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DUAL POSITIVE IMPLICATIVE HYPER K-IDEALS OF TYPE 4

L. Torkzadeh and M.M Zahedi

Received November 1, 2002

Abstract.In this note first we define the notion of dual positive implicative hyper K-
ideal of type 4, where for simplicity is written by DPIHKI − T4. Then we give some
related results. Finally we determine all of hyper K-algebras of order 3, which have
D1 = {1}, D2 = {1, 2} or D3 = {0, 1} as a DPIHKI − T4.

1 Introduction The hyperalgebraic structure theory was introduced by F. Marty [6] in
1934. Imai and Iseki [6] in 1966 introduced the notion of a BCK-algebra. Borzooei, Jun
and Zahedi et.al. [2,3,9] applied the hyperstructure to BCK-algebras and introduced the
concept of hyper K-algebra which is a generalization of BCK-algebra. In [1], the authors
have defined 8 types of positive implicative hyper K-ideals. Recently in [8] we introduced
the notion of dual positive implicative hyper K-ideal of type 3 and then we characterized
them. Now in this note first we define the notion of dual positive implicative hyper K-ideal
of type 4, then we obtain some related results which have been mentioned in the abstract.
We will define and study the other types of dual positive implicative hyper K-idaels in the
next papers.

2 Preliminaries

Definition 2.1. [2] Let H be a nonempty set and ” ◦ ” be a hyperoperation on H , that is
” ◦ ” is a function from H ×H to P∗(H) = P(H)\{∅}. Then H is called a hyper K-algebra
if it contains a constant ”0” and satisfies the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y
(HK3) x < x
(HK4) x < y, y < x ⇒ x = y
(HK5) 0 < x,
for all x, y, z ∈ H , where x < y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H , A < B is
defined by ∃a ∈ A, ∃b ∈ B such that a < b.

Note that if A,B ⊆ H , then by A ◦ B we mean the subset
⋃

a∈A
b∈B

a ◦ b of H .

Theorem 2.2. [2] Let (H, ◦, 0) be a hyper K-algebra. Then for all x, y, z ∈ H and for all
non-empty subsets A, B and C of H the following hold:
(i) x ◦ y < z ⇔ x ◦ z < y, (ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z,
(iii) x ◦ (x ◦ y) < y, (iv) x ◦ y < x,
(v) A ⊆ B implies A < B, (vi) x ∈ x ◦ 0,
(vii) (A ◦ C) ◦ (A ◦ B) < B ◦ C, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦ B,
(ix) A ◦ B < C ⇔ A ◦ C < B, (x) A ◦ B < A.
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Definition 2.3. [2] Let (H, ◦, 0) be a hyper K-algebra. If there exists an element 1 ∈ H
such that x < 1 for all x ∈ H , then H is called a bounded hyper K-algebra and 1 is said to
be the unit of H .
In a bounded hyper K-algebra, we denote 1 ◦ x by Nx.

Definition 2.4. [8] Let H be a bounded hyper K-algebra. Then a non-empty subset D of
H is called a dual positive implicative hyper K-ideal type 3 (DPIHKI-T3) if it satisfies:
(i)1 ∈ D
(ii)N((Nx ◦ Ny) ◦ Nz) < D and N(Ny ◦ Nz) < D imply N(Nx ◦ Nz) ⊆ D, ∀x, y, z ∈ H .

Theorem 2.5. [8] Let H = {0, 1, 2} be a hyper K-algebra of order 3 with unit 1 and let
D = {0, 1} in H . Then D is a DPIHKI − T 3 if and only if 2 	∈ 1 ◦ 2 and 2 	∈ 1 ◦ 1.

3 Dual positive implicative hyper K-ideals of type 4

From now on H is a bounded hyper K-algebra with unit 1.

Definition 3.1. A non-empty subset D of H is called a dual positive implicative hyper
K-ideal type 4 (DPIHKI − T 4) if it satisfies:
(i)1 ∈ D
(ii) N((Nx◦Ny)◦Nz) ⊆ D and N(Ny◦Nz) < D imply that N(Nx◦Nz) ⊆ D, ∀x, y, z ∈ H .

Example 3.2. Let H = {0, 1, 2}. Then the following table shows a hyper K-algebra
structure on H with unit 1.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1}

Furthermore D1 = {1}, D2 = {1, 2} and D3 = {0, 1} are DPIHKI − T 4.

Example 3.3. Let H = {0, 1, 2}. Then the following table shows a hyper K-algebra
structure on H with unit 1.

◦ 0 1 2
0 {0} {0, 2} {0}
1 {1} {0, 1} {2}
2 {2} {0, 2} {0, 2}

Also D1 = {1} and D3 = {0, 1} are DPIHKI−T 4, but D2 = {1, 2} is not a DPIHKI−T 4.

From now on we let D is a non-empty subset of a bounded hyper K-algebra H with unit
1, and 1 ∈ D.

Theorem 3.4. A non-empty subset D of H is a DPIHKI − T 4 if and only if
N((Nx ◦ Ny) ◦ Nz) ⊆ D implies that N(Nx ◦ Nz) ⊆ D, ∀x, y, z ∈ H .
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Proof. Let D be a DPIHKI − T 4 and N((Nx ◦ Ny) ◦ Nz) ⊆ D. Then by Definition 2.1
and Theorem 2.2(x) we conclude that N(Ny ◦ Nz) < D; ∀y, z ∈ H . So by hypothesis we
get that N(Nx ◦ Nz) ⊆ D, ∀x, z ∈ H .
The proof of the converse is trivial.

Theorem 3.5. If D is a DPIHKI − T 3 of H , then D is a DPIHKI − T 4.
Proof. Straightforward.

