A NOTE ON f-DERIVATIONS OF SUBTRACTION ALGEBRAS

KYUNG HO KIM

Received June 29, 2010

Abstract. In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

1. Introduction

B. M. Schein [2] considered systems of the form $(\Phi; \circ, \setminus)$, where Φ is a set of functions closed under the composition “\circ” of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction “\setminus” (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [4] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

2. Preliminaries.

We first recall some basic concepts which are used to present the paper.

By a subtraction algebra we mean an algebra $(X; -)$ with a single binary operation “$-$” that satisfies the following identities: for any $x, y, z \in X$,

(S1) $x - (y - x) = x$;
(S2) $x - (x - y) = y - (y - x)$;
(S3) $(x - y) - z = (x - z) - y$.

The last identity permits us to omit parentheses in expressions of the form $(x - y) - z$. The subtraction determines an order relation on X: $a \leq b \iff a - b = 0$, where $0 = a - a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a - b)$; the complement of an element $b \in [0, a]$ is $a - b$; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c)) = a - ((a - b) - ((a - b) - (a - c))).$$

In a subtraction algebra, the following are true:

(p1) $(x - y) - y = x - y$.
(p2) $x - 0 = x$ and $0 - x = 0$.
(p3) $(x - y) - x = 0$.
(p4) $x - (x - y) \leq y$.
(p5) $(x - y) - (y - x) = x - y$.

2000 Mathematics Subject Classification. 16Y99; 20N20.
Key words and phrases. Subtraction algebra, derivation, f-ferivation, isotone derivation.
(p6) \(x - (x - (x - y)) = x - y. \)
(p7) \((x - y) - (z - y) \leq x - z. \)
(p8) \(x \leq y \) if and only if \(x = y - w \) for some \(w \in X. \)
(p9) \(x \leq y \) implies \(x - z \leq y - z \) and \(z - y \leq z - x \) for all \(z \in X. \)
(p10) \(x, y \leq z \) implies \(x - y = x \land (z - y). \)
(p11) \((x \land y) - (x \land z) \leq x \land (y - z). \)
(p12) \((x - y) - z = (x - z) - (y - z). \)

A mapping \(d \) from a subtraction algebra \(X \) to a subtraction algebra \(Y \) is called a morphism if \(d(x - y) = d(x) - d(y) \) for all \(x, y \in X. \) A self map \(d \) of a subtraction algebra \(X \) which is a morphism is called an endomorphism.

Lemma 2.1 Let \(X \) be a subtraction algebra. Then the following properties hold:

1. \(x \land y = y \land x, \) for every \(x, y \in X. \)
2. \(x - y \leq x \) for all \(x, y \in X. \)

Lemma 2.2 Every subtraction algebra \(X \) satisfies the following property.

\[(x - y) - (x - z) \leq z - y \]

for all \(x, y, z \in X. \)

Proof. Using (S3) and (p7), we have

\[
((x - y) - (x - z)) - (z - y) = ((x - (x - z)) - y) - (z - y) \\
\leq (x - (x - z)) - z \\
(x - z) - (x - z) = 0
\]

for all \(x, y, z \in X. \)

Definition 2.3 Let \(X \) be a subtraction algebra and \(Y \) a non-empty set of \(X. \) Then \(Y \) is called a subalgebra if \(x - y \in Y \) whenever \(x, y \in Y. \)

3. \(f \)-derivations of subtraction algebras.

Definition 3.1. ([3]) Let \(X \) be a subtraction algebra. By a derivation of \(X, \) a self-map \(d \) of \(X \) satisfying the identity \(d(x - y) = (d(x) - d(y)) \) for all \(x, y \in X \) is meant.

Example 3.2. Let \(X = \{0, a, b\} \) be a subtraction algebra with the following Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map \(d : X \to X \) by

\[d(x) = \begin{cases}
0 & \text{if } x = 0, b \\
b & \text{if } x = a
\end{cases} \]

Then it is easily checked that \(d \) is a derivation of subtraction algebra \(X. \)

Definition 3.3 Let \(X \) be a subtraction algebra. A function \(d : X \to X \) is called an \(f \)-derivation on \(X \) if there exists a function \(f : X \to X \) such that

\[d(x - y) = (d(x) - f(y)) \land (f(x) - d(y)) \]

for all \(x, y \in X. \)

Example 3.4. Let \(X = \{0, 1, 2, 3\} \) in which “−” is defined by
A NOTE ON f-DERIVATIONS OF SUBTRACTION ALGEBRAS 467

It is easy to check that $(X; -)$ is a subtraction algebra. Define a map $d : X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, 3 \\ 1 & \text{if } x = 2 \\ 2 & \text{if } x = 1 \end{cases}$$

and define a map $f : X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, 2 \\ 2 & \text{if } x = 1, 3 \end{cases}$$

Then it is easily checked that d is an f-derivation of a subtraction algebra X.

Example 3.5. Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

<table>
<thead>
<tr>
<th>−</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $d : X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$$

and define a map $f : X \to X$ by $f : X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$$

Then it is easily checked that d is an f-derivation of subtraction algebra X.

Example 3.6. In Example 3.4, f-derivation d is not a derivation of X since $2 = d(1) = d(1 - 2) \neq (d(1) - 2) \land (1 - d(2)) = (2 - 2) \land (1 - 1) = 0 \land 0 = 0$.

\[
\begin{array}{ccc}
& 3 & \\
1 & & 2 \\
& 0 & \\
\end{array}
\]
Proposition 3.7. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:

1. $d(x) \leq f(x)$ for all $x, y \in X$,
2. $d(x - y) \leq f(x)$ for all $x, y \in X$.

