ON $B E$-ALGEBRAS

Hee Sik Kim and Young Hee Kim

Received November 1, 2006

Abstract

In this paper, as a generalization of a $B C K$-algebra, we introduce the notion of a $B E$-algebra, and using the notion of upper sets we give an equivalent condition of the filter in $B E$-algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([3,4])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[1,2] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and X . Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras which is another generalization of $B C K$-algebras, and also they introduced the notion of B-algebras ($[10,11]$), i.e., (I) $x * x=0$; (II) $x * 0=x$; (III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$, which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([7]) introduced a new notion, called an $B H$-algebra, which is a generalization of $B C H / B C I / B C K$-algebras, i.e., (I); (II) and (IV) $x * y=0$ and $y * x=0$ imply $x=y$ for any $x, y \in X$. A. Walendziak obtained the another equivalent axioms for B-algebra ([12]). H. S. Kim, Y. H. Kim and J. Neggers ([6]) introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim ([5]) introduced the notion of a $B M$-algebra which is a specialization of B-algebras. They proved that the class of $B M$-algebras is a proper subclass of B-algebras and also showed that a $B M$-algebra is equivalent to a 0 -commutative B-algebra. In this paper, as a generalization of a $B C K$-algebra, we introduce the notion of a $B E$-algebra, and using the notion of upper sets we give an equivalent condition of the filter in $B E$-algebras.

Definition 1. An algebra $(X ; *, 1)$ of type $(2,0)$ is called a $B E$-algebra if
(BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(BE3) $1 * x=x$ for all $x \in X$;
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$ (exchange)
We introduce a relation " \leq " on X by $x \leq y$ if and only if $x * y=1$.
Proposition 2. If $(X ; *, 1)$ is a $B E$-algebra, then $x *(y * x)=1$ for any $x, y \in X$.
Proof. Given $x, y \in X$, we have $1=y * 1=y *(x * x)=x *(y * x)$, proving the proposition.

[^0]Example 3. Let $X:=\{1, a, b, c, d, 0\}$ be a set with the following table:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then $(X ; *, 1)$ is a $B E$-algebra.
Definition 4. Let $(X ; *, 1)$ be a $B E$-algebra and let F be a non-empty subset of X. Then F is said to be a filter of X if
(F1) $1 \in F$;
(F2) $x * y \in F$ and $x \in F$ imply $y \in F$.
In Example 3, $F_{1}:=\{1, a, b\}$ is a filter of X, but $F_{2}:=\{1, a\}$ is not a filter of X, since $a * b \in F_{2}$ and $a \in F_{2}$, but $b \notin F_{2}$.

Definition 5. Let X be a $B E$-algebra and let $x, y \in X$. Define

$$
A(x, y):=\{z \in X \mid x *(y * z)=1\}
$$

We call $A(x, y)$ an upper set of x and y. It is easy to see that $1, x, y \in A(x, y)$ for any $x, y \in X$. The set $A(x, y)$, where $x, y \in X$, need not be a filter of X in general. In Example 3 , it is easy to check that $A(1, a)=\{1, a\}=F_{2}$, which means that $A(1, a)$ is not a filter of X.

Proposition 6. Let X be a $B E$-algebra. If $y \in X$ satisfies $y * z=1$ for all $z \in X$, then $A(x, y)=X=A(y, x)$ for all $x \in X$.

Proof. Straightforward.

Definition 7. A $B E$-algebra $(X, *, 1)$ is said to be self distributive if $x *(y * z)=$ $(x * y) *(x * z)$ for all $x, y, z \in X$.

Example 8. Let $X:=\{1, a, b, c, d\}$ be a set with the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a $B E$-algebra satisfying self distributivity.
Note that the $B E$-algebra in Example 3 is not self distributive, since $d *(a * 0)=d * d=1$, while $(d * a) *(d * 0)=1 * a=a$.

Theorem 9. Let $(X ; *, 1)$ be a self distributive $B E$-algebra. Then the upper set $A(x, y)$ is a filter of X, where $x, y \in X$.

Proof. Let $a * b \in A(x, y)$ and $a \in A(x, y)$. Then $1=x *(y *(a * b))$ and $1=x *(y * a)$. It follows from the self distributivity law that

$$
\begin{aligned}
1 & =x *(y *(a * b)) \\
& =x *((y * a) *(y \\
& =(x *(y * a)) *(x \\
& =1 *(x *(y * b)) \\
& =x *(y * b),
\end{aligned}
$$

$$
=x *((y * a) *(y * b)) \quad[\text { self distributive }]
$$

$$
=(x *(y * a)) *(x *(y * b)) \quad[\text { self distributive }]
$$

$$
=1 *(x *(y * b)) \quad[a \in A(x, y)]
$$

$$
[(\mathrm{BE} 3)]
$$

whence $b \in A(x, y)$. This proves that $A(x, y)$ is a filter of X.
Using the notion of upper set $A(x, y)$ we give an equivalent condition of the filter in $B E$ algebras.

Theorem 10. Let F be a non-empty subset of a $B E$-algebra X. Then F is a filter of X if and only if $A(x, y) \subseteq F$ for all $x, y \in F$.

Proof. Assume that F is a filter of X and let $x, y \in F$. If $z \in A(x, y)$, then $x *(y * z)=1 \in$ F. Since $x, y \in F$, by applying $(F 2)$ we have $z \in F$. Hence $A(x, y) \subseteq F$. Conversely, suppose that $A(x, y) \subseteq F$ for all $x, y \in F$. Since $x *(y * 1)=x * 1=1,1 \in A(x, y) \subseteq F$. Assume $a * b, a \in F$. Since $(a * b) *(a * b)=1$, we have $b \in A(a * b, a) \subseteq F$. Hence F is a filter of X.

Theorem 11. If F is a filter of a $B E$-algebra X, then $F=\cup_{x, y \in F} A(x, y)$.
Proof. Let F be a filter of X and let $z \in F$. Since $z *(1 * z)=z * z=1$, we have $z \in A(z, 1)$. Hence

$$
F \subseteq \cup_{z \in F} A(z, 1) \subseteq \cup_{x, y \in F} A(x, y)
$$

If $z \in \cup_{x, y \in F} A(x, y)$, then there exist $a, b \in F$ such that $z \in A(a, b)$. It follows from Theorem 10 that $z \in F$. This means that $\cup_{x, y \in F} A(x, y) \subseteq F$. This completes the proof.

Corollary 12. If F is a filter of a $B E$-algebra X, then $F=\cup_{x \in F} A(x, 1)$.
Proof. If $z \in \cup_{x \in F} A(x, 1)$, then there exists $a \in F$ such that $z \in A(a, 1)$, which means that $a * z=a *(1 * z)=1 \in F$. Since F is a filter of X and $a \in F$, we have $z \in F$. This proves $\cup_{x \in F} A(x, 1) \subseteq F$. The converse was proved in the proof of Theorem 11.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[5] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japo. 63(3) (2006), 421-427.
[6] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(4) (2004) 471-481.
[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
[8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).
[9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
[11] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
[12] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56(3) (2006), 301-306.

Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
heekim@hanyang.ac.kr
Young Hee Kim
Department of Mathematics
Chungbuk National University
Chongju, 361-763, Korea
yhkim@chungbuk.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. BE-algebras, filter, upper set, self-distributive.

