^{\beta}} \in L^{\infty}(\mathbb{R}) \tag{3}
\end{equation*}
$$

then $f=0$ almost everywhere. He also obtained that the condition (2) is optimal; if $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}=(\sin (\pi(\beta-1) / 2))^{1 / \beta}$, then for any $m \in \mathbb{R}$ and $m^{\prime}=(2 m-\alpha+2) /(2 \alpha-2)$, there exists a measurable function f on \mathbb{R} such that $(1+|x|)^{-m} f(x) e^{a|x|^{\alpha}} \in L^{\infty}(\mathbb{R})$ and $(1+|y|)^{-m^{\prime}} \hat{f}(y) e^{b|y|^{\beta}} \in L^{\infty}(\mathbb{R})$. Therefore, there are infinitely many f^{\prime} 's that satisfy (3).

Various generalizations of Hardy's theorem and Morgan's theorem are known. Cowling and Price [2] proved that, if in Hardy's theorem the assumption (1) is replaced by

$$
f(x) e^{a x^{2}} \in L^{p}(\mathbb{R}) \quad \text { and } \quad \hat{f}(y) e^{b y^{2}} \in L^{q}(\mathbb{R})
$$

with $1 \leqq p, q \leqq \infty$ and with at least one of p and q finite, then $f=0$. The third author proved that (see [5], Theorem 1), if $a, b>0, a b=1 / 4$, and if f is a measurable function on \mathbb{R} such that

$$
f(x) e^{a x^{2}} \in L^{1}(\mathbb{R})+L^{\infty}(\mathbb{R}) \quad \text { and } \quad \int_{-\infty}^{+\infty} \log ^{+} \frac{\left|\hat{f}(y) e^{b y^{2}}\right|}{C} d y<\infty
$$

2000 Mathematics Subject Classification. 42A38.
Key words and phrases. Hardy's theorem, Morgan's theorem, uncertainty principle.
for some $C>0$, then f is a constant multiple of $e^{-a x^{2}}$. Here $L^{1}(\mathbb{R})+L^{\infty}(\mathbb{R})$ is the set of functions of the form $f=f_{1}+f_{2}, f_{1} \in L^{1}(\mathbb{R}), f_{2} \in L^{\infty}(\mathbb{R})$, and $\log ^{+} x=\log x$ if $x>1$ and $\log ^{+} x=0$ if $x \leq 1$. Ben Farah and Mokni [1] proved that, if we replace L^{∞} in the assumptions of Morgan's theorem by L^{p} and $L^{q}, 1 \leq p, q \leq \infty$, then $f=0$ and the condition (2) is optimal.

The purpose of the present paper is to give further generalizations of the above theorems. Our results are the following two theorems.

Theorem 1 Let $1<\alpha, \beta<\infty, 1 / \alpha+1 / \beta=1, a, b>0$, and

$$
\begin{equation*}
(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>c(\alpha, \beta) \tag{4}
\end{equation*}
$$

with

$$
c(\alpha, \beta)= \begin{cases}(\sin (\pi(\beta-1) / 2))^{1 / \beta} & \text { if } \beta<2 \tag{5}\\ (\sin (\pi(\alpha-1) / 2))^{1 / \alpha} & \text { if } \beta>2\end{cases}
$$

Suppose f is a measurable function on \mathbb{R} such that

$$
\begin{equation*}
e^{a|x|^{\alpha}} f(x) \in L^{1}(\mathbb{R})+L^{\infty}(\mathbb{R}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \log ^{+} \frac{|\hat{f}(y)| e^{b|y|^{\beta}}}{C} \frac{d y}{1+|y|}<\infty \tag{7}
\end{equation*}
$$

for some $C>0$. Then $f=0$ almost everywhere.

THEOREM 2 If $a, b>0, a b=1 / 4$, and if f is a measurable function on \mathbb{R} that satisfies (6) and (7) with $\alpha=\beta=2$, then $f(x)$ is a constant multiple of $e^{-a x^{2}}$.

