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��������� Our thesis is that for the family of classes of the form EC(T ), T a complete first
order theory with the dependence property (which is just the negation of the independence
property) there is a substantial theory which means: a substantial body of basic results for all
such classes and some complimentary results for the first order theories with the independence
property, as for the family of stable (and the family of simple) first order theories. We examine
some properties.

Annotated Content

§1 Indiscernible sequences and averages, p.505–520

[We consider indiscernible sequences b̄ = 〈b̄t : t ∈ I〉 wondering whether they have
an average type as in the stable case. We investigate for any such b̄ the set stfor(b̄)
of formulas ϕ(x̄, ȳ) such that every instance ϕ(x̄, c̄) divide b̄ to a finite/co-finite sets.
We also consider the set dpfor(b̄) of formulas ϕ(x̄, ȳ) which can divide b̄ only to
finitely many intervals; this is always the case if T has the dependence property,
i.e., dpfor(b̄) = Lτ(T ). If T has the dependence property, indiscernible sequences
behave reasonably while indiscernible sets behave nicely. Similar behavior occurs
for p ∈ S(M) connected with indiscernible set b̄ which we call stable types. We
then note the connection between unstable types, unstable ϕ(x, y; c̄), and formulas
ϕ(x, y; c̄) with the independence property, i.e. on singletons.]

§2 Characteristics of types, p.521–524

[Each indiscernible sequence b̄ = 〈b̄t : t ∈ I〉, has for each ϕ = ϕ(x̄, ȳ) a characteris-
tic number n = nb̄,ϕ, the maximal number of intervals to which an instance ϕ(x̄, c̄)
can divide b̄. We wonder what we can say about it.]

I would like to thank Alice Leonhardt for the beautiful typing.
The author would like to thank the United States Israel Binational Science Foundation for partially sup-
porting this research. Publication 715.
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§3 Shrinking indiscernbles, p.525–529

[For an indiscernible sequence 〈b̄t : t ∈ I〉 over a set A, if we increase the set a little,
i.e. if A′ = A ∪ B then not much indiscernability is lost. An easy case is: if I has
cofinality > |B| + |T | then for some end segment J of I the sequence 〈b̄t : t ∈ J〉 is
an indiscernible sequence over A′.]

§4 Perpendicular endless indiscernible sequences, p.530–543

[We define perpendicularity and investigate its basic properties; any two mutually
indiscernible sequences are perpendicular. E.g., (for theories with the non inde-
pendence property) one indiscernible sequence can be perpendicular to at most
≥ |T |+ pairwise perpendicular indiscernible sequences. We then deal with Fsp

|T |+ -
constructions.]

§5 Indiscernible sequences perpendicular to cuts, p.544–550

[Using constructions as above we show that we can build models controlling quite
tightly the dual cofinality of such sequences where dual-cf(b̄,M) = Min{|B| : B ⊆
M and the average of b̄ over B ∪ b̄ is not realized in M}.
That is, for any pairwise perpendicular 〈b̄ζ : ζ < ζ∗〉 we can find a model M
including them with dual-cf(b̄ζ ,M) being any (somewhat large) pregiven regular
cardinal).

§6 Concluding Remarks, p.551–553

[We speculate on a parallel to DOP and to deepness. Also on the existence of
indiscernibles (starting with any set).]

Notation: 1) T is a first order theory in a vocabulary τT ,C a monster model of T , L is
first order logic so Lτ(T ) the first order language with vocabulary τ , i.e., the set of the first
order formulas in that vocabulary. Let Lτ(T ) = Lτ(T ). We may write ā ∈ A(⊆ C) for
ā ∈ (�g(ā))A.
2) Let ϕ,ψ, ϑ be first order formulas, ϕ = ϕ(x̄) mean that x̄ is a sequence of variables
with no repetitions including all free variables of ϕ (usually x̄ = 〈x� : � < �g(x̄)〉). Let
ϕ(x̄, ȳ) mean that we have sequence of variables x̄ and parameters ȳ where x̄ˆȳ is with no
repetitions; so ϕ = ϕ(x̄, ȳ) is not exactly equality.
3) I, J denote linear orders (used to index indiscernible sequences or sets). We shall use
b̄ = 〈b̄t : t ∈ I〉 with I (or J) a linear order, and {b̄t : t ∈ I} ⊆ mC for some m < ω. We use
I,J as subsets of mC for some m (not constant).
4) t denotes truth values, ϕt is ϕ if t = truth or one and is ¬ϕ if t = false or 0. So
ϕif(statement) is ϕ,¬ϕ if the statement is true, false resp., and ϕif(i) means ϕif(i=1).
5) dcl(A) is the definable closure of A, acl(A) is the algebraic closure of A (inside C or, here
more interesting, Ceq).

∗ ∗ ∗

Our main interest here is in (first order complete) theories with the dependence property,
but in the beginning we do not always assume this.
This work is continued in [Sh 783].
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§1 Indiscernible sequences and averages

We try to continue [Sh:c, Ch.II, 4.13], but we do not rely on it so there is some repetition.
In [Sh:c], the notion stable (complete first order) theories, the notions of indiscernible set
and its average (and local versions of them) play an important role. In an unstable theory,
indiscernible sequences are not necessarily indiscernible sets. Still for indiscernible set I
if T has the dependence property, the basic claim guaranteeing the existence of averages
(any formula ϕ(x̄, ā) divide I into a finite and a co-finite set) holds. Moreover, any ϕ(x̄, ā)
divides any indiscernible sequence into the union of < nϕ convex sets. For any T , we can
still look at the first order formulas ϕ(x̄, ȳ) which behaves well, i.e. any ϕ(x̄, b̄) divide any
indiscernible sequence b̄ to a finite/cofinite set.

In 1.3 - 1.9 + 1.9(c) + (d) we define the relevant notions: average type for an ultrafilter,
Av(J,D) or Avϕ(J,D) or any average type for an indiscernible sequence Av(J, 〈b̄t : t ∈ I〉)
and majority (maj) for finite sequences (saying how the majority behave). We define the
set of stable formulas for an indiscernible b̄ (stfor(b̄); also dpfor(b̄) which is Lτ(T ) for T
with the dependence property), and state some basic properties.

We define a notion of distance (< ω) between indiscernible sequences (as in [Sh:93]).
Being of finite distance is an equivalence relation and this is related to canonical bases (of
types, of indiscernible sets) which play important role for stable theories, hence we try to
define parallels in 1.9, see 1.13(2).

Then we note a dichotomy for the types p ∈ Sm(M). Such a type p may be stable
(see Definition 1.19, Claim 1.16 - 1.31); not only is then the type definable, but for every
ultrafilter D on mM with Av(M,D) = p, any indiscernible sequence constructed from D is
an indiscernible set, and the definition of p comes from an appropriate finite large enough
(∆, k)-indiscernible set. If p ∈ Sm(M) is non-stable, that is not stable, then there is a
partial order with infinite chains closely related to it. We note that if T is unstable with
the dependence property, then some ϕ(x, y, c̄) define a quasi order with infinite chains and
also that if T is unstable some ϕ(x, y; c̄) has the order property (though not necessarily
the property (E) of Eherenfeucht, see [Eh57], some ϕ(x1, . . . , xn) is an irreflexive relation
on some infinite set in some model of T ). It may be hard now to see how he could have
not defined stable, but without Ceq, and no dichotomical theorem, looking for a reasonable
property for which the proof works, it had been quite natural.

On the subject see [Sh:c, II].
By [Sh 10] the possible function fT,ϕ(x̄,ȳ)(λ) = Sup{|Sm

ϕ (A)| : |A| ≤ λ} are characterizing
(if ϕ(x̄; ȳ) stable is: ≤ λ, if ϕ unstable without independence then Ded(λ) and if with the
independence property 2λ). Also ϕ(x̄, ȳ) is unstable in T iff it has the order property iff
ϕ(x̄; ȳ) has the strict order property or the independence property. Hence T is unstable iff it
has the order property or the strict order property even by a formula ϕ′(x, ȳ). But it follows
there that even if T has both the independence property and the strict order property, if
ϕ(x̄, ȳ) has the independence property some ϕ′(x, ȳ) has the independence property. Then
Lachlan proves that if ϕ(x̄, ȳ) has the strict order property some ϕ′(x, ȳ) has the strict order
property.

More on “ϕ(x̄, ȳ) with the independence property”, see Laskowski [Lw92].
The above settles fT,ϕ, now for fT (λ) = sup{|S(A)| : |A| ≤ λ} this gives only (fT,ϕ(λ))|T |,

Keisler [Ke76] show that if a countable T is unstable without the independence property
but if Ded(λ) does not bound for some λ ≥ 2|T | then fT (λ) = Ded(λ)ℵ0 for λ ≥ 2|T |. In
[Sh:c, III] it is proved (for T not necessarily countable, unstable without the independence
property) that for some κ = κord(T ) ≤ |T |+, fT (λ) = Ded(λ)<κOrd(T ) for λ ≥ 2|T |.

In [Sh 10], [Sh:a, II, §4], contains some claims on averages when T (or ϕ) has the depen-
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dence property continued here. On other possible dividing lines among unstable theories see
[Sh 500, §2], (SOPn, n ≥ 3), [DjSh 692], (NOPn, n = 1, 2), [DjSh 710] (the oak property),
[Sh 702].

We may look at Th(M,P1, . . . , Pn) with P� a unary relation, this is connected to investi-
gating a model of T in logics with extra quantifiers; see Baldwin Shelah [BlSh 156], Shelah
[Sh 205], [Sh 284b], [Sh 284c].

Baldwin Benedikt [BlBn00] deal with the following. Let N be a model of T, T with
the dependence property, we expand N by adding a unary predicate P interpreted as an
indiscernible sequence, I. We extend (N, I) to an |I|+-saturated model and ask is (M,P )
benign (see, e.g., [BBSh 815]).

Grossberg Lessman [GrLe00, §4] deals with the context: let T be complete first order
theory, C its monster model, p say a 1-type, now we deal with the order property, indepen-
dence property and strict order property when we restrict the parameters and variables, i.e.,
satisfaction, to p(C), mainly generalizing parallels of results in [Sh:c], in particular the av-
erage ϕ(x, ȳ) has the order property iff it has the strict order property or the independence
property1. Compare with [Sh:c, II].

We thank John Baldwin and an anonymous reader for some comments and Eyal Firsten-
berg for a very careful reading, corrections and comments.

1.1 Context. T a complete first order theory, its monster model being C = CT as usual in
[Sh:c] the monster, Ceq is when we add elements to designate equivalence classes.

1.2 Definition. 1) T has the dependence property or is dependent means it does not have
the independence property whose definition is repeated below.
2) T has the independence property if some formula ϕ(x̄, ȳ) has the independence property
(in T ), which means that for every n

�n
ϕ C |= (∃ȳ0, . . . , ȳn−1)

∧

η∈n2

(∃x̄)(
∧

�<n

ϕ(x̄, ȳ�)if(η(�))).

3) The formula ϕ(x̄; ȳ) has the dependence property (in T ) if it does not have the indepen-
dence property.

We can use below just J just of the form ω>B.

1.3 Definition. Consider a set of I of finite sequences of length m from the monster model
C where m < ω, and an ultrafilter D over I.
1) Let Dom(D) = I.
2) For J a set of finite sequences from C we let Av(J,D) be {ϕ(x̄, ā) : x̄ = 〈x� : � < m〉, ā ∈ J
and {b̄ ∈ I :|= ϕ(b̄, ā)} ∈ D}. It will be called the D-average over J or the average type
over J by D. If J = ω>B we may write B instead of J (or M if B = |M |). (Av stands for
average).
3) Avϕ(A,D) where ϕ = ϕ(x̄, ȳ) is the set of formulas of the form ϕ(x̄, ā) or the form
¬ϕ(x̄, ā) belonging to Av(A,D) and Av∆(A,D) is the union of Avϕ(A,D) for ϕ ∈ ∆.
Similarly Avϕ(J,D), Av∆(J,D).
4) Let D be an ultrafilter on nB and B ⊆ A and I is an infinite linear order.

We say b̄ = 〈b̄t : t ∈ I〉 is based on D over A or b̄ is an (A,D)-indiscernible sequence if
for each t ∈ I the type tp(b̄t, A ∪ {b̄s : s <I t}) is the average by D over A ∪ {b̄s : s <I t}.

1so though the names are similar this is not specially related to §1, e.g., the notion of stable types are
not related
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If A = ∪{c̄ : c̄ ∈ Dom(D)}, i.e. A is the domain of D we may write “b̄ is a D-indiscernible
sequence” or b̄ is based on D. This makes sense for I finite but we shall mention it in such
a case.
5) Let p ∈ Sm(B) and B ⊆ A. We say b̄ = 〈b̄t : t ∈ I〉 is based on p over A if for some
ultrafilter D on mB the sequence b̄ is based on D over A and p = Av(B,D).

1.4 Comment: 1) If D is a principal ultrafilter on J, say {b̄∗} ∈ D then Av(B,D) =
tp(b̄∗, B).

2) If b̄ = 〈b̄t : t ∈ I〉 is based on D over A then D is a principal ultrafilter iff (∀s, t ∈ I)(b̄s =
b̄t).

1.5 Claim. 1) For D an ultrafilter on I ⊆ mC and A ⊆ C the set Av(A,D) is a complete
m-type over A, i.e., ∈ Sm(A) (and it does not split over ∪I, see Definition 4.23).
2) Let p ∈ Sm(A). Then p is finitely satisfiable in B iff p = Av(A,D) for some ultrafilter
D on mA.
3) If p ∈ Sm(M) then p is finitely satisfiable in M .

Proof. Easy.

1.6 Claim. Let D be an ultrafilter on mB and B ⊆ A.
0) Assume that b̄1 = 〈b̄1t : t ∈ I1〉 is based on D over A and b̄2 = 〈b̄2t : t ∈ I2〉 and
for any n < ω, t1 <I1 . . . <I1 tn and s1 <I2 . . . <I2 sn we have tp(b̄1t1ˆ . . . ˆb̄

1
tn
, A) =

tp(b̄2s1
ˆ . . . ˆb̄2sn

, A). Then b̄2 is based on D over A, (see part (5)); (if I1 is finite we should
add |I2| ≤ |I1|).
1) For any linear order I there is b̄ = 〈b̄t : t ∈ I〉 based on D over A.
2) If I is a linear order and b̄ = 〈b̄t : t ∈ I〉 is based on D over A, then b̄ is an indiscernible
sequence over A.
3) If b̄ = 〈b̄t : t ∈ I〉 is based on D over A and J ⊆ I, then b̄ � J = 〈b̄t : t ∈ J〉 is based on
D over A; here we allow that J is finite.
4) If b̄� = 〈b̄�t : t ∈ I〉 is based on D over A for � = 1, 2 then b̄1, b̄2 realizes the same type
over A (in C); again we allow I to be finite.
5) If b̄� = 〈b̄�t : t ∈ I�〉 is based on D over A and n < ω and I� |= t�1 < . . . < t�n for � = 1, 2,
then the sequences b̄1

t11
ˆ . . . ˆb1t1n and b̄2

t21
ˆ . . . ˆb̄2t2n realize the same type over A.

6) p = Av(A,D) does not split over B, which means that: if b̄, c̄ ∈ mA,M < ω and
tp(b̄, B) = tp(c̄, B) and ϕ = ϕ(x̄, ȳ) a formula, then ϕ(x̄, b̄) ∈ p⇒ ϕ(x̄, c̄) ∈ p.

Proof. Easy, E.g.
1) If I is well ordered, choose b̄t by induction on t. By compactness this holds for any I.
�1.6

1.7 Definition. 1) For an infinite linear order I and an indiscernible sequence b̄ = 〈b̄t :
t ∈ I〉, having �g(b̄t) = m for t ∈ I, we define:

(a) stforpa(b̄) = {ϕ(x̄, ȳ, c̄) : �g(x̄) = m, and for every ā ∈ �g(ȳ)C, the set {t ∈ I : C |=
ϕ(b̄t; ā, c̄)} is finite or the set {t ∈ I : C |= ¬ϕ(b̄t; ā, c̄)} is finite}
(stfor stands for stable formulas, pa stands for parameters)
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(b) stfor(b̄) = {ϕ(x̄; ȳ) : ϕ(x̄, ȳ) ∈ stforpa(b̄), i.e., no parameters}
(c) dpfor(b̄) = {ϕ(x̄, ȳ) : �g(ȳ) = m and for every ā ∈ �g(ȳ)C the set

{t ∈ I : C |= ϕ[ā, b̄t]} is a finite union of convex subsets of I}.
Let dpforpa(b̄) be defined similarly allowing parameters, obviously dpfor stands for
“formula with the (relevant) dependence property”

(d) dpforn(b̄) is defined similarly when the union is of ≤ n convex sets; similarly is the
other cases

(e) writing stforpa(b̄) = L(τ) we mean the set of “relevant” formulas.

2) For a sequence b̄ = 〈b̄t : t < k〉 with b̄t ∈ mC, and formula ϕ = ϕ(ȳ, z̄), �g(ȳ) = m, we
define

majϕ(A, 〈b̄� : � < k)〉) = {ϕ(ȳ, c̄)t :t ∈ {true,false},
c̄ ∈ �g(z̄)A, and |{� :|= ϕ(b̄�, c̄)t}| > k/2}.

Clearly “ϕ(ȳ, c̄) ∈ majϕ(C, 〈b̄� : � < k〉)” is a first order property of c̄ (with the parameters
b̄0ˆ . . . ˆb̄k−1).
If not said otherwise we use k odd so that we have “completeness”.
(Note that maj stands for majority; this is not necessarily a type, just a set of formulas).
3) E = Ek

ϕ(ȳ,z̄), where ϕ(ȳ, z̄) is a formula in Lτ(T ), written z̄1Ez̄2 with �g(z̄1) = �g(z̄2) =
(�g(x̄)) × k (written (x̄1, . . . , x̄n) instead of x̄1ˆ . . . ˆx̄n, abusing notation) is defined as
follows: (x̄0, . . . , x̄k−1)E(x̄′0, . . . , x̄

′
k−1) =:

(∀z̄)(
∨

u⊆k,|u|>k/2

∧

�∈u

ϕ(x̄�, z̄) ≡
∨

u⊆k,|u|>k/2

∧

�∈u

ϕ(x̄′�, z̄)).

Of course, it is an equivalence relation.

1.8 Claim. 1) If b̄ = 〈b̄t : t ∈ I〉 is an infinite indiscernible sequence, �g(b̄t) = m and
ϕ(ȳ; z̄) ∈ stfor(b̄) so �g(ȳ) = m, then for every k large enough we have:

(a) for any c̄ of length �g(z̄), for some truth value t the set {t ∈ I :|= ϕ(b̄t, c̄)t} has
< k/2 members

(b) if t0, . . . , tk−1 are distinct members of I then majϕ(A, 〈b̄t�
: � < k〉) ∈ Sm

ϕ (A) for
every A ⊆ C, in fact for every nonprincipal ultrafilter D over {b̄t : t ∈ I} and set A
we have majϕ(A, 〈b̄t�

: � < k〉) is a subset of Av(A,D), in fact is equal to Avϕ(A,D)
(c) if t0, . . . , tk−1 ∈ I with no repetitions and s0, . . . , sk−1 ∈ I with no repetition then

(b̄t0 , . . . , b̄tk−1)E
k
ϕ(x̄,ȳ)(b̄s0 , . . . , b̄sk1

)

(d) for some finite ∆ we have: if I ′, I ⊆ J where J is a linear order, b̄′ = 〈b̄′t : t ∈
J〉, b̄′ � I = b̄ and b̄′ is ∆-indiscernible sequence, |I ′| ≥ k, then
(α) (b),(c) holds for b̄′ � I ′ and
(β) ϕ(ȳ, z̄) ∈ stfor(b̄′ � I ′).

2) Let b̄ = 〈b̄t : t ∈ I〉 be an indiscernible sequence ϕ(ȳ; z̄) ∈ dpfor(b̄) so �g(ȳ) = m then
for some k = kϕ,b̄:

(a) for any c̄ of length �g(z̄) and t the set {t ∈ I : ϕ[b̄t, c̄]t} is the union of ≤ k intervals.
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3) The k above depends only on 〈pn : n < ω〉 where pn is tp(b̄t1ˆ . . . ˆb̄tn , ∅) for any t1 <I

. . . <I tn.

Proof. 1)

(a) By compactness
(b) just think of the definitions
(c) follows from clause (b)
(d) by compactness.

2), 3) Similarly. �1.8

1.9 Definition. Let b̄ = 〈b̄t : t ∈ I〉 be an infinite indiscernible sequence.
1) We define (Cb stands for canonical bases, working in Ceq):

(a) for ϕ(ȳ; z̄) ∈ stfor(b̄) let Cbϕ(ȳ;z̄)(b̄) be (b̄t0 , . . . , b̄tk−1)/E
k
ϕ(ȳ,z̄) ∈ Ceq, with k =

kϕ(ȳ,z̄)(b̄) minimal as in 1.8(1)(a) and any pairwise distinct t0, . . . , tk−1 ∈ I

(b) Cb(b̄) = dcl{Cbϕ(ȳ,z̄)(b̄) : ϕ(ȳ, z̄) ∈ stfor(b̄)} ⊆ Ceq.

2) If I has no last element then

Avϕ(A, b̄) = {ϕ(x̄, ā)t : for every large enough t ∈ I we have

C |= ϕ(b̄t, ā)t where t is a truth value}

Av∆(A, b̄) = ∪{Avϕ(A, b̄) : ϕ ∈ ∆}

Av(A, b̄) = {ϕ(x̄, ā) :ϕ(x̄, ȳ) ∈ Lτ(T ), ā ∈ ω>A

and |= ϕ(b̄t, ā) for every large enough t ∈ I}.

3) Let Avstfor(A, b̄) be Av∆(b̄, A) for ∆ = stfor(b̄), similarly for replacements to stfor.
4) If the order on I = Dom(b̄) does not matter then we can replace b̄ by {b̄t : t ∈ I}.