Proof. (1) By definition of f-derivation and Proposition 3.7 (1), we have $d(x - y) \leq d(x) - d(y)$ for all $x, y \in X$.

(2) By definition of f-derivation, we have

\[
\begin{align*}
 d(x - y) &= (d(x) - f(y)) \wedge (f(x) - d(y)) \\
 &\leq f(x) - d(y) \\
 &\leq f(x)
\end{align*}
\]

for all $x, y \in X$.

Proposition 3.8. Let X be a subtraction algebra and d an f-derivation. Then $d(0) = 0$.

Proof. By definition of f-derivation, we have

\[
\begin{align*}
 d(0) &= d(0 - 0) = (d(0) - f(0)) \wedge (f(0) - d(0)) \\
 &= (d(0) - f(0)) - ((d(0) - f(0)) - (f(0) - d(0))) \\
 &= (d(0) - f(0)) - (d(0) - f(0)) = 0
\end{align*}
\]

from (p5).

Proposition 3.9. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:

1. $d(x - y) \leq d(x) - d(y)$ for all $x, y \in X$,
2. $d(x) - f(y) \leq f(x) - d(y)$ for all $x, y \in X$.

Proof. (1) By definition of f-derivation and Proposition 3.7 (1), we have $d(x - y) \leq d(x) - f(y) \leq d(x) - d(y)$ for all $x, y \in X$.

(2) Since $d(x) \leq f(x)$ for all $x \in X$, we have $d(x) - f(y) \leq f(x) - f(y) \leq f(x) - d(y)$.

Theorem 3.10. Let X be a subtraction algebra. If d is an f-derivation of X, $d(x - y) = d(x) - f(y)$ for all $x, y \in X$.

Proof. Suppose that d is an f-derivation of X. Then for any $x, y \in X$, we have $d(x) - f(y) \leq f(x) - d(y)$ by Proposition 3.9 (2) and

\[
 d(x - y) = (d(x) - f(y)) \wedge (f(x) - d(y)) = d(x) - f(y).
\]

Definition 3.11. Let X be a subtraction algebra and d a derivation on X. If $x \leq y$ implies $d(x) \leq d(y)$, d is called an isotone derivation.

Theorem 3.12. Let d be an f-derivation of X. Then d is an isotone derivation.

Proof. Let $x \leq y$ for all $x, y \in X$. Then by (p8), $x = y - w$ for some $w \in X$. Hence we have

\[
 d(x) = d(y - w) = (d(y) - f(w)) \wedge (f(y) - d(w)) \leq d(y) - f(w) \leq d(y)
\]

by Lemma 2.3 (2).

Let d be a f-derivation of X. Define a set by

\[
 F := \{x \mid d(x) = f(x)\}
\]
for all \(x \in X \).

Proposition 3.13. Let \(d \) be an \(f \)-derivation and \(f \) an endomorphism. Then \(F \) is a subalgebra of \(X \).

Proof. Let \(x, y \in F \). Then we get \(d(x) = f(x) \) and \(d(y) = f(y) \), and so \(d(x - y) = d(x) - f(y) \wedge f(x) = f(x) - f(y) = f(x - y) \). Hence \(x - y \in F \). This completes the proof.

Theorem 3.14. Let \(d \) be an \(f \)-derivation and \(f \) an increasing endomorphism. If \(x \leq y \) and \(y \in F \), then we have \(x \in F \).

Proof. Let \(x \leq y \) and \(y \in F \). Then we obtain \(f(x) \leq f(y) \) and \(f(y) = d(y) \), and so we have

\[
\begin{align*}
d(x) &= d(x \wedge y) = d(x - (x - y)) = d(y - (y - x)) \\
&= d(y) - f(y - x) = d(y) - (f(y) - f(x)) \quad \text{(by Theorem 3.10)} \\
&= f(y) - (f(y) - f(x)) = f(x) - (f(x) - f(y)) \\
&= f(x) - 0 \leq f(x).
\end{align*}
\]

This completes the proof.

Definition 3.15. Let \(X \) be a subtraction algebra and \(d \) an \(f \)-derivation. Define a \(\text{Kerd} \) by

\[
\text{Kerd} = \{ x \in X \mid d(x) = 0 \}.
\]

Proposition 3.16. Let \(X \) be a subtraction algebra and \(d \) an \(f \)-derivation. Then \(\text{Kerd} \) is a subalgebra of \(X \).

Proof. Let \(x, y \in \text{Kerd} \). Then \(d(x) = d(y) = 0 \), and so \(d(x - y) \leq d(x) - d(y) = 0 - 0 = 0 \) by Proposition 3.9 (1). Thus \(d(x - y) = 0 \) that is, \(x - y \in \text{Kerd} \). Hence \(\text{Kerd} \) is a subalgebra of \(X \).

Proposition 3.17. Let \(X \) be a subtraction algebra and \(d \) an \(f \)-derivation. If \(x \in \text{Kerd} \) and \(y \in X \), then \(x \wedge y \in \text{Kerd} \).

Proof. Let \(x \in \text{Kerd} \). Then we get \(d(x) = 0 \), and so

\[
\begin{align*}
d(x \wedge y) &= d(x - (x - y)) = d(x) - f(x - y) \\
&= 0 - f(x - y) \\
&= 0.
\end{align*}
\]

This completes the proof.

References

Department of Mathematics, Chungju National University, Chungbuk, Chungju 380-702, Korea

E-mail address: ghkim@cjnu.ac.kr