REMARK 3 (a) If the conditions (4) and (6) are satisfied and if we take $a^{\prime}<a$ sufficiently near to a, then (4) is still satisfied with a^{\prime} in place of a and the condition (6) implies

$$
f(x) e^{a^{\prime}|x|^{\alpha}}=f(x) e^{a|x|^{\alpha}} e^{\left(a^{\prime}-a\right)|x|^{\alpha}} \in L^{1}(\mathbb{R})
$$

Hence the essential claim of Theorem 1 remains unchanged if the assumption (6) is replaced by the seemingly stronger assumption $f(x) e^{a|x|^{\alpha}} \in L^{1}(\mathbb{R})$.
(b) It is easy to see that (3) or its L^{p} - L^{q}-version implies (6) and (7). Therefore, $L^{p}-L^{q}$ Morgan's theorem follows from Theorem 1.
(c) Theorem 2 is an improvement of the third author's Theorem 1 in [5], where the condition
(7) was assumed with $d y$ instead of $d y /(1+|y|)$.
(d) Similarly as Morgan's result, the condition (4) is optimal.

In $\S 3$ we shall prove Theorems 1 and 2. Part of the argument will be only a slight modification of that of [5]. Since the paper [5] was published in a proceedings of a local seminar in Japan and is not easy to refer, we shall repeat some argument of [5] for convenience of the reader.

2 Key lemmas For $-\infty<\alpha<\beta<\infty$, we write

$$
D(\alpha, \beta)=\{z \mid \alpha<\arg z<\beta\}
$$

which is the domain in the Riemann surface of $\log z$. We shall give three lemmas. The first lemma is an improvement of Lemma 1 of [5], where the integral (8) below is taken with respect to $d s$ instead of $d s / s$.

Lemma 4 Let $-\infty<\alpha<\beta<\infty$ and f be a bounded holomorphic function on $D(\alpha, \beta)$. Then for each θ with $\alpha<\theta<\beta$,

$$
\begin{align*}
& \sup _{0<r<\infty} \log \left|f\left(r e^{i \theta}\right)\right| \tag{8}\\
& \leq c_{+}(\alpha, \beta, \theta) \int_{0}^{\infty} \log ^{+}\left|f\left(s e^{i \alpha}\right)\right| \frac{d s}{s}+c_{-}(\alpha, \beta, \theta) \int_{0}^{\infty} \log ^{+}\left|f\left(s e^{i \beta}\right)\right| \frac{d s}{s}
\end{align*}
$$

where

$$
c_{ \pm}(\alpha, \beta, \theta)=\frac{1 \pm \cos \frac{\pi(\theta-\alpha)}{\beta-\alpha}}{2(\beta-\alpha) \sin \frac{\pi(\theta-\alpha)}{\beta-\alpha}}
$$

and $f\left(s e^{i \alpha}\right)$ and $f\left(s e^{i \beta}\right)$ denote the nontangential boundary values of $f(z)$.
Proof. Let $\delta=(\beta-\alpha) / \pi$. For $z=r e^{i \theta} \in D(\alpha, \beta)$, we make a change of variables as $z=e^{i \alpha} w^{\delta}$. Then $w \in D(0, \pi)$ and $g(w)=f(z)=f\left(e^{i \alpha} w^{\delta}\right)$ is a bounded holomorphic function on the upper half plane. Let $P_{w}(t)=\Im w /\left(\pi|w-t|^{2}\right)$ be the Poisson kernel for the upper half plane. Then Jensen's inequality (cf. [3], Chap. II, §4, p.65) gives

