# DUAL POSITIVE IMPLICATIVE HYPER $K$-IDEALS OF TYPE 4 

L. Torkzadeh and M.M Zahedi

Received November 1, 2002


#### Abstract

In this note first we define the notion of dual positive implicative hyper $K$ ideal of type 4 , where for simplicity is written by DPIHKI - T4. Then we give some related results. Finally we determine all of hyper $K$-algebras of order 3, which have $D_{1}=\{1\}, D_{2}=\{1,2\}$ or $D_{3}=\{0,1\}$ as a DPIHKI -T4.


1 Introduction The hyperalgebraic structure theory was introduced by F. Marty [6] in 1934. Imai and Iseki [6] in 1966 introduced the notion of a BCK-algebra. Borzooei, Jun and Zahedi et.al. [2,3,9] applied the hyperstructure to BCK-algebras and introduced the concept of hyper $K$-algebra which is a generalization of BCK-algebra. In [1], the authors have defined 8 types of positive implicative hyper $K$-ideals. Recently in [8] we introduced the notion of dual positive implicative hyper $K$-ideal of type 3 and then we characterized them. Now in this note first we define the notion of dual positive implicative hyper $K$-ideal of type 4 , then we obtain some related results which have been mentioned in the abstract. We will define and study the other types of dual positive implicative hyper $K$-idaels in the next papers.

## 2 Preliminaries

Definition 2.1. [2] Let $H$ be a nonempty set and " $\circ$ " be a hyperoperation on $H$, that is "○" is a function from $H \times H$ to $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\emptyset\}$. Then $H$ is called a hyper $K$-algebra if it contains a constant " 0 " and satisfies the following axioms:
(HK1) $(x \circ z) \circ(y \circ z)<x \circ y$
(HK2) $(x \circ y) \circ z=(x \circ z) \circ y$
(HK3) $x<x$
(HK4) $x<y, y<x \Rightarrow x=y$
(HK5) $0<x$,
for all $x, y, z \in H$, where $x<y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A<B$ is defined by $\exists a \in A, \exists b \in B$ such that $a<b$.

Note that if $A, B \subseteq H$, then by $A \circ B$ we mean the subset $\bigcup_{\substack{a \in A \\ b \in B}} a \circ b$ of $H$.
Theorem 2.2. [2] Let $(H, \circ, 0)$ be a hyper $K$-algebra. Then for all $x, y, z \in H$ and for all non-empty subsets $A, B$ and $C$ of $H$ the following hold:
(i) $x \circ y<z \Leftrightarrow x \circ z<y$,
(ii) $(x \circ z) \circ(x \circ y)<y \circ z$,
(iii) $x \circ(x \circ y)<y$,
(iv) $x \circ y<x$,
(v) $A \subseteq B$ implies $A<B$,
(vi) $x \in x \circ 0$,
(vii) $(A \circ C) \circ(A \circ B)<B \circ C$,
(viii) $(A \circ C) \circ(B \circ C)<A \circ B$,
(ix) $A \circ B<C \Leftrightarrow A \circ C<B$,
(x) $A \circ B<A$.

[^0]Definition 2.3. [2] Let $(H, \circ, 0)$ be a hyper $K$-algebra. If there exists an element $1 \in H$ such that $x<1$ for all $x \in H$, then $H$ is called a bounded hyper $K$-algebra and 1 is said to be the unit of $H$.
In a bounded hyper $K$-algebra, we denote $1 \circ x$ by $N x$.
Definition 2.4. [8] Let $H$ be a bounded hyper $K$-algebra. Then a non-empty subset $D$ of $H$ is called a dual positive implicative hyper K-ideal type 3 (DPIHKI-T3) if it satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z)<D$ and $N(N y \circ N z)<D$ imply $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Theorem 2.5. [8] Let $H=\{0,1,2\}$ be a hyper $K$-algebra of order 3 with unit 1 and let $D=\{0,1\}$ in $H$. Then $D$ is a $D P I H K I-T 3$ if and only if $2 \notin 1 \circ 2$ and $2 \notin 1 \circ 1$.

## 3 Dual positive implicative hyper $K$-ideals of type 4

From now on $H$ is a bounded hyper $K$-algebra with unit 1 .
Definition 3.1. A non-empty subset $D$ of $H$ is called a dual positive implicative hyper K-ideal type 4 (DPIHKI -T4) if it satisfies:
(i) $1 \in D$
(ii) $N((N x \circ N y) \circ N z) \subseteq D$ and $N(N y \circ N z)<D$ imply that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Example 3.2. Let $H=\{0,1,2\}$. Then the following table shows a hyper $K$-algebra structure on $H$ with unit 1 .

| $\circ$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{1\}$ |
| 2 | $\{1,2\}$ | $\{0,1\}$ | $\{0,1\}$ |

Furthermore $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ are DPIHKI -T4.
Example 3.3. Let $H=\{0,1,2\}$. Then the following table shows a hyper $K$-algebra structure on $H$ with unit 1 .

| $\circ$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,2\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |

Also $D_{1}=\{1\}$ and $D_{3}=\{0,1\}$ are DPIHKI-T4, but $D_{2}=\{1,2\}$ is not a DPIHKI-T4.
From now on we let $D$ is a non-empty subset of a bounded hyper $K$-algebra $H$ with unit 1 , and $1 \in D$.

Theorem 3.4. A non-empty subset $D$ of $H$ is a $D P I H K I-T 4$ if and only if $N((N x \circ N y) \circ N z) \subseteq D$ implies that $N(N x \circ N z) \subseteq D, \forall x, y, z \in H$.