Theorem 3.6. Let D ⊆ H and 0 	∈ D. If 1 ∈ 1 ◦ x; ∀x ∈ H , then D is a DPIHKI − T 4.

Proof. By hypothesis we get that 1 ∈ 1 ◦ 1 ⊆ (1 ◦ 1) ◦ 1 ⊆ ((1 ◦ x) ◦ (1 ◦ y)) ◦ (1 ◦ z);
∀x, y, z ∈ H . So 0 ∈ 1 ◦ 1 ⊆ 1 ◦ (((1 ◦ x) ◦ (1 ◦ y)) ◦ (1 ◦ z)), ∀x, y, z ∈ H . Since 0 	∈ D, so
N((Nx ◦ Ny) ◦ Nz) 	⊆ D,∀x, y, z ∈ H . Therefore by Theorem 3.4. we conclude that D is a
DPIHKI − T 4.

Note that D1 = {1} and D2 = {1, 2} in Example 3.2 satisfy the conditions of Theorem 3.6.

Theorem 3.7. In H we have 1 ◦ 0 = {1}.

Proof. By Theorem 2.2(vi) we have 1 ∈ 1 ◦ 0, now we prove that 1 ◦ 0 = {1}. On
the contrary let 1 ◦ 0 	= {1}. Then there exists 1 	= x ∈ 1 ◦ 0. By (HK2) we have
0 ∈ x ◦ x ⊆ (1 ◦ 0) ◦ x = (1 ◦ x) ◦ 0. So there exists t ∈ 1 ◦ x such that 0 ∈ t ◦ 0, hence t < 0.
By (HK4) and (HK5) we get that t = 0. Thus 0 ∈ 1 ◦ x, so 1 < x. Since 1 is the unit of
H , by (HK4) we conclude that x = 1, which is a contradiction.

Theorem 3.8. Let 1 ◦ 1 = {0}. If 0 	∈ D, then D is not a DPIHKI − T 4.

Proof. By (HK2), Theorem 3.7 and hypothesis we have 0◦0 = (1◦1)◦0 = (1◦0)◦1 = 1◦1 =
0. So we get that 1 = 1◦0 = 1◦(0◦0) = 1◦((1◦1)◦(1◦1)) = 1◦(((1◦0)◦(1◦0))◦(1◦1)) ⊆ D,
that is N((N0 ◦ N0) ◦ N1) ⊆ D. Also 0 = 1 ◦ 1 = 1 ◦ (1 ◦ 0) = 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)). Now
since 0 	∈ D, we have N(N0 ◦ N1) 	⊆ D. Thus D is not a DPIHKI − T 4.

Example 3.9. Let H = {0, 1, 2}.Then the following table shows a hyper K-algebra struc-
ture on H with unit 1.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 1, 2}

And D1 = {1} and D2 = {1, 2} are not DPIHKI − T 4, by Theorem 3.8.

Theorem 3.10. Let NNx = x, ∀x ∈ H and D ⊆ H . If 0 	∈ D, then D is not a
DPIHKI − T 4.

Proof. We prove that 1 ◦ 1 = {0}. On the contrary let 1 ◦ 1 	= {0}. Then there exists
0 	= x ∈ 1 ◦ 1. By hypothesis we get that 1 ◦ x ⊆ 1 ◦ (1 ◦ 1) = NN1 = 1, so 1 ◦ x = 1.
Since NNx = x, hence x = 1 ◦ (1 ◦ x) = 1 ◦ 1. Therefore 0 ∈ 1 ◦ 1 = x, that is x = 0
which is a contradiction. Thus 1 ◦ 1 = {0}. So by Theorem 3.8 we conclude that D is not
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a DPIHKI − T 4.

Example 3.11. Let H = {0, 1, 2}.Then the following table shows a hyper K-algebra
structure on H with unit 1.

◦ 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0} {2}
2 {2} {0, 1, 2} {0}

Then we can see that NNx = x. Also by Theorem 3.10 D1 = {1} and D2 = {1, 2} are not
DPIHKI − T 4.

Lemma 3.12. Let NNx = x. Then 1 ◦ 1 = {0} and 0 ◦ 0 = {0}.

Proof. See the proofs of Theorems 3.10 and 3.8.

Theorem 3.13. Let 1 	= x ∈ H and x 	∈ D or 0 	∈ D. If 1 ◦ 1 = {0, x} and 1 ◦ x = {1},
then D is not a DPIHKI − T 4.

Proof. By (HK2) we have (1 ◦ 1) ◦ x = (1 ◦ x) ◦ 1 = 1 ◦ 1 = {0, x} and (1 ◦ 1) ◦ 0 =
(1 ◦ 0) ◦ 1 = 1 ◦ 1 = {0, x}. So by hypothesis we get that 0 ◦ x, x ◦ x and 0 ◦ 0 ⊆ {0, x},
also x ◦ 0 = {x}. Hence we have 1 ◦ (((1 ◦ 0) ◦ (1 ◦ 0)) ◦ (1 ◦ 1)) ⊆ 1 ◦ {0, x} = {1} ⊆ D and
{0, x} = 1 ◦ 1 ⊆ 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)). Since 0 or x 	∈ D, hence N(N0 ◦ N1) 	⊆ D. Therefore
D is not a DPIHKI − T 4.

Example 3.14. Let H = {0, 1, 2}. Then the following table shows a hyper K-algebra
structure on H with unit 1.

◦ 0 1 2
0 {0, 2} {0, 1, 2} {0}
1 {1} {0, 2} {1}
2 {2} {0, 1, 2} {0, 2}

And D1 = {1}, D2 = {1, 2} and D3 = {0, 1} are not DPIHKI − T 4, by Theorem 3.13.

4 Dual positive implicative hyper K-algebras of type 4 of order 3

In the sequel we let H = {0, 1, 2} be a bounded hyper K-algebra of order 3 with unit 1
and D1 = {1} , D2 = {1, 2} and D3 = {0, 1} be subsets of H .

Lemma 4.1. Let NNx = x; ∀x ∈ H . Then D3 is a DPIHKI − T 4 if and only if
2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1).

Proof. Theorem 3.7 and Lemma 3.12 imply that 1◦0 = {1} and 1◦1 = {0}. Now by a simple
argument we get that 1◦2 = {2}. By (HK2) we have 2◦0 = (1◦2)◦0 = (1◦0)◦2 = 1◦2 = {2}.
Let D3 be a DPIHKI − T 4 we prove that 2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1). On the contrary let

2 	∈ (2 ◦ 2)
⋂

(2 ◦ 1).
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If 2 	∈ 2◦2, then 1◦ (((1◦2)◦ (1◦2))◦ (1◦1)) = 1◦ ((2◦2)◦0) ⊆ 1◦{0, 1} = {0, 1} = D3 and
2 = 1 ◦ 2 = 1 ◦ (2 ◦ 0) = 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 1)). Since 2 	∈ D3, we get that N(N2 ◦ N1) 	⊆ D3.
Thus D3 is not a DPIHKI − T 4, which is a contradiction. So 2 ∈ 2 ◦ 2.
If 2 	∈ 2 ◦ 1, Then 1 ◦ (((1 ◦ 2) ◦ (1 ◦ 0)) ◦ (1 ◦ 1)) = 1 ◦ ((2 ◦ 1) ◦ 0) ⊆ 1 ◦ {0, 1} = {0, 1} = D3

and 2 = 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 1)). Since 2 	∈ D3, we get that N(N2 ◦ N1) 	⊆ D3. Therefore D3

is not a DPIHKI − T 4, which is a contradiction. Thus 2 ∈ (2 ◦ 1).
Conversely let 2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1) we prove that D3 is a DPIHKI − T 4. By hypothesis

and (HK2) we have 0 ◦ 2 = (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1. Since 2 ∈ 2 ◦ 1, then 2 ∈ 0 ◦ 2.
Now by some manipulations we can check that :
(i) 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 0)), 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)) and 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 1)) are subsets of D3.
(ii) 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 2)), 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 2)), 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 0)), 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 1)) and
1 ◦ ((1 ◦ 2) ◦ (1 ◦ 2)) are not subsets of D3.
So in the case of (i), by Theorem 3.4 we are done. And in the case of (ii), by some
calculations we see that N((Nx ◦ Ny) ◦ Nz) 	⊆ D3. So in this case also the conditions of
Theorem 3.4 hold.
Now consider 1 ◦ ((1◦ 1)◦ (1◦ 0)) = 1◦ (0◦ 1). If 0◦ 1 ⊆ {0, 1}, then 1◦ ((1◦ 1)◦ (1◦ 0) ⊆ D3

and we are done. If 2 ∈ 0 ◦ 1, then 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 0)) 	⊆ D3, since 2 ∈ 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 0)).
So we can see that N((N1 ◦Ny) ◦ N0) 	⊆ D3, for all y ∈ H . Thus D3 is a DPIHKI − T 4.

Lemma 4.2. Let 1 ◦ 1 ⊆ {0, 1} and 1 ◦ 2 = {1}. Then D3 is a DPIHKI − T 4.

Proof. Since 1 ◦ 1 ⊆ {0, 1} and 1 ◦ 2 = {1}, then by Theorem 2.5 D3 is a DPIHKI − T 3.
Hence D3 is a DPIHKI − T 4 by Theorem 3.5.

Lemma 4.3. Let 1 ◦ 1 = {0} and 1 ◦ 2 = {1, 2}. Then D3 is a DPIHKI − T 4 if and only
if 2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1).

Proof. The proof is similar to the proof of Lemma 4.1.

Theorem 4.4. Let 1 ◦ 1 = {0}. Then the following statements hold:
(i) D1 and D2 are not DPIHKI − T 4.
(ii) If 2 ∈ 1 ◦ 2, then D3 is a DPIHKI − T 4 if and only if 2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1).

(iii) If 1 ◦ 2 = {1}, then D3 is a DPIHKI − T 4.

Proof. (i) Follows from Theorem 3.8.
(ii) Consider two cases: 1 ◦ 2 = {2} or 1 ◦ 2 = {1, 2}. In the first case, the proof of Lemma
4.1 shows that D3 is a DPIHKI −T 4 if and only if 2 ∈ (2 ◦ 2)

⋂
(2 ◦ 1). In the second case,

the proof follows from Lemma 4.3.
(iii) The proof follows from Lemma 4.2.

Now we give some examples about the above Theorem.
Example 4.5. Consider the following tables :
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H1 0 1 2
0 {0} {0} {0, 2}
1 {1} {0} {1, 2}
2 {2} {0, 2} {0, 2}

H2 0 1 2
0 {0} {0, 1, 2} {0, 2}
1 {1} {0} {2}
2 {2} {0, 2} {0, 1, 2}

H3 0 1 2
0 {0} {0, 2} {0, 2}
1 {1} {0} {2}
2 {2} {0, 2} {0}

H4 0 1 2
0 {0} {0, 1, 2} {0, 2}
1 {1} {0} {1, 2}
2 {2} {0, 2} {0, 1}

H5 0 1 2
0 {0} {0, 1, 2} {0, 1}
1 {1} {0} {2}
2 {2} {0, 1} {0}

H6 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {1, 2} {0, 1} {0, 2}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Moreover:
(a) In H1, H2 and H6, D3 is a DPIHKI − T 4, by Theorem 4.4 (ii),(iii), While D1 and D2

are not DPIHKI − T 4, by Theorem 4.4 (i).
(b) In H3, H4 and H5, D1, D2 and D3 are not DPIHKI − T 4, by Theorem 4.4 (i),(ii).