$$
\begin{aligned}
& \log |f(z)|=\log |g(w)| \leq \int_{-\infty}^{\infty} P_{w}(t) \log |g(t)| d t \\
& \leq \int_{-\infty}^{\infty} P_{w}(t) \log ^{+}|g(t)| d t \\
& =\int_{-\infty}^{\infty} P_{w}(t) \log ^{+}\left|f\left(e^{i \alpha} t^{\delta}\right)\right| d t \\
& =\int_{0}^{\infty} P_{w}(t) \log ^{+}\left|f\left(e^{i \alpha} t^{\delta}\right)\right| d t+\int_{0}^{\infty} P_{w}(-t) \log ^{+}\left|f\left(e^{i \beta} t^{\delta}\right)\right| d t \\
& =\frac{1}{\delta} \int_{0}^{\infty} P_{w}\left(t^{1 / \delta}\right) t^{1 / \delta} \log ^{+}\left|f\left(e^{i \alpha} t\right)\right| \frac{d t}{t} \\
& \quad+\frac{1}{\delta} \int_{0}^{\infty} P_{w}\left(-t^{1 / \delta}\right) t^{1 / \delta} \log ^{+}\left|f\left(e^{i \beta} t\right)\right| \frac{d t}{t}
\end{aligned}
$$

If we write $w=\left(r e^{i(\theta-\alpha)}\right)^{1 / \delta}=u+i v$, then

$$
\begin{aligned}
& \max _{0<s<\infty}\left\{s P_{w}(\pm s)\right\}=\left[\frac{v s}{\pi\left((u \mp s)^{2}+v^{2}\right)}\right]_{s=\sqrt{u^{2}+v^{2}}} \\
& =\frac{v}{2 \pi\left(\sqrt{u^{2}+v^{2}} \mp u\right)}=\frac{\sqrt{u^{2}+v^{2}} \pm u}{2 \pi v}=\delta c_{ \pm}(\alpha, \beta, \theta)
\end{aligned}
$$

Hence the desired inequality follows.
LEMMA 5 Let $0<\beta-\alpha<\pi / \rho$ and f be a holomorphic function on $D(\alpha, \beta)$. Suppose that there exist constants $A, B>0$ such that

$$
|f(z)| \leq A e^{B|z|^{\rho}}
$$

for all $z \in D(\alpha, \beta)$. Then (8) holds for each θ with $\alpha<\theta<\beta$.

Proof. By a rotation of the variable, we may suppose that $\alpha=-\beta$ and $0<\beta<\pi /(2 \rho)$. Take a γ such that $\gamma>\rho$ and $\gamma \beta<\pi / 2$. For $\epsilon>0$, set $f_{\epsilon}(z)=f(z) e^{-\epsilon z^{\gamma}}$. Then f_{ϵ} is holomorphic on $D=D(-\beta, \beta)$. Moreover, if $z \in D$ and $\phi=\arg z$, then

$$
\left|f_{\epsilon}(z)\right|=|f(z)| e^{-\epsilon|z|^{\gamma} \cos \gamma \phi} \leq A e^{B|z|^{\rho}-\epsilon|z|^{\gamma} \cos \gamma \beta}
$$

Since $\gamma>\rho$ and $\cos \gamma \beta>0$, it follows that f_{ϵ} is bounded on D. Hence (8) holds with f replaced by f_{ϵ}. We note that $\left|f_{\epsilon}(z)\right| \leq|f(z)|$ on D and $f_{\epsilon}(z) \rightarrow f(z)$ as $\epsilon \rightarrow 0$. Hence, letting $\epsilon \rightarrow 0$, we have the desired inequality.

The last lemma is well known as the Phragmén-Lindelöf theorem, which can be proved by an application of Lemma 5 to $f(z) / M$.

Lemma 6 Let α, β, ρ and f satisfy the same assumptions as in Lemma 5. Assume in addition that there exists a constant M such that $|f(z)| \leq M$ on the boundary of $D(\alpha, \beta)$. Then $|f(z)| \leq M$ for all $z \in D(\alpha, \beta)$.