Proof. Let $D$ be a DPIHKI -T4 and $N((N x \circ N y) \circ N z) \subseteq D$. Then by Definition 2.1 and Theorem 2.2(x) we conclude that $N(N y \circ N z)<D ; \forall y, z \in H$. So by hypothesis we get that $N(N x \circ N z) \subseteq D, \forall x, z \in H$.
The proof of the converse is trivial.
Theorem 3.5. If $D$ is a $D P I H K I-T 3$ of $H$, then $D$ is a $D P I H K I-T 4$.
Proof. Straightforward.
Theorem 3.6. Let $D \subseteq H$ and $0 \notin D$. If $1 \in 1 \circ x ; \forall x \in H$, then $D$ is a $D P I H K I-T 4$.
Proof. By hypothesis we get that $1 \in 1 \circ 1 \subseteq(1 \circ 1) \circ 1 \subseteq((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)$; $\forall x, y, z \in H$. So $0 \in 1 \circ 1 \subseteq 1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)), \forall x, y, z \in H$. Since $0 \notin D$, so $N((N x \circ N y) \circ N z) \nsubseteq D, \forall x, y, z \in H$. Therefore by Theorem 3.4. we conclude that $D$ is a DPIHKI - T4.

Note that $D_{1}=\{1\}$ and $D_{2}=\{1,2\}$ in Example 3.2 satisfy the conditions of Theorem 3.6.
Theorem 3.7. In $H$ we have $1 \circ 0=\{1\}$.
Proof. By Theorem $2.2($ vi) we have $1 \in 1 \circ 0$, now we prove that $1 \circ 0=\{1\}$. On the contrary let $1 \circ 0 \neq\{1\}$. Then there exists $1 \neq x \in 1 \circ 0$. By (HK2) we have $0 \in x \circ x \subseteq(1 \circ 0) \circ x=(1 \circ x) \circ 0$. So there exists $t \in 1 \circ x$ such that $0 \in t \circ 0$, hence $t<0$. By (HK4) and (HK5) we get that $t=0$. Thus $0 \in 1 \circ x$, so $1<x$. Since 1 is the unit of $H$, by (HK4) we conclude that $x=1$, which is a contradiction.

Theorem 3.8. Let $1 \circ 1=\{0\}$. If $0 \notin D$, then $D$ is not a DPIHKI -T4.
Proof. By (HK2), Theorem 3.7 and hypothesis we have $0 \circ 0=(1 \circ 1) \circ 0=(1 \circ 0) \circ 1=1 \circ 1=$ 0 . So we get that $1=1 \circ 0=1 \circ(0 \circ 0)=1 \circ((1 \circ 1) \circ(1 \circ 1))=1 \circ(((1 \circ 0) \circ(1 \circ 0)) \circ(1 \circ 1)) \subseteq D$, that is $N((N 0 \circ N 0) \circ N 1) \subseteq D$. Also $0=1 \circ 1=1 \circ(1 \circ 0)=1 \circ((1 \circ 0) \circ(1 \circ 1))$. Now since $0 \notin D$, we have $N(N 0 \circ N 1) \nsubseteq D$. Thus $D$ is not a $D P I H K I-T 4$.

Example 3.9. Let $H=\{0,1,2\}$. Then the following table shows a hyper $K$-algebra structure on $H$ with unit 1.

| $\circ$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,1,2\}$ |

And $D_{1}=\{1\}$ and $D_{2}=\{1,2\}$ are not DPIHKI - T4, by Theorem 3.8.
Theorem 3.10. Let $N N x=x, \forall x \in H$ and $D \subseteq H$. If $0 \notin D$, then $D$ is not a DPIHKI -T4.

Proof. We prove that $1 \circ 1=\{0\}$. On the contrary let $1 \circ 1 \neq\{0\}$. Then there exists $0 \neq x \in 1 \circ 1$. By hypothesis we get that $1 \circ x \subseteq 1 \circ(1 \circ 1)=N N 1=1$, so $1 \circ x=1$. Since $N N x=x$, hence $x=1 \circ(1 \circ x)=1 \circ 1$. Therefore $0 \in 1 \circ 1=x$, that is $x=0$ which is a contradiction. Thus $1 \circ 1=\{0\}$. So by Theorem 3.8 we conclude that $D$ is not
a $D P I H K I-T 4$.

Example 3.11. Let $H=\{0,1,2\}$.Then the following table shows a hyper $K$-algebra structure on $H$ with unit 1 .

| $\circ$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0\}$ |

Then we can see that $N N x=x$. Also by Theorem $3.10 D_{1}=\{1\}$ and $D_{2}=\{1,2\}$ are not DPIHKI - T4.

Lemma 3.12. Let $N N x=x$. Then $1 \circ 1=\{0\}$ and $0 \circ 0=\{0\}$.
Proof. See the proofs of Theorems 3.10 and 3.8.
Theorem 3.13. Let $1 \neq x \in H$ and $x \notin D$ or $0 \notin D$. If $1 \circ 1=\{0, x\}$ and $1 \circ x=\{1\}$, then $D$ is not a DPIHKI-T4.

Proof. By (HK2) we have $(1 \circ 1) \circ x=(1 \circ x) \circ 1=1 \circ 1=\{0, x\}$ and $(1 \circ 1) \circ 0=$ $(1 \circ 0) \circ 1=1 \circ 1=\{0, x\}$. So by hypothesis we get that $0 \circ x, x \circ x$ and $0 \circ 0 \subseteq\{0, x\}$, also $x \circ 0=\{x\}$. Hence we have $1 \circ(((1 \circ 0) \circ(1 \circ 0)) \circ(1 \circ 1)) \subseteq 1 \circ\{0, x\}=\{1\} \subseteq D$ and $\{0, x\}=1 \circ 1 \subseteq 1 \circ((1 \circ 0) \circ(1 \circ 1))$. Since 0 or $x \notin D$, hence $N(N 0 \circ N 1) \nsubseteq D$. Therefore $D$ is not a DPIHKI -T4.

Example 3.14. Let $H=\{0,1,2\}$. Then the following table shows a hyper $K$-algebra structure on $H$ with unit 1 .

| $\circ$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1,2\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |

And $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ are not DPIHKI-T4, by Theorem 3.13.

## 4 Dual positive implicative hyper $K$-algebras of type 4 of order 3

In the sequel we let $H=\{0,1,2\}$ be a bounded hyper $K$-algebra of order 3 with unit 1 and $D_{1}=\{1\}, D_{2}=\{1,2\}$ and $D_{3}=\{0,1\}$ be subsets of $H$.

Lemma 4.1. Let $N N x=x ; \forall x \in H$. Then $D_{3}$ is a $D P I H K I-T 4$ if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.

Proof. Theorem 3.7 and Lemma 3.12 imply that $1 \circ 0=\{1\}$ and $1 \circ 1=\{0\}$. Now by a simple argument we get that $1 \circ 2=\{2\}$. By (HK2) we have $2 \circ 0=(1 \circ 2) \circ 0=(1 \circ 0) \circ 2=1 \circ 2=\{2\}$. Let $D_{3}$ be a DPIHKI -T4 we prove that $2 \in(2 \circ 2) \bigcap(2 \circ 1)$. On the contrary let $2 \notin(2 \circ 2) \bigcap(2 \circ 1)$.

If $2 \notin 2 \circ 2$, then $1 \circ(((1 \circ 2) \circ(1 \circ 2)) \circ(1 \circ 1))=1 \circ((2 \circ 2) \circ 0) \subseteq 1 \circ\{0,1\}=\{0,1\}=D_{3}$ and $2=1 \circ 2=1 \circ(2 \circ 0)=1 \circ((1 \circ 2) \circ(1 \circ 1))$. Since $2 \notin D_{3}$, we get that $N(N 2 \circ N 1) \nsubseteq D_{3}$. Thus $D_{3}$ is not a DPIHKI-T4, which is a contradiction. So $2 \in 2 \circ 2$.
If $2 \notin 2 \circ 1$, Then $1 \circ(((1 \circ 2) \circ(1 \circ 0)) \circ(1 \circ 1))=1 \circ((2 \circ 1) \circ 0) \subseteq 1 \circ\{0,1\}=\{0,1\}=D_{3}$ and $2=1 \circ((1 \circ 2) \circ(1 \circ 1))$. Since $2 \notin D_{3}$, we get that $N(N 2 \circ N 1) \nsubseteq D_{3}$. Therefore $D_{3}$ is not a DPIHKI-T4, which is a contradiction. Thus $2 \in(2 \circ 1)$.
Conversely let $2 \in(2 \circ 2) \bigcap(2 \circ 1)$ we prove that $D_{3}$ is a DPIHKI $-T 4$. By hypothesis and $(H K 2)$ we have $0 \circ 2=(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=2 \circ 1$. Since $2 \in 2 \circ 1$, then $2 \in 0 \circ 2$. Now by some manipulations we can check that:
(i) $1 \circ((1 \circ 0) \circ(1 \circ 0)), 1 \circ((1 \circ 0) \circ(1 \circ 1))$ and $1 \circ((1 \circ 1) \circ(1 \circ 1))$ are subsets of $D_{3}$.
(ii) $1 \circ((1 \circ 0) \circ(1 \circ 2)), 1 \circ((1 \circ 1) \circ(1 \circ 2)), 1 \circ((1 \circ 2) \circ(1 \circ 0)), 1 \circ((1 \circ 2) \circ(1 \circ 1))$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))$ are not subsets of $D_{3}$.
So in the case of (i), by Theorem 3.4 we are done. And in the case of (ii), by some calculations we see that $N((N x \circ N y) \circ N z) \nsubseteq D_{3}$. So in this case also the conditions of Theorem 3.4 hold.
Now consider $1 \circ((1 \circ 1) \circ(1 \circ 0))=1 \circ(0 \circ 1)$. If $0 \circ 1 \subseteq\{0,1\}$, then $1 \circ\left((1 \circ 1) \circ(1 \circ 0) \subseteq D_{3}\right.$ and we are done. If $2 \in 0 \circ 1$, then $1 \circ((1 \circ 1) \circ(1 \circ 0)) \nsubseteq D_{3}$, since $2 \in 1 \circ((1 \circ 1) \circ(1 \circ 0))$. So we can see that $N((N 1 \circ N y) \circ N 0) \nsubseteq D_{3}$, for all $y \in H$. Thus $D_{3}$ is a DPIHKI-T4.

Lemma 4.2. Let $1 \circ 1 \subseteq\{0,1\}$ and $1 \circ 2=\{1\}$. Then $D_{3}$ is a DPIHKI-T4.

Proof. Since $1 \circ 1 \subseteq\{0,1\}$ and $1 \circ 2=\{1\}$, then by Theorem $2.5 D_{3}$ is a $D P I H K I-T 3$. Hence $D_{3}$ is a $D P I H K I-T 4$ by Theorem 3.5.

Lemma 4.3. Let $1 \circ 1=\{0\}$ and $1 \circ 2=\{1,2\}$. Then $D_{3}$ is a DPIHKI-T4 if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.
Proof. The proof is similar to the proof of Lemma 4.1.

Theorem 4.4. Let $1 \circ 1=\{0\}$. Then the following statements hold:
(i) $D_{1}$ and $D_{2}$ are not DPIHKI - T4.
(ii) If $2 \in 1 \circ 2$, then $D_{3}$ is a DPIHKI-T4 if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$.
(iii) If $1 \circ 2=\{1\}$, then $D_{3}$ is a $D P I H K I-T 4$.

Proof. (i) Follows from Theorem 3.8.
(ii) Consider two cases: $1 \circ 2=\{2\}$ or $1 \circ 2=\{1,2\}$. In the first case, the proof of Lemma 4.1 shows that $D_{3}$ is a $D P I H K I-T 4$ if and only if $2 \in(2 \circ 2) \bigcap(2 \circ 1)$. In the second case, the proof follows from Lemma 4.3.
(iii) The proof follows from Lemma 4.2.

Now we give some examples about the above Theorem.
Example 4.5. Consider the following tables:

| $H_{1}$ | 0 | 1 | 2 | $\mathrm{H}_{2}$ | 0 | 1 | 2 | $\mathrm{H}_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | \{0\} | \{0\} | $\{0,2\}$ | 0 | \{0\} | $\{0,1,2\}$ | $\{0,2\}$ | 0 | \{0\} | \{0, 2\} | \{0, 2\} |
| 1 | \{1\} | \{0\} | $\{1,2\}$ | 1 | \{1\} | \{0\} | \{2\} | 1 | \{1\} | \{0\} | \{2\} |
| 2 | \{2\} | $\{0,2\}$ | $\{0,2\}$ | 2 | \{2\} | \{0, 2\} | \{0, 1, 2\} | 2 | \{2\} | $\{0,2\}$ | \{0\} |
| $\mathrm{H}_{4}$ | 0 | 1 | 2 | $\mathrm{H}_{5}$ | 0 | 1 | 2 | $H_{6}$ | 0 | 1 | 2 |
| 0 | \{0\} | $\{0,1,2\}$ | \{0, 2\} | 0 | \{0\} | $\{0,1,2\}$ | \{0, 1\} | 0 | \{0\} | \{0\} | \{0\} |
| 1 | \{1\} | \{0\} | $\{1,2\}$ | 1 | \{1\} | \{0\} | \{2\} | 1 | \{1\} | \{0\} | \{1\} |
| 2 | \{2\} | \{0, 2 \} | $\{0,1\}$ | 2 | \{2\} | $\{0,1\}$ | \{0\} | 2 | \{1, 2\} | $\{0,1\}$ | \{0, 2\} |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Moreover: (a) In $H_{1}, H_{2}$ and $H_{6}, D_{3}$ is a DPIHKI-T4, by Theorem 4.4 (ii),(iii), While $D_{1}$ and $D_{2}$ are not DPIHKI - T4, by Theorem 4.4 (i).
(b) In $H_{3}, H_{4}$ and $H_{5}, D_{1}, D_{2}$ and $D_{3}$ are not DPIHKI - T4, by Theorem 4.4 (i),(ii).

Lemma 4.6. Let $1 \circ 1=\{0,1\}$ and $1 \circ 2=\{1,2\}$. Then $D_{3}$ is a $D P I H K I-T 4$.
Proof. By (HK2) we have $\{1,2\}=1 \circ 2 \subseteq(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=\{1,2\} \circ 1=\{0,1\} \bigcup(2 \circ 1)$, thus $2 \in 2 \circ 1$. Since $1 \in 1 \circ x, \forall x \in H$ and $2 \in 1 \circ 2$, then $1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ 2)) \nsubseteq D_{3}$. We easily see that $1 \circ((1 \circ 0) \circ(1 \circ 0))$ and $1 \circ((1 \circ 0) \circ(1 \circ 1))$ are subsets of $D_{3}$. Since $1 \in 1 \circ x, \forall x \in H$ and $2 \in 2 \circ 1$, hence $1 \circ(((1 \circ x) \circ(1 \circ 2)) \circ(1 \circ y)) \nsubseteq D_{3}$. If $2 \notin 0 \circ 1$, then $1 \circ((1 \circ 1) \circ(1 \circ 1))$ and $1 \circ((1 \circ 1) \circ(1 \circ 0))$ are subsets of $D_{3}$. Let $2 \in 0 \circ 1$, then $N((N x \circ N y) \circ N z) \nsubseteq D_{3}, \forall x, y, z \in H$. So $D_{3}$ is a DPIHKI-T4.

Lemma 4.7. Let $1 \circ 1=\{0,1\}$ and $1 \circ 2=\{2\}$. Then the following statements hold:
(i) $D_{1}$ is a $D P I H K I-T 4$ if and only if $2 \circ 2 \neq\{0\}$.
(ii) $D_{2}$ is a DPIHKI -T4 if and only if $1 \in 2 \circ 1$.
(iii) $D_{3}$ is a $D P I H K I-T 4$ if and only if $2 \in 2 \circ 2$.

Proof. (i) Let $D_{1}$ is a $D P I H K I-T 4$ we prove that $2 \circ 2 \neq\{0\}$. On the contrary let $2 \circ 2=\{0\}$. Then
$1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2)=1 \circ 0=\{1\}=D_{1}$ and $1 \circ((1 \circ 0) \circ(1 \circ 2))=1 \circ(1 \circ 2)=1 \circ 2=2$. Since $2 \notin D_{1}$, hence $D_{1}$ is not a DPIHKI-T4, which is a contradiction. Thus $2 \circ 2 \neq\{0\}$.
Conversely let $2 \circ 2 \neq\{0\}$. We prove that $D_{1}$ is a DPIHKI -T4. By (HK2) we have $\{2\}=1 \circ 2 \subseteq(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=2 \circ 1$, thus $2 \in 2 \circ 1$. From $2 \in 2 \circ 1$ and $2 \circ 2 \neq\{0\}$ and some manipulations we get that $N((N x \circ N y) \circ N z) \nsubseteq D_{1} ; \forall x, y, z \in H$. So there is nothing to prove, in other words $D_{1}$ is a DPIHKI-T4.
(ii) Let $D_{2}$ is a DPIHKI-T4 we prove that $1 \in 2 \circ 1$. On the contrary let $1 \notin 2 \circ 1$. Then $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 0))=1 \circ((1 \circ 2) \circ 1)=1 \circ(2 \circ 1) \subseteq 1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $0 \in$ $1 \circ((1 \circ 0) \circ(1 \circ 0))$. Since $0 \notin D_{2}$, then $D_{2}$ is not a DPIHKI-T4, which is a contradiction. Thus $1 \in 2 \circ 1$. Conversely let $1 \in 2 \circ 1$. By (HK2) we have $(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=2 \circ 1$, so $(0 \circ 2) \bigcup\{2\}=2 \circ 1$. Hence $1 \in 0 \circ 2$. Also we have $1 \circ((1 \circ 0) \circ(1 \circ 2))=\{2\} \subseteq D_{2}$. Now since $1 \in 1 \circ 1$ we can see that $N((N x \circ N y) \circ N z) \nsubseteq D_{2}, \forall x, y, z \in\{0,1\}$. Since $1 \in 0 \circ 2$, then $N(N x \circ N y) \circ N z) \nsubseteq D_{2}$, for all $x \in\{0,1\}$ and $y, z \in\{0,1,2\}$. If $2 \circ 2 \neq\{0\}$, then by hypothesis we can check that $N((N 2 \circ N y) \circ N z) \nsubseteq D_{2}, \forall y, z \in\{0,1,2\}$. If $2 \circ 2=\{0\}$, then by $(H K 2)$ we have $0 \circ 1=(2 \circ 2) \circ 1=(2 \circ 1) \circ 2=\{0,1,2\}$. Hence $N((N 2 \circ N y) \circ N z) \nsubseteq D_{2}$;
$\forall y, z \in\{0,1,2\}$. Therefore $D_{2}$ is a DPIHKI - T4.
(iii) Let $D_{3}$ is a DPIHKI - T4 we prove that $2 \in 2 \circ 2$. On the contrary let $2 \notin 2 \circ 2$. Then $2 \circ 2 \subseteq\{0,1\}$, hence $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2)=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2) \subseteq$ $1 \circ\{0,1\}=\{0,1\}=D_{3}$. But $1 \circ((1 \circ 0) \circ(1 \circ 2)) \nsubseteq D_{3}$, since $2 \in 1 \circ((1 \circ 0) \circ(1 \circ 2))$ and $2 \notin D_{3}$, we conclude that $D_{3}$ is not a DPIHKI -T4, which is a contradiction. Thus $2 \in 2 \circ 2$. Conversely the proof is similar to (i) and (ii).

Theorem 4.8. Let $1 \circ 1=\{0,1\}$. Then the following statements hold :
(i) If $1 \in 1 \circ 2$, then $D_{1}, D_{2}$ and $D_{3}$ are DPIHKI -T4.
(ii) If $1 \circ 2=\{2\}$, then:
(a) $D_{1}$ is a $D P I H K I-T 4$ if and only if $2 \circ 2 \neq\{0\}$.
(b) $D_{2}$ is a DPIHKI - T4 if and only if $1 \in 2 \circ 1$.
(c) $D_{3}$ is a DPIHKI -T4 if and only if $2 \in 2 \circ 2$.

Proof. (i) Follows from Theorem 3.6 and Lemmas 4.2 and 4.6.
(ii) Follows from Lemma 4.7.

Now we give some examples about the above theorem.
Example 4.9. Consider the following tables :

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{1,2\}$ |
| 2 | $\{1,2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0\}$ | $\{0\}$ |


| $H_{4}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,1\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1\}$ |


| $H_{5}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,1,2\}$ |


| $H_{6}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Moreover:
(a) In $H_{1}, H_{2}$ and $H_{3}, D_{1}, D_{2}$ and $D_{3}$ are DPIHKI - T4, by Theorem 4.8(i).
(b) In $H_{4}, D_{1}$ and $D_{2}$ are DPIHKI-T4, by Theorem 4.8(ii), while $D_{3}$ is not a DPIHKIT4, by Theorem 4.8(ii).
(c) In $H_{5}, D_{1}, D_{3}$ are DPIHKI-T4, by Theorem 4.8(ii), while $D_{2}$ is not a DPIHKI-T4, by Theorem 4.8(ii).
(d) In $H_{6}, D_{1}, D_{2}$ and $D_{3}$ are not DPIHKI $-T 4$, by Theorem 4.8(ii).

Theorem 4.10. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{2\}$. Then $D_{1}\left(D_{3}\right)$ is a DPIHKI $-T 4$ if and only if $2 \circ 2 \neq\{0\}$.

Proof. We give the proof of $D_{1}$, the proof of $D_{3}$ is similar to $D_{1}$. Let $D_{1}$ is a DPIHKI-T4 we prove that $2 \circ 2 \neq\{0\}$. On the contrary let $2 \circ 2=\{0\}$. By hypothesis we have
$1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((1 \circ 2) \circ 2)=1 \circ(2 \circ 2)=1 \circ 0=\{1\} \subseteq D_{1}$ and $2=1 \circ 2=1 \circ(1 \circ 2)=1 \circ((1 \circ 0) \circ(1 \circ 2))$. Since $2 \notin D_{1}$, so $D_{1}$ is not a DPIHKI-T4, which is a contradiction. Thus $2 \circ 2 \neq\{0\}$. Conversely let $2 \circ 2 \neq\{0\}$ we prove that $D_{1}$ is a DPIHKI-T4. By (HK3) we have $2 \circ 1=(1 \circ 2) \circ 1=(1 \circ 1) \circ 2=\{0,2\} \circ 2=(0 \circ 2) \bigcup(2 \circ 2)$. Since $2 \circ 2 \neq\{0\}$ implies that $2 \circ 1 \neq\{0\}$. Since $2 \in(1 \circ 2) \bigcap(1 \circ 1), 2 \circ 1$ and $2 \circ 2 \neq\{0\}$, then by some calculations we can get that $N((N x \circ N y) \circ N z) \nsubseteq D_{1}$. Hence $D_{1}$ is a DPIHKI -T4.

Now we give some examples about the above theorem.
Example 4.11. Consider the following tables :

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Furthermore: (a) In $H_{1}, H_{2}, D_{1}$ and $D_{3}$ are DPIHKI - T4.
(b) In $H_{3}, D_{1}$ and $D_{3}$ are not DPIHKI -T4.

Theorem 4.12. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{2\}$. Then the following statements hold :
(i) If $2 \circ 2 \subseteq\{0,2\}$, then $D_{2}$ is not a $D P I H K I-T 4$.
(ii) If $2 \circ 2=\{0,1,2\}$, then $D_{2}$ is a DPIHKI $-T 4$.
(iii) If $2 \circ 2=\{0,1\}$, then $D_{2}$ is a DPIHKI-4 if and only if $1 \in 0 \circ 2$.

Proof.(i) Let $2 \circ 2 \subseteq\{0,2\}$. We have $1 \circ(((1 \circ 0) \circ(1 \circ 2)) \circ(1 \circ 1)) \subseteq 1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $0 \in 1 \circ 1 \subseteq 1 \circ((1 \circ 0) \circ(1 \circ 1))$. Since $0 \notin D_{2}$, so $D_{2}$ is not a DPIHKI-T4.
(ii) Let $2 \circ 2=\{0,1,2\}$. In the proof of Theorem 4.10 we obtained that $2 \circ 1=(2 \circ 2) \bigcup(0 \circ 2)$, so $2 \circ 1=\{0,1,2\}$. Since $2 \in(1 \circ 1) \bigcap(1 \circ 2)$ and $\{1,2\} \subseteq(2 \circ 1) \bigcap(2 \circ 2)$ then by some manipulations we will see that $N((N x \circ N y) \circ N z) \nsubseteq D_{2} ; \forall x, y, z \in H$. Therefore $D_{2}$ is a DPIHKI - T4.
(iii) Let $2 \circ 2=\{0,1\}$ and $D_{2}$ is a DPIHKI-4 we prove that $1 \in 0 \circ 2$. On the contrary let $1 \notin 0 \circ 2$. Then we have $1 \circ(((1 \circ 2) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((2 \circ 2) \circ 2)=1 \circ(\{0,1\} \circ 2)=$ $1 \circ\{0,2\}=\{1,2\}=D_{2}$. But $0 \in 1 \circ 1 \subseteq 1 \circ(2 \circ 2)=1 \circ((1 \circ 2) \circ(1 \circ 2))$, so $N(N 2 \circ N 2) \nsubseteq D_{2}$. Hence $D_{2}$ is not a DPIHKI-T4, which is a contradiction. Thus $1 \in 0 \circ 2$. Conversely if $1 \in 0 \circ 2$, then by the proof of Theorem 4.10 we have $2 \circ 1=(2 \circ 2) \bigcup(0 \circ 2)$, hence $1 \in 2 \circ 1$. By $(H K 3)$ we have $0 \circ 2 \subseteq(2 \circ 1) \circ 2=(2 \circ 2) \circ 1=\{0,2\} \bigcup(0 \circ 1)$. Since $1 \in 0 \circ 2$, then $1 \in 0 \circ 1$. Now $0 \in 2 \circ 1$ and hypothesis imply that $N((N x \circ N y) \circ N z) \nsubseteq D_{2} ; \forall x, y, z \in H$. Therefore $D_{2}$ is a DPIHKI-T4.

Now we give some examples about the above theorem.
Example 4.13. Consider the following tables:

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1,2\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |


| $H_{4}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1\}$ |


| $H_{5}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,1\}$ |


| $H_{6}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Also:
(a) In $H_{3}$ and $H_{4}, D_{2}$ is a DPIHKI-T4, by Theorem 4.12 (ii),(iii).
(b) in $H_{1}, H_{2}, H_{5}$ and $H_{6}, D_{2}$ is not a DPIHKI - T4, by Theorem 4.12 (i),(iii).

Theorem 4.14. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1,2\}$. Then $D_{1}\left(D_{3}\right)$ is a DPIHKI-T4 if and only if $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$.

Proof. We prove theorem for $D_{1}$, the proof of $D_{3}$ is the same as $D_{1}$. Let $D_{1}$ is a DPIHKI$T 4$ we prove that $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$. On the contrary let $0 \circ 1=\{0\}$ and $2 \circ 1=\{0\}$. Then we have $1 \circ(((1 \circ 0) \circ(1 \circ 0)) \circ(1 \circ 0))=1 \circ(\{0,2\} \circ 1)=1 \circ 0=\{1\} \subseteq D_{1}$ and $1 \circ((1 \circ 0) \circ(1 \circ 0))=\{1,2\} \nsubseteq D_{1}$. Hence $D_{1}$ is not a DPIHKI-T4, which is a contradiction. So $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$. Conversely let $0 \circ 1 \neq\{0\}$ or $2 \circ 1 \neq\{0\}$. Then by (HK3) we have $(0 \circ 2) \bigcup(2 \circ 2)=(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=\{1,2\} \circ 1=\{0,2\} \bigcup(2 \circ 1)$. So $2 \in 0 \circ 2$ or $2 \in 2 \circ 2$. Now by some calculations we can get that $N((N x \circ N y) \circ N z) \nsubseteq D_{1} ; \forall x, y, z \in H$. Therefore $D_{1}$ is a DPIHKI - T4.

Now we give some examples about the above theorem.
Example 4.15. Consider the following tables :

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0\}$ | $\{0,2\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$, Furthermore:
(a) In $H_{1}$ and $H_{2}, D_{1}$ and $D_{3}$ are DPIHKI -T4.
(b) In $H_{3}, D_{1}$ and $D_{3}$ are not DPIHKI -T4.

Theorem 4.16. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1,2\}$. Then the following statements hold:
(i) If $2 \circ 2=\{0,1\}$, then $D_{2}$ is a DPIHKI $-T 4$.
(ii) If $2 \circ 2 \subseteq\{0,2\}$, then $D_{2}$ is a DPIHKI - T4 if and only if $1 \in 0 \circ 2$.
(iii) If $2 \circ 2=\{0,1,2\}$, then $D_{2}$ is a DPIHKI-T4 if and only if $2 \circ 1 \neq\{0,1\}$ or $0 \circ 1 \neq\{0\}$.

Proof. (i) Let $2 \circ 2=\{0,1\}$. Now similar to the proof of (conversely of) Theorem 4.14 we have $(0 \circ 2) \bigcup(2 \circ 2)=\{0,2\} \bigcup(2 \circ 1)$, so $1 \in 2 \circ 2$ implies that $1 \in 2 \circ 1$. Therefore $\{1,2\}=1 \circ 2 \subseteq(2 \circ 1) \circ 2=(2 \circ 2) \circ 1=\{0,1\} \circ 1=(0 \circ 1) \bigcup\{0,2\}$, which implies that $1 \in 0 \circ 1$. By hypothesis and some calculations we can get that $N((N x \circ N y) \circ N z) \nsubseteq D_{2}$; $\forall x, y, z \in H$. Therefore $D_{2}$ is a DPIHKI-T4.
(ii) Let $2 \circ 2 \subseteq\{0,2\}$ and $D_{2}$ is a $D P I H K I-T 4$ we prove that $1 \in 0 \circ 2$. On the contrary let $1 \notin 0 \circ 2$. Then by (HK2) we have $2 \circ 0 \subseteq(1 \circ 1) \circ 0=(1 \circ 0) \circ 1=1 \circ 1=\{0,2\}$. Since $0 \notin 2 \circ 0$, thus $2 \circ 0=\{2\}$. Therefore we get that $1 \circ(((1 \circ 0) \circ(1 \circ 0)) \circ(1 \circ 1))=1 \circ((1 \circ 1) \circ(1 \circ 1))=$ $1 \circ(\{0,2\} \circ\{0,2\})=1 \circ\{0,2\}=\{1,2\}=D_{2}$. Since $0 \in 1 \circ 1 \subseteq 1 \circ((1 \circ 0) \circ(1 \circ 1))$, then $N(N 0 \circ N 1) \nsubseteq D_{2}$. So $D_{2}$ is not a DPIHKI-T4, which is a contradiction. Thus $1 \in 0 \circ 2$. Conversely let $2 \circ 2=\{0\}$ and $1 \in 0 \circ 2$. By (HK2) we have $1 \in 0 \circ 2 \subseteq(2 \circ 1) \circ 2=(2 \circ 2) \circ 1=$ $0 \circ 1$. By some manipulations we can get that $N((N x \circ N y) \circ N z) \nsubseteq D_{2} ; \forall x, y, z \in H$. Hence $D_{2}$ is a DPIHKI -T4. Now let $2 \circ 2=\{0,2\}$ and $1 \in 0 \circ 2$. By the proof of (i) we have $1 \in 2 \circ 1$. So $\{1,2\}=1 \circ 2 \subseteq(2 \circ 1) \circ 2=(2 \circ 2) \circ 1=\{0,2\} \circ 1=(0 \circ 1) \bigcup(2 \circ 1)$. Thus $2 \in(0 \circ 1) \bigcup(2 \circ 1)$. By some calculations we conclude that $N\left((N x \circ N y) \circ N z \nsubseteq D_{2}\right.$; $\forall x, y, z \in H$. That is $D_{2}$ a DPIHKI-T4.
(iii) The proof is similar to (ii), by some suitable modifications.

Now we give some examples about the above theorem.
Example 4.17. Consider the following tables:

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :---: |
| 0 | $\{0\}$ | $\{0,1\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1\}$ | $\{0,1\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,1,2\}$ |


| $H_{4}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :---: |
| 0 | $\{0,2\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |


| $H_{5}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |


| $H_{6}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,1,2\}$ |


| $H_{7}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0\}$ |


| $H_{8}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Also:
(a) In $H_{1}, H_{2}, H_{3}, H_{5}$ and $H_{8}, D_{2}$ is a DPIHKI-T4, by Theorem (i), (ii), (iii) and (iii), respectively.
(b) In $H_{4}, H_{6}$ and $H_{7}, D_{2}$ is not a DPIHKI-T4, by Theorem 4.16 (ii), (iii) and (ii), respectively.

Lemma 4.18. Let $1 \circ 1=\{0,2\}$ and $1 \circ 2=\{1\}$. Then $D_{1}, D_{2}$ and $D_{3}$ are not DPIHKI$T 4$.

Proof. The proof follows from Theorem 3.13.

Now we give some examples about the above lemma.
Example 4.19. The following tables show the hyper $K$-algebra structures on $\{0,1,2\}$ such that $D_{1}, D_{2}$ and $D_{3}$ are not DPIHKI-T4.

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :---: |
| 0 | $\{0,2\}$ | $\{0\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |

Theorem 4.20. Let $1 \circ 1=\{0,1,2\}$ and $1 \circ 2=\{2\}$. Then the following statements hold:
(i) $D_{2}$ is a DPIHKI - T4 if and only if $1 \in 0 \circ 2$ or $2 \circ 2=\{0,1,2\}$.
(ii) $D_{1}\left(D_{3}\right)$ is a DPIHKI -T4 if and only if $2 \circ 2 \neq\{0\}$.

Proof. Note that from hypothesis and (HK2) we conclude that

$$
\begin{equation*}
(0 \circ 2) \bigcup(1 \circ 2) \bigcup(2 \circ 2)=(1 \circ 1) \circ 2=(1 \circ 2) \circ 1=2 \circ 1 \tag{1}
\end{equation*}
$$

(i) Let $D_{2}$ is a $D P I H K I-T 4$ we prove that $1 \in 0 \circ 2$ or $2 \circ 2=\{0,1,2\}$. On the contrary Let $1 \notin 0 \circ 2$ and $2 \circ 2 \neq\{0,1,2\}$. Consider two cases: (a) $1 \in 2 \circ 2$, (b) $1 \notin 2 \circ 2$.
Case(a): Let $1 \in 2 \circ 2$. Then by hypothesis we get that $2 \circ 2=\{0,1\}$. So we have $1 \circ(((1 \circ 2) \circ(1 \circ 2)) \circ(1 \circ 2))=1 \circ((2 \circ 2) \circ 2)=1 \circ(\{0,1\} \circ 2)=1 \circ\{0,2\}=\{1,2\}=D_{2}$ and $1 \circ((1 \circ 2) \circ(1 \circ 2))=1 \circ\{0,1\}=\{0,1,2\}$. Since $0 \notin D_{2}$, then $N(N 2 \circ N 2) \nsubseteq D_{2}$. So $D_{2}$ is not a DPIHKI-T4, which is a contradiction. Thus $1 \in 0 \circ 2$ or $2 \circ 2=\{0,1,2\}$. Case(b): Let $1 \notin 2 \circ 2$, by (1) we conclude that $1 \notin 2 \circ 1$. Hence we get that $1 \circ(((1 \circ 0) \circ(1 \circ$ $2)) \circ(1 \circ 0))=1 \circ((1 \circ 2) \circ 1)=1 \circ(2 \circ 1) \subseteq 1 \circ\{0,2\}=\{1,2\}=D_{2}$. Also $1 \circ((1 \circ 0) \circ(1 \circ 0))=$ $1 \circ(1 \circ 1)=1 \circ\{0,1,2\}=\{0,1,2\}$. Since $0 \notin D_{2}$,so $N(N 0 \circ N 0) \nsubseteq D_{2}$. Thus $D_{2}$ is not a DPIHKI -T4, which is a contradiction. So $1 \in 0 \circ 2$ or $2 \circ 2=\{0,1,2\}$. Conversely Let $1 \in 0 \circ 2$ or $2 \circ 2=\{0,1,2\}$. Then by (1) we get that $1 \in 2 \circ 1$ and $1 \circ((1 \circ 0) \circ(1 \circ 2)) \subseteq D_{2}$. By hypothesis and some manipulations we can see that $N((N x \circ N y) \circ N z) \nsubseteq D_{2} ; \forall x, y, z \in H$. Therefore $D_{2}$ is a DPIHKI-T4.
(ii) The proof is not difficult and nearly similar to (i).

