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��������� We prove the consistency (modulo supercompact) of a negative answer to the
Cantor discontinuum partition problem (i.e., some Hausdorff compact space cannot be parti-
tioned to two sets not containing a closed copy of Cantor discontinuum). In this model we have
CH. Without CH we get consistency results using a pcf assumption, close relatives of which
are necessary for such results; so we try to deal with equiconsistency.
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Annotated Content

§1 General spaces: consistency from strong assumptions

[We define X∗ → (Y ∗)1θ for topological spaces X∗, Y ∗. Then starting with a Hausdorff
space Y ∗ with θ points such that any set of < σ < θ members is discrete and κ = κ<κ ∈ (θ, λ)
and appropriate A ⊆ [λ]θ such that any two members has intersection < σ, we force
appropriate X∗. We then show that the assumption holds under appropriate pcf assumption
and finish with some improvements, varying the topological and set theoretical assumptions.]

§2 Consistency from supercompact, with clopen basis

[We deal here with the set theoretic assumption. We show that the assumptions can be
gotten from supercompact for the case we agree to have CH, relying on earlier consistency
results. We also investigate the order of consistency between relatives of “S ⊆ {δ < λ :
cf(δ) = κ} is stationary with no stationary subset in I[λ]”, and existence of non trivial (in
an appropriate sense) of A ⊆ [λ]κ, [A1 �= A2 ∈ A ⇒ |A1 ∩ A2| < σ].]

§3 Equi-consistency

[We show that some versions of the topological question and suitable combinatorial ques-
tions are equi-consistents. See [Sh:108], [HJSh:249], [Sh:460], [HJSh:697]. We then indicate
the changes needed for the not necessarily closed subspace case colouring by more colours
and other spaces. For discussion see [Sh:666],§1.]

§4 Decomposing families of almost disjoint functions
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§1 General spaces: consistency from strong assumptions

In our main theorem, 1.2, we give set theoretic sufficient conditions for being able to
force counterexamples to the Cantor discontinuum partition problem, possibly replacing
the Cantor discontinuum by any other space. It has a version for spaces with clopen basis.
Then (in claim 1.4) we connect this to pcf theory: after easy forcing the assumptions of
Theorem 1.2 can be proved, if we start with a suitable (strong) pcf assumption (whose
status is not known). Then in claim 1.7 we deal with variants of the theorem, weakening
the topological and/or set theoretic assumptions. Further variants are discussed in the end
of the section (T3 spaces without clopen basis and variants of 1.4) This continues Juhasz
Hajnal Shelah [HJSH:249]. [Sh 460] if 2ℵ0 > ℵω then it is doubtful if (∃X)(X → (Cantor
discontinuum)1ℵ0

) is consistent; e.g. if |a| ≤ ℵα ⇒ |pcf(a)| ≤ ℵα+732 or if V = VQ
1 where Q

is a c.c.c. forcing making the continuum ≥ �V1
ω , then there is no such space. On the case

with ≥ cf(θ) colours see 4.17. Bill Weiss has proved the existence of such partitions under
V = L.

Recall

1.1 Definition. Let n ∈ [1, ω) (though we concentrate on n = 1) .
1) We say X∗ → (Y ∗)n

θ , if X∗, Y ∗ are topological spaces and for every h : [X∗]n → θ there
is a closed subspace Y of X∗, homeomorphic to Y ∗ such that h � [Y ]n is constant (if n = 1
we may write h : X∗ → θ and h � Y ).
2) If we omit the “closed”, we shall write →w instead of →. We write (Y ∗)n

<θ meaning: for
every h : [X∗]n → γ < θ. We use �, �w for the negations.

1.2 Theorem. Assume

(A) (i) λ > κ > θ > σ ≥ ℵ0 and κ = κ<κ

(ii) (∀α < κ)(|α|σ < κ) and κ > θ∗ ≥ θ

(B)1 A ⊆ [λ]θ and
A1 �= A2 ∈ A ⇒ |A1 ∩ A2| < σ

(B)2 A is (< κ)-free (or κ-free) which means: if A′ ⊆ A, |A′| < κ then for some list
{Aε : ε < ζ} of A′, for every ε < ζ we have
|Aε ∩

⋃
ξ<ε

Aξ| < σ

(C) if F : λ → [λ]≤κ, then some A ∈ A (or just some A such that (∃A′)(A ⊆ A′ &
|A| = θ & A′ ∈ A) is F -free which means

(∗) for α �= β from A we have α /∈ F (β)
(D) Y ∗ is a Hausdorff space with set of points θ and a basis B = {bi : i < θ∗}
(E) if Y is a subset of Y ∗ with < σ points, then Y is a discrete subset,

i.e. there is a sequence of open (for Y ∗) pairwise disjoint sets 〈Uy : y ∈ Y 〉, such
that y ∈ Uy

(if σ = ℵ0 this follows from being Hausdorff).