1.10 Claim. [T is dependent]
Assume I is a linear order with no last element and b̄ = 〈b̄t : t ∈ I〉 an indiscernible

sequence, �g(b̄t) = m.
1) dpfor(b̄) = {ϕ(x̄, ȳ): any ϕ and ȳ but x̄ = 〈x� : � < m〉}.
2) Avϕ(A, b̄) ∈ Sm

ϕ (A), see Definition 1.9(2), i.e., for every ϕ(x̄, c̄), for some t for every
large enough t we have |= ϕ(b̄t, c̄)t.
3) Av(A, b̄) ∈ Sm(A), see Definition 1.9(2).
4) Avstfor(A, b̄) does not depend on the order of I (so by 1.7 we can use I a set or infinite
linear order which is not necessarily endless).
5) If b̄ is an (infinite) indiscernible set, then stfor (b̄) = dpfor (b̄) = Lτ(T ) (and stforpa(b̄) =
dpforpa(b̄) = {ϕ(x̄, ȳ, c̄) : c̄ ⊆ C, (and of course �g(x̄) = m)}.

Proof. Left to the reader or see [Sh:c, II.4.13] (for part (5) see (A) ⇒ (B) in ).

To formalize clause (d) of 1.8(1) let
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1.11 Definition. 1) For a set ∆ of formulas and k ≤ ω we say that 〈b̄1t : t ∈ I1〉, 〈b̄2t : t ∈ I2〉
are immediate (∆, k)-nb-s (or the first is an immediate (∆, k)-nb of the second over A) if:

(a) both are (∆, k)-indiscernible sequences of length ≥ k

(b) for some (∆, k)-indiscernible sequence 〈b̄t : t ∈ I〉 and order preserving functions
h1, h2 from I1, I2 into I respectively we have t ∈ I� ⇒ b̄�h�(t)

= b̄t for � = 1, 2

(nb stands for neighbors).
2) The relation “being (∆, k)-nb-s” is the closure of being an “immediate (∆, k)-nb” to an
equivalence relation. We say “of distance ≤ n” if there is a chain of immediate (∆, k)-nb-s
of length ≤ n starting with one ending in the other. We may write ∆ instead of (∆, ω) and
if ∆ = Lτ(T ) we may omit ∆.
3) We can replace k by < k (and even < ω).
4) We write (A,∆, k) if the indiscernibility is over A (also in part (2)).
5) If b̄1, b̄2 are infinite indiscernible sequences, we say they are “essentially nb-s (over A)”
if for every finite ∆ ⊆ Lτ(T ) and k < ω they are (∆, k)-nb-s (they are (A,∆, k)-nb-s).
6) If b̄ is an infinite indiscernible sequence over A we let CA(b̄) = {b̄: for some b̄′ an
essentially nb of b̄ over A, b̄ appears in b̄′}.
7) If b̄ is an infinite indisernible sequence over A we let C′

A(b̄) = {b̄ : b̄ appears in some b̄′,
an infinite indiscernible sequence over A which is an A-nb of b̄}.

1.12 Remark. C′
A(b̄) was defined in [Sh:93, Def.5.1(4)].

1.13 Claim. 1) If 〈b̄t : t ∈ I〉 is an infinite indiscernible sequence and ϕ(ȳ, z̄) ∈ dpforn(〈b̄t :
t ∈ I〉), then for some finite ∆ and k, for any (∆, k)-nb sequence 〈b̄′t : t ∈ I ′〉 of 〈b̄t : t ∈ I〉
we have ϕ(ȳ, z̄) ∈ dpforn(〈b̄′t : t ∈ I ′〉).
2) The result in (1) holds also for stforn(〈b̄t : t ∈ I〉). If b̄ = 〈b̄t : t ∈ I〉 is an infinite
indiscernible sequence and ϕ(ȳ, z̄) ∈ stfor(b̄), then for some finite ∆ and k for any (∆, k)-nb
b̄′ of b̄ we have Cbϕ(ȳ,z̄)(b̄′) = Cbϕ(y,z̄)(b̄) and Avϕ(ȳ,z̄)(C, b̄′) = Avϕ(ȳ,z̄)(C, b̄).
3) If b̄1, b̄2 are (∆, k)-nb-s of distance ≤ n for every finite ∆ and k < ω, then they are
Lτ(T )-nb-s of distance ≤ n.
4) Like part (3) with a fixed k, i.e., if b̄1, b̄2 are (∆, k)-nb-s of distance ≤ n for every finite
∆, then they are (Lτ(T ); k)-nb-s of distance ≤ n.
5) If b̄ is an infinite indiscernible sequence, then stfor(b̄) = ∪{stforn(b̄) : n < ω}.

Proof. Easy. (Use compactness for (3) and (4).

∗ ∗ ∗

1.14 Definition. Let p ∈ Sm(B).
1) We say p � ϕ is definable where ϕ = ϕ(x̄, ȳ) and �g(x̄) = m, if some ψ(ȳ, c̄) define it with
c̄ ⊆ B, where
2) We say ψ(ȳ, c̄) defined p � ϕ where ϕ = ϕ(x̄, ȳ) if:

(∗) for every ā ∈ �g(ȳ)B we have
ϕ(x̄, ā) ∈ p⇔ C |= ψ[ā, c̄].

3) We say p � ϕ is ∆-definable if it is definable by some ψ(ȳ, c̄) with ψ(ȳ, z̄) ∈ ∆.
4) We say p ∈ Sm(B) is definable if every p � ϕ is definable.
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1.15 Claim. The number of definable p ∈ Sm(B) is at most ≤ (|B| + 2)|T |.

Proof. For every definable p ∈ Sm(B) choose a sequence 〈ψϕ,p(ȳ, c̄ϕ,p) : ϕ = ϕ(x0, . . . ,
xm−1; ȳ) ∈ Lτ(T )〉 such that ψϕ,p(ȳ, c̄ϕ,p) define p � ϕ and c̄ϕ,p ⊆ B. Now

(a) the number of such sequences is ≤ (|B| + 2)|T |

(b) if p1, p2 ∈ Sm(B) and 〈ψϕ,p1(ȳ, c̄ϕ,p1) : ϕ(x0, . . . , xm−1; ȳ) ∈ Lτ(T )〉 is equal to
〈ψϕ,p2(ȳ, c̄ϕ,p2) : ϕ(x0, . . . , xm−1; ȳ) ∈ Lτ(T )〉, then p1 = p2.

Together we are done. �1.15

1.16 Claim. 1) Assume that B ⊆ C, p ∈ Sm(B) and D is an ultrafilter on mB and
b̄ = 〈b̄t : t ∈ I〉 is an infinite D-indiscernible sequence over B such that Av(B,D) = p.
Then there is a function F from {(A,∆) : A ⊆ B is finite and ∆ ⊆ Lτ(T ) is finite}
into D, but we may write F∆(A) instead of F((A,∆)) and F∆(b̄0, . . . , b̄�−1, A) instead of
F∆(b̄0 ∪ . . . ∪ b̄�−1 ∪A), such that:

(∗) if α ≤ ω and for each � < α we have b̄� ∈ mB, b̄� ∈ F∆(b̄0, . . . , b̄�−1, A)(∈ D) then
the sequence 〈b̄t : t ∈ I〉ˆ〈b̄� : � ∈ α∗〉 (where the ∗ in α∗ means invert the order) is
a ∆-indiscernible sequence over A.

2) Let p ∈ Sm(B),D, b̄ = 〈b̄t : t ∈ I〉, A = ∅ be as in part (1). For any ϕ(ȳ, z̄) there are a
finite ∆ϕ ⊆ Lτ(T ) and kϕ < ω [also large enough as in 1.8] such that: if b̄� ∈ mB for � < k
where k ≥ kϕ are as in part (1) for ∆ = ∆ϕ, then we have:

� if ϕ(ȳ, z̄) ∈ stfor(b̄) then

(i) Avϕ(C, b̄) = majϕ(C, 〈b̄� : � < k〉) = Avϕ(C, D)

(ii) p � ϕ(ȳ, z̄) and even p+ = Avϕ(C, D) is definable by a first order formula with
parameters from B (see Definition 1.7(2)).

3) Assume that B�, p�, D�, b̄� = 〈b�t : t ∈ I�〉 are as in part (1) for � = 1, 2 and B1 = B =
B2, p1 = p = p2, I1 = I = I2. Then Avϕ(ȳ,z̄)(C, Dj) does not depend on j provided that
ϕ(ȳ, z̄) ∈ stfor(b̄1) ∩ stfor(b̄2) and B = M ≺ C; recall Avϕ(ȳ,z̄)(C, b̄j) = Avϕ(ȳ,z̄)(C, D).

Proof of 1.16. 1) There is no harm with increasing I, so without loss of generality, (as we
can supply appropriate b̄t’s) I has no last element. For simplicity without loss of generality
∆ is closed under permuting and identifying the variables. Next we shall choose F∆(A).

Let n < ω be above the number of free variables in any formula in ∆ and let t0 < . . . <
tn−1 < t be in I. Now tp∆(b̄t, A ∪ {b̄t�

: � < n},C) is a finite set of formulas and let ψ(x̄, c̄)
be its conjunction. So ψ(x̄, c̄) ∈ tp(b̄t, B ∪ {b̄s : s < t},C) = Av(B ∪ {b̄s : s < t}, D) hence
J = {b̄ ∈ mB : C |= ψ(b̄, c̄)} ∈ D.

Choose F∆(A) as any such J; why is F as required? So suppose that A ⊆ B is finite
and let b̄� ∈ F∆(b̄0 ∪ . . . ∪ b̄�−1 ∪A) for � < �(∗) or for � < ω. Clearly

(∗)1 b̄′ ∈ F∆(b̄0 ∪ . . . ∪ b̄�−1 ∪ A) implies that [tn−1 < t′ ∈ I ⇒ b̄t′ , b̄
′ realizes the same

∆-type over A ∪ {b̄t0 , . . . , b̄tn−1} ∪ {b�−1, . . . , b̄0}].
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But as 〈b̄s : s ∈ I〉 is an indiscernible sequence over B, and b̄′, b̄�−1, . . . , b̄0 ∈ B, we can
replace t0 < . . . < tn−1, by any t′0 < . . . < t′n−1 < t′ from I, so

(∗)2 if b̄′ ∈ F∆(b̄0 ∪ . . . ∪ b̄�−1 ∪A) and t′0 < . . . < t′n−1 < t′ in I then b̄′, b̄t′ realizes the
same ∆-type over A ∪ {b̄t′0 , . . . , b̄t′n−1

} ∪ {b̄0, . . . , b̄�−1}.
But by the choice of n,

(∗)3 for any b̄ ∈ F∆(b̄0∪ . . .∪ b̄�−1∪A) we have tp∆(b̄, A∪{b̄s : s ∈ I}∪{b̄�−1, . . . , b̄0}) =
∪{tp∆(b̄, A ∪ {b̄s0 , . . . , b̄sn−1} ∪ {b̄�−1, . . . , b̄0}) : s0 < . . . < sn−1 are in I}.

By induction on � < ω we prove that

(∗)4 for k < ω for any mi
0 < . . . < mi

�−1 < � and ti0 <I . . . <I t
i
k−1 for i = 1, 2 the ∆-type

which b̄m1
0
ˆ . . . ˆb̄m1

�−1
ˆb̄t1k−1

ˆ . . . ˆb̄t10 and b̄m2
0
ˆ . . . ˆb̄m2

�−1
ˆb̄t2k−1

ˆ . . . ˆb̄t20 realizes over
A are equal.

So together we are done.
2) In Clause (i) the first equality holds by Claim 1.8, Clause (a); that is such ∆ exists by
it. For the second equality, if ϕ(x̄, c̄)t ∈ Av(C,D), then for any linear order I e.g. the
present one we can find b̄′ = 〈b̄′t : t ∈ I〉 based on (B ∪ c̄, D), by Claim 1.6(1). Apply
the first equality with b′ standing for b̄. Note that tp(b̄′, B) = tp(b̄, B) hence there is an
automorphism of C over B mapping b̄ to b̄′ hence we can in clause (i) replace b̄ by b̄′ (not
changing 〈b̄� : � < 2k〉.
Clause (ii) follows from clause (i) as

� for c̄ ∈ (�g(z̄))C we have: ϕ(x, c̄) ∈ p+ iff ϕ(x̄, c̄) ∈ Av(B ∪ c̄, b̄) iff
ϕ(ȳ, c̄) ∈ Avϕ(C, 〈b̄� : � < k〉) iff C |= ϑ[c̄, b0, . . . , bk−1] where
ϑ(y, b0, . . . , b̄k−1) =

∨

u⊆k,|u|≥k/r

∨

�∈u

ϕ(y, b̄�).

[Why? The second “iff” holds as Avϕ(C, b̄) restricted to B ∪ c̄ is p+ � ϕ, by an
assumption of our claim and similarly the first. The third iff holds by clause (i)
which we have proved, the fourth iff holds by Definition 1.7(2).]

3) Obvious from clause (i) of part (2). �1.16

The notions “p ∈ Sm(B) is finitely satisfiable in B”, “is definable”, “has uniqueness” and
“is stable” are closely related and important here; we shall define now the two later ones
and investigate their relationships.

1.17 Definition. We say p ∈ Sm(B) has unique indiscernibles (or has uniqueness) when
it is finitely satisfiable in B and

� if (∗)(a) D� is an ultrafilter on mB for � = 1, 2

(b) p = Av(B,D�) ∈ Sm(B) for � = 1, 2

(c) b̄� = 〈b̄�t : t ∈ I〉 is a (B,D�)-indiscernible sequence,
see Definition 1.3(4), i.e. b̄�t realizes
Av(B ∪ {b̄�s : s <I t,D}) for t ∈ I where of course
I is an infinite linear order

then b̄1, b̄2 realizes the same type over B.
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1.18 Claim. If p ∈ Sm(B) is definable and finitely satisfiable in B (automatic if B = M),
then p has unique indiscernibles.

Proof. For each formula ϕ = ϕ(x̄, ȳ), �g(ȳ) = m let ψϕ(ȳ, c̄ϕ) be such that:

(α) c̄ϕ ⊆ B

(β) for every ā ∈ �g(ȳ)B we have
ϕ(x̄, ā) ∈ p⇔ C |= ψϕ(ā, c̄ϕ).

Let D1, D2 be ultrafilters on mB such that Av(B,D1) = p = Av(B,D2) and let
〈b�t : t ∈ I〉 be as in Definition 1.17.

Now we prove that

(∗)n if tn <I . . . <I t1 and ϕ = ϕ(x̄n, . . . , x̄1, z̄), �g(x̄�) = m, d̄ ∈ �g(z̄)B then C |=
ϕ[b̄1tn

, . . . , b̄1t1 , d̄] ≡ ϕ[b̄2tn
, . . . , b̄2t1 , d̄].

Let ϕ(x̄n, . . . , x̄1, ȳ) and d̄ ∈ �g(ȳ)B be given.
We define the formula ϕk(x̄k, x̄k−1, . . . , x̄1, z̄k) and d̄k ∈ �g(z̄k)B by downward induction on
k ≤ n.

Case 1: k = n.
ϕn(x̄n, . . . , x̄1, d̄0) = ϕ(x̄n, . . . , x̄1, d̄) so d̄0 = d̄.

Case 2: k < n.
We have ϕk+1(x̄k+1, . . . , x̄1, d̄k+1), now as p is definable (and fixing some of the param-

eters causes no harm) there is ϕk(x̄k, . . . , x̄1, d̄k) with d̄k ⊆ B of course, such that:

�� for every ā′k, . . . , ā
′
1 ∈ mB we have:

ϕk+1(x̄, ā′k, . . . , ā
′
1, d̄k+1) ∈ p⇔ C |= ϕk(ā′k, . . . , ā

′
1, d̄k).

So we have carried the induction.
Now let � ∈ {1, 2} and let A = ∪{d̄k : k ≤ n}, it is a finite subset of B, and let ∆ be any
finite subset of Lτ(T ) which includes {ϕk : k ≤ n} and let F�

∆ be as in 1.16 with D�, B,A,∆
here standing for D,M,A,∆ there and let ā�

i ∈ F�
∆(〈ā�

j : j < i〉 ∪ A) ⊆ nB for i < ω and
� ∈ {1, 2}.

So 〈ā�
i : i < ω〉 is ∆-indiscernible over A, and clearly

�1 if i1 < . . . < in < ω, tn <I . . . <I t1 then
tp∆(ā�

i1
ˆ . . . ˆā�

in
, A) = tp∆(b̄�t1ˆ . . . ˆb̄

�
tn
, A).

Easily

�2 for � ∈ {1, 2}, k ≤ n and i1 < . . . < ik+1 we have

|= ϕk+1[ā�
ik+1

, . . . , ā�
i1 , d̄k+1] ≡ ϕk[ā�

ik
, . . . , ā�

i1 , d̄k]

[Why? It suffices to note that |= ϕk+1[ā�
ik+1

, ā�
ik
, . . . , ā�

i1 , d̄k+1], iff {ā ∈ mB :
ϕk+1[ā, a�

ik+1
, . . . , ā�

1, d̄k+1]} ∈ D, iff ϕk+1(x̄, ā�
ik
, . . . , ā�

i1 , d̄k+1) ∈ p, iff |= ϕk(a�
ik+1

,

. . . , a�
i1
, d̄k).

Why? The first iff holds by the choice of F�
∆(〈ā�

0, . . . , ā
�
ik+1−1〉), the second iff as

p = Av(B,D�) and the last iff by the choice of ϕk, d̄k.]
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hence by the transitivity of ≡

|= ϕn[ā�
in
, . . . , ā�

i1 , d̄n] ≡ ϕ0[d̄0]

but ϕn = ϕ and d̄n = c̄ so

|= ϕ[ā�
in
, . . . , ā�

i1 , c̄] ≡ ϕ0[d̄0].

So the truth value of ϕ[ā�
in
, . . . , ā�

i1
, c̄] does not depend on � ∈ {1, 2} so together with 1.16(1)

we get (∗)n so we are done. �1.17

1.19 Definition. 1) We call p ∈ Sm(B) a stable type if:

(a) p is finitely satisfiable in B
(b) for some ultrafilter D on mB satisfying p = Av(B,D) and sequence b̄ = 〈b̄t : t ∈ I〉

based on D (see Definition 1.3(4) so I is infinite) b̄ is an indiscernible set over B.

2) We call p ∈ S(B) a non-stable type if it satisfies (a) above but not (b).
3) An infinite indiscernible sequence b̄ is stable/nonstable if it is an indiscernible set/it is
not an indiscernible set over the empty set (see 1.28).

1.20 Claim. Assume T is dependent.
1) If p ∈ Sm(B) is stable then p is definable and has uniqueness.
2) If p ∈ Sm(B) is stable, then every infinite b̄ based on p is an indiscernible set, that is for
every D, b̄ = 〈b̄t : t ∈ I〉 as in Definition 1.19 the sequence b̄ is an indiscernible set over B.
3) The number of stable p ∈ Sm(B) is ≤ (|B| + 2)|T |.

Proof. 1) The type p is definable by 1.16(2)(ii), 1.10(5) and so has uniqueness by 1.18.
2) Let b̄ be based on D over B and let D1 = D and b̄1t = b̄t. As p is a stable type there are
D′, 〈b̄′t : t ∈ I ′〉 as in Definition 1.19. Let D2 = D′ and we can find 〈b̄2t : t ∈ I〉 such that:
b̄2t realizes Av(B ∪ {b̄′s : s <I t}, D′) (by 1.6). Now clearly I |= t1 < . . . < tn, I

′ |= s1 <
. . . < sn implies tp(b̄′tn

ˆ . . . ˆb̄′t1 , B) = tp(b̄2sn
ˆ . . . ˆb̄2s1

, B) for every n (by 1.6(5)) hence also
〈b̄2t : t ∈ I〉 is an indiscernible set over B. By part (1) the sequences 〈b̄1t : t ∈ I〉, 〈b̄2t : t ∈ I〉
realizes the same type over B hence also 〈b̄1t : t ∈ I〉 is an indiscernible set over B.
3) By part (1) and 1.15. �1.20

1.21 Claim. 1) Assume p ∈ Sm(B) has uniqueness. If for � = 1, 2, D� is an ultrafilter on
mB satisfying p = Av(B,D�) and b̄� = 〈b̄�t : t ∈ I〉 is based on D�, then b̄1, b̄2 has distance
≤ 2.
2) In part (1), instead uniqueness it suffices to assume that n < ω, t0 <I . . . <I tn−1 the
sequences b̄1t0ˆ . . . ˆb̄

1
tn−1

and b̄2t0ˆ . . . ˆb̄
2
tn−1

realizes the same type.

Proof. Should be easy.
1) By the definition of uniqueness (see Definition 1.17) this follows by part (2).
2) By 1.13 it is enough to prove, for any finite ∆ ⊆ Lτ(T ) and k < ω that b̄1, b̄2 are
(∆, k)-nb-s of distance ≤ 2. This in turn follows by 1.16. �1.21

The definability of p � ϕ proved in 1.16(2) for ϕ ∈ stfor(b̄) say more than stated. The
defining formulas are canonical (i.e., the formula depends on ϕ and T , the parameters
depend also on p).
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1.22 Definition. Let ϕ(x̄, ȳ) be a formula ∈ Lτ(T ) which has the dependence property
(holds if T has it).
1) Let k1[ϕ(x̄, ȳ)] = kT [ϕ(x̄, ȳ)] be the minimal k < ω such that there is no sequence
〈ā� : � < k〉 with ā� ∈ �g(ȳ)C for � < k such that

C |= ∧η∈n2(∃x̄) ∧�<k ϕ(x̄, ā�)η(�).

2) We say (k,∆) is suitable to b̄, ϕ if:

(a) b̄ is a ∆-indiscernible sequence

(b) the formulas in ∆ have arity < �g(b̄)

(c) if b̄′ is a ∆-indiscernible sequence of the same ∆-type as b̄, �g(b̄′) > 2k then for
any ā ∈ �g(ȳ)C for some truth value t the set {t ∈ Dom(b̄′) : C |= ϕ[b̄′t, ā]

t} has < k
members.

3) We say (k,∆, n̄) is strongly suitable to b̄, ϕ if n̄ = 〈n� : � ≤ k〉, (a), (b), (c) as above
hold and

(d) if b̄′ = 〈b̄′i < i < i(∗)〉 is a ∆-indiscernible sequence of the same ∆-type as b̄ and
�g(b̄′) ≥

∑

i<k

ni then for no ā ∈ �g(ȳ)C are there t�,m < i(∗)(� ≤ k,m < n�) with no

repetitions t�1,m1 < t�2,m2 when �1 < �2 ∨ (�1 = t2 ∧m1 < m2) such that for any
m1,m2 < n� we have ϕ[b̄′t�1,m1

, ā] ≡ ϕ[b̄′t�2,m2
, ā] iff �1 − �2 is even.