3 Proof of Theorem 1 We shall use the notation

$$
l(\theta)=\left\{r e^{i \theta} \mid r>0\right\}, \quad \theta \in \mathbb{R}
$$

Let a, b, α, β, and f satisfy the assumptions of Theorem 1 . As noted in Remark 3 (a), by replacing a with a smaller constant if necessary, we may assume that $f(t) e^{a|t|^{\alpha}} \in L^{1}(\mathbb{R})$. Thus $f(t), t \in \mathbb{R}$, is of the form $f(t)=f_{1}(t) e^{-a|t|^{\alpha}}$ with $f_{1} \in L^{1}(\mathbb{R})$.

We define $\hat{f}(z)$ for $z \in \mathbb{C}$ by

$$
\begin{equation*}
\hat{f}(z)=\int_{-\infty}^{+\infty} f(t) e^{-i z t} d t \tag{9}
\end{equation*}
$$

For $z=x+i y \in \mathbb{C}$,

$$
|\hat{f}(z)| \leq \int_{-\infty}^{\infty}\left|f_{1}(t)\right| e^{-a|t|^{\alpha}} e^{y t} d t
$$

Using Young's inequality $u^{\alpha} / \alpha+v^{\beta} / \beta \geq u v$ for $u, v>0$ with $u=(\alpha a)^{1 / \alpha}|t|$ and $v=$ $|y| /(\alpha a)^{1 / \alpha}$, we have $a|t|^{\alpha}+|y|^{\beta} /\left(\beta(a \alpha)^{\overline{\beta / \alpha}}\right) \geq|y||t|$ and thus

$$
\int_{-\infty}^{\infty}\left|f_{1}(t)\right| e^{-a|t|^{\alpha}} e^{|y||t|} d t \leq e^{|y|^{\beta} /\left(\beta(a \alpha)^{\beta / \alpha}\right)}\left\|f_{1}\right\|_{1}
$$

Combining the above inequalities, we see that there exists a constant c such that

$$
\begin{equation*}
|\hat{f}(x+i y)| \leq c e^{A|y|^{\beta}}, \quad A=1 /\left(\beta(a \alpha)^{\beta / \alpha}\right) \tag{10}
\end{equation*}
$$

It is also easy to see that $\hat{f}(z)$ is an entire holomorphic function.
We shall consider the two cases $\beta<2$ and $\beta>2$ separately.
Case I: $1<\beta<2$. In this case the condition (4) with (5) implies

$$
A(-\cos \pi \beta / 2)<b
$$

Since $-\cos \pi \beta / 2>0$, we can take a sufficiently small $\epsilon>0$ such that $0<\epsilon<\pi / 2 \beta$ and

$$
\begin{align*}
A & <(-\cos \pi \beta / 2)^{-1} b\left(\frac{\tan (\pi \beta / 2+\beta \epsilon)}{\tan \pi \beta / 2} \sin ^{2} \pi \beta / 2+\cos ^{2} \pi \beta / 2\right) \\
& =-b \tan (\pi \beta / 2+\beta \epsilon) \sin \pi \beta / 2-b \cos \pi \beta / 2 \\
& =v \sin \pi \beta / 2-b \cos \pi \beta / 2 \tag{11}
\end{align*}
$$

where we set

$$
\begin{equation*}
v=-b \tan (\pi \beta / 2+\beta \epsilon) \tag{12}
\end{equation*}
$$

We set

$$
\theta_{\epsilon}=\pi / 2-\pi / 2 \beta+\epsilon
$$

Notice that $0<\theta_{\epsilon}<\pi / 2$.
We shall prove that \hat{f} is bounded on $l\left(\theta_{\epsilon}\right)$. To prove this, consider the function

$$
g(z)=\hat{f}(z) e^{(b+i v) z^{\beta}}, \quad z \in D(0, \pi / 2)
$$

By (10), there exists $B>0$ such that

$$
\begin{equation*}
|g(z)| \leq c e^{B|z|^{\beta}} \tag{13}
\end{equation*}
$$

for $z \in D(0, \pi / 2)$. Since $g(x), x \in \mathbb{R}$, is bounded on a neighborhood of $x=0$, the condition (7) implies that there exists a constant $C^{\prime}>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \log ^{+} \frac{|g(x)|}{C^{\prime}} \frac{d x}{x}<\infty \tag{14}
\end{equation*}
$$

For $z=r e^{i \pi / 2}, r>0$, from (10) and (11) we have

$$
\begin{equation*}
|g(z)| \leq c e^{r^{\beta}(A+b \cos \pi \beta / 2-v \sin \pi \beta / 2)} \leq c \tag{15}
\end{equation*}
$$

Since $\pi / 2<\pi / \beta$, we can apply Lemma 5 to g on $D(0, \pi / 2)$ to see that $g(z)$ is bounded on each half line $l(\theta)$ with $0<\theta<\pi / 2$. For $z=r e^{i \theta_{\epsilon}}, r>0$, (12) gives

$$
\begin{aligned}
|\hat{f}(z)| & =|g(z)|\left|e^{-(b+i v) z^{\beta}}\right|=|g(z)| e^{-r^{\beta}\left\{b \cos \beta \theta_{\epsilon}-v \sin \beta \theta_{\epsilon}\right\}} \\
& =|g(z)| e^{-r^{\beta}\{b \sin (\pi \beta / 2+\beta \epsilon)+v \cos (\pi \beta / 2+\beta \epsilon)\}}=|g(z)| .
\end{aligned}
$$

Thus, since g is bounded on $l\left(\theta_{\epsilon}\right), \hat{f}$ is bounded on $l\left(\theta_{\epsilon}\right)$.
Applying the same argument to $\overline{\hat{f}}(\bar{z}), \hat{f}(-z), \overline{\hat{f}}(-\bar{z})$, we see that \hat{f} is also bounded on $l\left(-\theta_{\epsilon}\right), l\left(\theta_{\epsilon}+\pi\right)$, and $l\left(-\theta_{\epsilon}+\pi\right)$. By (10), \hat{f} is also bounded on $l(0)$ and $l(\pi)$. Notice that the 6 half lines $l\left(\pm \theta_{\epsilon}\right), l\left(\pm \theta_{\epsilon}+\pi\right), l(0)$, and $l(\pi)$ divide the complex plane into 6 sectors each of which has angle less than π / β. Thus using Lemma 6 , we conclude that \hat{f} is bounded on the whole plane. Thus by Liouville's theorem \hat{f} is a constant. Obviously the constant must be 0 and hence $\hat{f}=0$ and $f=0$. This completes the proof for the case $\beta<2$.

Case II: $2<\beta<\infty$. Define v by

$$
\begin{equation*}
v=A(\sin \pi / 2 \beta)^{\beta} \tag{16}
\end{equation*}
$$

Consider

$$
g(z)=\hat{f}(z) e^{(b+i v) z^{\beta}}, \quad z \in D(0, \pi / 2 \beta)
$$

By (10) and (7), there exist constants B and C^{\prime} for which g satisfies (13) for $z \in D(0, \pi / 2 \beta)$ and (14). For $z=r e^{i \pi / 2 \beta}, r>0$, it follows from (10) and (16) that

$$
|g(z)| \leq c e^{r^{\beta}\left\{A(\sin \pi / 2 \beta)^{\beta}-v\right\}}=c .
$$

Hence, by Lemma $5, g$ is bounded on $l(\theta)$ for each $\theta \in(0, \pi / 2 \beta)$. Thus we proved

$$
\begin{equation*}
\sup _{r>0}\left\{\left|\hat{f}\left(r e^{i \theta}\right)\right| e^{r^{\beta}(b \cos \beta \theta-v \sin \beta \theta)}\right\}<\infty \tag{17}
\end{equation*}
$$

for each $\theta \in(0, \pi / 2 \beta)$.
Applying the same argument with $\overline{\hat{f}}(\bar{z})$ in place of $\hat{f}(z)$, we also have

$$
\begin{equation*}
\sup _{r>0}\left\{\left|\hat{f}\left(r e^{-i \theta}\right)\right| e^{r^{\beta}(b \cos \beta \theta-v \sin \beta \theta)}\right\}<\infty \tag{18}
\end{equation*}
$$

for each $\theta \in(0, \pi / 2 \beta)$.
Take a θ_{0} satisfying $0<\theta_{0}<\pi / 2 \beta$ and set

$$
b^{\prime}=b-v \tan \beta \theta_{0} .
$$

Consider the function $h(z)=\hat{f}(z) e^{b^{\prime} z^{\beta}}$ on $D_{0}=D\left(-\theta_{0}, \theta_{0}\right)$. For $z=r e^{ \pm i \theta_{0}}, r>0$, we have

$$
\begin{aligned}
|h(z)| & =\left|\hat{f}\left(r e^{ \pm i \theta_{0}}\right)\right| e^{b^{\prime} r^{\beta} \cos \beta \theta_{0}} \\
& =\left|\hat{f}\left(r e^{ \pm i \theta_{0}}\right)\right| e^{r^{\beta}\left(b \cos \beta \theta_{0}-v \sin \beta \theta_{0}\right)}
\end{aligned}
$$

Thus, by (17) and (18), the function $h(z)$ is bounded on $l\left(\pm \theta_{0}\right)$. By (10), $h(z)$ satisfies the global estimate $|h(z)| \leq c e^{B^{\prime}|z|^{\beta}}$ on D_{0}. Since $2 \theta_{0}<\pi / \beta$, we can use Lemma 6 to see that $h(z)$ is bounded on D_{0}. Thus, in particular, $\hat{f}(y) e^{b^{\prime} y^{\beta}}$ is bounded for $y>0$.

Applying the same argument to $\hat{f}(-z)$, we see that $\hat{f}(-y) e^{b^{\prime} y^{\beta}}$ is also bounded for $y>0$. Thus we conclude that $\hat{f}(y) e^{b^{\prime}|y|^{\beta}}$ is bounded for $y \in \mathbb{R}$.

Now the conditions (6) and (7) are satisfied with f, α, β, a, b replaced by $\hat{f}, \beta, \alpha, b^{\prime}, a$. Notice that $b^{\prime} \rightarrow b$ as $\theta_{0} \rightarrow 0$. Hence if we take θ_{0} sufficiently small the condition (4) is satisfied with α, β, a, b replaced by $\beta, \alpha, b^{\prime}, a$. Therefore, applying the result of Case I, we conclude that $f=0$. This completes the proof of Theorem 1 .

4 Proof of Theorem 2 By dilation of variables, we may assume that $a=b=1 / 2$. We define $\hat{f}(z)$ by (9). From (6) with $a=1 / 2$ and $\alpha=2$, it follows that, for $z=x+i y \in \mathbb{C}$,

$$
\begin{align*}
|\hat{f}(z)| & \leq \int_{-\infty}^{\infty}|f(t)| e^{t y} d t \\
& =e^{y^{2} / 2} \int_{-\infty}^{\infty}|f(t)| e^{t^{2} / 2} e^{-(t-y)^{2} / 2} d t \leq c e^{y^{2} / 2} \tag{19}
\end{align*}
$$

where c is a constant independent of z. It is also easy to see that \hat{f} is an entire holomorphic function. We consider $g(z)=\hat{f}(z) e^{z^{2} / 2}$, which is also an entire function. We shall prove that $g(z)$ is bounded.

For $\epsilon \in(0, \pi / 2)$, we set

$$
v_{\epsilon}=(\tan \epsilon) / 4=(\sin \epsilon)^{2} / 2 \sin 2 \epsilon, \quad \theta_{\epsilon}=\pi / 2-\epsilon
$$

and

$$
g_{\epsilon}(z)=\hat{f}(z) e^{\left(1 / 2+i v_{\epsilon}\right) z^{2}}
$$

By (19), there exists a constant B_{ϵ} such that

$$
\left|g_{\epsilon}(z)\right| \leq c e^{B_{\epsilon}|z|^{2}}, \quad z \in \mathbb{C}
$$

For $x \in \mathbb{R},\left|g_{\epsilon}(x)\right|=\left|\hat{f}(x) e^{x^{2} / 2}\right|$ satisfies (14) for some sufficiently large C^{\prime} which is independent of ϵ. For $z=r e^{i \theta_{\epsilon}}, r>0$, (19) implies

$$
\begin{aligned}
\left|g_{\epsilon}(z)\right| & \leq c e^{\left(r^{2} / 2\right)\left(\left(\sin \theta_{\epsilon}\right)^{2}+\cos 2 \theta_{\epsilon}-2 v_{\epsilon} \sin 2 \theta_{\epsilon}\right)} \\
& =c e^{\left(r^{2} / 2\right)\left(\left(\cos \theta_{\epsilon}\right)^{2}-2 v_{\epsilon} \sin 2 \theta_{\epsilon}\right)} \\
& =c e^{\left(r^{2} / 2\right)\left((\sin \epsilon)^{2}-2 v_{\epsilon} \sin 2 \epsilon\right)}=c .
\end{aligned}
$$

If $0<\theta<\theta_{\epsilon}$, then using Lemma 5 we have

$$
\sup _{r>0}\left|g_{\epsilon}\left(r e^{i \theta}\right)\right| \leqq c(\theta, \epsilon)
$$

where the constant $c(\theta, \epsilon)$ remains bounded if $\theta \in(0, \pi / 2)$ is fixed and $\epsilon \rightarrow 0$. Since, as $\epsilon \rightarrow 0, v_{\epsilon} \rightarrow 0$ and $g_{\epsilon}(z) \rightarrow g(z)$, we conclude that $g(z)$ is bounded on each half line $l(\theta)$ with $0<\theta<\pi / 2$.

Applying the same argument to $\bar{g}(-\bar{z}), g(-z), \bar{g}(\bar{z})$, we see that g is also bounded on the half lines $l(\theta)$ for $\pi / 2<\theta<\pi, \pi<\theta<3 \pi / 2$, and $3 \pi / 2<\theta<2 \pi$. Thus we can find, say, 5 half lines that divide the complex plane into 5 sectors each of which has angle less than $\pi / 2$ and $g(z)$ is bounded on each half line. Thus, using Lemma 6, we can conclude that g is bounded on the whole complex plane. Since g is entire, it must be constant and thus $f(x)$ is a constant multiple of $e^{-x^{2} / 2}$.

References

[1] S. Ben Farah and K. Mokni, Uncertainty principle and L^{p} - L^{q}-version of Morgan's theorem on some groups, Russ. J. Math. Phys. 10 (2003), 245-260.
[2] M. Cowling and J. F. Price, Generalizations of Heisenberg's inequality, Harmonic Analysis (Cortona, Italy, 1982), 443-449, Springer Lecture Notes in Math., 992, Springer, Berlin, 1983.
[3] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Math., 96, Academic Press, Inc., New York - London, 1981.
[4] G. H. Hardy, A theorem concerning Fourier transforms, J. London. Math. Soc. 8 (1933), 227-231.
[5] A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar (Izu-nagaoka, Shizuoka, Japan, 1997), 44-51.
[6] G. W. Morgan, A note on Fourier transforms, J. London Math. Soc. 9 (1934), 187-192.

Takeshi Kawazoe
Department of Mathematics
Keio University at Fujisawa
Endo, Fujisawa, Kanagawa 252-8520
Japan

Jianming Liu
School of Mathematical Sciences
Peking University
Beijing, 100871
P. R. China

Akihiko Miyachi
Department of Mathematics
Tokyo Woman's Christian University
Zempukuji, Suginami-ku, Tokyo 167-8585
Japan