Then
1) for some κ-complete κ+-c.c. forcing notion P, in VP there is X∗ such that:

(a) X∗ is a Hausdorff topological space with λ points and basis of size |A| + θ∗
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(b) X∗ → (Y ∗)1< cf(θ) (that is, if X∗ =
⋃

i<i(∗)
Xi where i(∗) < cf(θ)) then some closed

subspace Y of X∗ homeomorphic to Y ∗ is included in some single Xi (i.e. (∃i)(Y ⊆
Xi))).

2) If in addition Y ∗ has a clopen basis B of cardinality ≤ θ∗ such that the union of any < σ
members of B is clopen, then we can require that X∗ has a clopen basis.

1.3 Remark. We may define the conditions historically (see [ShSt 258], [RoSh 733], so put
only the required conditions). Then we can allow θ∗ = κ, but see 1.7.

Proof. We write the proof for part (1) and indicate the changes for part (2). Without loss
of generality⊗

1 (∀α < β < λ)(∀B ∈ [λ]<λ)(∃≥κ+
A ∈ A)[{α, β} ⊆ A & A ∩ B ⊆ {α, β}].

[Why? As we can use
{{2α : α ∈ A} : A ∈ A}

, without loss of generality
⋃{A :

A ∈ A} = {2α : α < λ} and choose Aα,β,γ ∈ [λ]θ for α < β < γ < λ such
that {α, β} ⊆ Aα,β,γ and 〈Aα,β,γ\{α, β} : α < β < γ < λ〉 are pairwise disjoint
subsets of {2α + 1 : α < λ}, each of cardinality θ and we replace A by A∗ =:
A ∪ {Aα,β,γ : α < β < γ < λ}. Now clauses (A), (D), (E) are not affected.
Clearly clause (B)1 holds (i.e. A∗ ⊆ [λ]θ and A �= B ∈ A∗ ⇒ |A ∩ B| < σ). Also
clause (C) is inherited by any extension of the original A. Lastly for clause (B)2, if
A′ ⊆ A∗, |A′| < κ, let 〈Aζ : ζ < ζ∗〉 be a list of A′ ∩ A as guaranteed by (B)2 and
let 〈Aζ : ζ ∈ [ζ∗, ζ∗ + |A′\A|)〉 list with no repetitions A′\A, now check.]⊗

2 B is a basis of Y ∗ of cardinality θ∗, and for part (2), B is as there.

[Why? Straight.]

Let A = {Aζ : ζ < λ∗} and B = {bi : i < θ∗}.
We define a forcing notion P:
p ∈ P has the form p = (u, u∗, v, v∗, w̄) = (up, up

∗, vp, vp
∗ , w̄p) such that:

(α) u∗ ⊆ u ∈ [λ]<κ

(β) v∗ ⊆ v ∈ [λ∗]<κ

(γ) w̄ = w̄p = 〈wζ,i : ζ ∈ v∗ and i < θ∗〉 = 〈wp
ζ,i : ζ ∈ v∗, i < θ∗〉

(δ) wζ,i ⊆ u∗ and
bi ∩ bj = ∅ ⇒ wζ,i ∩ wζ,j = ∅; this is toward being Hausdorff

(ε) ζ ∈ v∗ ⇒ Aζ ⊆ u

(ζ) letting Ap
ζ =: ∪{wζ,i : i < θ∗}∩Aζ for ζ ∈ vp

∗ , it has cardinality θ and for simplicity
even order type θ, of course Ap

ζ ⊆ up
∗ and for some sequence 〈γp

ζ,j : j < θ〉 listing its
members with no repetitions we have
wp

ζ,i ∩ Ap
ζ = {γp

ζ,j : j < θ and j ∈ bi}
(η) if ζ ∈ vp

∗ , i < θ∗ and ξ ∈ vp
∗ then the set Up

ζ,ξ,i is an open subset (for part (2), clopen
subset) of the space Y ∗ where Up

ζ,ξ,i =: {j < θ : γp
ξ,j ∈ wp

ζ,i}.⊕
convention if ζ ∈ λ∗\vp

∗ we stipulate wp
ζ,i = ∅.

The order is: p ≤ q iff up ⊆ uq, up
∗ = uq

∗ ∩ up, vp ⊆ vq, vp
∗ = vq

∗ ∩ vp and ζ ∈ vp
∗ ⇒

wp
ζ,i = wq

ζ,i ∩ up.
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Clearly

(∗)0 P is a partial order.