4) ψ(ȳ, z̄) = ψk,ϕ(x̄,ȳ)(ȳ, z̄) is the canonical definition if it is as in the proof of 1.16(2).
5) Similarly for ϕ(x̄, ȳ, c̄).

Trivially

1.23 Claim. In 1.16(2), if ϕ(x̄, ȳ) ∈ stfor(b̄), then p � ϕ is defined by ψk,ϕ(x̄,ȳ)(ȳ, c̄) for
some c̄ ⊆ B (of length �g(z̄ϕ(x̄,ȳ))).

∗ ∗ ∗

Now it should be clear that

1.24 Claim. If p ∈ Sm(B) is stable and b̄ is an infinite indiscernible set based on p, then
for any automorphism F of Ceq which is the identity over Cb(p), the sequences b̄, f(b̄) are
nb-s of distance ≤ 2. [See Definition 1.11.]

We shall show

1.25 Claim. [T is dependent] If b̄ = 〈b̄t : t ∈ I〉 is an infinite indiscernible set over ∅ and
an indiscernible sequence over A, then b̄ is an indiscernible set over A.

Proof. By 1.28 below.
But we first prove some “local” claim.
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1.26 Claim. Assume

(∗)ϕ ϕ = ϕ(x̄1, . . . , x̄n, ȳ), �g(x̄�) = m and for any permutation π of {1, . . . , n} we let
ϕπ = ϕπ(x̄1, . . . , x̄m, ȳ) = ϕ(x̄π(1), . . . , x̄π(n), ȳ).

1) If b̄ = 〈b̄t : t ∈ I〉 is a {ϕ(x̄1, . . . , x̄n, c̄)}-indiscernible sequence but not set and I =
I0 + I1 + I2, |I0| ≥ n − 2, |I2| ≥ n − 2, then for some permutation π of {1, . . . , n} and
t3, t4, . . . , tn ∈ I0 ∪ I2, we have: ϕπ(x̄1, x̄2, d̄) =: ϕ(x̄1, x̄2, b̄t3 , . . . , b̄t1 , c̄) linearly ordered
〈b̄t : t ∈ I1〉 that is, for t �= s ∈ I we have |= ϕ[āt, ās, d̄] ⇔ t <I s.
2) In part (1), with I is infinite of course, ϕπ(x̄1; x̄2ˆ . . . ˆx̄n, z̄) /∈ stfor(b̄ � I); moreover
ϕπ(x̄1, x̄2, d̄) /∈ stfor(b̄ � I1).

Proof. See e.g. [Sh:c, II] and history there; the point being that the permuations exchanging
k, k + 1 for k = 1, . . . , n− 1 generate the group of permutations of {1, . . . , n}. �1.26

More information concerning 1.26 is

1.27 Claim. [T is dependent.]
1) Assume

(a) b̄ = 〈b̄t : t ∈ I〉 is an indiscernible sequence of m-tuples over d̄ and I = J0 + J1 + J2

(b) ϕ(x̄, ȳ, d̄) /∈ stfor(b̄) and let ϕ′(ȳ, x̄, d̄) = ϕ(x̄, ȳ, d̄)

(c) |J0|, |J2| are finite large enough, in fact just ≥ kϕ(x̄;ȳ,z̄) from 1.8(2).

Then we can find ψ(x̄, ē) and truth value t such that

(α) for t ∈ J1, |= (∃ȳ)(ψ(ȳ, ē) ∧ ϕ′(ȳ, āt, d̄)t)

(β) for t �= s ∈ J1 we have
t <J1 s iff
ψ(ȳ, ē), ϕ′(ȳ, āt, d̄)t � ϕ′(ȳ, ās, d̄)t

(γ) for some n ≤ kϕ(x̄1,x̄2,z̄) and t0 <J . . . <J tn−1 from J0 ∪ J2 and η ∈ n2 we have
ψ(ȳ, ē) = ∧�<nϕ

′(ȳ, b̄t�
, d̄)η(�).

2) In part (1) we can deduce that

(δ) ϑ(x̄1, x̄2, ē) is a partial order and b̄ � J1 is ϑ(x̄1, x̄2, ē)-increasing where ϑ(x̄1, x̄2, ē) =
(∀ȳ)[ψ(ȳ, ē) ∧ ϕ′(ȳ, x1, d̄) → ϕ′(ȳ, x̄2, d̄)].

3) Assume in part (1) that J2 = ∅ and |J0| large enough. Then still we can find ψ(x̄, ē), t
and n(∗) such that:

(α) if t1 <J1 . . . <J1 tn(∗) then
(∃ȳ)[ψ(ȳ, ē) & ∧n(∗)

i=1 ϕ
′(ȳ, āti , d̄)

t

(β) if s <J1 t1 <J1 . . . <J1 tn(∗) <Jn s then
ϕ′(ȳ, ās, d̄)t, ψ(ȳ, ē) � ϕ′(ȳ, āt1 , d̄)t ∨ . . . ∨ ϕ′(ȳ, ātn(∗) , d̄)

t

(γ) as in part (1).
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Proof. 1) Without loss of generality I is dense without first and without last element. As
ϕ(x̄, ȳ, d̄) /∈ stforpa(b̄) for some sequence ā, for both truth value t the set {t ∈ I : C |=
ϕ(b̄t, ā, d̄)t} is infinite. As we can replace ϕ by ¬ϕ without loss of generality {t ∈ I : C |=
ϕ(b̄t, ā, d̄)} is unbounded from above (in I). As b̄ is an indiscernible sequence over d̄ easily

(∗) for every s ∈ I the type {ϕ(b̄t, ȳ, d̄)if(s<t) : t ∈ I} is consistent.

Let n < ω be minimal such that for some η ∈ n2 and t0 <I . . . <I tn−1 the type
pη

<t0,...,tn−1> = {ϕ(b̄t�
, ȳ, d̄)η(�) : � < n} ∪ {¬ϕ(b̄t, ȳ, d̄) : t <I t0} ∪ {ϕ(b̄t, ȳ, d̄) : tn−1 <I t}

is inconsistent. We let η ∈ n2 be as above such that for this n, η is minimal under the
lexicographic order. Such n, η exists as ϕ(x̄, ȳ; d̄) ∈ dpforpa(b̄).

By (∗) above clearly n ≥ 1. Also by the minimality on n clearly η(0) �= false, η(n−1) �=
true, so n ≥ 2, η(0) = true and η(n − 1) = false; so for some k < n − 1 we have
η(0) = η(1) = . . . = η(k) �= η(k + 1).
As pη

<t0,...,tn−1> is inconsistent we can find finite sets J− ⊆ {s : s <I t0}, J+ ⊆ {s : tn−1 <I

s} such that the set {¬ϕ(b̄s, ȳ, d̄) : s ∈ J−}∪{ϕ(b̄t�
, ȳ, d̄)η(�) : � < n}∪{ϕ(b̄s, ȳ, d̄) : s ∈ J+}

is inconsistent.
Let ψ(x̄, d∗) be the conjunction of {¬ϕ(b̄s, ȳ, d̄) : s ∈ J−} ∪ {ϕ(b̄t�

, ȳ, d̄)η(�) : � < n, � /∈
{k, k+ 1}} ∪ {ϕ(b̄s, ȳ, d̄) : s ∈ J+}. So {ψ(ȳ, d̄∗), ϕ(b̄tk

, ȳ, d̄),¬ϕ(b̄tk+1 , ȳ, d̄)} is inconsistent,
so

C |= (∀ȳ)[ψ(ȳ, d̄∗) ∧ ϕ(b̄tk
, ȳ, d̄) → ϕ(b̄tk+1 , ȳ, d̄)].

However {ψ(ȳ, d̄∗),¬ϕ(b̄tk
, ȳ, d̄), ϕ(b̄tk−1 , ȳ, d̄)} is consistent (otherwise η′ ∈ n2 such that

(η′(�) = η(�)) ≡ � /∈ {k, k + 1} and 〈t� : � < n〉 contradict the minimality of η by the
lexicographic order). So by the indiscernibility

� for s1, s2 ∈ [tk, tk+1]I we have ψ(y, d̄∗), ϕ(b̄s1 , ȳ, d̄) � ϕ(b̄s2 , ȳ, d̄) iff s1 < s2.

By indiscernibility this clearly finishes the proof of part (1), except the bounds on |J0|+|J2|,
which we can get by redefining kϕ(x̄,ȳ,z̄) or repeating the proof.
(2), (3) Follows. �1.27

1.28 Claim. [T is the dependent.]
For an infinite indiscernible sequence b̄ = 〈b̄t : t ∈ I〉 (over ∅) the following conditions are
equivalent:

(A) b̄ is an (infinite) indiscernible set
(B) stfor(b̄) = Lτ(T )

(C) for every set A, if b̄ is an indiscernible sequence over A, then b̄ is an indiscernible
set over A.

Proof. We shall prove three implications completing a “circle”.
(C) ⇒ (A):

Holds as (A) is a special case of (C), i.e. choosing A = ∅.
(A) ⇒ (B):

Assume ϕ(x̄, ȳ) /∈ stfor(b̄) then for every n for some c̄n ∈ �g(ȳ)C the sets Itrue
n =: {t ∈

I :|= ϕ[b̄t, c̄n]} and I false
n = {t ∈ I :|= ¬ϕ[̄bt, c̄n]} has ≥ n members. Let h : I → {true,false},

and define ph = {ϕ(b̄t, ȳ)h(t) : t ∈ I}, and we shall show below that ph is consistent, so
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T has the independence property, contradiction, so there is no ϕ(x̄, ȳ) /∈ stfor(b̄), hence
stfor(b̄) = Lτ(T ), i.e., condition (B) holds.

So let q be a finite subset of ph, so for some finite J ⊆ I we have q = {ϕ(b̄t, ȳ)h(t) : t ∈ J}.
Let n = |J | and so there is a permutation π of the set I such that t ∈ J ⇒ π(t) ∈ I

h(t)
n ,

possible as |Itn| ≥ n. As b̄ is an indiscernible set there is an automorphism F of C such
that t ∈ I ⇒ F (b̄t) = b̄π(t). Clearly F (q) = {ϕ(b̄π(t), ȳ)h(t) : t ∈ J} ⊆ tp(c̄n,∪{bt : t ∈ I}),
hence F−1(c̄n) realizes q, as promised.
(B) ⇒ (C):

So assume that b̄ is an indiscernible sequence over A. Let I+ = I0 +I+I2 with I0, I2 any
infinite linear orders. Clearly there are b̄∗t ∈ mC for t ∈ I0 ∪ I2 such that b̄+ = 〈b̄t : t ∈ I+〉
is an indiscernible sequence over A.

If b̄+ is not an indiscernible set over A, then for some c̄ ⊆ A and ϕ = ϕ(x̄1, . . . , x̄n, c̄) the
sequence b̄+ is {ϕ}-indiscernible sequence but not a {ϕ}-indiscernible set, so by 1.26 some
ϕ′ = ϕ′(x̄1, x̄2, d̄) = ϕπ(x̄1, x̄2, d̄) linearly ordered {b̄t : t ∈ I} where π is a permutation of
{1, . . . , n}, t3, . . . , tn ∈ I0 ∪ I2 and d̄ = b̄t3ˆb̄t4ˆ . . . ˆb̄tnˆc̄ ⊆ c̄ ∪ {b̄s : s ∈ I0 ∪ I2}; hence
ϕ′(x̄1, x̄2, z̄) is not a stable formula for b̄. So stfor(b̄) �= Lτ(T ), contradiction. So b̄+ hence
b̄ is an indiscernible set over A as required. �1.28

∗ ∗ ∗

We now may think on ϕ(x̄, ȳ, c̄) which are stable for b̄ which we get in the approximation of
order in 1.25(4). We may wonder can we not by expanding p (with more variables, over the
same B preserving finite satisfiability in B) get clearer picture. This may help in getting
indiscernible sequences. (See more in concluding remarks).

1.29 Definition. If p ∈ Sm(B) is finitely satisfiable in B let

(a) stfor(p) = ∩{stfor(b̄): for some ultrafilter D on mB satisfying p = Av(B,D), the
sequence b̄ = 〈bα : α < ω〉 an indiscernible sequence obeying D} (this does not
matter if we take one or all such b̄ by 1.6(4),(5))

(b) Cb(p) = ∩{Cb(b): for some ultrafilter D on mB satisfying Av(B,D) = p the
sequence b is a (D,B)-indiscernible sequence (in Ceq, of course)}.

Of course

1.30 Observation. For any M ≺ C and p ∈ Sm(M), or just p ∈ Sm(B) is finitely satisfiable
in mB we have stfor(p),Cb(p) are well defined as there are ultrafilters D on mM such that
Av(M,D) = p.

1.31 Observation [T is dependent.]
If b̄ is a {ϕ(x̄�, . . . , x̄1; c̄)}-indiscernible sequence over A but is a ∆ϕ-indiscernible set over
∅ and has > kϕ members, then b̄ is a {ϕ(x̄0, . . . , x̄k−1; c̄)}-indiscernible set over A where
∆ϕ = {∃x̄

∧

�<n

ϕπ(x̄, ȳ�)if(η(�)) : η ∈ n2 and π is a permutation of {1, . . . , �}} and n = nϕ is

such that �n
ϕ(x̄,ȳ) from 1.2 fail.

Proof. By the proof of (B) ⇒ (C) inside the proof of 1.28 it is enough to prove for every
permutation π of {1, . . . , �} that ϕ′

π(x̄1, ȳ, d̄) = ϕπ(x̄1; x̄2, . . . , x̄�, d̄) ∈ stforpa(b̄).
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By the proof of (A) ⇒ (B) inside the proof of 1.28 this follows from “b̄ is ∆ϕ-indiscernible
over ∅. �1.31

1.32 Remark. Note that p ∈ S(M) may be definable but not stable, e.g. M ≺ N are models
of the theory of (R, <), and a ∈ N\M is above all b ∈ N , then tp(a,M,N) is definable but
not stable.

1.33 Conclusion: [T is dependent and is unstable.]
1) There are M ≺ C and non-stable p ∈ S1(M) [in C, not just Ceq!].
2) There is an indiscernible sequence of elements which is not an indiscernible set of ele-
ments (over ∅!)

Proof. 1) As T is unstable, for some M ≺ C we have |S1(M)| > ‖M‖|T | hence by 1.20(3)
some type p ∈ S1(M) is nonstable.
2) By part 1) and Definition 1.19. �1.33

Now 1.27(3) applies to 1.33(2) (where x̄i is xi) gives

1.34 Conclusion. If T has the dependence property but is unstable, then some formula
ϕ(x, y; c̄) define on C a quasi order and even partial order with infinite chains, (so x, y
singletons).

Proof. By 1.33(2) and 1.27. �1.34

1.35 Remark. So if T satisfies some version of ∗-stable (see [Sh 300, Ch.II] or [Sh 702]) then
T is stable or T has the independence property.

So we may wonder
1.36 Question: 1) Does the “has the dependence property” case in 1.35 is needed?
2) If T has the independence property does some ϕ(x, y, c̄) have the independence property?
3) Let p ∈ Sm(B) be non-stable, letting D ∈ {D′ : D′ an ultrafilter on mB satisfying
Av(B,D′) = p}, how many b̄D can we find in 1.20 which are pairwise not nb-s, (for T with
the dependence property)?

Note that

1.37 Observation. If T is unstable, then some formula ϕ(x, y, c̄) has the order property
(equivalently is unstable, hence some ϕ(x, y, c̄)) define a partial order with infinite chains
or has the independence property.

Proof. We know that some ϕ(x, ȳ) is unstable so choose a formula ϕ(x, ȳ, c̄) with the order
property, such that �g(ȳ) is minimal. So there is an indiscernible sequence 〈āiˆ < bi >: i <
ω4〉 such that C |= ϕ[bi, āj, c̄] iff j < i. Clearly 〈bi : i < ω4〉 is an indiscernible sequence over
c̄, if it is not an indiscernible set, say not (ϑ, k)-indiscernible set, ϑ = ϑ(x0, . . . , xk−1, c̄), then
possibly changing ϑ the formula ϑ(x, y, b̄0, . . . , bm−1, bn−2, b2ω+1, . . . , b2ω+k,m−3, c̄) linear
orders 〈aω+i : i < ω〉, hence has the order property. So assume 〈bi : i < ω〉 is an indiscernible
set over c̄, and let a′i be the first element of the sequence āi. If 〈b2i+1 : i < ω4〉 is not an
indiscernible sequence over c̄ ∪ {a′2ω} then, by the indiscernibility of 〈āiˆ < bi >: i < ω〉
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over c̄, we can find a formula ϑ(x, y, c̄′), c̄′ ⊆ c̄ ∪ {a′i : i < ω or ω3 ≤ i} such that |=
ϑ[b2ω, a

′
ω+2i+1c̄

′] for i < ω but |= ¬ϑ[b2ω , a
′
ω2+2i+1c̄

′] for i < ω and we are done. So assume
〈b2i+1 : i < ω4〉 is an indiscernible sequence over c̄ ∪ {a′2ω}, hence all {a′2j : j < ω4}
realizes the same type over {b2i+1 : i < ω4} ∪ c̄ hence for j < 2ω we can find ā∗2j realizing
tp(ā2j , {b2i+1 : i < ω4} ∪ c̄,C) and the first element of ā∗2j is a′0. This contradicts the choice
of ϕ(x, ȳ, c̄) as having the order property with �g(ȳ) minimal as we can “move” a′0 to c̄.
�1.37

∗ ∗ ∗

1.38 Remark. Note that for indiscernible sets, the theorems on dimension in [Sh:c, III] holds
for theories T with the dependence property, see §3.
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§2 Characteristics of types

We continue to speak on canonical bases and we deal with the characteristics of types
and of indiscernible sets. More elaborately, for any indiscernible sequence b̄ = 〈b̄t : t ∈ I〉, I
an infinite linear order, we have a measure Ch(b̄) = 〈Chϕ(x̄,ȳϕ)(b̄) : ϕ(x̄, ȳϕ) ∈ Lτ(T )〉 with
x̄ = 〈xi : i < m〉,m = �g(b̄t) for t ∈ J , where Chϕ(x̄,ȳϕ)(b̄) measure how badly ϕ(x̄, ȳϕ) fail
to be in stfor(b̄) (see Definition 2.5), we can find such b̄’s with maximal such Ch(b̄) and
wonder what can we say about them. The case of an indiscernible set is covered by §1.

2.1 Hypothesis. T has the dependence property.

2.2 Definition/Claim. Let b̄ = 〈b̄t : t ∈ I〉 be an infinite indiscernible sequence, k < ω.
Then

(a) (Claim) if ti ∈ I and i < j ⇒ ti <I tj for i < j < ω and
b̄k = 〈b̄tki

ˆb̄tki+1ˆ . . . ˆb̄tki+k−1 : i < ω〉 then

(α) Cb(b̄) = Cb(b̄1) ⊆ Cb(b̄k),

(β) if ϕ′(x̄1, . . . , x̄k; ȳ) = ϕ(x̄�, ȳ) then:
ϕ′(x̄1, . . . , x̄k; ȳ) ∈ stfor(bk) iff ϕ(x̄�; ȳ) ∈ stfor(b̄)

(γ) if b̄k,1, b̄k,2 are related like b̄k above to our b̄ then Cb(b̄k,1) = Cb(b̄k,2) (even
for the “local” version this is true)

(δ) if ϕ(x̄, ȳ) ∈ dpfor(b̄), ϕ′ = ϕ′(x̄1, . . . , x̄k, ȳ) = ϕ(x̄�, ȳ) & ¬ϕ(x̄m, ȳ) or
ϕ′ = ϕ′(x̄1, . . . , x̄k; ȳ) = (ϕ(x̄�, ȳ) ≡ ¬ϕ(x̄m, ȳ)) then ϕ′ ∈ stfor(bk)

(b) (Definition) let Cbk(b̄) = Cb(b̄k) and Avk(b̄,C) = Avstfor(b̄k,C)
for any b̄k as above

(c) (Definition) Cbω(b̄) = ∪{Cbk(b̄) : k < ω}
(d) (Fact) if I1, I2 are infinite subsets of J and b̄ = 〈b̄t : t ∈ J〉 is an

indiscernible sequence (recall J linear order) then
Cbω(b̄ � I1) = Cbω(b̄ � I2)

(e) (Fact) if the infinite indiscernible sequences b̄1, b̄2 are nb-s, then
Cbα(b̄1) = Cbα(b̄2) for α ≤ ω

(f) (Definition) if p ∈ Sm(B) is finitely satisfiable in mB and α ≤ ω
then let Cbα(p) = ∩{Cbα(b̄): for some ultrafilter D on mB
satisfying Av(B,D) = p, the sequence b̄ is a
(D,B)-indiscernible sequence}.

Proof. Easy.
Recall: nonforking is quite worthwhile for stable theory; and have several equivalent

definitions. There is worthwhile generalization for simple theories; but of course, not all
definitions for stable theories give it for simple T . We may look for a generalization of
nonforking for dependent theories (see alternatives in [Sh 783]).
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2.3 Definition. For α ≤ ω. We say p ∈ Sm(A) does not α-fork over B ⊆ A, if for every
model M ⊇ A for some q ∈ Sm(M) extending p we have Cbα(q) ⊆ aclCeq(B). Similarly
we say that C/B does not α-fork over A ⊆ B if c̄ ⊆ C ⇒ tp(C,B) does not α-fork over it.

2.4 Remark. Assume that T is a simple theory, b̄ = 〈b̄t : t ∈ I〉 is an infinite indiscernible
sequence. Then we cannot find 〈ān : n < ω〉 indiscernible sequence, 〈ϕ(x̄, ān) : n < ω〉
pairwise contradictory (or just m-contradiction for some m) and

∧

n<ω

(∃∞t ∈ I)(ϕ(b̄t, ān)).

Proof. Assume toward contradiction that ϕ, 〈ān : n < ω〉 form a counterexample. By
thinning and compactness without loss of generality the set In = {t ∈ I : C |= ϕ[bt, ān]} are
pairwise disjoint, and each is a convex subset of I.
Now we can repeat and get the tree property. More fully, for any cardinals µ > κ we
consider J = κµ as a linearly ordered set, ordered lexicographically and for ρ ∈ κ>µ let
Jρ = {ν ∈ J : ρ�ν}; without loss of generality let I0 ⊆ I has order type ω and let h : I → J
be order preserving. We can find c̄η ∈ C for η ∈ J such that 〈c̄η : η ∈ J〉 is an indiscernible
sequence satisfying t ∈ I ⇒ c̄h(t) = b̄t. By compactness, for each α < κ we can find
〈aρ : ρ ∈ αµ〉 such that:

(α) 〈ϕ(x̄, āρ) : ρ ∈ αµ〉 are pairwise contradictory (or just any m of them)
(β) η ∈ Jρ, ρ ∈ αµ⇒ C |= ϕ[c̄η, āρ].

Now 〈ϕ(x̄, āρ) : ρ ∈ κ>µ〉 exemplified the tree property. �2.4

We have looked at indiscernible sequences which are stable. We now look after indiscernible
sequences which are in the other extreme.

2.5 Definition. 1) For b̄ = 〈b̄t : t ∈ I〉 an indiscernible sequence, we define its character

Ch(b̄) = 〈Chϕ(ȳ,z̄)(b̄) : ϕ(ȳ, z̄) ∈ Lτ(T )〉
where

Chϕ(ȳ,z̄)(b̄) = Max{n :for some c̄ the sequence 〈TV(ϕ(b̄t, c̄)) : t ∈ I〉
change sign n times (i.e. Iis divided to n+ 1 intervals)}

(so it is ≤ 2kϕ(ȳ,z̄)).
2) For p ∈ Sm(A), let

(a) CH(p) = {Ch(b̄) : b̄ is an infinite indiscernible sequence such that every b̄t realizes
p}

(b) for a formula ϕ = ϕ(x̄0, . . . , x̄k−1) let CH(p, ϕ(x̄0, . . . , xk)) = {Ch(b̄) : b̄ = 〈b̄t : t ∈
I〉 is an infinite indiscernible sequence such that t0 <I t1 <I . . . <I tk−1 ⇒ C |=
ϕ[b̄t0 , . . . , b̄tk−1 ] and each b̄t realizes p}

(c) CHmax(p) = {n̄ ∈ CH(p) : there is no bigger such n̄′ ∈ CH(p)}, when “n̄′ is bigger
than n̄” mean (∀ϕ)(nϕ ≤ n′

ϕ) & (∃ϕ)(nϕ < n′
ϕ)

(d) CHmin(p, ϕ(x̄0, . . . , xk−1)) = {n̄ ∈ CH(p, ϕ(x̄0, . . . , x̄k−1)): there is no smaller n̄′ ∈
CH(p, ϕ(x̄0, . . . , x̄k−1))}.
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Note: for the trivial ϕ, CH(p, ϕ) = CH(p) hence CHmax(p, ϕ) = CHmax(p).

2.6 Remark. 1) Instead of counting the number of interchanges of signs we can look at

(a) Chϕ(ȳ,z̄)(b̄) = Max{n: for some sequence c̄, if J is a cofinite subset of I then
the sequence 〈 TV(ϕ(b̄t, c̄)) : t ∈ J〉 change signs ≥ n times}; we then define
CH(p),CHmax(P ) etc.
or

(b) Γϕ(ȳ,z̄)(b̄) = {η ∈ ω>2 : C |= (∃ȳ)
∧

�<�g(η)

ϕ(b̄t�
, ȳ)η(�) for t0 < . . . < t�g(η)−1}

and/or other variants.
2) Clearly 2.5(2) is a try to get “maximal”, “most general” extensions of p (as nonforking
is for stable T )

2.7 Claim. Let p ∈ Sm(A) be non-algebraic, x̄ = 〈x� : � < m〉.
1) If n̄ = 〈nϕ : ϕ = ϕ(x̄, ȳ)〉 ∈ CH(p), then there is n̄′ ∈ CH max(p) such that n̄ ≤ n̄′.
2) CHmax(p) is non-empty.
3) If CH(p, ϕ) �= ∅ then CHmin(p, ϕ) �= ∅ and CHmax(p, ϕ) �= ∅.

Proof. Let R,< be an n-place and 2n-place respectively predicate not in τT and let

Γp = Th(CT , c)c∈A ∪ {(∀x̄)[R(x̄) → ϑ(x̄, c̄)] : ϑ(x̄, c̄) ∈ p}
∪ {(∃x̄0, . . . , x̄k−1)(

∧

�<k

R(x̄�) &
∧

�1<�2

x̄�1 �= x̄�2) : k < ω}

∪ {x̄ < ȳ → R(x̄) ∧R(ȳ)}
∪ {≤ linearly ordered {x̄ : R(x̄)}”}
∪ {(∀x̄1), . . . , (∀x̄k)(∀ȳ1) . . . (∀ȳk)(x̄1 < x̄2 < . . . < x̄k

& ȳ1 < . . . < ȳk → ψ(x̄1, . . . , x̄k, c̄) ≡ ψ(ȳ1, . . . , ȳk, c̄) :

c̄ ⊆ A and ψ ∈ Lτ(T ) and k < ω}

(with x̄i = 〈xi,� : � < m〉). For n̄ = 〈nϕ(x̄,ȳ) : ϕ(x̄, ȳ) ∈ (τT )〉 and ϕ̄ = 〈ϕi(x̄, ȳi) : i < |T |〉
listing the formulas for Lτ(T ) let

Γn̄,ϕ̄ ={ϑni,ϕi : i < |T |} where

ϑn,ϕ(x̄,ȳ) = (∃ȳ)(∃x̄0, . . . ,∃x̄n)[x̄0 < x̄1 < . . . < x̄n &
∧

�<n

(ϕ(x̄�, ȳ)) ≡ ¬ϕ(x̄�+1, ȳ)].

Now easily

(a) Γp is a consistent type (using p being non algebraic and Ramsey theorem)
(b) if n̄ ≤ n̄′ then Γn̄,ϕ̄ ⊆ Γn̄′,ϕ̄

(c) Γp ∪ Γn̄,ϕ̄ is consistent iff (∃n̄′)[n̄ ≤ n̄′ ∈ CH(p)]
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(d) if J is a directed (partial) order, n̄t = 〈nt,ϕ(x̄,ȳϕ) : ϕ(x̄, ȳϕ) ∈ Lτ(T )〉 ∈ CH(p, ϕ)
increases with t ∈ J and n̄∗ = 〈n∗ϕ(x̄,ȳϕ) : ϕ(x, ȳϕ)〉 and2 n∗

ϕ(x̄,ȳϕ) = max{nt,ϕ(x̄,ȳϕ) :
t ∈ J}, then n̄∗ ∈ CH(p̄, ϕ)

(e) like (d) inverting the order.

Together we can deduce the desired conclusions. �2.7

2.8 Question: For p ∈ S(A) (or just p ∈ S(M)), does indiscernible sequences b̄ of elements
realizing p such that Ch(b̄) ∈ CHmax(p), CH(b̄) ∈ CHmin(p, ϕ) play a special role?

2well defined as T is dependent
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§3 Shrinking indiscernibles

For stable theories we know that if 〈b̄t : t ∈ I〉 is an indiscernible set over A and c̄ ∈ ω>C
then for some J ⊆ I we have |J | ≤ |T | and 〈b̄t : t ∈ I\J〉 is an indiscernible set over
A ∪ c̄ ∪ {b̄t : t ∈ J}. We look more closely at the generalization for theories with the
dependence property (continuing [Sh:c, II]).
The case of indiscernible sets is easier so we delay it.

3.1 Notation. For a linear order I, let comp(I) be its completion.

3.2 Claim. If b̄ = 〈b̄t : t ∈ I〉 is an indiscernible sequence over A and c̄ ∈ ω>C (so finite),
then

(a) there is J∗ ⊆ comp(I), |J∗| ≤ |T | such that

(∗) if n < ω and s̄, t̄ ∈ nI, s̄ ∼J∗ t̄ (i.e., s̄, t̄ realize the same quantifier free type
over J∗ in the linear order comp(I)) then ās̄ = 〈ās�

: � < n〉, āt̄ = 〈at�
: � < n〉

realize in C the same type over A ∪ c̄

(b) if we fix n and deal with ϕ-types we can demand |J∗| < kϕ,n < ω

(c) if in addition b̄ is an indiscernible set, then in (∗) of clause (a) we can weaken
s̄ ∼J∗ t̄ to (∀�, k)[(s� = sk ≡ t� = tk) & s� ∈ J∗ ≡ t� ∈ J∗ → s� = t�]

(d) if we replace c̄ by C ⊆ C in (a) we just use |J∗| ≤ |C| + |T |.

Proof.

(a) by (b)

(b) follows by Claim 3.4 below

(c) similarly

(d) follows.

�3.2

∗ ∗ ∗

The reader may restrict himself in 3.3, 3.4 to the case n = 2 so ā is just an indiscernible
sequence; this suffices for 3.2.

3.3 Definition. 1) For ∆ ⊆ Lτ(T ), a linear order I,m∗ ≤ ω, n ≤ ω, α� an ordinal for � < n,
a model M and a set A ⊆ M , we say that ā = 〈au,α,� : � < n, u ∈ [I]�, α < α� = α|u|〉 is
(∆,m∗)-indiscernible over A of the 〈α� : � < n〉-kind if the following holds:

(∗) if m < 1 +m∗, I |= t0 < · · · < tm−1, I |= s0 < . . . < sm−1 and for every v ⊆ m we
let uv = {t� : � ∈ v}, wv = {s� : � ∈ v} then 〈auv ,α,� : � < n, v ∈ [m]�, α < α�〉 and
〈awv ,α,� : � ≤ n, v ∈ [m]�, α < α�〉 realizes the same ∆-type over A in M .
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2) If we omit ∆ we mean all first order formulas, if we omit m∗ we mean ω. Also in au,α,�

we may omit � (because it is |u|). Of course nothing changed if we allow au,α,� to be a finite
sequence (with length depending on (α, �) only) but we can instead increase α�.
3) We add “above J” where J ⊆ I (or J is included in the completion of I) if in (∗) we
demand (∀r ∈ J)

∧

�

(r < t� ≡ r < s� & r = t� ≡ r = s� & t� < r ≡ s� < r). We say

“almost above J” if we add J ∩ {t� : � < n} = ∅.

3.4 Claim. 1) Assume

(a) ∆ is a finite set of formulas
(b) M a model of T and A ⊆M

(c) ā = 〈au,k,� : � < n, k < k�, u ∈ [I]�〉 is indiscernible over A
(d) c̄ ∈ ω>M .

Then there is a finite subset J of I or of the completion comp(I) of I such that 〈au,k,� : � <
n, k < k�, u ∈ [I]�〉 is ∆-indiscernible over A ∪ c̄ above J .
2) Moreover, there is a bound on |J | which depend just on ∆, 〈k� : � < n〉 (and T ), and so
it is enough that ā is ∆1-indiscernible for appropriate finite ∆1.
3) So for every C ⊆ C there is J ⊆ comp(I) of cardinality ≤ |C| + |T | such that ā is
indiscernible above J over A ∪ C.

Proof. 1) Toward contradiction assume that the conclusion fails. Let m∗ be the maximal
number of free variables in members of ∆ times. Without loss of generality I is a complete
linear order with a first and a last element. For every finite J ⊆ I we choose 〈tJ� : � <
mJ〉, 〈sJ

� : � < mJ 〉 such that:

(i) mJ ≤ m∗

(ii) tJ0 < tJ1 < . . . < tJmJ−1 and sJ
0 < sJ

1 < . . . < sJ
mJ−1

(iii) for at least one m < mJ we have tJm, s
J
m /∈ J (actually follows from the rest)

(iv) 〈tJ� : � < mJ〉, 〈sJ
� : � < mJ〉 exemplify that J is not as required

(v) mJ is minimal.

Let b̄0J = 〈aJ
u,k,� : � < n, k < k�, u ∈ [{tJ0 , . . . , tJmJ−1}]�〉 and b̄1J = 〈aJ

u,k,� : � < n, k < k�, u ∈
[{sJ

0 , . . . , s
J
mJ−1}]�〉.

So clearly

(∗)1 the ∆-types of c̄ˆb̄0J , c̄ˆb̄
1
J over A are different

[why? by their choice].

For J ∈ [I]<ℵ0 let tJ� = sJ
�−mJ

for � = mJ ,mJ + 1, . . . , 2mJ − 1. Let D∗ be an ultrafilter on
[I]<ℵ0 such that t ∈ I ⇒ {J : t ∈ J ∈ [I]<ℵ0} ∈ D∗.

As mJ ≤ m∗ < ℵ0, and D∗ is an ultrafilter, clearly for some m(∗) ≤ m∗ we have
Y0 = {J ∈ [I]<ℵ0 : mJ = m(∗)} ∈ D∗. For � < 2m(∗), let

I1
� = {t ∈ I : {J ∈ Y0 : tJ� <I t} ∈ D∗}

I0
� = {t ∈ I : {J ∈ Y0 : tJ� = t} ∈ D∗}
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I−1
� = {t ∈ I : {J ∈ Y0 : t <I t

J
� } ∈ D∗}.

Clearly 〈I−1
� , I0

� , I
1
� 〉 is a partition of I, I0

� is a singleton or empty, I−1
� is an initial segment

of I and I1
� is an end segment of I. As I is complete there is t∗� ∈ I such that I0

� �= ∅ ⇒
I0
� = {t∗�} and {t ∈ I : t ≤I t

∗
�} ⊇ I−1

� and {t ∈ I : t∗� ≤I t} ⊇ I1
� . So there are functions

g, h : {0, . . . , 2m(∗) − 1} × {0, . . . , 2m(∗) − 1} → {−1, 0, 1} such that for each �, k < 2m(∗)
we have

{J ∈ Y0 : tJ� ∈ I
h(�,k)
k } ∈ D∗

and

g(�, k) = 1 ⇔ {J ∈ Y0 : tJ� <I t
J
k} ∈ D∗

g(�, k) = 0 ⇔ {J ∈ Y0 : tJ� = tJk} ∈ D∗

g(�, k) = −1 ⇔ g(k, �) = 1.

For any �, k < 2(m(∗)) if there is t satisfying t∗� <I t <I t
∗
k then choose such t∗�,k. Now let

Y ∗ = {J ∈ Y0 :for every �, k < 2m(∗) we have tJ� ∈ I
h(�,k)
k ,

and tJ� <I t
J
k ⇔ g(�, k) = 1 and tJ� = tJk ⇔ g(�, k) = 0

and if t∗�,k is well defined then

tJ� < t∗�,k < tJk}.

Clearly Y ∗ ∈ D∗.
For � < 2m(∗), let I∗� be the convex hull of {tJ� : J ∈ Y ∗}. We let <� be <I if I∗� ⊆ I−1

�

and be >I if I∗� ⊆ I1
� . If none of them hold, then I∗� = {t∗�}, <�= ∅ and clearly

�0 if <� �= ∅, then in (Ih(�,i)
� , <�) there is no last element and t ∈ I

h(�,i)
� ⇒ {J : t <�

tJ� ∈ I
h(�,i)
� } ∈ D∗

�1 e = {(�, k) : �, k < 2m(∗), I∗� ∩ I∗k �= ∅} is an equivalence relation and �ek ⇒<�=<k

& t∗� = t∗k
�2 let w = {� : I∗� = {t∗�}} then �ek ∧ � ∈ w ⇒ k ∈ w & t∗� = t∗k
�3 for each J0 ∈ Y ∗, the set {J ∈ Y ∗: if �ek, � /∈ w then tJ0

k <� t
J
� } belongs to D∗.

We now choose Jn ∈ Y ∗ by induction on n such that �ek & � /∈ w ⇒ tJn

k <� t
Jn+1
� .

Now

(∗)2 if i(∗) < ω, η ∈ i(∗)2 then the types of b̄0J0
ˆb̄0J1

ˆ . . . ˆb̄0Ji(∗)−1
and of

b̄
η(0)
J0

ˆb̄η(2)
J1

ˆ . . . ˆb̄η(i(∗)−1)
Ji(∗)−1)

over A are equal.
[Why? By the indiscernibility, see Definition 3.3.]
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Now by clauses (iv) + (v) in the choice of tJ� , s
J
� (for � < mJ�

= m(∗)) for each i there is
ϕi ∈ ∆ and d̄i ⊆ A such that C |= ϕi[c̄, b̄0Ji

, d̄i] ∧ ¬ϕi[c̄, b̄1Ji
, d̄i].

Now

(∗)3 the sequence 〈ϕi(ȳ, b̄0Ji
, d̄i) : i < ω〉 of formulas is independent.

[Why? For each i(∗) < ω and η ∈ i(∗)2 we need to prove that C |=
(∃ȳ)[

∧

i<i(∗)
ϕi(ȳ, b̄0Ji

, d̄i)η(i)]. Now by (∗)2 it is enough to prove that C |=

(∃ȳ)[
∧

i<i(∗)
ϕi(ȳ, b̄

η(i)
Ji

, d̄1
i )].

But c̄ exemplifies the satisfaction of this formula so (∗)3 holds.]

As ∆ is finite, one ϕ appears as ϕn for infinitely many n’s (though not necessarily with the
same d̄n as we allow A to be infinite), so we get contradiction to “T has the dependence
property”.
2) Similar.
3) Follows. �3.4

3.5 Claim. Assume ā� = 〈ā�
t : t ∈ I�〉 is an indiscernible sequence (with the linear order)

I� of cofinality κ > |T | for � = 1, 2. Then we can find s�
α ∈ I� for � = 1, 2, α < κ such

that 〈ā1
s1

α
ˆā2

s2
α

: α < κ〉 is an indiscernible sequence with 〈s�
α : α < κ〉 being <I�

-increasing
unbounded in I� for � = 1, 2.

Proof. Easy by 3.3, just choose s1i , s
2
i by induction on i. �3.5

See more in 4.11.
As 3.5 deal with ∆ = Lτ(T ), we can derive the parallel result for finite ∆ ⊆ Lτ(T ).
3.6 Conclusion 1) Assume

(∗) 〈b̄t : t ∈ I〉 is an indiscernible sequence over A, comp(I) the completion of I.

For every C ⊆ C there are 〈nϕ(x̄,ȳ) : ϕ(x̄, ȳ) ∈ Lτ(T )〉, a sequence of finite numbers, J ⊆
comp(I) of cardinality ≤ |C| + |T | and 〈Jϕ(x̄,ȳ,c̄) : ϕ ∈ Lτ(T )〉, Jϕ(x̄,ȳ,c̄) a finite subset of J

such that:

(∗)0 if J∗ is an initial segment of J including ∪{Jϕ(x̄,ȳ,c̄) : ϕ ∈ Lτ(T ), c̄ ⊆ C} then
b̄ � (J\J∗) is an indiscernible sequence over A ∪ C ∪ {b̄t : t ∈ J∗}

(∗)1 for every ā ∈ �g(ȳ)A and ϕ = ϕ(x̄, ȳ, c̄), c̄ ⊆ C there are n ≤ nϕ(x̄,ȳ) and t1 < . . . < tn
from Jϕ such that if r, s ∈ I\{t1, . . . , tn} and m ∈ [1, n] ⇒ (s <I tm) ≡ (r <I tm)
then |= ϕ[b̄s, ā] ≡ ϕ[b̄r, ā]

(∗)2 for every k < ω, ā ∈ �g(ȳ)A, c̄ ∈ �g(z)C and ϕ = ϕ(x̄1, . . . , x̄k, z̄, ȳ) there are n ≤ nϕ

and t1 < . . . < tn from Jϕ such that if s1 <I . . . <I sk and r1 <I . . . <I rk are from
J and m ∈ [1, n] & � ∈ [1, k] ⇒ (s� <I tm ≡ r� <I tm) & (tm <I s� ≡ tm <I r�)
then |= ϕ[b̄s1 , . . . , b̄sk

, c̄, ā] ≡ ϕ[b̄r1 , . . . , b̄rk
c̄, ā].

2) Assume

(∗)3 〈b̄u,α,� : � < n, u ∈ [I]�, α < α�〉 is indiscernible over A and α� < ω for � < n (and
n < ω).

For every c̄ there are J ⊆ I, |J | ≤ |T | and finite Jϕ ⊆ J for ϕ ∈ Lτ(T ) such that
the parallel of (∗)1, (∗)2 hold.
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Proof. 1) This restates 3.2, 3.4.
2) Similar.

3.7 Question: If < (= ϕ(x, y, c̄)) is a partial order with infinite increasing sequences, we
may consider κ-directed subsets, κ = cf(κ) > |T |, they define a Dedekind cut.

What about orthogonality of those?

3.8 Conclusion. 1) Assume 〈b̄t : t ∈ I〉 is an indiscernible set over A. For every B there is
J ⊆ I such that |J | ≤ |T | + |B| and 〈b̄t : t ∈ I\J〉 is an indiscernible set over A ∪B.

Proof. Easy.

3.9 Claim/Definition. Assume p ∈ Sm(B) is a stable type and B ⊆M . Then dim(p,M)
= |I| + |T | for any I a maximal indiscernible set ⊆ mM base on p is well defined.
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§4 Perpendicular endless indiscernible sequences

Dimension and orthogonality play important role in [Sh:c], see in particular Ch.V. Now,
as our prototype is the theory Th(Q, <), it is natural to look at cofinality, this is dual-
cf(b̄, A) defined below (4.5(3)), measuring the cofinality of approaching b̄ from above (here
b̄ is always indiscernible sequences with no last member). So a relative of orthogonality
which we call perpencidularity suggest itself as relevant. It is defined in 4.5, as well as
equivalence and dual-cf. Now perpendicularity is closely related to mutual indiscernibility
(see 4.7(1), 4.11(2)), hence if T is unstable, then there are lots of pairwise perpendicular
indiscernible sequences: if 〈āα : α < λ〉 is an indiscernible sequence, not an indiscernible
set and b̄α = 〈āωα+n : n < ω〉 for α < λ then {b̄α : α < λ} are pairwise perpendicular.
In this section we present basic properties of perpendicularity. In particular, it is preserved
by equivalence (4.11(5)). For perpendicular sequences, we can more easily restrict them to
get mutually indiscernible sets than in §3. In particular we show that if cf(Dom(b̄1)) �=
cf(Dom(b̄2)) then b̄1, b̄2 are perpendicular.

But for indiscernible sets perpendicularity does not become orthogonality, in fact it is
trivial (see 4.15).

The case of looking at more than two indiscernible sequences reduced to looking at all
pairs (4.14(2), 4.17(2)). Also, as in [Sh:c, V], if b̄ is not perpendicular to āζ for ζ < ζ∗ and
the āζ -s are pairwise perpendicular then ζ∗ < |T |+ (see 4.19).

Lastly, we recall (from [Sh:c]) the density of “types not splitting over small sets” (for
theories with the non independence property), hence the existence of a “quite constructible”
model over any A.

We think
4.1 Thesis: First order T with the dependence property is somewhat like the theory of the
rational order (or real closed fields).

If M is a model of (Q, <) and 〈(I−α , I+
α ) : α < α∗〉 is a sequence of pairwise distinct

Dedekind cuts of M , and Nα is a dense linear order for α < α∗ and N is M when in the
cut (I−α , I

+
α ) we insert Nα, then M ≺ N ; so we have total freedom of what we put in the

cuts.
In the next section we shall prove that if 〈āα : α < α∗〉 is a sequence of pairwise

perpendicluar endless indiscernible sequences that we have quite a total freedom in choosing
〈dual-cf(āα,M) : α < α∗〉, this is a parallel for the above property of Th(Q, <).

4.2 Thesis: If b̄1, b̄2 are endless indiscernible sequences, which are not perpendicular, then
there is in a sense an inside definable function showing that I� = {c̄ ∈ M : c̄ realizes
Av(b̄�, b̄�)} has the same cofinality.

4.3 Hypothesis. T has the dependence property.

4.4 Definition. 1) We say the infinite sequences b̄1, b̄2 are mutually indiscernible over A
if b̄� is an indiscernible sequence over ∪{b̄3−�

t : t ∈ Dom(b̄3−�)}∪A for � = 1, 2. If we omit
“over A” we mean A = ∅.
2) We say that the family {b̄ζ : ζ < ζ∗} of sequences is mutually indiscernible over A,
if for ζ < ζ∗ the sequence b̄ζ is an indiscernible sequence over ∪{b̄εt : ε �= ζ, ε < ζ∗, t ∈
Dom(b̄ε)} ∪A.
3) We say “b1, b̄2 are mutually ∆-indiscernible over A” if b� is a ∆-indiscernible sequence
over ∪{b̄3−�

t : t ∈ Dom(b̄3−�)} ∪A for � = 1, 2. Similarly in part (2).
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4.5 Definition. Let ā� = 〈ā�
t : t ∈ I�〉 be an indiscernible sequence which is endless (i.e.,

I� having no last element) for � = 1, 2.
1) We say that ā1, ā2 are perpendicular when:

(∗) if b̄�n realizes Av({b̄km: we have m < n & k ∈ {1, 2} or we have m = n & k <
�} ∪ ā1 ∪ ā2, ā�) for � = 1, 2 then b̄1, b̄2 are mutually indiscernible (see 4.4 above)
where b̄� = 〈b̄�n : n < ω〉 for � = 1, 2.

We define “∆-perpendicular” in the obvious way.
2) We say ā1, ā2 are equivalent and write ≈ if for every A ⊆ C we have Av(A, ā1) =
Av(A, ā2).
3) If ā1 ⊆ A we let dual-cf(ā1, A) = Min{|B| : B ⊆ A and no c̄ ∈ ω>A realizes Av(B, ā1)};
we usually apply this when A = M .

4.6 Example: M a model of Th(Q, <).
b̄� = 〈b�n : n < δ�〉 is an increasing sequence in M .
Then b̄1, b̄2 are not perpendicular iff they define the same cut of M .

4.7 Claim. 1) If ā1, ā2 are endless mutually indiscernible sequences, then they are perpendi-
cular.
2) “Mutually indiscernible” and “perpendicular” are symmetric relations.
3) On the family of endless indiscernible sequences, being equivalent is an equivalence
relation.
4) In Definition 4.5(1) in (∗) there, to say “for every such 〈b̄�n : n < ω, � = 1, 2〉” and to
say “for some 〈b̄�n : n < ω, � = 1, 2〉” are equivalent.
5) If ā1, ā2 are endless indiscernible sequences and ∆-mutually indiscernible sequence then
they are ∆-perpendicular.
6) If ā1, ā2 are endless indiscernible sequences, ā2 is indiscernible over ā1 then ā1, ā2 are
perpendicular.

4.8 Remark. By 4.12 below, in (∗) of Definition 4.5(1), for any set A we can add: b̄1, b̄2 are
mutually indiscernible over A; that is for any A, if b̄�n realizes Av({b̄km : m < n & k ∈ {1, 2}
or m = n & k < �} ∪ ā1 ∪ ā2 ∪A, ā�) then b̄1, b̄2 are mutually indiscernible over A where
b̄� = 〈b̄�n : n < ω〉 for � = 1, 2.

Proof. 1) Let b̄�n for � ∈ {1, 2}, n < ω be as in Definition 4.5(1).
Now we prove by induction on k < ω that

(∗)k the sequences ā1,k = ā1ˆ〈b̄1k−1, . . . , b̄
1
0〉, ā2,k = ā2ˆ〈b̄2k−1, . . . , b̄

2
0〉 are mutually indis-

cernible.

For k = 0 this is assumed. For k = m+ 1, by the choise of b̄1k as realizing Av(ā1,kˆā2,k, ā1)
clearly ā1,k+1, ā2,k are mutually indiscernible. Similarly by the choice of b̄2k, clearly ā1,k+1,
ā2,k+1 are mutually indiscernible.

Now the statement “〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible” is a local
condition, i.e., it is enough to check it for 〈b̄1n : n < k〉, 〈b̄2n : n < k〉 for each k < ω, but this
holds by (∗)k above.
2) Read the definition and rename.
3) Let ā1, ā2, ā3 be endless indiscernible sequences. Clearly Av(A, ā1) = Av(A, ā1) so
ā1 ≈ ā1 by Definition 4.5, so ≈ is reflexive. Also Av(A, ā1) = Av(A, ā2) ⇔ Av(A, ā2) =
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Av(A, ā1) so ≈ is symmetric. Lastly, if ā1 ≈ ā2 and ā2 ≈ ā3 then for any A we have
Av(A, ā1) = Av(A, ā2) ∧ Av(A, ā2) = Av(A, ā3) hence Av(A, ā1) = Av(A, ā3), as this
holds for any A we can deduce that ā1 ≈ ā3, i.e. ≈ is transitive. So ≈ is really an
equivalence relation.
4) Suppose that for i ∈ {1, 2} we have 〈b̄i,�n : n < ω, � ∈ {1, 2}〉 such that b̄i,�n realizes
Av({b̄i,km : m < n & k ∈ {1, 2} or m = n & k < �} ∪ ā1 ∪ ā2, ā�). We can choose an
increasing sequence of elementary mapping f �

n (n < ω, � < 2) such that n1 < n2 ∨ (n1 =
n1 ∧ �1 < �2) ⇒ f �1

n1
⊆ f �2

n2
, f0

0 is the identity on ā1 ∪ ā2, Dom(f1
n) = Dom(f0

n) ∪ b̄1,0
n ,

Dom(f0
n+1) = Dom(f1

n) ∪ b̄1,2
n , f1

n(b̄1,1
n ) = b̄2,1

n , f0
n+1(b̄

1,2
n ) = b̄2,2

n . No problem to carry the
induction and f∗ = ∪{f0

n : n < ω} can be extended to an automorphism of C thus proving
the claim.
5) Similar to (1).
6) Left to the reader (see 4.16). �4.7

4.9 Claim. Assume that for � = 1, 2 we have:

(∗)�(a) I�, J� are endless linear orders

(b) b̄� = 〈b̄�t : t ∈ I�〉 is an indiscernible sequence

(c) ā� = 〈ā�
t : t ∈ J�〉 is an indiscernible sequence

(d) for s ∈ J� we have ā�
s = b̄�t(�,s,1)ˆ . . . ˆb̄

�
t(�,s,n�)

(e) t(�, s, 1) <I�
t(�, s, 2) <I�

. . . <I�
t(�, s, n�)

(f) if s1 <J�
s2 then t(�, s1, n�) <I�

t(�, s2, 1).

0) If b̄� is an indiscernible sequence, then so is ā�.
1) If b̄1, b̄2 are mutually indiscernible, then ā1, ā2 are mutually indiscernible.
2) Assume that {t(�, s, 1) : s ∈ J�} is an unbounded subset of I� for � = 1, 2. If b̄1, b̄2 are
perpendicular, then ā1, ā2 are perpendicular.
3) Like part (2) for “equivalent”.

Proof. Just think.
(Concerning (2) see 4.11(4) below). �4.9

4.10 Claim. Assume that b̄� = 〈b̄�t : t ∈ I�〉 is an endless indiscernible sequence of m�-
tuples, so b̄�t = 〈b�t,m : m < m�〉. Assume that u� ⊆ {0, . . . ,m� − 1} and ā�

t = b̄�t � u� for
t ∈ I�, � = 1, 2.
1) If 〈b̄1t : t ∈ I1〉, 〈b̄2t : t ∈ I2〉 are mutually indiscernible, then 〈ā1

t : t ∈ I1〉, 〈ā2
t : t ∈ I2〉 are

mutually indiscernible.
2) If 〈b̄1t : t ∈ I1〉, 〈b̄2t : t ∈ I2〉 are perpendicular, then 〈ā1

t : t ∈ I1〉, 〈ā2
t : t ∈ I2〉 are

perpendicular.
3) Of course, permuting, duplicating or renaming the indiscernible in 〈b�t,m : m < m�〉, etc.,
also is O.K.

Proof. Easy.
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4.11 Claim. 1) If ā� = 〈a�
t : t ∈ I�〉 is an indiscernible sequence for � = 1, 2 and |T | <

cf(I1), |I1| < cf(I2), then for some end segments J1, J2 of I1, I2 respectively, ā1 � J1, ā2 � J2

are mutually indiscernible.
1A) If ∆ is finite to deduce just ∆-mutually indiscernible, we can omit |T | < cf(I1).
2) If ā� = 〈a�

t : t ∈ I�〉 is an indiscernible sequence for � = 1, 2 and cf(I1), cf(I2) are infinite
and distinct then ā1, ā2 are perpendicular.
3) Assume that ā� = 〈ā�

t : t ∈ I�〉 is an endless indiscernible sequence for � = 1, 2, δ is limit
ordinal and b̄�α realizes Av({b̄kβ : β < α & k ∈ {1, 2} or β = α & k < �} ∪ ā1 ∪ ā2, ā�) and
b̄� = 〈b̄�α : α < δ〉 for � = 1, 2. Then the following are equivalent:

(α) ā1, ā2 are perpendicular
(β) b̄1, b̄2 are perpendicular.

4) If ā� = 〈a�
t : t ∈ I�〉 is an endless indiscernible sequence and J� ⊆ I� is unbounded for

� = 1, 2, then ā1, ā2 are perpendicular iff ā1 � J1, ā2 � J2 are perpendicular.
5) If ā� = 〈at : t ∈ I�〉 are an endless indiscernible sequence for � = 1, 2, 3, 4 and ā1, ā3 are
equivalent and ā2, ā4 are equivalent, then ā1, ā2 are perpendicular iff ā3, ā4 are perpendicu-
lar; so perpendicularity of ā1, ā2 depend just on ā1/ ≈, ā2/ ≈.

Proof. 1) By 3.6(1) applied to A = ∪{ā1
t : t ∈ I1} and ā2, there is an end segment J2 of

I2 such that ā2 � J2 is an indiscernible sequence over A. Let J ′
2 be a countable subset of

J2 and apply 3.6(1) to A′ = ∪{ā2
t : t ∈ J ′

2} and ā1, so there is an end segment J1 of I1
such that ā1 � J1 is an indiscernible sequence over A′. Reflecting on the meaning clearly
ā1 � J1, ā2 � J2 are mutually indiscernible.
1A) Similar to (A); without loss of generality∆ is closed under permuting and identifying
the variables, and we use the relevant variant of 3.6(1) or just 3.4.
2) Without loss of generality cf(I1) < cf(I2). It is enough for every formula ϕ = ϕ(x̄1, . . . ,
x̄m, ȳ1, . . . , ȳk) with �g(x̄�) = �g(ā1

t ) and �g(ȳ�) = �g(ā2
t ) to show that for some t1 ∈ I1, t2 ∈

I2:

� for some truth value t, for all t1 <I1 �
1
1 <I1 . . . <I1 �

1
m, t2 <I2 �

2
1 <I2 . . . <I2 �

2
k we

have |= ϕ[b̄1�1 , . . . , b̄
1
�m
, b̄2

�21
, . . . , b̄2

�2k
]t.

By (1A) and 4.7(5) this is easy (as for each finite ∆ we can use suitable end segments).
3) If ā1, ā2 are perpendicular then by definition 4.5(1) we have b̄1, b̄2 are mutually indis-
cernible and by 4.7(1) this implies that b̄1, b̄2 are perpendicular. The other direction is
even easier, though we have to use 4.7(4).
4) Let b̄1n, b̄2n (let n < ω be as in (∗) of Definition 4.5(1)) for ā1, ā2. Now for every set A, the
types Av(A, ā�), Av(A, ā� � J�) are equal (see 1.10(2)). As (ā1 � J1) ∪ (ā2 � J2) is included
in (ā1 ∪ ā2) clearly 〈b̄1n : n < ω〉, 〈b̄2 : n < ω〉 are as required in (∗) for ā1 � J1, ā2 � J2.
By 4.7(4) we have ā1, ā2 are perpendicular iff 〈b̄1n : n < ω〉, 〈b2n : n < ω〉 are mutually
indiscernible iff ā1 � J1, ā2 � J2 are perpendicular; so we are done.
5) We choose b̄�n by induction on 2n + � for n < ω, � ∈ {1, 2} as any sequence realizing
p�

n = Av(ā1 ∪ ā2 ∪ ā3 ∪ ā4 ∪ {b̄km : m < n & k ∈ {1, 2} or m = n & k < �}, ā�). So ā1, ā2

are perpendicular iff 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible (by 4.7(4)).
Now by the assumption (on the equivalence) the type p�

n is also equal to Av(ā1 ∪ ā2 ∪
ā3 ∪ ā4 ∪ {b̄km : m < n or m = n & k < �}, ā2+�).

Using again 4.7(4) we have: ā3, ā4 are perpendicular iff 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are
mutually indiscernible.
Together we get the desired conclusion. �4.11
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4.12 Claim. Let ā1, ā2 be endless indiscernible sequences. The following are equivalent:

(A) ā1, ā2 are perpendicular

(B) there are A, b̄1n, b̄
2
n (for n < ω) such that (a) ā1 ∪ ā2 ⊆ A and b̄�n realizes Av(A ∪

ā1 ∪ ā2 ∪ {b̄km : n < n & k ∈ {1, 2} or m = n & k < �}, ā�) and (b) the sequences
b̄1 = 〈b̄1n : n < ω〉, b̄2 = 〈b̄2n : n < ω〉 are mutually indiscernible

(C) for every A ⊇ ā1, ā2 and b̄1 realizing Av(A, ā1) and b̄2 realizing Av(A, ā2) the se-
quence b̄1 realizes Av(A ∪ b̄2, ā1)

(D) if A ⊇ ā1, ā2 and b̄1n, b̄2n are as in clause (B) (a) then 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are
mutually indiscernible over A.

Proof.

(D) ⇒ (B):
We can find A, b̄�n for n < ω, � ∈ {1, 2} which are as in clause (B) except possibly the

mutual indiscernibility in the end, i.e., as in (∗) of Definition 4.5(1) but with A ⊇ ā1 ∪ ā2.
By (D) this suffices.

(C) ⇒ (D):
Now we can prove by induction on i < ω that:

� if m1 < m2 < n1 < . . . < ni < ω and �1, . . . , �i ∈ {1, 2} then b̄1m1
ˆb̄2m2

ˆb̄�1n1
ˆ . . . ˆb�i

ni

and b̄1m2
ˆb̄2m1

ˆb̄�1n1
ˆ . . . ˆb̄�i

ni
realized the same type over A∪{b̄�n : n < m1, � ∈ {1, 2}}.

[How? For i = 0 as we are assuming clause (C), for i + 1, because the type
tp(b̄�i+1

ni+1 , A ∪ {b�n : n < ni+1, � ∈ {1, 2}}) does not split over ā�i+1 by the defini-
tion of Av hence over A.]

By transitivity of equality of type from � we can prove that 〈b̄12n+1 : n < ω〉, 〈b̄22n+2 : n < ω〉
are mutually indiscernible over A, as in 4.7(4) this suffices.

(B) ⇒ (A):
If A, b̄�n for n < ω, � ∈ {1, 2} are as in clause (B), then as [B1 ⊆ B2 ⇒ Av(B1, ā�) ⊆

Av(B2, ā�)] they are as in (∗) of Definition 4.5. So by 4.7(4) the sequences ā1, ā1 are
perpendicular, i.e., clause (A) holds.

(A) ⇒ (C):
Assume that ā1, ā2 are perpendicular but clause (C) fails for the3 set A. So ā1, ā2 ⊆ A,

let λ ≥ ℵ0.
Choose b̄�α for α < λ+, � ∈ {1, 2} by induction on α such that b̄�α realizes Av(A∪∪{b̄kβ : β <
α ∨ (β = α & k < �}, ā�). Easily by the choice of A for some c̄ ⊆ A and ϕ(x̄, ȳ, c̄) we have
C |= ϕ[b̄1α, b̄2β, c̄] iff α ≤ β. By the mutual indiscernibility of 〈b̄1α : α < λ〉, 〈b̄2α : α < λ〉 (which
holds as ā1, ā2 are perpendicular) the set {ϕ(b̄1α, b̄2α, z̄) : α < λ} of formulas is independent,
contradiction. �4.12

3the choice of b̄1, b̄2 of course is immaterial as: if b̄′, b̄′′ realizes Av(A, ā1) and b̄2 realizes Av(A+b̄′+b̄′′, ā2)
then b̄2ˆb̄′, b̄2ˆb̄′′ realizes the same type over A
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4.13 Claim. Assume ā� = 〈ā�
t : t ∈ I�〉 are endless indiscernible sequences for � = 1, 2.

1) If ā1 is an indiscernible sequence over A, then: ā1 is an indiscernible set over A iff ā1

is an indiscernible set over ∅.
2) Assume that ā1 is an infinite indiscernible sequence over A, then: ā1 is non-stable in C
iff ā1 is non-stable in (C, c)c∈A.
3) If ā1, ā2 are equivalent, then ā1 is non-stable iff ā2 is non-stable.
4) Assume that for � = 1, 2, J� ⊆ I� is convex and infinite and ā1, ā2 are mutually indis-

cernible then ā1 � J1, ā2 � J2 are mutually indiscernible over
2⋃

�=1

(ā� � (I�\J�)).

5) Let k ∈ {1, 2}. In part (4) we can omit “Jk a convex (subset of Ik)” if āk is an indis-
cernible set.

Proof. 1) By 1.28.
2) Follows.
3), 4), 5) Check directly. �4.13

4.14 Claim. 1) Assume ā1, ā2 are endless indiscernible sequences. If ā1, ā2 has cofinality
> |T | and are mutually indiscernible and b̄ ∈ ω>C, then for some end-segments J1, J2 of
Dom(ā1),Dom(ā2) respectively ā1 � J1, ā2 � J2 are mutually indiscernible over b̄.
1A) Like (1) for mutual ∆-indiscernibility, when ∆2 is finite, ∆1 finnite large enough ā1, ā2

just endless.
2) Assume b̄1, b̄2, b̄3 are endless indiscernible sequences ⊆ A and I is an infinite linear
order and ā�

t realizes Av({āk
s : s <I t & k ∈ {1, 2, 3} or s = t & k < �} ∪ A, b̄�) for

� ∈ {1, 2, 3} and t ∈ I and let ā� = 〈ā�
t : t ∈ I〉, then:

(a) 〈ā1
t ˆā

2
t ˆā

3
t : t ∈ I〉 is an indiscernible sequence over A;

(b) if ā1 is an indiscernible set then ā1, ā2 are mutually indiscernible over A
(c) if any two of ā1, ā2, ā3 are mutually indiscernible and I1, I2, I3 are disjoint un-

bounded subsets of I, then ā1 � I1, ā3 � I3 are mutually indiscernible over A∪(ā2 � I2)
(d) if ā1, ā2 are mutually indiscernible then they are mutually indiscernible over A.

Proof. 1) No new point so left to the reader.
2) Without loss of generality I is dense with no first, no last elements, and I is not a
complete even restricted to an interval and every interval has cardinality > |T |. Now
Clause (a):

Easy as in 1.6(2).

Clause (b):
For any s1 <I< . . . <I sn−1, stipulating s0 = −∞, sn = +∞ and letting I� = {t ∈ I :

s� <I t ≤I s�+1}, by the construction we know that: the sequences ā1 � I0, . . . , ā1 � In−1

are mutually indiscernible over ā2
s0

ˆ . . . ˆā2
sn−1

. Recalling that every interval has cardinality
> |T |, by 3.8 this implies that ā1 is an indiscernible set (see 4.13(1)) over ā2

s1
ˆ . . . ˆā2

sm−1
;

as this holds for any n < ω and s1 <I . . . <I sn−1, we get that ā1 is an indiscernible set
over ā2. But for any t ∈ I the sequence 〈a2

s : s ∈ I & t ≤I s〉 is an indiscernible sequence
over ∪{ā1

sˆā2
s : s <I t}. So clearly if {s : s <I t} is infinite then by the last two sentences,

ā2 � {s ∈ I : t ≤I s}, ā1 are mutually indiscernible (even over {ā2
s : s <I t}). By the

assumption on I in the beginning of the proof we are done.
Clause (c):
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Note that by the assumption on ā�
t, it is enough for any pairwise disjoint I� ⊆ I for

� = 1, 2, 3, each as we assume in the beginning of the proof of part (2), to prove that
ā1 � I1, ā2 � I2, ā3 � I3 are mutually indiscernible.

By transitivity of equality it is enough to prove:

(∗) if �(1) �= �(2) ∈ {1, 2, 3}, t1 < t2 in I, then the sequences ā�(1)
t1 ˆā�(2)

t2 and ā
�(1)
t2 ˆā�(2)

t1

realizes the same type over A ∪ {ā�
t : � ∈ {1, 2, 3} and ¬(t1 ≤I t ≤I t2)}.

To prove (∗) it suffices for any n and s1 <I . . . <I sn with t1 <I t2 <I s1 and k ∈
{0, 1, 2, 3} to prove that ā�(1)

t1 ˆā�(2)
t2 and ā

�(1)
t2 ˆā�(2)

t1 realize the same type over A ∪ ∪{ā�
sm

:
m ∈ {1, . . . , n− 1} & � ∈ {1, 2, 3} or m = n & � ≤ k} ∪ {ā�

s : s < t1, � ∈ {1, 2, 3}}. We do
it by induction on 4n+ k.

For n = 0: The sequences ā�(1), ā�(2) are perpendicular by 4.7(1) hence the required con-
clusion holds by (A) ⇒ (C) of 4.12.

For n+ 1: If k = 0 this is known (being equivalent to the case (n′, k′) = (n, 3)), other-
wise this follows by the definition of average more exactly as tp(āk

sn+1
, A ∪ {ā�

sm
: m ∈

{1, . . . , n} & � ∈ {1, 2, 3} or m = n + 1 & � ∈ k} ∪ {ā�
s : s < t1, � ∈ {1, 2, 3}}) does not

split over āk by 1.6(6).

Clause (d):
By 4.12. �4.14

4.15 Conclusion. If b̄1, b̄2 are endless indiscernible sequences and b̄1 is an indiscernible set,
then b̄1, b̄2 are perpendicular.

Proof. By 4.14(2), clause (b).

4.16 Claim. 1) Assume ā, b̄ are endless indiscernible sequences. Then ā, b̄ are perpendic-
ular sequences, iff for any ϕ(x̄, ȳ, c̄) for some truth values t we have:

(a) for every large enough s ∈ Dom(ā), for every large enough t ∈ Dom(b̄) we have
C |= ϕ[ās, b̄t, c̄]t

(b) for every large enough t ∈ Dom(b̄) for every large enough s ∈ Dom(ā) we have
C |= ϕ[ās, b̄t, c̄]t.

2) For any ϕ = ϕ(x̄, ȳ, c̄), there is a truth value t = tϕ(x̄,ȳ,c̄) for which clause (a) holds and
there is a truth value t = tϕ(x̄,ȳ,c̄) such that clause (b) holds.

Proof. By 4.12(C) (and 1.10(2)).
Part (2) is easy too. �4.16

4.17 Claim. 1) The parallel of the relevant earlier claims holds for several indiscernible
sequences, that is, assuming āζ = 〈āζ

t : t ∈ Iζ〉 is an endless indiscernible sequence for
ζ < ζ∗

(A) If the intervals [cf(Iζ), |Iζ |] are pairwise disjoint, cf(Iζ) > |T | + ζ∗, then for some
end segment Jζ of Iζ for ζ < ζ∗, we have 〈āζ � Jζ : ζ < ζ∗〉 is mutually indiscernible,
which means: each āζ � Jζ is indiscernible over ∪{āε � Jε : ε < ζ∗ & ε �= ζ} (in
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fact we can get indiscernibility over ∪{āε : ε < ζ∗ & |Iε| < cf(Iζ)} ∪ ∪{āε � Jε :
ε ∈ (ζ, ζ∗)})

(B) Assume 〈āζ : ζ < ζ∗〉 are mutually indiscernible, b̄ ∈ ω>C and Iζ = Dom(āζ) and
cf(Dom(āζ)) > |T |+ ζ∗. Then there are end segments Jζ of Iζ for ζ < ζ∗ such that
〈āζ � Iζ : ζ < ζ∗〉 is mutually indiscernible over b̄.

(C) If A is a set, Jζ is an infinite linear order disjoint to ∪{Iζ : ζ < ζ∗} and āζ
t realizes

pζ
t = Av(A ∪ {āε

s : ε < ζ∗ & s ∈ Iε or ε = ζ & s ∈ Jε & s <Jε t or
s ∈ Jε & ε < ζ} ∪ A, āζ) for any ζ < ζ∗, t ∈ Jζ then {〈āζ

s : s ∈ Jζ〉 : ζ < ζ∗} are
mutually indiscernible over ∪{āε

s : ε < ζ∗, s ∈ Iε} ∪A.
(D) If 〈āζ : ζ < ζ∗〉 are pairwise perpendicular and Jζ = J for ζ < ζ∗ then in clause

(C), āζ
t realizes qε

t = Av({āε
s : ε < ζ∗ & s ∈ I or ε < ζ∗ & s ∈ J & s <J t or

s = t & ε < ζ} ∪A, āζ).

(E) if Jζ = J is an infinite linear order (disjoint to ∪{Dom(āε) : ε < ζ∗}) and āζ
t for

ζ < ζ∗, t ∈ Jζ realizes the type qε
t from part (D), and for any ε < ζ < ζ∗, 〈āε

s : s ∈
Jε〉, 〈aζ

s : s ∈ Jζ〉 are mutually indiscernible or just perpendicular, then 〈〈aζ
s : s ∈

Jζ〉 : ζ < ζ∗〉 are mutually indiscernible, moreover even over A.

2) If we weaken in the conclusion of clause (A) of part (1) the mutually indiscernible by
mutually ∆-indiscernible, then we can weaken cf(Iζ) > |T | + |ζ∗| to cf(Iζ) > |ζ∗|.

Proof. Similar to earlier proofs (4.11). �4.17

4.18 Claim. 1) If ā = 〈āt : t ∈ I〉 is an indiscernible sequence, b̄ ∈ ω>C then we can divide
I to ≤ 2|T | convex subsets 〈Iζ : ζ < ζ∗〉 such that 〈ā � Iζ : ζ < ζ∗, Iζ infinite〉 is mutually
indiscernible over b̄.
2) Similarly in 4.17: if āζ is an endless indiscernible sequence over A for ζ < ζ∗, and
they are mutually indiscernible and b̄ ∈ ω>C then we can find w ⊆ ζ∗, |w| ≤ |T | and
for ζ ∈ w a partition of Iζ to ≤ 2|T | convex sets 〈Iζ,ε : ε < εζ〉 such that the family
{āζ : ζ ∈ ζ∗\w} ∪ {āζ � Iζ,ε : ζ ∈ w, ε < εζ} is mutually indiscernible over A ∪ b̄ (the
partition of Iζ is induced by some subset I ′ζ of comp(Iζ) of cardinality ≤ |T |).

Proof. 1) By 3.6.
2) Similarly. �4.18

Generalizing another claim for stable theories:

4.19 Claim. Assume that

(a) b̄, āζ are endless indiscernible sequences for ζ < ζ∗

(b) āζ , āε are perpendicular for ζ �= ε

(c) b̄, āζ are not perpendicular.

Then ζ∗ < |T |+.

Proof. Assume toward contradiction that ζ∗ ≥ |T |+. We let A = b̄∪
⋃

ζ

āζ and by induction

on n < ω, we choose 〈āζ,∗
n : ζ < ζ∗〉 and b̄∗n and for a fix n < ω we choose āζ,∗

n by induction
on ζ < ζ∗ and then we choose b̄∗n such that:
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(a) āζ,∗
n realized the average of āζ over A ∪ {b̄∗m : m < n} ∪ {āε,∗

m : m < n & ε < ζ∗ or
m = n & ε < ζ}

(b) b̄∗n realizes the average of b̄ over A ∪ {b̄∗m : m < n} ∪ {āε,∗
m : m ≤ n, ε < ζ∗}.

For each ζ, as b̄, āζ are not perpendicular, we can find nζ < ω, u�
ζ ∈ [ω]nζ for � = 0, 1, 2

such that 〈b̄∗n : n ∈ u0
ζ〉ˆ〈āζ,∗

n : n ∈ u1
ζ〉 and 〈b̄∗n : n ∈ u0

ζ〉ˆ〈āζ,∗
n : n ∈ u2

ζ〉 does not
realize the same type; say one satisfies ϕζ(x̄, ȳ) the second not. As we can replace 〈āζ :
ζ < |T |+〉 by any subsequence of length |T |+, without loss of generality ζ < |T |+ ⇒
nζ = n∗, u�

ζ = u�, ϕζ = ϕ. Now for every U ⊆ |T |+ let fU be the elementary mapping
with domain ∪{āζ,∗

n : n ∈ u1, ζ < |T |+}, mapping āζ,∗
n1

to āζ,∗
n2

iff ζ ∈ U , n1 = n2 or
ζ ∈ |T |+\U , n1 ∈ u1, n2 ∈ u2, |n1 ∩ u1| = |n2 ∩ u2|. Let gU be an automorphism of C

extending f−1
U . We have gotten the independence property for ϕ(x̄, ȳ) as gU(〈b̄∗n : n ∈ u0

0〉)
realizes {ϕ(〈x̄n : n ∈ u0〉, 〈āζ,∗

n : n ∈ u1〉)if(ζ∈U) : ζ < |T |+}, contradiction. �4.19

∗ ∗ ∗

We can deal with perpenducularity of ultrafilters instead of indiscernible sequences.

4.20 Definition. Let D� be an ultrafilter on m(�)(B�) for � = 1, 2.
We say that D1, D1 are perpendicular if:

(∗) if b̄�n realizes Av({b̄�m : m < n or m = n∧k < �}∪B1∪B2, D�) for n < ω, � ∈ {1, 2},
then 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible.

Parallel claims hold, e.g.

4.21 Claim. Let D�, B�,m� (� = 1, 2) be as in the definition 4.20 above.
1) D1, D1 are perpendicular iff

(∗∗) if A ⊇ B1∪B2, b̄
1 realizes Av(A,D1), and b̄2 realizes Av(A∪ b̄1, D2) then b̄1 realizes

Av(A ∪ b̄2, D1).

2) Let b̄� = 〈b̄�t : t ∈ I�〉 be endless indiscernible sequences, and let D� be an ultrafilter on
{b̄�t : t ∈ I�} containing {b̄�t : t ∈ J} for all the co-bounded subsets J of I�, for � = 1, 2. Then
D1, D2 are perpendicular iff b̄1, b̄2 are perpendicular.
3) In Definition 4.20 we can replace “mutually indiscernible” by “perpendicular”.

Proof. No new point.

We can translate:

4.22 Claim. 1) Assume we are given set B(⊆ C) and D is an ultrafilter on mB and I
is an endless linear order. Then for some ultrafilter D∗ on the cardinal λ = |T | + |B|, in
Cλ/D∗ we can find an indiscernible sequence b̄ = 〈bt : t ∈ I〉 in Bλ/D such that:

(∗) if A1 ⊆ C, ā ∈ mC then:
⊙

ā realizes Av(A1, D) iff ā realizes Av(A1, b̄) (in Cλ/D∗) iff every b̄t realizes
Av(A1, D) = Av(A1, b̄) = tp(ā, A1,C.
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2) If b̄ = 〈b̄t : t ∈ I〉 is indiscernible, I endless, b̄t ∈ mB for m < ω and B ⊆ A, then there
is an ultrafilter D on mB such that (∗) of part (1) holds.

Proof. Straightforward.

∗ ∗ ∗
As background for the following note that for T a totally transcendental (= ℵ0-stable), for
every A ⊆ C the set of isolated types in S(A) is dense (i.e. if C |= (∃x)ϕ(x, ā), ā ⊆ A then
ϕ(x, ā) belongs to some q ∈ S(A) which is isolated, i.e. such that for some ψ(x̄, ā′) ∈ q we
have ψ(x, ā) � q). This gives that we can extend A to a model such that “few” types over
A′ are realized in it, so in some sense M is understood over A ([Mo65] or see [Sh:c]). This
enables us to preserve much (e.g. “respecting”, see the next section), this is fine but the
assumption makes it irrelevant here.

For stable T we can replace isolated by |T |+-isolated (see [Sh:c, IV]). Also we can replace
isolated by “does not fork over some finite subset of A”; this looks like an opposite to being
isolated (as a non-forking is an “opposite” to an isolated one) but is still managable (and
helpful, called Ff

ℵ0
-isolated). But all these seem under too strong assumptions so irrelevant

here. We use a substitute: does not split over a small set, a precursor of non-forking (from
[Sh 3]), still of interest when non-forking is not available.

Recall ([Sh:c, Ch.III,§7:IV])

4.23 Definition. 1) p ∈ Fsp
κ (B) if for some set A we have p ∈ S<ω(A), B ⊆ A, |B| < κ

and p does not split over B, see part (4) below. Let p ∈ Fsp
κ mean that for some set B we

have p ∈ Fsp
κ (B).

2) A = (A, 〈b̄i, Bi : i < i∗〉) is an Fsp
κ -construction (or 〈b̄i, Bi : i < i∗〉 is an Fsp

κ -construction
over A) if tp(b̄i, A ∪ {b̄j : j < i}) ∈ Fsp

κ (Bi), so Bi ⊆ AA
i =: A ∪ {b̄j : j < i}) for every

i < i∗.
3) Omitting Bi means for some Bi; let i∗ = �g(A).
4) Recall that p ∈ Sm(A) splits over B ⊆ A if for some formula ϕ(x̄, ȳ) and sequences b̄, c̄
from �g(ȳ)A realizing the same type over B we have ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ p.

We give a proof of 4.24 for self-containment.

4.24 Claim. 1) If B ⊆ A and p is an m-type over B, then there are q ∈ Sm(A) extending
p and B1 ⊆ A, |B1| ≤ |T | such that q does not split over B ∪B1.
2) For any A and κ > |T | there is a model M and Fsp

κ -construction A = (A, 〈b̄i, Bi : i < i∗〉)
such that:

(a) M = AA
i∗ and ‖M‖ = |A|<κ +

∑

θ<κ

2|T |+θ

(b) M is κ-saturated,
(c) cf(i∗) = κ or κ singular, cf(i∗) = κ+.

3) If A is an Fsp
κ -construction, κ = cf(κ), b̄ ⊆ AA

�g(A) has length < κ, then tp(b̄, A) does
not split over some B ⊆ A, |B| < κ.
4) In part (2) we can add (d) if we replace (a) by (a)∗ where

(d) if p ∈ Sm(M) does not split over B ⊆M, |B| < κ then i∗ = sup{i : B ⊆ AA
i and b̄i

realizes the type p � AA
i }

(a)∗ M = AA
i∗ and ‖M‖ = |A|<κ + 22θ+|T |

.
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Proof. 1) For any set C ⊆ A let us define

pC = p(x̄) ∪ {ϕ(x̄, b̄) ≡ ϕ(x̄, c̄) :ϕ(x̄, ȳ) ∈ Lτ(T )

and b̄, c̄ ∈ �g(ȳ)A realizes the same type over B ∪ C}.

Now if there is C ⊆ A of cardinality ≤ |T | such that pC is finitely satisfiable (in C), then
choosing B1 = C and q ∈ Sm(A) any extension of pC we are done. So assume toward
contradiction

(∗) if C ⊆ A has cardinality ≤ |T |, then pC is not finitely satisfiable.

Now we choose by induction on ζ < |T |+ a set Cζ and then a sequence 〈ϕζ,n, b̄ζ,n, c̄ζ,n : n <
nζ〉 such that

(∗)1 ϕζ,n = ϕζ,n(x̄, ȳζ,n) ∈ Lτ(T ) and b̄ζ,n, c̄ζ,n are sequences from A of length �g(ȳζ,n)

as follows. In stage ζ we let Cζ = ∪{b̄ε,nˆc̄ε,n : ε < ζ and n < nε}.
So Cζ ⊆ A and |Cζ | < ℵ0 + |ζ|+ < |T |+; of course, C0 = ∅. Now by (∗) we know that pCζ

is
not finitely satisfiable, hence we can find nζ < ω and ϕζ,n(x̄, ȳζ,n), b̄ζ,n, c̄ζ,n as in (∗)1 such
that

(∗)2ζ b̄ζ,n, c̄ζ,n realizes the same type over B ∪ Cζ for n < nζ

(∗)3ζ p ∪ {ϕζ,n(x̄, b̄ζ,n) ≡ ϕζ,n(x̄, c̄ζ,n) : n < nζ} is not finitely satisfiable, that is

p(x̄) �
∨

n<nζ

(ϕζ,n(x̄, b̄ζ,n) ≡ ¬ϕζ,n(x̄, c̄ζ,n)).

Having carried the definition note that the number of possible sequences 〈ϕζ,n(x̄, ȳζ,n) :
n < nζ〉 is ≤ |T | hence for some unbounded U ⊆ |T |+ we have ζ ∈ U ⇒ nζ = n∗ &∧

n<n∗

ϕζ,n(x̄, ȳζ,n) = ϕn(x̄, ȳn).

Now note

(∗)4 if p ⊆ q ∈ Sm(Cζ) then for some n < nζ there are q0, q1 ∈ Sm(Cζ+1) extending q
such that ϕζ,n(x̄, b̄ζ,n) ∈ q0,¬ϕζ,n(x̄, b̄ζ,n) ∈ q1.

[Why? Let q ⊆ q′ ∈ Sm(Cζ+1), now by (∗)3ζ , as p ⊆ q ⊆ q′ clearly for some n < nζ we have
[ϕζ,n(x̄, b̄ζ,n) ≡ ¬ϕζ,n(x̄, c̄ζ,n)] ∈ q′, and as b̄ζ,n, c̄ζ,n ⊆ Cζ+1 for some truth value t we have
ϕζ,n(x̄, b̄ζ,n)t ∈ q′ hence ¬ϕζ,n(x̄, c̄ζ,n)t ∈ q′.

So q ∪ {¬ϕζ,n(x̄, c̄ζ,n)t} is finitely satisfiable, but by (∗)2ζ the sequences b̄ζ,n, c̄ζ,n realizes
the same type over Cζ hence also q ∪ {¬ϕζ,n(x̄, b̄ζ,n)t} is finitely satisfiable hence can be
extended to some q′′ ∈ Sm(Cζ+1). So {q′, q′′} can serve as q0, q1 (in some order); so (∗)4
holds.]
Hence

(∗)5 for any finite set u ⊆ |T |+, the following set has at least 2|u| members

{η :η is a function from {(ζ, n) : ζ ∈ u, n < nζ}
to the truth values such that

pη = p ∪ {ϕζ,n(x̄, b̄ζ,n)η(ζ,n) : ζ ∈ u, n < nζ}
is finitely satisfiable}.

[Why? By induction on |u| (or on sup(u)) using (∗)4.]
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Now let ∆ = {ϕn(x̄; ȳn) : n < n∗}, so for every finite u ⊆ U by (∗)5 we have

Sm
∆ (∪{b̄ζ,n : ζ ∈ u, n < n∗}) has at least 2|u| members

whereas

∪{b̄ζ,n : ζ ∈ u, n < n∗}

has at most u×m∗ members where we let m∗ =
∑

n<n∗
�g(ȳn).

By [Sh:c, II, §4], T has the independence property.
2) Let κ′ be κ if κ is regular and κ+ if κ is singular. We shall choose by induction on ζ ≤ κ′

the tuple Aζ = (A, 〈(b̄ζi , Bζ
i ) : i < iζ〉) such that:

(a) Aζ is an Fsp
κ -construction

(b) i0 = 0

(c) if ε < ζ then iε < iζ and (b̄ζi , B
ζ
i ) = (b̄εi , B

ε
i ) for every i < iε, so we call them (bi, Bi)

(d) if ζ is a limit ordinal then iζ = ∪{iε : ε < ζ} and so Aζ is determined by clause (c)

(e) |iζ | ≤ λ =: |A|<κ +
∑

θ<κ

2θ+|T |.

If Aζ is chosen, let Aζ = A∪∪{b̄i : i < iζ} and let Pζ = {p: for some m < ω, p is an m-type
over some set B ⊆ Aζ of cardinality < κ hence of cardinality < κ}. We know that |Pζ| ≤ λ
and let iζ+1 = iζ + λ let 〈pi : i ∈ [iζ , iζ+1)〉 list Pζ (possibly with repetition). We choose
(Ai, Bi, q

+
i , b̄i) by induction on i ∈ [iζ, iζ+1) as follows.

Let Ai = Aζ ∪ ∪{b̄j : j ∈ [iζ , i)}; and let Bi, q
+
i be such that q+i ∈ Smi(Ai) be an

extension of pi which does not split over Bi, where Dom(pi) ⊆ Bi ⊆ Ai & |Bi| < κ where
pi is an mi-type. Why can we find such Bi, q

+
i ? by part (1) applied to Ai, pi, Dom(pi).

Lastly, let b̄i ∈ miC be any sequence realizing q+i .
So we have carried the induction on i ∈ [iζ, iζ+1) hence Aζ+1 is defined. As the case of

limit ζ and ζ = 0 were done we have finished the induction on ζ, so Aζ is defined also for
ζ = κ′ and Aκ′

is as required.
3) Let A = (A, 〈b̄i, Bi : i < i∗〉) and let B∗ = AA

�g(A) = A ∪ ∪{b̄i : i < i∗}, and let
b̄ ∈ κ>(B∗). For each i < i∗ let ui ∈ [i]<κ be such that Bi ⊆ A ∪ ∪{b̄j : j ∈ ui}.
We can find u∗0 ⊆ i∗ of cardinality < κ be such that b̄ ∈ κ>(A∪∪{b̄i : i ∈ u∗0}), and defined
u∗n ⊆ i∗ of cardinality < κ for n < ω by (u∗0 as above and) u∗n+1 = u∗n ∪ ∪{ui : i ∈ u∗n}. Let
u∗ = ∪{u∗n : n < ω} and B = A ∩ [∪{Bi : i ∈ u∗} ∪ b̄], so B ∈ [A]<κ. Now we can prove by
induction on i ∈ u∗ ∪ {i∗} that tp∗(∪{b̄j : j ∈ u∗ ∩ i}, A) does not split over B. From the
case i = i∗ we can deduce the desired conclusion.
4) Like the proof of part (2) let P ′

ζ = {(p, B) : p ∈ S<ω(Aζ), p does not split over some set
B ⊆ Aζ of cardinality < κ} and4 let 〈(p′i, B′

i) : i ∈ [iζ , iζ+1)〉 listing P ′
ij

. But choosing b̄i, Bi

for i ∈ [iζ , iζ + λ) we now have two cases.

Case 1: i = iζ + 2j.
As in the proof of part (2) using piζ+j where piζ+j is as in the proof of part (2).

4recall ([Sh:3] or [Sh:c]) that for κ > |T |, {p ∈ Sm(A) : p does not split over some subset of A of

cardinality < κ} is ≤ |A|<κ +
�

θ<κ

22κ
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Case 2: i = iζ + 2j + 1.
If there is q ∈ S<ω(Aiζ

∪{b̄ε : ε ∈ [iζ , i)} extending p′iζ+j not splitting over the set B′
iζ+j

which has cardinality < κ, choose q+i as some such q. If not, act as in case 1. �4.24

Similarly, but if we like not to assume κ > |T |, we need to assume more on T .

4.25 Definition. 1) p ∈ Fesp
κ (B) if for some A,m we have p ∈ Sm(A), B ⊆ A, and for

every ϕ = ϕ(x̄, ȳ) for some ∆ ⊆ Lτ(T ) and B′ ⊆ B both of cardinality < κ the type p does
not (ϕ,∆)-split over B′, see part (4) below.
1A) Let Fesp(B) = Fesp

ℵ0
(B).

2) A = 〈A, 〈(b̄i, Bi) : i < i∗〉〉 is an Fesp
κ -construction or 〈(bi, Bi) : i < i∗)〉 is an Fesp

κ -
construction over A if tp(b̄i, A ∪ {b̄j : j < i}) ∈ Fesp

κ (Bi) so Bi ⊆ Ai =: A ∪ {b̄j : j < i} for
every i < i∗.
3) Omitting Bi means for some Bi; let �g(A) = i∗.
4) Recall that p ∈ Sm(B) does (∆1,∆2)-split over A if for some ϕ(x̄, ȳ) ∈ ∆1 with �g(x̄) = m
and b̄, c̄ ∈ �g(ȳ)B we have tp∆2(b̄, A) = tp∆2(c̄, A) but ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ p.

4.26 Claim. 1) Assume κ ≥ |T | + ℵ1.
If B ⊆ A, p is an m-type over B of cardinality < κ and |B| < κ, then there are B′ ∈ [A]<κ

extending B and q ∈ Sm(A) from Fesp
κ (B′) extending p.

2) For any A and κ = cf(κ) ≥ |T | + ℵ1 and is a model M and Fesp
κ -construction A =

(A, 〈(b̄i, Ai) : i < i∗〉) such that:

(a) |M | = AA
i∗

(b) M is κ-compact
(c) cf(i∗) ≥ κ.

3) If A is a Fesp
κ -construction, κ = cf(κ), then for any b̄ ⊆ ω>(AA

�g(A)) and ϕ(x̄, ȳ) ∈ Lτ(T )

for some B ⊆ A and ∆ ⊆ Lτ(T ) of cardinality < κ the type tp(b̄, A) does not (ϕ,∆)-split
over A.
4) The parallel of 4.24(4) holds.

The proof of 4.26 is similar to the proof of 4.24.

Proof. 1) Fix m and a m-type p over B such that B ⊆ A, |B| < κ. Without loss of generality
κ = |T |.

Let x̄ = 〈x� : � < m〉 and let {ϕi(x̄, ȳi) : i < |T |} be a list of all such formulas. For any
set C ⊆ A and ∆ ⊆ Lτ(T ) we define

qi
∆,C = {ϕi(x̄, b̄) ≡ ϕi(x̄, c̄) :b̄, c̄ ∈ �g(ȳi)A

and tp∆(b̄, C) = tp∆(c̄, C)}.
We now define by induction on ζ < |T |, a pair (Cζ ,∆ζ) such that:

�1(a) Cζ ⊆ A is increasing continuous
(b) ∆ζ ⊆ Lτ(T ) is increasing continuous
(c) ∆ζ , Cζ are of cardinality ≤ ℵ0 + |B| + |ζ|
(d) C0 = B,∆0 = ∅
(e) p ∪ ∪{qε

∆ε+1,Cε+1
: ε < ζ} is finitely satisfiable.
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If we succeed, clearly we are done, and there is no problem for ζ = 0 and ζ limit. So assume
ζ = ε+ 1. We now try to choose ∆ζ ⊇ ∆ε ∪ {ϕε} of the right cardinality close enough, e.g.
of the form ∆ζ = Lτζ

for some vocabulary τζ ⊆ τT . We now try to choose by induction on
i < ω1, Cε,i, ni, b̄ε,i,�, c̄ε,i,� for � < ni such that:

�2(α) Cε,i is increasing continuous
(β) Cε,0 = Cε

(γ) ni < ω

(δ) b̄ε,i,�, c̄ε,i′,� ∈ �g(ȳi)A realizes the same type over Cε,i

(ε) b̄ε,i,�, c̄ε,i,� ⊆ cε,i and Cε,i+1\Cε,i is finite

(ζ) p ∪ ∪{pξ
∆ξ,cξ

� cε,i+1 : ξ < ε} ∪ {ϕε,i,�(x̄, b̄ε,i,�) ≡ ϕε,i,�(x̄, c̄ε,i,�) : � < ni} is inconsis-
tent.

For i = 0, i limit no problem. For i successor, if the choice Cε+1 = Cε,i (and ∆ε+1 chosen
above) is as required in �1 we are done choosing (Cζ ,∆ζ) thus finishing the proof. Otherwise
p ∪ ∪{qξ

∆ξ+1,Cξ+1
: ξ ≤ ε} ∪ qε

∆ε+1,Cε,i
is inconsistent hence has a finite inconsistent subset

p′ε,i and let Cε,i+1 = Cε,i ∪ Dom(p′ε,i), let nε,i = |p′ε,i ∩ qε
∆ε+1,Cε,i

| and {ϕε(x̄, b̄ε,i,�) ≡
ϕε(x̄, c̄ε,i,�) : i < nε} list p′ε,i ∩ qε

∆ε+1,Cε,i
.

So for some n(∗) the set U = {i < ω1 : nε,i ≤ n(∗)} is infinite. Now we prove

� for every i(∗) < ω1 and u ⊆ ω1\i(∗), the following set has at least 2|u| members
{η : η is a function from {(j, n) : j ∈ u and n < nζ} to the truth values such that
p ∪ ∪{qξ

∆ξ+1,cξ+1
� Cε,i(∗) : ξ < ε} ∪ {ϕε(x̄, b̄ε,j,n)η(j,n) : j ∈ u} is finitely satisfiable

}.
We do this by induction on |u|; this gives that T has the independence property, contradic-
tion.

We would have liked to look at κ = ℵ0, but we would get by the proof above less; say
for a pregiven k0 < ω, say for ε = 0, we get every subset of p ∪ p∆0,C0 of cardinality < k0

is satisfiable.
2) Similar to the proof of 4.24(2).
3) Like 4.24(3), only we have to take care of the ∆, too.
4) Like 4.24(4). �4.26

4.27 Claim. If ā1, ā2 are perpendicular indiscernible sequences each of cofinality > |T |,
then we can find J1 ⊆ Dom(ā1), J2 ⊆ Dom(ā2) unbounded such that ā1 � J1, ā2 � J2 are
mutually indiscernible.

Proof. If Dom(ā1), Dom(ā2) has different confinalities we can use 4.11 to ā1 � I1, ā2 � I2
where I� ⊆ Dom(ā�) is unbounded and cofinal in Dom(ā�) and has cardinality cf(Dom(ā�)).

Otherwise, let κ be the common cofinality, choose {t�α : α < κ} ⊆ Dom(ā�) increasing
unbounded. As in 3.5 we can chooose α(i, �) < κ by induction on 2α + �, increasing such
that α = α(i, �) implies that ā�

t�
α

realizes Av({āk
tk
β

: β < α & k ∈ {1, 2} or β = α ∧ k =

1 < � = 2}, ā�). So 〈ā1
t1α

ˆā2
t2α

: α < κ〉 is an indiscernible sequence. By the perpendicularity
easily J� = {t�α : α < κ} for � = 1, 2 are as required. �4.27
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§5 Indiscernible sequence perpendicular to cuts

Our aim is to show that for a set of {b̄ζ : ζ < ζ∗} of pairwise perpendicular endless
indiscernible sets, we can find a model M ⊇ ∪{b̄ζ : ζ < ζ∗} with 〈dual-cf(b̄ζ ,M) : ζ < ζ∗〉
essentially as we like, and other b̄′ in M has such dual cofinality iff this essentially follows.
In fact we can demand M ⊇ M0 for any given M0. Toward this we define and investigate
when an endless indiscernible sequence c̄ is perpendicular to a (Dedekind) cut (I1, I2) in an
indiscernible sequence ā.

We use

� the Downward L.S. (on M ≺ N) can replace |T | < |PN | < |QN | by |PM | = |QM |
but in general cannot invert the inequality, however for cofinality it can.

For our purpose “respecting” defined in 5.2 is a central notion.

5.1 Discussion: 1) We can reformalize the aim as:

� given D̄ = 〈Dζ : ζ < ζ∗〉,Dζ an ultrafilter and ∪{Dom(Dζ) : ζ < ζ∗} ⊆ M and
given a sequence 〈λζ : ζ < ζ∗〉 of regular cardinals (≥ κ = cf(κ) > |T |) and, for
simplicity, Dom(Dζ) in C an indiscernible sequence over ∪{Dom(Dε) : ε �= ζ}, then
there is a κ-saturated model M ⊇ A such that ζ < ζ∗ ⇒ λζ = dual-cf(Dζ ,M)
defined naturally.

2) This property is meaningful also for (complete first order theories) T with the indepen-
dence property (and sequence D̄). However, at least for some of them, e.g., for number
theory
(a) assume ζ1 �= ζ2 < ζ∗ and F is a one to one function from Dom(Dζ1) onto Dom(Dζ2)

maping Dζ1 to Dζ2 and is included in a function definable in C with parameters from
A.
Then A ⊆M ≺ C ⇒ dual-cf(Dζ1 ,M) = dual-cf(Dζ2 ,M).

In other words if Dζ1 , Dζ2 are isomorphic as ultrafilters then Dζ1 , Dζ2 are not perpendicular
in C for T = Th(N) because for every such F there is a definable function extending it.
For dependent theory this gives just that definably isomorphic ⇒ not perpendicular
(b) we can weaken the demands on Dζ1 , Dζ2 .

5.2 Definition. 1) We say Ī = (I1, I2) is a Dedekind cut (or just a cut) of the linear order
I, if I is the disjoint union of I1, I2 and s ∈ I1 & t ∈ I2 ⇒ s <I t and we write I = I1 + I2,
and the cofinality of Ī is (cf(I1), cf(I∗2 )) where I∗2 is I2 inverted. If I1 + I2 is a convex subset
of J and I1 �= ∅ �= I2 we may abuse our notation saying “(I1, I2) is a Dedekind cut of J”.
We say (I1, I2) is a Dedekind cut of ā if it is a Dedekind cut of Dom(ā). If not say otherwise,
I1 �= ∅ �= I2, and the cut is non-trivial if both its cofinalities are infinite.
2) (J1, J2) ≤ (I1, I2) if J1 is an end segment of I1 and J2 is an initial segment of I2.
3) We say that the set A respects the Dedekind cut (I1, I2) of ā if (I1, I2) is a Dedekind
cut of ā and for every b̄ ∈ ω>A for some (J1, J2) ≤ (I1, I2) the sequence ā � (J1 + J2) is
indiscernible over b̄.
4) For indiscernible sequences ā, b̄ such that b̄ is endless and a Dedekind cut (I1, I2) of ā
we say that b̄ is perpendicular to the cut over A0 when:

(a) the set A0 ⊇ b̄ ∪ ā respects the cut (I1, I2) of ā
(b) for any set A ⊇ A0 respecting the Dedekind cut (I1, I2) of ā and c̄ realizing Av(A, b̄)

also the set A ∪ c̄ respects the Dedekind cut (I1, I2) of ā.
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We also say “b̄ is perpendicular to ([ā � I1, ā � I2]) over A0”. If we omit A0 we mean
A0 = b̄ ∪ ā.
4A) For indiscernible sequences ā, b̄ such that b̄ is endless and a Dedekind cut (I1, I2) of ā
we say that b̄ is truely perpendicular to the cut (I1, I2) of ā when for any set A, if A ∪ ā
respects the cut (I1, I2) of ā and c̄ realizes Av(A ∪ ā, b̄) then A ∪ ā ∪ c̄ respects the cut
(I1, I2) of ā.
5) For endless indiscernible sequence ā and A ⊇ ā we say an endless indiscernible sequence
b̄ = 〈b̄t : t ∈ I〉 over A is based on ā or b̄ is based on (A, ā) if each b̄t realizes Av(A∪ {b̄s :
s <I t}, ā).
6) We say that the set A weakly respects the Dedekind cut (I1, I2) of ā if (I1, I2) is a
Dedekind cut of ā and for every formula ϕ(x̄, b̄) with b̄ ⊆ A for some (J1, J2) ≤ (I1, I2) and
truth value t we have s ∈ J1 + J2 ⇒ C |= ϕ[ās, b̄]t.

5.3 Claim. 1) If (I1, I2) is a nontrivial cut of the indiscernible sequence ā and A = ∪{āt :
t ∈ I1 ∪ I2} then A respects the cut (I1, I2) of ā.
2) For every A and indiscernible ā ⊆ A and endless I there is 〈b̄t : t ∈ I〉 based on (A, ā).
3) Assume that (I1, I2) is a nontrivial cut of the indiscernible sequence ā and c̄ is an endless
indiscernible sequence. Then (a) ⇒ (b) ⇔ (c) and if the cofinalities of the cut are > ℵ0 then
(a) ⇔ (b) ⇔ (c) where

(a) c̄ is perpendicular to the cut (I1, I2) of ā

(b) if b̄ is an indiscernible sequence based on (c̄ ∪ ā, c̄) then the set b̄ ∪ c̄ ∪ ā respects
the cut (I1, I2) of ā

(c) there is b̄ an indiscernible sequence based on (c̄ ∪ ā, c̄) such that the set b̄ ∪ c̄ ∪ ā
respects the cut (I1, I2) of ā.

4) If Ai (i < δ) is increasing, A0 ⊇ A and each Ai [truely, weakly] respects the cut (I1, I2)
of ā then also

⋃

i<δ

Ai does.

5) If b̄A0 ⊆ A1 and the cofinalities (of I1, I2,Dom(b̄)) are > |T | then b̄ is perpendicular to
the cut (I1, I2) of ā over A0 then this holds over A1.

Proof. 1) Let b̄ ∈ ω>A; hence for some n < ω and t0, . . . , tn−1 ∈ I1 ∪ I2 we have b̄ ⊆ ∪{āt�
:

� < n} and define J1 = {t ∈ I1 : (∀� < n & t� ∈ I1 ⇒ t� < t}, J2 = {t ∈ I2 : � <
n & t� ∈ I2 ⇒ t < t�}. Clearly (J1, J2) ≤ (I1, I2) and ā � (J1 + J2) is indiscernible over
∪{āt : t ∈ (I1 ∪ I2)\(J1 ∪ J2)} hence over ∪{at�

: � < n} hence over b̄.
2) Also trivial.
3) (a) ⇒ (c):

Let 〈b̄n : n < ω〉 be an indiscernible sequence over ∪ā ∪ ⋃
c̄ based on c̄ and for α ≤ ω

let Aα = ∪{āt : t ∈ I1 ∪ I2} ∪ c̄ ∪ ⋃{b̄n : n < α}. We can prove by induction on α that
Aα respects the cut (I1, I2) of ā; for α = 0 by part (1), for α = n + 1 by clause (a), see
Definition 5.2(4) for α limit by part (4) and is straightforward. Hence by the first phrase
of part (2), 〈b̄n : n < ω〉 exemplifies (a), as required.

(b) ⇒ (c): Trivial.

(c) ⇒ (b): Easy.

(b) ⇒ (a): So we are assuming that the cofinalities are > |T |.
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Let a set A ⊇ c̄∪ā respecting the cut (I1, I2) be given and let b̄n realize Av(∪c̄∪A∪{b̄m :
m < n}, c̄) for n < ω. By clause (b) we know that the set B = ∪{b̄n : n < ω} ∪⋃

ā respect
the cut (I1, I2) of ā. Let d̄ be a finite sequence from A, then we shall prove

(∗)d̄ for some (J1, J2) ≤ (I1, I2) the sequence ā � (J1 ∪ J2) is indiscernible over ∪{b̄n :
n < ω} ∪ d̄.

Clearly this sufices. Note that 〈bn : n < ω〉 is indiscernible over A ⊇ ∪ā ∪ d̄.
As the set ∪b̄ ∪ ∪ā respects the cut (I1, I2) of ā, for each n there is (Jn

1 , J
n
2 ) ≤ (I1, I2)

such that ā � (Jn
1 ∪ Jn

2 ) is indiscernible over b̄0ˆ . . . ˆb̄n. As the cofinalities of (I1, I2) are
> ℵ0, also (J1, J2) ≤ (I1, I2) where J� =:

⋂

n<ω

Jn
� , and clearly ā � (J1 ∪ J2) is indiscernible

over b̄. By the last two sentences ā � (J1 ∪ J2), 〈b̄n : n < ω〉 are mutually indiscernible.
Also possibly replacing (J1, J2) by some (J ′

1, J
′
2) ≤ (J1, J2), the sequence ā � (J1 ∪ J2)

is indiscernible over d̄ and similarly (as the cofinalities are large), ā � J� is indiscernible
over

⋃

n

b̄n ∪ d̄ ∪ ā � J3−� for � = 1, 2. Together if (∗)d fails, we get a contradiction to the

assumption on the b̄n’s.
4),5) Check. �5.3

5.4 Claim. Assume

(a) (I1, I2) is a non-trivial Dedekind cut of the indiscernible sequence ā
(b) J1 is an unbounded subset of I1
(c) J2 is a subset of I2 unbounded from below5

1) If A ⊇ ā then: A respects the Dedekind cut (I1, I2) of ā iff A respects the Dedekind cut
(J1, J2) of ā � (J1 ∪ J2).
2) If b̄ is an endless indiscernible sequence and b̄ ∪ ā ⊆ A0, then b̄ is perpendicular to
the Dedekind cut (I1, I2) of ā over A0 iff b̄ is perpendicular to the Dedekind cut (J1, J2) of
ā � (J1 ∪ J2) over A0.
3) If J is an unbounded subset of Dom(b̄), in (2) we can replace the last b̄ by b̄ � J .

Proof. 1), 2), 3) As T has the dependence property. �5.4

5.5 Claim. 1) Assume ā = ā1ˆā2 is an indiscernible sequence and A ⊇ ā1ˆā2 respects
the non-trivial cut (ā1, ā2) both cofinalities of which are > |T | and c̄ ⊆ A is an endless
indiscernible sequence perpendicular to ā1 and to the inverse of ā2. Then c̄ is perpendicular
to (ā1, ā2) over A.
2) Let (I1, I2) be a Dedekind cut of the indiscernible sequence ā with cofinalities > |T | and
ā ⊆ A. The set A respects the cut (I1, I2) of ā iff the set A weakly respected the cut (I1, I2)
of ā.
3) Let (I1, I2) be a Dedekind cut of the infinite indiscernible sequence ā with infinite cofinal-
ities, b̄ an endless indiscernible sequence such that ā, b̄ are mutually indiscernible. Then b̄
is perpendicular to the cut (I1, I2) of ā.

Proof. 1) It is enough to show that if c̄ realizes Av(A, c̄) then A∪c̄ respects the cut (I1, I2) of
ā. By the second part (proved below) it is enough to show that A∪c̄ weakly respects (ā1, ā2).

5we can omit this here (and many other places) if in Definition 5.2(3),(4), we say “for every finite ∆”.
But this does not help much because of “κ > |T |” in 4.23. We could replace |T |+ by a kind of κr

ind(T ).
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Let d̄ ⊆ A ∪ c̄, and consider ϕ(x̄, d̄). Without loss of generality for some d̄′ ⊆ A, d̄ = c̄ˆd̄′.
By the choice of c̄ and as c̄, ā1 are perpendicular for some truth value t we have:

(a) for every large enough t ∈ Dom(ā1) we have |= ϕ[ā1
t , c̄, d̄

′]t

(b) for every large enough t ∈ Dom(ā1) for every large enough s ∈ Dom(c̄) we have
|= ϕ[ā1

t , c̄s, d̄
′]t

(c) for every large enough s ∈ Dom(c̄) for every large enough t ∈ Dom(ā1) we have
|= ϕ[ā1

t , c̄s, d̄
′]t.

As d̄′, c̄s ⊆ A and A respects (ā1, ā2) by clause (c) clearly

(d) for every large enough s ∈ Dom(c̄) for every small enough t ∈ Dom(ā2) we have
|= ϕ[ā2

t , c̄s, d̄
′]t.

As c̄ and the inverse of ā2 are by clause (d) perpendicular we have

(e) for every small enough t ∈ Dom(ā2) for every large enough s ∈ Dom(c̄) we have
|= ϕ[ā2

t , c̄s, d̄
′]t.

By the choice of c̄ and clause (e)

(f) for every small enough t ∈ Dom(ā2) we have |= ϕ[ā2
t , c̄, d̄

′]t.

Together we are done.
2) Trivially respect implies weakly respect. So assume b̄ ⊆ A. By 4.14(1) we can find
(J1, J2) ≤ (I1, I2) such that ā � J1, ā � J2 are mutually indiscernible over b̄. Toward
contradiction assume that ā � (J1∪J2) is not indiscernible over b̄, so there is ϕ(x̄1, . . . , x̄n, b̄)
witnessing it. We prove by induction on m ≤ n the natural statement: for some truth value
t if t1 < . . . < tn are in J1 ∪ J2 and tm+1, . . . , tn ∈ J2 then C |= ϕ[āt1 , . . . , ātn , b̄]t.
For m = 0 this holds as ā � J2 is an indiscernible sequence over b̄ so we can choose the
appropriate t.
For m + 1, if tm ∈ J2 uses the induction hypothesis, so assume tm ∈ J1, let t′� be t� if
� �= m and any member t′ of J2 satisfying tm < t′ < tm+1 if � = m & m + 1 ≤ n and
t′ any member of J2 if � = m = n. Let c̄ = 〈āt�

: � �= m〉 and ψ(x̄, 〈ȳ� : � = 1, . . . , n
and � �= m〉, z̄) = ϕ(ȳ1, . . . , ȳm−1, x̄, ȳm+1, . . . , ȳn, z̄). So |= ψ[āt′m , c̄, b̄]

t by the induction
hypothesis and |= ¬ψ[āt′n , c̄, b̄]

t by the assumption toward contradiction. So by mutual
indiscernibility ψ(āt′s , c̄, b̄)

t holds for every large enough s ∈ J1 and fails for every small
enough s ∈ J2. But c̄, b̄ ⊆ A and this shows that “weakly respect” fails.
3) Easy, e.g., by part (1) and 4.7(1), clause (b) of Definition 5.2(4) holds and similarly to
the proof of 5.3, clause (a) of Definition 5.2(4) holds.

�5.5

5.6 Definition. We say an endless indiscernible sequence ā ⊆ A has true dual cofinality κ
inside A, tr-d-cf(ā, A) = κ if there is b̄ ⊆ A such that āˆb̄ is an indiscernible sequence with
the cut (ā, b̄) being respected by A and Dom(b̄) has downward cofinality κ.

5.7 Observation. tr-d-cf(ā, A) is well defined, i.e. has at most one value, and if so then is
equal to dual-cf(ā, A), see Def 4.5(3).

Proof. Easy, as κ is unique.
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5.8 Claim. 1) If δ is a limit ordinal, 〈Ai : i < δ〉 is increasing, ā ⊆ A0 is an endless
indiscernible sequence, ā′i ⊆ Ai+1 realizes Av(Ai, ā), ā′ = 〈ā′i : i < δ〉 and ā′′ is the inverse
of ā′ then

(a) āˆā′′ is an indiscernible sequence

(b) the set
⋃

i<δ

Ai respects the cut (Dom(ā),Dom(ā′′)) of āˆā′′.

2) If ā is a non-stable indiscernible sequence, ā ⊆ A, the set A respects the non-trivial cut
(I1, I2) of ā and the cofinalities of the cut are > |T | then dual-cf(ā � I1,M) = cf(I∗2 ) =
tr-d-cf(b � I1,M)
3) [Not used] If ā is an indiscernible sequence with Dedekind cut (I1, I2) of cofinality
(κ1, κ2),ℵ0 < κ1, κ2 and c̄ an endless indiscernible sequence perpendicular to the cut (I1, I2)
of ā, then: for every formula ϕ(x̄, ȳ, z̄) and sequence b̄ such that ā ∪ b̄ ∪ c̄ respects the cut
(I1, I2) of ā for some truth value t we have:

(∗) for some (J1, J2) ≤ (I1, I2) and for every t ∈ J1 ∪ J2, for every large enough s ∈
Dom(c̄) we have C |= ϕ[āt, b̄, c̄s]t.

4) If in part (3), |T | < κ1, κ2, then for some (J1, J2) ≤ (I1, I2) and end segment J of
Dom(c̄) we have: ā � (J1 + J2), c̄ � J are mutually indiscernible.

Proof. 1), 2) Straightforward.
3) Let δ = |T |+ and let d̄γ realize Av(ā ∪ b̄ ∪ c̄ ∪ {d̄β : β < γ}, ā), for γ < δ so by the
definition of “respect the Dedekind cut” and as κ1, κ2 > ℵ0 there is (J1, J2) ≤ (I1, I2)
such that ā � (J1 ∪ J2) is indiscernible over ∪{d̄n : n < ω} ∪ b̄ hence ā � (J1 + J2) and
d̄ = 〈d̄γ : γ < δ〉 are {ϕ}-mutually indiscernible over b̄. So we have truth value t such
that t ∈ J� & γ < δ ⇒ C |= ϕ[āt, b̄, d̄γ ]t. Recall that (I1, I2) have cofinality (κ1, κ2) and
for our purpose without loss of generalityκ1, κ2 > |T |. Now clearly the three indiscernible
sequences ā � J1, the inverse of ā � J2 and 〈d̄γ : γ < δ〉 are mutually indiscernible, hence
by 4.17, clause (B) without loss of generality they are mutually indiscernible over b̄ (i.e.,
omitting an initial segment of each and renaming). By the choice of the d̄γ ’s, for every
t ∈ J1 + J2 for every large enough s ∈ Dom(c̄) we have |= ϕ[āt, b̄, c̄s]t.
4) Should be clear (compare with 1.30, 5.5, 5.8).

5.9 Claim. Assume

(a) I = I1 + I2 and the Dedekind cut (I1, I2) has cofinality (κ1, κ2)
(b) ā = 〈āt : t ∈ I〉 is an indiscernible sequence
(c) ā ⊆ A

(d) the set A respects the cut (I1, I2) of ā
(e) |T | < κ1, κ2 (not used in part (1)).

1) If tp(d̄, A) ∈ Fsp
κ and κ ≤ κ1, κ2, then the set A ∪ d̄ respects the cut (I1, I2) of ā.

2) If A+ = A∪ {ai : i < i∗} and for each i, tp(ai, A∪ {aj : j < i}) belongs to Fsp
min{κ1,κ2} or

is Av(A ∪ {aj : j < i}, b̄) where b̄ ⊆ A ∪ {aj : j < i} is an endless indiscernible sequence
perpendicular to the cut (I1, I2) of ā over A∪ {aj : j < i}, then A+ respects the cut (I1, I2)
of ā.

Proof. 1) As p = tp(d̄, A) belongs to Fsp
κ , there is a subset B of A of cardinality < κ such

that p does not split over B.
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Let d̄′ ∈ ω>(A∪ d̄) and we should find (J1, J2) ≤ (I1, I2) such that ā � (J1 + J2) is indis-
cernible over d̄′. As we can increase d̄′ (this just makes our task harder) without loss of gene-
rality d̄′ = d̄ˆē with ē ⊆ A. Now for every ē′ ⊆ B ∪ ē there is (J1

ē′ , J2
ē′) ≤ (I1, I2) such that

ā � (J1
ē′ + J2

ē′) is an indiscernible sequence over ē′. Let J� be ∩{J�
ē′ : ē′ ⊆ B ∪ ē} for � = 1, 2

if κ > ℵ0 and let J� = J�
ē∗ , ē∗ listing B ∪ ē if κ = ℵ0. As κ ≤ κ1, κ2 and cf(I1, I2) = (κ1, κ2)

clearly (J1, J2) ≤ (I1, I2) and ā � (J1 + J2) is indiscernible over B ∪ ē.
Now for any formula ϕ and b̄ ∈ ω>B and s ∈ J1, t ∈ J2 we have

(∗)1 tp(ā1
sˆē, B) = tp(ā2

t ˆē, B).
[Why? By “ā � (J1 + J2) indiscernible over B ∪ ē”.]

(∗)2 C |= ϕ[d̄, ā1
s, ē, b̄] iff ϕ(x, ā1

s, ē, b̄) ∈ p.
[Why? By the assumption on p as tp(d̄, A).]

(∗)3 ϕ(x̄, ā1
s, ē, b̄) ∈ p iff ϕ(x̄, ā2

t , ē, b̄) ∈ p.
[Why? By (∗)1 as p does not split over B.]

(∗)4 ϕ(x̄, ā2
t , ē, b̄) ∈ p iff C |= ϕ(d̄, ā2

t , ē, b̄).
[Why? By the definition of p as tp(d̄, A).]

So by (∗)2 + (∗)3 + (∗)4 as they hold for every ϕ and b̄ ∈ ω>B

(∗)5 d̄ˆā1
sˆē and d̄ˆā2

t ˆē realize the same type over B

hence

(∗)6 ā1
s, ā

2
t realized the same type over ēˆd̄.

By 5.5(2) this suffices as κ1, κ2 > |T | (or we could have repeated the proof for any increasing
sequence 〈s1, . . . , sn〉, 〈t1, . . . , tn〉 from J1 + J2 so κ1, κ1 > |T | will not be used).
2) Let Ai = A ∪ {aj : j < i}, and we prove by induction on i that the cut (I1, I2) of ā is
respected by the set Ai. For i = 0 we use assumption (d). For i limit, we use 5.3(4). For
i = j + 1 we use part (1) if tp(b̄j , Aj) ∈ Fsp

κ and we use the definition 5.2(4) if not. For
i = i∗ we have gotten the desired conclusion.

�5.9

5.10 Claim. Assume

(a) (I1, I2) is a non-trivial cut of the indiscernible sequence ā
(b) b̄ is an endless indiscernible sequence
(c) ā � I1, b̄ are perpendicular
(d) for each t ∈ I2 the sequence ā1

t realizes Av({ā1
s : s ∈ I1 ∨ t <I s ∈ I2} ∪ b̄, ā1 � I1)

(e) both cofinalities of (I1, I2) and the cofinality of b̄ are > |T |.
Then b̄ is perpendicular to the cut (I1, I2) of ā.

Proof. Now by assumption (c) here and 4.27, for some unbounded I ′1 ⊆ I1 and I ′ ⊆
Dom(b̄), the sequences ā � I ′1, b̄ � I ′ are mutually indiscernible. By 5.4(1)+(2) + 5.3(5),
without loss of generality I ′1 = I1, I

′ = Dom(b̄), so without loss of generality ā � I1, b̄ are
mutually indiscernible. Easily also b̄ and ā are mutually indiscernible (by clauses (c) and
(d)). Hence by 5.5(3) clearly ā, b̄ are perpendicular. �5.10
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5.11 Theorem. Assume

(a) λ = λ<κ2 + 22<κ1

(b) |T | < κ1 = cf(κ1) ≤ κ2 ≤ θ2 = cf(θ2), κ1 ≤ θ1ζ = cf(θ1ζ ) ≤ λ for ζ < ζ∗

(c) |A| ≤ λ

(d) āζ ⊆ A is endless, non-stable indiscernible for ζ < ζ∗ and ζ∗ ≤ λ

(e) the āζ for ζ < ζ∗ are pairwise perpendicular
(f) cf(Dom(āζ)) is ≥ κ1.

Then we can find a model M such that

(α) A ⊆M

(β) dual-cf(āζ ,M) = θ1ζ + cf(Dom(āζ)) for every ζ < ζ∗, moreover tr-d-cf(āζ ,M) = θ1ζ

(γ) if ā ⊆ M is a non-stable endless indiscernible sequence of cardinality (hence cofi-
nality) < κ2 perpendicular to every āζ then dual-cf(ā,M) = θ2

(δ) M is κ1-saturated.

Proof. Let θ0ζ = cf(Dom(āζ)). Note that without loss of generality

(∗) there is b̄ζ such that āζˆb̄ζ is an indiscernible sequence, with the cut (Dom(āζ),
Dom(b̄ζ)) having cofinality (θ0ζ , θ

1
ζ ) and this Dedekind cut being respected over the

set A.
[Why? By using 5.10 and 5.3(4), of course.]

We can find āi for i < δ∗ =: λ× θ2 such that letting Ai = A ∪ {āj : j < i} we have

(i) for each i < δ∗ we have tp(āi, Ai) ∈ Fsp
κ1

or tp(āi, Ai) = Av(Ai, ā) for some non-
stable endless indiscernible sequence ā ⊆ Ai of cardinality < κ2 perpendicular to
āζ for every ζ < ζ∗

(ii) if p ∈ S<ω(Aλ×(ε+1)), p ∈ Fsp
κ1

then for λ ordinals j < λ, p is realized by b̄λ×ε+j

(iii) if ā is as in (i), ā ⊆ Aλ×ε then for λ ordinal j < λ, b̄λ×ε+j realizes Av(Aλ×ε+j , ā).

By bookkeeping, as in 5.9 this is straightforward and clauses (α) and (δ) obviously hold
and in particular there is M with universe Aδ∗ . By 5.9, M respects (āζ , b̄ζ) for each ζ < ζ∗

hence by 5.8(2), clause (β) holds.
As for clause (γ), let ā = 〈at : t ∈ I〉 ⊆M be a non-stable endless indiscernible sequence

|I| < κ2, ā perpendicular to every āζ ; it is also perpendicular to the inverse of b̄ζ as their
cofinalities are different. Hence it is also perpendicular to the cut (āζ ,bζ) by 5.5(1).

As κ2 ≤ θ2 = cf(θ2) = cf(δ∗) it follows that for some α < δ∗, ā ⊆ Aα and so u =
{i : i ∈ (α, δ∗) and āi realizes Av(Ai, ā)} is unbounded in δ∗, let J be (u,>) and so
āˆ〈at : t ∈ J〉 is an indiscernible sequence. By 5.8(1) the set Aδ∗ respect the Dedekind cut
(I, J) of āˆ〈at : t ∈ J〉 that is M respects it hence dual-cf(ā,M) = cf(J∗) = cf(δ∗) = θ2
as required. �5.11
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§6 Concluding Remarks

We continue to deal with dependent T .
6.1 Conjecture: If p ∈ S(M) then there are at most 2|T | infinite sequences of indiscernible,
pairwise non nb-s based on some ultrafilter D on M with Av(M,D) = p.

A major lack of this work is the absence of test questions.
A candidate is the problem of classifying first order theories by the existence of indis-

cernibles (raised by Grossberg and the author, see [Sh 702, §2]), e.g.:

6.2 Question: If A ⊆ CT , κ = |A| + |T | (or e.g. κ = �7(|A| + |T |) and λ = �(2κ)+ (or
larger, but no large cardinals) and ai ∈ CT for i < λ then for some w ∈ [λ]κ

+
, the sequence

〈ai : i ∈ w〉 is an indiscernible sequence over A(in CT ).

Now though this property cannot characterize the dependence property, it is quite natural
in this context. Consider Tn, the model completion of the empty theory in the vocabulary
{Rn}, Rn an n-place relation. So if λ = �n(κ)+, we get a positive answer, but for n ≥ 2, Tn

is independent. We may consider replacing indiscernible sequences ā by ā = 〈āt : t ∈ I〉
as an index structure with n(I) = ∪{n(R) + 1 : R an atomic relation of I} < ω, ā is
I-indiscernible, i.e., k < ω, s̄, t ∈ kI, s̄ ∼I⇒ āt̄, ās̄ realizes the same type. See also later.

Another direction is generalizing DOP, which in spite of its name is a non first order
independence property.

On classification by Karp complexity see Laskowski and Shelah [LwSh 560], [LwSh 687] (let
the κ-Karp complexity γκ(M) of M be the least γ such that every L∞,κ(τM )-formula is
equivalent in M to such a formula of quantifier depth < γ, and the (λ, κ)-Karp complexity
of T is ∪{γκ(M) + 1 : M a model of T of cardinality λ}.
For elementary classes which are unstable but dependent the following parallel to DOT may
help.

6.3 Definition. T has the dual-cf-κ̄-dimensional independence property when: κ̄ = (κ0, κ1,
κ2), κ1 �= κ0 < κ1, κ0 < κ2 and for every λ and symmetric relation R ⊆ λ × λ we can find
MR, b̄α, c̄α ∈ κ0(MR) and an indiscernible sequences Iα,β = 〈āα,β,i : i < κ0〉 ⊆ MR for
(α, β) ∈ R,α < β such that:

(a) the type of b̄αˆc̄βˆIα,β is the same for all pairs (α, β) ∈ R

(b) dual-cf(Iα,β ,MR) = κ1 for (α, β) ∈ R

(c) if α < β and ¬αRβ and the sequence I′α,β = 〈ā′α,β,i : i < κ0〉 ⊆ MR is such that for
every (α1, β1) ∈ R there is an automorphism h of C taking b̄α1 to b̄α, c̄β1 to c̄β and
āα1,β1,i to āα,β,i then dual-cf(I′α,β ,M) = κ2

(d) MR is κ+
0 -saturated.

Note that a sufficient condition for this is

(c)+ if I′α,β = 〈ā′α,β,i : i < κ0〉 realizes the relevant type over āαˆb̄β and (α, β) /∈ R,α <

β < λ and α1 < β1 < λ, (α1, β1) ∈ R then I′α,β , Iα1,β1 are perpendicular.

Recall
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6.4 Definition. M is κ-resplended when: if c̄ ∈ κ>M,M ≺ N,N the τM -reduct of
N+, |τN+\τN | < κ, then (M, c̄) can be expanded to a model of Th(N+, c̄).

6.5 Problem: Characterize the λ-Karp complexities for µ-resplended models of a complete
first order theory T of cardinality > |T | say for λ > µ > |T | regular?

For T stable it is 0 (see [Sh:e, Ch.V]), as all such models are saturated. For T with the
independence property we should consider combining [LwSh 687] (which constructs models
of T1 ⊇ T with large λ-Karp complexity of the τT -reduct) and [Sh:e, Ch.V]. But here our
concern is for unstable T with the dependence property.

If we look at an indiscernible sequence 〈b̄t : t ∈ I〉 inside a model M , we know that
distinct Dedekind cuts with at least one side having large cofinality are quite unconnected.
We shall show in subsequent work [Sh 783] that the large cofinality demand is not incidental.

6.6 Question: Investigate the graph ({b̄t : b̄t an endless indiscernible sequence}, perpen-
dicularly).

As in §5 we can show that many variants are equivalent (using +∞,−∞ to absorb). We
can similarly discuss a parallel to deepness (see [Sh:f, X], recall that deepness is related to
orthogonality).

6.7 Discussion: 1) It is known that e.g. (first theory of) the p-adics has the dependence
property (and are unstable). Does this work tell us anything on them? Well, the construc-
tion in §5 gives somewhat more than what unstability gives: complicated models with more
specific freedom. Note that instead dual-cf(I,M) we can use more complicated invariants
(see [Sh:e, Ch.III, §3] or earlier works).

We can, of course, (for the p-adic) characterize directly when indiscernible sequences are
perpendicular.

2) We may like to define super dependence properties (and κnip(T )) (parallel of super-
stable, i.e., κ(T ) = ℵ0 or super-simple κcdt(T ) = ℵ0). There are some possibilities, one
defined in [Sh:c, III], another in [Sh 783]. We may try the definition “w(I) < ℵ0”, i.e.,
weight for every endless indiscernible sequence where

6.8 Definition. For an endless indiscernible sequence I let w(I) = sup{α : there is a
sequence of length α of pairwise perpendicular endless indiscernible sequences each non
perpendicular to I}.
But w(I) is not weight for superstable theory just of a variant of it hence exactly like
dimension in the sense of algebraic manifolds.

6.9 Question: Assume I� = 〈a�
t : t ∈ I�〉 for � = 1, 2 are endless indiscernible sequences and

they are non perpendicular.

(a) Find a definable equivalence relation E such that 〈a2
t/E : t ∈ I2〉 is nontrivial and

a2
t/E ∈ acl(I1 ∪ {a2

s : s <I2 t}) for any large enough t (i.e., non-perpendicularty
implies non-orthogonality for trivial reasons).

(b) If (I1, I2) is (1, < ω)-mutual indiscernible (parallel to Hrushovski’s theorem), can
we define a derived group? More generally, it seems persuasive that groups appear
naturally, particularly ordered groups.

(c) Does the fact that putting elements together, make strong splitting implies dividing
helps?
[recall:
(i) p strongly splits over A if there is a sequence 〈āt : i < λ〉 indiscernible over A

such that ϕ(x̄, ā0) & ¬ϕ(x, ā1)
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(ii) p divides over A if there is an indiscernible sequence 〈b̄i : i < λ〉 over A and
ψ(x, b̄0) ∈ p such that {ψ(x̄, b̄i) : i < λ} is contradictory.

So having (i), letting b̄i = ā2iˆā2i+1, ψ(x, b̄i) = ϕ(x, ā2i) & ¬ϕ(x, ā2i+1) we have
(ii).]

(d) Can the canonical bases of §1 help?
(e) What can we say on “ā perpendicular to a set (or model) A?”

6.10 Discussion Cherlin wonders on the place of parallel algebraic geometric dimension and
the place of 0-minimal theory. In my perception probably if we succeed in 6.9(a), we may
have a minimality notion which may then be characterized as some cases, but maybe it
does not fit.

6.11 Question: If B ⊆ C ⊆ C, p ∈ Sm(B), then p has an extension q in Sm(C) which does
not split strongly over B (and if p does not fork over A, then q does not fork over A).

6.12 Question: Given two non perpendicular types in S(A) (or ultrafilters on A) which are
weakly perpendicular can we find naturally defined groups?

6.13 Concluding Remark. We can define when an endless indiscernible sequence is orthog-
onal to a set and the dimensional independence property and prove natural properties, we
hope to pursue this.

6.14 Question: For an infinite indiscernible sequence 〈b̄t : t ∈ I〉, b̄t ∈ αC can we find
A ⊆ C, |A| ≤ |γ| + |T | and b̄+t = b̄tˆāt, �g(āt) = (|γ| + |T |) for t ∈ J such that 〈b̄+t :
t ∈ J〉 is an indiscernible sequence and letting p(x̄, ȳ) = tp(b̄+s ˆb̄+t , A) for s <J t we have
p(x̄, ȳ) ∪ p(ȳ, z̄) � p(x̄, z̄)?

6.15 Question: 1) If M ≺ N, a ∈ N, (M,N, a) is λ-saturated λ > 2|T |. Can we find for every
A ⊆M, |A| < λ a set B ⊆M, |B| ≤ 2|T | such that p � B � p � A?
2) Fix finite set Γ = {ϕ(x, ā) : ā ∈ mC}. Look at S(Γ), is it true that every p ∈ S(Γ) is
determined uniquely by q ⊆ p, |q| ≤ n1

ϕ and a rank < n2
ϕ?

Or another way to use having few types.

6.16 Problem: Let M be λ-saturated, p ∈ S(M) and for ϕ = ϕ(x; ȳ) let Iϕ(x;ȳ)(p) =
{ψ(ȳ, c̄) : c̄ ⊆M and {b̄ ⊆ M :|= ψ(b̄, c̄), ϕ(x, b̄) ∈ p} is definable}. Investigate this; we can
prove that it is not too small.
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