Now we give some examples about the above theorem.
Example 4.21. Consider the following tables:

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0,2\}$ | $\{0,1\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |


| $H_{4}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0,2\}$ |


| $H_{5}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0\}$ |


| $H_{6}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{0,2\}$ | $\{0\}$ |

Then each of the above tables gives a hyper $K$-algebra structure on $\{0,1,2\}$. Moreover: (a) In $H_{1}$ and $H_{4}, D_{1}$ and $D_{3}$ are DPIHKI -T4, by Theorem 4.20 (ii), while $D_{2}$ is not a DPIHI - T4, by Theorem 4.20 (i).
(b) In $H_{2}$ and $H_{3}, D_{2}, D_{1}$ and $D_{3}$ are DPIHKI - T4, by Theorem 4.20 (i) and (ii), respectively.
(c) In $H_{5}, D_{2}$ is a DPIHKI-T4, by Theorem 4.20 (i), while $D_{1}$ and $D_{3}$ are not DPIHKIT4, by Theorem 4.20 (ii).
(d) In $H_{6}, D_{2}, D_{1}$ and $D_{3}$ are not DPIHKI-T4, by Theorem 4.20 (i) and (ii), respectively.

Theorem 4.22. Let $1 \circ 1=\{0,1,2\}$ and $1 \in 1 \circ 2$. Then $D_{1}, D_{2}$ and $D_{3}$ are DPIHKI-T4.
Proof. By Theorem 3.6 we have $D_{1}$ and $D_{2}$ are $D P I H K I-T 4$. We now prove that $D_{3}$ is a DPIHKI-T4. By hypothesis we have $1 \in 1 \circ x ; \forall x \in H$, hence $1 \in((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)$; $\forall x, y, z \in H$. Thus we get that $2 \in 1 \circ 1 \subseteq 1 \circ(((1 \circ x) \circ(1 \circ y)) \circ(1 \circ z)) ; \forall x, y, z \in H$. Since $2 \notin D_{3}$, then $N((N x \circ N y) \circ N z) \nsubseteq D_{3} ; \forall x, y, z \in H$. Therefore $D_{3}$ is a DPIHKI-T4.

Now we give some examples about the above theorem.
Example 4.23. The following tables show the hyper $K$-algebra structures on $\{0,1,2\}$ such that $D_{1}, D_{2}$ and $D_{3}$ are DPIHKI -T4.

| $H_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1,2\}$ | $\{0,1,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{1,2\}$ |
| 2 | $\{2\}$ | $\{0,1,2\}$ | $\{0\}$ |


| $H_{2}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{0,1\}$ | $\{0\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{0,1\}$ | $\{0,2\}$ |


| $H_{3}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :---: |
| 0 | $\{0,2\}$ | $\{0,2\}$ | $\{0,2\}$ |
| 1 | $\{1\}$ | $\{0,1,2\}$ | $\{1,2\}$ |
| 2 | $\{1,2\}$ | $\{0,1\}$ | $\{0,1\}$ |

Remark 4.24. Note that Examples 4.5, 4.9, 4.11, 4.13, 4.17 and 4.19. show that the conditions of Theorems 4.4, 4.8, 4.12, 4.16 and 4.18, are necessary and we can not omit or reduce these conditions.

## References

[1] R.A. Borzooei, P. Corsini, M.M. Zahedi, "Some kinds of positive Implicative hyper K-ideals," J. Discrete Mathematics and Cryptography ,to paper
[2] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, "On hyper K-algebras" Math. Japon. Vol. 52, No. 1 (2000), 113-121.
[3] R.A. Borzooei, M.M. Zahedi, "Positive Implicative hyper K-ideals," Scientiae Mathematicae Japonicae, Vol. 53, No. 3 (2001), 525-533.
[4] Y. Imai and K. Iseki, "On axiom systems of propositional calculi" XIV Proc. Japan Academy, 42 (1966), 19-22.
[5] K. Iseki and S. Tanaka, "An introduction to the theory of BCK-algebras", Math. Japon, 23 (1978), 1-26.
[6] F. Marty, "Sur une generalization de la notion de groups", 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
[7] J. Meng and Y.B. Jun, "BCK-algebras", Kyung Moonsa, Seoul, Korea, (1994).
[8] L. Torkzadeh, M.M. Zahedi, "Dual Positive Implicative Hyper K-Ideals of Type 3", J.Quasigroups and Related Systems, to appear.
[9] M.M. Zahedi, R.A. Borzooei, Y.B. Jun, A. Hasankhani, "Some results on hyper K-algebra", Scientiae Mathematicae, Vol. 3, No. 1 (2000), 53-59.

Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran
e-mail: zahedi_mm@mail.uk.ac.ir
email:ltorkzadeh@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 03B47, 06F35, 03G25 .
    Key words and phrases. (bounded) hyper $K$-algebra, dual positive implicative hyper $K$-ideal.