What is the desired space in VP? We define a P-name X
˜

∗ of a topological space as

follows:

� set of points
⋃{up

∗ : p ∈ G
˜

P}
The topology is defined by the following basis:
{

⋂
�<n

Ũζ�,i�
: n < ω and ζ� < λ∗, i� < θ∗ for � < n} where

�1 Ũζ,i[G
˜

P] = ∪{wp
ζ,i : p ∈ G

˜
P satisfies ζ ∈ vp

∗}; so

� “if ζ ∈ λ∗\ ∪ {vp
∗ : p ∈ G

˜
P} and i < θ∗ then Uζ,i[G

˜
P] = ∅”

(for part (2), also their compliments and hence their Boolean combinations).

Now we shall prove
(∗)1 for α < λ, ζ < λ∗ and p ∈ P we have

(i) p � “α ∈ X
˜

∗” iff α ∈ up
∗ and

(ii) p � “α /∈ X
˜

∗” iff α ∈ up
α\up

∗ and

(iii) �P “λ∗ = ∪{vp : p ∈ G
˜

P}
(iv) if ζ ∈ vp

∗ and i < θ then
p � “Ũζ,i ∩ up

∗ = wp
ζ,i”

(v) {p ∈ P : α ∈ up} is a dense open subset of P

(vi) {p ∈ P : ζ ∈ vp} is a dense open subset of P.
[Why? Easy, e.g. let p ∈ P, ξ ∈ λ∗\vp and α �= β are from λ\up, we define q ∈ P
by: uq = up ∪ {α, β}, uq

∗ = up
∗ ∪ {α}, vq = vp ∪ {ξ}, vp

∗ = vq
∗ and wq

ζ,i = wp
ζ,i for

ζ ∈ vq
∗ = vp

∗ and i < θ∗. Easily P |= “p ≤ q”, β ∈ uq\uq
∗, α ∈ uq

∗ and ξ ∈ vq\vq
∗.]

(∗)2 P is κ-complete, in fact if 〈pε : ε < δ〉 is increasing in P and δ < κ then p =
⋃
ε<δ

pε

is an upper bound where up =
⋃
ε<δ

upε , up
∗ =

⋃
ε<δ

upε∗ , vp =
⋃
ε<δ

vpε , vp
∗ =

⋃
ε<δ

vpε∗ and

wp
ζ,i = ∪{wpε

ζ,i : ε < δ satisfies ζ ∈ vpε∗ } for ζ ∈ vpδ∗ .
[Why? Straight.]

(∗)3 P′ = {p ∈ P : if ζ < λ∗ and |Aζ ∩ up| ≥ σ then ζ ∈ vp} is a dense subset of P

[why? for any p ∈ P we define by induction1 on ε ≤ σ+ : pε ∈ P is increasing continuous
with ε. Let p0 = p, if pε is defined, we define pε+1 by

vpε+1 = {ζ < λ∗ : ζ ∈ vpε or |Aζ ∩ upε | ≥ σ}

v
pε+1∗ = vpε∗ (= vp

∗)

upε+1 = upε ∪
⋃

{Aζ : ζ ∈ vpε+1}
1of course, if δ∗ < κ is a limit ordinal such that cf(δ∗) �= cf(σ) then we may use 〈pε : ε ≤ δ∗〉 and pδ∗

is as required
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u
pε+1∗ = upε∗ (= up

∗)

w
pε+1
ζ,i is: wpε

ζ,i(= wp
ζ,i) if ζ ∈ vpε∗ , i < θ∗

(and there are no other cases).
By assumption (A)(ii), the set vpε+1 has cardinality < κ, so pε+1 belongs to P.
Clearly pε ≤ pε+1 ∈ P. Now for ε limit let pε =

⋃
ξ<ξ

pξ. Clearly we can carry the definition.

Now pσ+ =
⋃
ε<σ

pε is as required because if Aζ ∈ A, |Aζ ∩ upσ+ | ≥ σ then for some ε < σ+

we have |Aζ ∩ upε | ≥ σ hence ζ ∈ vpε+1 hence Aζ ⊆ upε+1 ⊆ upσ+ .
Note that we use here σ+ < κ which follows from σ < θ < κ.]

(∗)4 P satisfies the κ+-c.c.
[Why? Let pj ∈ P for j < κ+, without loss of generality pj ∈ P′ for j < κ+. Now
by the ∆-system lemma for some unbounded S ⊆ κ+ and v⊗ ∈ [λ∗]<κ, u⊗ ∈ [λ]<κ

we have:
j ∈ S ⇒ v⊗ ⊆ vpj & u⊗ ⊆ upj and 〈vpj\v⊗ : j ∈ S〉 are pairwise disjoint and
〈upj\u⊗ : j ∈ S〉 are pairwise disjoint. Without loss of generality otp(vpj ), otp(upj )
are constant for j ∈ S and any two pi, pj are isomorphic over v⊗, u⊗ (if not clear
see 1.7).
Now for j1, j2 ∈ S the condition pj1 , pj2 are compatible because of the following
(∗)5]

(∗)5 assume p1, p2 ∈ P satisfies
(i) vp1

∗ ∩ (vp2\vp2

∗ ) = ∅ and up1

∗ ∩ (up2\up2

∗ ) = ∅
(ii) vp2

∗ ∩ (vp1\vp1

∗ ) = ∅ and up2

∗ ∩ (up1\up1

∗ ) = ∅
(iii) if ζ ∈ vp1

∗ ∩ vp2

∗ then Ap1

ζ = Ap2

ζ and

i < θ∗ ⇒ wp1

ζ,i ∩ (up1 ∩ up2
) = wp2

ζ,i ∩ (up1 ∩ up2
)

(iv)1 if ζ ∈ vp1

∗ \vp2

∗ then |Aζ ∩ up2 | < σ or just |Ap1

ζ ∩ up2 | < σ

(iv)2 similarly2 for ζ ∈ vp2

∗ \vp1

∗ we have |Ap2

ζ ∩ up1 | < σ.

Then there is q ∈ P such that:

(a) vq = vp1 ∪ vp2

(b) vq
∗ = vp1

∗ ∪ vp2

∗

(c) uq = up1 ∪ up2

(d) uq
∗ = up1

∗ ∪ up2

∗
(e) p1 ≤ q and p2 ≤ q.

[Why? To define the condition q by clauses (a)-(d) above we just have to define wq
ζ,i (for

ζ ∈ vq
∗ = vp1

∗ ∪ vp2

∗ and i < θ∗). If ζ ∈ vp1

∗ ∩ vp2

∗ we let wq
ζ,i = wp1

ζ,i ∪ wp2

ζ,i for i < θ∗ (clearly

� ∈ {1, 2} ⇒ wq
ζ,i ∩ up�

= wp�

ζ,i); this will be enough to guarantee P |= “p1 ≤ q & p2 ≤ q”

2note that if p1, p2 ∈ �′, then clauses (iv)1, (iv)2 holds automatically, but the proof of 1.7 which is very
similar to the proof of 1.2, uses this version.
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provided that we have q ∈ P and that for � = 1, 2 we shall define wq
ζ,i for ζ ∈ vp3−�

∗ \vp�

∗

such that wq
ζ,i ∩ up3−�

∗ = wp3−�

ζ,i and wq
ζ,i ⊆ uq

∗; so only clauses (δ) + (η) in the definition of
membership in P are problematic.
Now for � = 1, 2, let vp�

∗ \vp3−�

∗ be listed as 〈Υ(ε, �) : ε < ε∗�〉 with no repetitions such that
B�

ε =: Ap�

Υ(ε,�) ∩ (
⋃
ξ<ε

Ap�

Υ(ξ,�) ∪ up3−�

∗ ) is of cardinality < σ for each ε < ε∗� .

[Why possible? By the assumption (B)2 and clause (iv)� above.]
Now for each ζ ∈ vp3−�

∗ \vp�

∗ we choose by induction on ε ≤ ε∗� the sequence 〈w�,ε
ζ,i : i < θ∗〉

such that
1) w�,ε

ζ,i ⊆ up3−�

∗ ∪
⋃
ξ<ε

Ap�

Υ(ξ,�)(⊆ up�

∗ ∪ up3−�

∗ ).

2) w�,ε
ζ,i is increasing continuous with ε.

3) w�,0
ζ,i = wp3−�

ζ,i .

4) ε′ < ε ⇒ w�,ε
ζ,i ∩ (up3−� ∪

⋃
ξ<ε′

Ap�

Υ(ξ,�)) = w�,ε′
ζ,i .

5) If i < j < θ∗ and bi ∩ bj = ∅ (hence wp3−�

ζ,i ∩ wp3−�

ζ,j = ∅) then w�,ε
ζ,i ∩ w�,ε

ζ,j = ∅.
6) For each i < θ∗ the set {j < θ : γp�

Υ(ε,�),j ∈ w�,ε+1
ζ,i } is an open set in Y ∗ (for part (2) of

1.2: clopen).]

If we succeed then we let wq
ζ,i be w

�,ε∗
�

ζ,i for � ∈ {1, 2}, ζ ∈ vp3−�

∗ ; clearly by clauses (3) +

(4) in the construction for ε′ = 0 we have wq
ζ,i ∩ up3−�

∗ = wp3−�

ζ,i and by clause (1) in the
construction we have wq

ζ,i ