ON *BE***-ALGEBRAS**

HEE SIK KIM AND YOUNG HEE KIM

Received November 1, 2006

ABSTRACT. In this paper, as a generalization of a BCK-algebra, we introduce the notion of a BE-algebra, and using the notion of upper sets we give an equivalent condition of the filter in BE-algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras which is another generalization of BCK-algebras, and also they introduced the notion of B-algebras ([10, 11]), i.e., (I) x * x = 0; (II) x * 0 = x; (III) (x * y) * z = x * (z * (0 * y)), for any $x, y, z \in X$, which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([7]) introduced a new notion, called an BH-algebra, which is a generalization of BCH/BCI/BCK-algebras, i.e., (I); (II) and (IV) x * y = 0 and y * x = 0 imply x = y for any $x, y \in X$. A. Walendziak obtained the another equivalent axioms for B-algebra ([12]). H. S. Kim, Y. H. Kim and J. Neggers ([6]) introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim ([5]) introduced the notion of a *BM*-algebra which is a specialization of B-algebras. They proved that the class of BM-algebras is a proper subclass of B-algebras and also showed that a BM-algebra is equivalent to a 0-commutative B-algebra. In this paper, as a generalization of a BCK-algebra, we introduce the notion of a BE-algebra, and using the notion of upper sets we give an equivalent condition of the filter in *BE*-algebras.

Definition 1. An algebra (X; *, 1) of type (2, 0) is called a *BE-algebra* if

- (BE1) x * x = 1 for all $x \in X$;
- (BE2) x * 1 = 1 for all $x \in X$;
- (BE3) 1 * x = x for all $x \in X$;

(BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$ (exchange)

We introduce a relation " \leq " on X by $x \leq y$ if and only if x * y = 1.

Proposition 2. If (X; *, 1) is a *BE*-algebra, then x * (y * x) = 1 for any $x, y \in X$.

Proof. Given $x, y \in X$, we have 1 = y * 1 = y * (x * x) = x * (y * x), proving the proposition.

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. BE-algebras, filter, upper set, self-distributive.

Example 3. Let $X := \{1, a, b, c, d, 0\}$ be a set with the following table:

*	1	a	b	c	d	0
1	1	a	b	С	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X; *, 1) is a *BE*-algebra.

Definition 4. Let (X; *, 1) be a *BE*-algebra and let *F* be a non-empty subset of *X*. Then *F* is said to be a *filter* of *X* if

(F1) $1 \in F$;

(F2) $x * y \in F$ and $x \in F$ imply $y \in F$.

In Example 3, $F_1 := \{1, a, b\}$ is a filter of X, but $F_2 := \{1, a\}$ is not a filter of X, since $a * b \in F_2$ and $a \in F_2$, but $b \notin F_2$.

Definition 5. Let X be a *BE*-algebra and let $x, y \in X$. Define

$$A(x,y) := \{ z \in X \mid x * (y * z) = 1 \}$$

We call A(x, y) an upper set of x and y. It is easy to see that $1, x, y \in A(x, y)$ for any $x, y \in X$. The set A(x, y), where $x, y \in X$, need not be a filter of X in general. In Example

 $x, y \in X$. The set A(x, y), where $x, y \in X$, need not be a inter of X in general. In Example 3, it is easy to check that $A(1, a) = \{1, a\} = F_2$, which means that A(1, a) is not a filter of X.

Proposition 6. Let X be a BE-algebra. If $y \in X$ satisfies y * z = 1 for all $z \in X$, then A(x, y) = X = A(y, x) for all $x \in X$.

Proof. Straightforward.

Definition 7. A *BE*-algebra (X, *, 1) is said to be *self distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Example 8. Let $X := \{1, a, b, c, d\}$ be a set with the following table:

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a *BE*-algebra satisfying self distributivity.

Note that the *BE*-algebra in Example 3 is not self distributive, since d*(a*0) = d*d = 1, while (d*a)*(d*0) = 1*a = a.

Theorem 9. Let (X; *, 1) be a self distributive *BE*-algebra. Then the upper set A(x, y) is a filter of X, where $x, y \in X$.

Proof. Let $a * b \in A(x, y)$ and $a \in A(x, y)$. Then 1 = x * (y * (a * b)) and 1 = x * (y * a). It follows from the self distributivity law that

1	=	$x \ast (y \ast (a \ast b))$	
	=	$x \ast ((y \ast a) \ast (y \ast b))$	[self distributive]
	=	$(x\ast(y\ast a))\ast(x\ast(y\ast b))$	[self distributive]
	=	$1 \ast (x \ast (y \ast b))$	$[a \in A(x, y)]$
	=	x * (y * b),	[(BE3)]

whence $b \in A(x, y)$. This proves that A(x, y) is a filter of X.

Using the notion of upper set A(x, y) we give an equivalent condition of the filter in *BE*-algebras.

Theorem 10. Let F be a non-empty subset of a BE-algebra X. Then F is a filter of X if and only if $A(x,y) \subseteq F$ for all $x, y \in F$.

Proof. Assume that F is a filter of X and let $x, y \in F$. If $z \in A(x, y)$, then $x*(y*z) = 1 \in F$. Since $x, y \in F$, by applying (F2) we have $z \in F$. Hence $A(x, y) \subseteq F$. Conversely, suppose that $A(x, y) \subseteq F$ for all $x, y \in F$. Since $x*(y*1) = x*1 = 1, 1 \in A(x, y) \subseteq F$. Assume $a*b, a \in F$. Since (a*b)*(a*b) = 1, we have $b \in A(a*b, a) \subseteq F$. Hence F is a filter of X. \Box

Theorem 11. If F is a filter of a BE-algebra X, then $F = \bigcup_{x,y \in F} A(x,y)$.

Proof. Let F be a filter of X and let $z \in F$. Since z * (1 * z) = z * z = 1, we have $z \in A(z, 1)$. Hence

$$F \subseteq \bigcup_{z \in F} A(z, 1) \subseteq \bigcup_{x, y \in F} A(x, y).$$

If $z \in \bigcup_{x,y \in F} A(x,y)$, then there exist $a, b \in F$ such that $z \in A(a,b)$. It follows from Theorem 10 that $z \in F$. This means that $\bigcup_{x,y \in F} A(x,y) \subseteq F$. This completes the proof. \Box

Corollary 12. If F is a filter of a BE-algebra X, then $F = \bigcup_{x \in F} A(x, 1)$.

Proof. If $z \in \bigcup_{x \in F} A(x, 1)$, then there exists $a \in F$ such that $z \in A(a, 1)$, which means that $a * z = a * (1 * z) = 1 \in F$. Since F is a filter of X and $a \in F$, we have $z \in F$. This proves $\bigcup_{x \in F} A(x, 1) \subseteq F$. The converse was proved in the proof of Theorem 11.

References

- [1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- [4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.

- [5] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japo. 63(3) (2006), 421-427.
- [6] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(4) (2004) 471-481.
- [7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).
- [9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- [11] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
- [12] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56(3) (2006), 301-306.

Hee Sik Kim Department of Mathematics Hanyang University Seoul 133-791, Korea heekim@hanyang.ac.kr

Young Hee Kim Department of Mathematics Chungbuk National University Chongju, 361-763, Korea yhkim@chungbuk.ac.kr