Lemma 4.6. Let 1 ◦ 1 = {0, 1} and 1 ◦ 2 = {1, 2}. Then D3 is a DPIHKI − T 4.

Proof. By (HK2) we have {1, 2} = 1◦2 ⊆ (1◦1)◦2 = (1◦2)◦1 = {1, 2}◦1 = {0, 1}⋃
(2◦1),

thus 2 ∈ 2◦1. Since 1 ∈ 1◦x, ∀x ∈ H and 2 ∈ 1◦2, then 1◦ (((1◦x)◦ (1◦y))◦ (1◦2)) 	⊆ D3.
We easily see that 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 0)) and 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)) are subsets of D3. Since
1 ∈ 1 ◦ x, ∀x ∈ H and 2 ∈ 2 ◦ 1, hence 1 ◦ (((1 ◦ x) ◦ (1 ◦ 2)) ◦ (1 ◦ y)) 	⊆ D3. If 2 	∈ 0 ◦ 1,
then 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 1)) and 1 ◦ ((1 ◦ 1) ◦ (1 ◦ 0)) are subsets of D3. Let 2 ∈ 0 ◦ 1, then
N((Nx ◦ Ny) ◦ Nz) 	⊆ D3,∀x, y, z ∈ H . So D3 is a DPIHKI − T 4.

Lemma 4.7. Let 1 ◦ 1 = {0, 1} and 1 ◦ 2 = {2}. Then the following statements hold:
(i) D1 is a DPIHKI − T 4 if and only if 2 ◦ 2 	= {0}.
(ii) D2 is a DPIHKI − T 4 if and only if 1 ∈ 2 ◦ 1.
(iii) D3 is a DPIHKI − T 4 if and only if 2 ∈ 2 ◦ 2.

Proof. (i) Let D1 is a DPIHKI − T 4 we prove that 2 ◦ 2 	= {0}. On the contrary let
2 ◦ 2 = {0}. Then
1 ◦ (((1 ◦ 0) ◦ (1 ◦ 2)) ◦ (1 ◦ 2)) = 1 ◦ ((1 ◦ 2) ◦ 2) = 1 ◦ (2 ◦ 2) = 1 ◦ 0 = {1} = D1 and
1◦ ((1◦0)◦ (1◦2)) = 1◦ (1◦2) = 1◦2 = 2. Since 2 	∈ D1, hence D1 is not a DPIHKI−T 4,
which is a contradiction. Thus 2 ◦ 2 	= {0}.
Conversely let 2 ◦ 2 	= {0}. We prove that D1 is a DPIHKI − T 4. By (HK2) we have
{2} = 1 ◦ 2 ⊆ (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1, thus 2 ∈ 2 ◦ 1. From 2 ∈ 2 ◦ 1 and 2 ◦ 2 	= {0}
and some manipulations we get that N((Nx ◦ Ny) ◦ Nz) 	⊆ D1; ∀x, y, z ∈ H . So there is
nothing to prove, in other words D1 is a DPIHKI − T 4.
(ii) Let D2 is a DPIHKI −T 4 we prove that 1 ∈ 2 ◦ 1. On the contrary let 1 	∈ 2 ◦ 1. Then
1 ◦ (((1◦ 0)◦ (1◦ 2))◦ (1◦ 0)) = 1 ◦ ((1◦ 2)◦ 1) = 1 ◦ (2◦ 1) ⊆ 1 ◦ {0, 2} = {1, 2} = D2 and 0 ∈
1◦((1◦0)◦(1◦0)). Since 0 	∈ D2, then D2 is not a DPIHKI−T 4, which is a contradiction.
Thus 1 ∈ 2 ◦ 1. Conversely let 1 ∈ 2 ◦ 1. By (HK2) we have (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1,
so (0 ◦ 2)

⋃{2} = 2 ◦ 1. Hence 1 ∈ 0 ◦ 2. Also we have 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 2)) = {2} ⊆ D2. Now
since 1 ∈ 1 ◦ 1 we can see that N((Nx ◦ Ny) ◦ Nz) 	⊆ D2, ∀x, y, z ∈ {0, 1}. Since 1 ∈ 0 ◦ 2,
then N(Nx ◦ Ny) ◦Nz) 	⊆ D2, for all x ∈ {0, 1} and y, z ∈ {0, 1, 2}. If 2 ◦ 2 	= {0}, then by
hypothesis we can check that N((N2◦Ny)◦Nz) 	⊆ D2, ∀y, z ∈ {0, 1, 2}. If 2◦2 = {0}, then
by (HK2) we have 0◦1 = (2◦2)◦1 = (2◦1)◦2 = {0, 1, 2}. Hence N((N2◦Ny)◦Nz) 	⊆ D2;



DUAL POSITIVE IMPLICATIVE HYPER K-IDEALS OF TYPE 4 589

∀y, z ∈ {0, 1, 2}. Therefore D2 is a DPIHKI − T 4.
(iii) Let D3 is a DPIHKI − T 4 we prove that 2 ∈ 2 ◦ 2. On the contrary let 2 	∈ 2 ◦ 2.
Then 2 ◦ 2 ⊆ {0, 1}, hence 1 ◦ (((1 ◦ 0) ◦ (1 ◦ 2)) ◦ (1 ◦ 2) = 1 ◦ ((1 ◦ 2) ◦ 2) = 1 ◦ (2 ◦ 2) ⊆
1 ◦ {0, 1} = {0, 1} = D3. But 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 2)) 	⊆ D3, since 2 ∈ 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 2))
and 2 	∈ D3, we conclude that D3 is not a DPIHKI − T 4, which is a contradiction. Thus
2 ∈ 2 ◦ 2. Conversely the proof is similar to (i) and (ii).

Theorem 4.8. Let 1 ◦ 1 = {0, 1}. Then the following statements hold :
(i) If 1 ∈ 1 ◦ 2, then D1, D2 and D3 are DPIHKI − T 4.
(ii) If 1 ◦ 2 = {2}, then:
(a) D1 is a DPIHKI − T 4 if and only if 2 ◦ 2 	= {0}.
(b) D2 is a DPIHKI − T 4 if and only if 1 ∈ 2 ◦ 1.
(c) D3 is a DPIHKI − T 4 if and only if 2 ∈ 2 ◦ 2.

Proof. (i) Follows from Theorem 3.6 and Lemmas 4.2 and 4.6.
(ii) Follows from Lemma 4.7.

Now we give some examples about the above theorem.
Example 4.9. Consider the following tables :

H1 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1} {1, 2}
2 {1, 2} {0, 1, 2} {0, 2}

H2 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1} {1, 2}
2 {2} {0, 2} {0, 2}

H3 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0} {0}

H4 0 1 2
0 {0, 1} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1} {2}
2 {2} {0, 1, 2} {0, 1}

H5 0 1 2
0 {0} {0, 1, 2} {0, 2}
1 {1} {0, 1} {2}
2 {2} {0, 2} {0, 1, 2}

H6 0 1 2
0 {0} {0, 2} {0, 2}
1 {1} {0, 1} {2}
2 {2} {0, 2} {0}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Moreover:
(a) In H1, H2 and H3, D1,D2 and D3 are DPIHKI − T 4, by Theorem 4.8(i).
(b) In H4, D1 and D2 are DPIHKI−T 4, by Theorem 4.8(ii), while D3 is not a DPIHKI−
T 4, by Theorem 4.8(ii).
(c) In H5, D1, D3 are DPIHKI−T 4, by Theorem 4.8(ii), while D2 is not a DPIHKI−T 4,
by Theorem 4.8(ii).
(d) In H6, D1, D2 and D3 are not DPIHKI − T 4, by Theorem 4.8(ii).

Theorem 4.10. Let 1 ◦ 1 = {0, 2} and 1 ◦ 2 = {2}. Then D1(D3) is a DPIHKI − T 4 if
and only if 2 ◦ 2 	= {0}.

Proof. We give the proof of D1, the proof of D3 is similar to D1. Let D1 is a DPIHKI−T 4
we prove that 2 ◦ 2 	= {0}. On the contrary let 2 ◦ 2 = {0}. By hypothesis we have
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1 ◦ (((1 ◦ 0) ◦ (1 ◦ 2)) ◦ (1 ◦ 2)) = 1 ◦ ((1 ◦ 2) ◦ 2) = 1 ◦ (2 ◦ 2) = 1 ◦ 0 = {1} ⊆ D1 and
2 = 1 ◦ 2 = 1 ◦ (1 ◦ 2) = 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 2)). Since 2 	∈ D1, so D1 is not a DPIHKI − T 4,
which is a contradiction. Thus 2 ◦ 2 	= {0}. Conversely let 2 ◦ 2 	= {0} we prove that D1 is a
DPIHKI−T 4. By (HK3) we have 2◦1 = (1◦2)◦1 = (1◦1)◦2 = {0, 2}◦2 = (0◦2)

⋃
(2◦2).

Since 2 ◦ 2 	= {0} implies that 2 ◦ 1 	= {0}. Since 2 ∈ (1 ◦ 2)
⋂

(1 ◦ 1), 2 ◦ 1 and 2 ◦ 2 	= {0},
then by some calculations we can get that N((Nx ◦ Ny) ◦ Nz) 	⊆ D1. Hence D1 is a
DPIHKI − T 4.

Now we give some examples about the above theorem.
Example 4.11. Consider the following tables :

H1 0 1 2
0 {0} {0} {0, 1, 2}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0, 1, 2}

H2 0 1 2
0 {0} {0, 2} {0, 2}
1 {1} {0, 2} {2}
2 {2} {0} {0, 2}

H3 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Furthermore:
(a) In H1, H2, D1 and D3 are DPIHKI − T 4.
(b) In H3, D1 and D3 are not DPIHKI − T 4.

Theorem 4.12. Let 1 ◦ 1 = {0, 2} and 1 ◦ 2 = {2}. Then the following statements hold :
(i) If 2 ◦ 2 ⊆ {0, 2}, then D2 is not a DPIHKI − T 4.
(ii) If 2 ◦ 2 = {0, 1, 2}, then D2 is a DPIHKI − T 4.
(iii) If 2 ◦ 2 = {0, 1}, then D2 is a DPIHKI − 4 if and only if 1 ∈ 0 ◦ 2.

Proof.(i) Let 2 ◦ 2 ⊆ {0, 2}. We have 1 ◦ (((1◦ 0)◦ (1◦ 2))◦ (1◦ 1)) ⊆ 1 ◦ {0, 2} = {1, 2} = D2

and 0 ∈ 1 ◦ 1 ⊆ 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)). Since 0 	∈ D2, so D2 is not a DPIHKI − T 4.
(ii) Let 2◦2 = {0, 1, 2}. In the proof of Theorem 4.10 we obtained that 2◦1 = (2◦2)

⋃
(0◦2),

so 2 ◦ 1 = {0, 1, 2}. Since 2 ∈ (1 ◦ 1)
⋂

(1 ◦ 2) and {1, 2} ⊆ (2 ◦ 1)
⋂

(2 ◦ 2) then by some
manipulations we will see that N((Nx ◦ Ny) ◦ Nz) 	⊆ D2; ∀x, y, z ∈ H . Therefore D2 is a
DPIHKI − T 4.
(iii) Let 2 ◦ 2 = {0, 1} and D2 is a DPIHKI − 4 we prove that 1 ∈ 0 ◦ 2. On the contrary
let 1 	∈ 0 ◦ 2. Then we have 1 ◦ (((1◦ 2)◦ (1◦ 2))◦ (1◦ 2)) = 1◦ ((2◦ 2)◦ 2) = 1 ◦ ({0, 1} ◦ 2) =
1◦{0, 2} = {1, 2} = D2. But 0 ∈ 1◦1 ⊆ 1◦(2◦2) = 1◦((1◦2)◦(1◦2)), so N(N2◦N2) 	⊆ D2.
Hence D2 is not a DPIHKI − T 4, which is a contradiction. Thus 1 ∈ 0 ◦ 2. Conversely if
1 ∈ 0 ◦ 2, then by the proof of Theorem 4.10 we have 2 ◦ 1 = (2 ◦ 2)

⋃
(0 ◦ 2), hence 1 ∈ 2 ◦ 1.

By (HK3) we have 0 ◦ 2 ⊆ (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ 1 = {0, 2}⋃
(0 ◦ 1). Since 1 ∈ 0 ◦ 2, then

1 ∈ 0 ◦ 1. Now 0 ∈ 2 ◦ 1 and hypothesis imply that N((Nx ◦Ny) ◦Nz) 	⊆ D2; ∀x, y, z ∈ H .
Therefore D2 is a DPIHKI − T 4.

Now we give some examples about the above theorem.
Example 4.13. Consider the following tables :
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H1 0 1 2
0 {0, 2} {0, 1, 2} {0, 1}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0, 2}

H2 0 1 2
0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 2} {2}
2 {2} {0, 1} {0}

H3 0 1 2
0 {0, 2} {0, 1} {0, 1}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0, 1, 2}

H4 0 1 2
0 {0} {0, 1, 2} {0, 1}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0, 1}

H5 0 1 2
0 {0} {0} {0}
1 {1} {0, 2} {2}
2 {2} {0, 1} {0, 1}

H6 0 1 2
0 {0, 2} {0, 1} {0, 1}
1 {1} {0, 2} {2}
2 {2} {0, 1, 2} {0, 2}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Also:
(a) In H3 and H4 , D2 is a DPIHKI − T 4, by Theorem 4.12 (ii),(iii).
(b) in H1, H2, H5 and H6, D2 is not a DPIHKI − T 4, by Theorem 4.12 (i),(iii) .

Theorem 4.14. Let 1 ◦ 1 = {0, 2} and 1 ◦ 2 = {1, 2}. Then D1(D3) is a DPIHKI − T 4 if
and only if 0 ◦ 1 	= {0} or 2 ◦ 1 	= {0}.

Proof. We prove theorem for D1, the proof of D3 is the same as D1. Let D1 is a DPIHKI−
T 4 we prove that 0◦ 1 	= {0} or 2 ◦ 1 	= {0}. On the contrary let 0◦ 1 = {0} and 2◦ 1 = {0}.
Then we have 1 ◦ (((1 ◦ 0) ◦ (1 ◦ 0)) ◦ (1 ◦ 0)) = 1 ◦ ({0, 2} ◦ 1) = 1 ◦ 0 = {1} ⊆ D1 and
1◦((1◦0)◦(1◦0)) = {1, 2} 	⊆ D1. Hence D1 is not a DPIHKI−T 4, which is a contradiction.
So 0 ◦ 1 	= {0} or 2 ◦ 1 	= {0}. Conversely let 0 ◦ 1 	= {0} or 2 ◦ 1 	= {0}. Then by (HK3) we
have (0 ◦ 2)

⋃
(2 ◦ 2) = (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = {1, 2} ◦ 1 = {0, 2}⋃

(2 ◦ 1). So 2 ∈ 0 ◦ 2 or
2 ∈ 2◦2. Now by some calculations we can get that N((Nx◦Ny)◦Nz) 	⊆ D1; ∀x, y, z ∈ H .
Therefore D1 is a DPIHKI − T 4.

Now we give some examples about the above theorem.
Example 4.15. Consider the following tables :

H1 0 1 2
0 {0, 2} {0, 1} {0, 1, 2}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0, 2}

H2 0 1 2
0 {0} {0} {0}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0, 1, 2}

H3 0 1 2
0 {0} {0} {0}
1 {1} {0, 2} {1, 2}
2 {2} {0} {0, 2}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}, Furthermore:
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(a) In H1 and H2, D1 and D3 are DPIHKI − T 4.
(b) In H3, D1 and D3 are not DPIHKI − T 4.

Theorem 4.16. Let 1 ◦ 1 = {0, 2} and 1 ◦ 2 = {1, 2}. Then the following statements hold:
(i) If 2 ◦ 2 = {0, 1}, then D2 is a DPIHKI − T 4.
(ii) If 2 ◦ 2 ⊆ {0, 2}, then D2 is a DPIHKI − T 4 if and only if 1 ∈ 0 ◦ 2.
(iii) If 2◦2 = {0, 1, 2}, then D2 is a DPIHKI−T 4 if and only if 2◦1 	= {0, 1} or 0◦1 	= {0}.

Proof. (i) Let 2 ◦ 2 = {0, 1}. Now similar to the proof of (conversely of) Theorem 4.14
we have (0 ◦ 2)

⋃
(2 ◦ 2) = {0, 2}⋃

(2 ◦ 1), so 1 ∈ 2 ◦ 2 implies that 1 ∈ 2 ◦ 1. Therefore
{1, 2} = 1 ◦ 2 ⊆ (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ 1 = {0, 1} ◦ 1 = (0 ◦ 1)

⋃{0, 2}, which implies that
1 ∈ 0 ◦ 1. By hypothesis and some calculations we can get that N((Nx ◦ Ny) ◦ Nz) 	⊆ D2;
∀x, y, z ∈ H . Therefore D2 is a DPIHKI − T 4.
(ii) Let 2◦2 ⊆ {0, 2} and D2 is a DPIHKI−T 4 we prove that 1 ∈ 0◦2. On the contrary let
1 	∈ 0◦2. Then by (HK2) we have 2◦0 ⊆ (1◦1)◦0 = (1◦0)◦1 = 1◦1 = {0, 2}. Since 0 	∈ 2◦0,
thus 2◦ 0 = {2}. Therefore we get that 1 ◦ (((1◦ 0)◦ (1◦ 0))◦ (1◦1)) = 1◦ ((1◦ 1)◦ (1◦ 1)) =
1 ◦ ({0, 2} ◦ {0, 2}) = 1 ◦ {0, 2} = {1, 2} = D2. Since 0 ∈ 1 ◦ 1 ⊆ 1 ◦ ((1 ◦ 0) ◦ (1 ◦ 1)), then
N(N0◦N1) 	⊆ D2. So D2 is not a DPIHKI−T 4, which is a contradiction. Thus 1 ∈ 0◦2.
Conversely let 2◦2 = {0} and 1 ∈ 0◦2. By (HK2) we have 1 ∈ 0◦2 ⊆ (2◦1)◦2 = (2◦2)◦1 =
0◦1. By some manipulations we can get that N((Nx◦Ny)◦Nz) 	⊆ D2; ∀x, y, z ∈ H . Hence
D2 is a DPIHKI − T 4. Now let 2 ◦ 2 = {0, 2} and 1 ∈ 0 ◦ 2. By the proof of (i) we
have 1 ∈ 2 ◦ 1. So {1, 2} = 1 ◦ 2 ⊆ (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ 1 = {0, 2} ◦ 1 = (0 ◦ 1)

⋃
(2 ◦ 1).

Thus 2 ∈ (0 ◦ 1)
⋃

(2 ◦ 1). By some calculations we conclude that N((Nx ◦Ny) ◦Nz 	⊆ D2;
∀x, y, z ∈ H . That is D2 a DPIHKI − T 4.
(iii) The proof is similar to (ii), by some suitable modifications.

Now we give some examples about the above theorem.
Example 4.17. Consider the following tables :

H1 0 1 2
0 {0} {0, 1} {0, 2}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0, 1}

H2 0 1 2
0 {0} {0, 1} {0, 1}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0, 2}

H3 0 1 2
0 {0} {0, 1} {0, 1}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1} {0, 1, 2}

H4 0 1 2
0 {0, 2} {0} {0}
1 {1} {0, 2} {1, 2}
2 {2} {0, 2} {0, 2}

H5 0 1 2
0 {0} {0} {0}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0, 1, 2}

H6 0 1 2
0 {0} {0} {0, 1, 2}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1} {0, 1, 2}

H7 0 1 2
0 {0} {0, 2} {0, 2}
1 {1} {0, 2} {1, 2}
2 {2} {0, 2} {0}

H8 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 2} {1, 2}
2 {2} {0, 1, 2} {0}
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Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Also:
(a) In H1, H2, H3, H5 and H8, D2 is a DPIHKI − T 4, by Theorem (i), (ii), (iii) and (iii),
respectively.
(b) In H4, H6 and H7, D2 is not a DPIHKI − T 4, by Theorem 4.16 (ii), (iii) and (ii),
respectively.

Lemma 4.18. Let 1◦1 = {0, 2} and 1◦2 = {1}. Then D1, D2 and D3 are not DPIHKI−
T 4.

Proof. The proof follows from Theorem 3.13.

Now we give some examples about the above lemma.
Example 4.19. The following tables show the hyper K-algebra structures on {0, 1, 2} such
that D1, D2 and D3 are not DPIHKI − T 4.

H1 0 1 2
0 {0} {0, 1, 2} {0, 2}
1 {1} {0, 2} {1}
2 {2} {0, 1} {0, 2}

H2 0 1 2
0 {0, 2} {0} {0}
1 {1} {0, 2} {1}
2 {2} {0, 2} {0, 2}

H3 0 1 2
0 {0} {0} {0, 2}
1 {1} {0, 2} {1}
2 {2} {0, 2} {0, 2}

Theorem 4.20. Let 1 ◦ 1 = {0, 1, 2} and 1 ◦ 2 = {2}. Then the following statements hold:
(i) D2 is a DPIHKI − T 4 if and only if 1 ∈ 0 ◦ 2 or 2 ◦ 2 = {0, 1, 2}.
(ii) D1(D3) is a DPIHKI − T 4 if and only if 2 ◦ 2 	= {0}.

Proof. Note that from hypothesis and (HK2) we conclude that

(0 ◦ 2)
⋃

(1 ◦ 2)
⋃

(2 ◦ 2) = (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1. (1)
(i) Let D2 is a DPIHKI − T 4 we prove that 1 ∈ 0 ◦ 2 or 2 ◦ 2 = {0, 1, 2}. On the contrary
Let 1 	∈ 0 ◦ 2 and 2 ◦ 2 	= {0, 1, 2}. Consider two cases: (a) 1 ∈ 2 ◦ 2, (b) 1 	∈ 2 ◦ 2.
Case(a): Let 1 ∈ 2 ◦ 2. Then by hypothesis we get that 2 ◦ 2 = {0, 1}. So we have
1 ◦ (((1 ◦ 2) ◦ (1 ◦ 2)) ◦ (1 ◦ 2)) = 1 ◦ ((2 ◦ 2) ◦ 2) = 1 ◦ ({0, 1} ◦ 2) = 1 ◦ {0, 2} = {1, 2} = D2

and 1 ◦ ((1 ◦ 2) ◦ (1 ◦ 2)) = 1 ◦ {0, 1} = {0, 1, 2}. Since 0 	∈ D2, then N(N2 ◦ N2) 	⊆ D2. So
D2 is not a DPIHKI − T 4, which is a contradiction. Thus 1 ∈ 0 ◦ 2 or 2 ◦ 2 = {0, 1, 2}.
Case(b): Let 1 	∈ 2◦2, by (1) we conclude that 1 	∈ 2◦1. Hence we get that 1◦ (((1◦0)◦ (1◦
2))◦(1◦0)) = 1◦((1◦2)◦1) = 1◦(2◦1) ⊆ 1◦{0, 2} = {1, 2} = D2. Also 1◦((1◦0)◦(1◦0)) =
1 ◦ (1 ◦ 1) = 1 ◦ {0, 1, 2} = {0, 1, 2}. Since 0 	∈ D2,so N(N0 ◦ N0) 	⊆ D2. Thus D2 is not a
DPIHKI − T 4, which is a contradiction. So 1 ∈ 0 ◦ 2 or 2 ◦ 2 = {0, 1, 2}. Conversely Let
1 ∈ 0◦2 or 2◦2 = {0, 1, 2}. Then by (1) we get that 1 ∈ 2◦1 and 1◦((1◦0)◦(1◦2)) ⊆ D2. By
hypothesis and some manipulations we can see that N((Nx◦Ny)◦Nz) 	⊆ D2; ∀x, y, z ∈ H .
Therefore D2 is a DPIHKI − T 4.
(ii) The proof is not difficult and nearly similar to (i).

Now we give some examples about the above theorem.
Example 4.21. Consider the following tables :
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H1 0 1 2
0 {0} {0} {0, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 2} {0, 2}

H2 0 1 2
0 {0, 2} {0, 1} {0, 1, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 1, 2} {0, 2}

H3 0 1 2
0 {0} {0} {0, 1, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 1, 2} {0, 1, 2}

H4 0 1 2
0 {0} {0} {0, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 2} {0, 2}

H5 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 1, 2} {0}

H6 0 1 2
0 {0} {0, 2} {0, 2}
1 {1} {0, 1, 2} {2}
2 {2} {0, 2} {0}

Then each of the above tables gives a hyper K-algebra structure on {0, 1, 2}. Moreover:
(a) In H1 and H4, D1 and D3 are DPIHKI − T 4 , by Theorem 4.20 (ii), while D2 is not
a DPIHI − T 4, by Theorem 4.20 (i).
(b) In H2 and H3, D2, D1 and D3 are DPIHKI − T 4, by Theorem 4.20 (i) and (ii),
respectively.
(c) In H5, D2 is a DPIHKI−T 4, by Theorem 4.20 (i), while D1 and D3 are not DPIHKI−
T 4, by Theorem 4.20 (ii).
(d) In H6, D2, D1 and D3 are not DPIHKI−T 4, by Theorem 4.20 (i) and (ii), respectively.

Theorem 4.22. Let 1◦1 = {0, 1, 2} and 1 ∈ 1◦2. Then D1, D2 and D3 are DPIHKI−T 4.

Proof. By Theorem 3.6 we have D1 and D2 are DPIHKI−T 4. We now prove that D3 is a
DPIHKI−T 4. By hypothesis we have 1 ∈ 1◦x; ∀x ∈ H , hence 1 ∈ ((1◦x)◦(1◦y))◦(1◦z);
∀x, y, z ∈ H . Thus we get that 2 ∈ 1 ◦ 1 ⊆ 1 ◦ (((1 ◦x)◦ (1 ◦ y))◦ (1 ◦ z)); ∀x, y, z ∈ H . Since
2 	∈ D3, then N((Nx ◦ Ny) ◦ Nz) 	⊆ D3; ∀x, y, z ∈ H . Therefore D3 is a DPIHKI − T 4.

Now we give some examples about the above theorem.
Example 4.23. The following tables show the hyper K-algebra structures on {0, 1, 2} such
that D1, D2 and D3 are DPIHKI − T 4.

H1 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1, 2} {1, 2}
2 {2} {0, 1, 2} {0}

H2 0 1 2
0 {0} {0, 1} {0}
1 {1} {0, 1, 2} {1}
2 {2} {0, 1} {0, 2}

H3 0 1 2
0 {0, 2} {0, 2} {0, 2}
1 {1} {0, 1, 2} {1, 2}
2 {1, 2} {0, 1} {0, 1}
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Remark 4.24. Note that Examples 4.5, 4.9, 4.11, 4.13, 4.17 and 4.19. show that the
conditions of Theorems 4.4, 4.8, 4.12, 4.16 and 4.18, are necessary and we can not omit or
reduce these conditions.
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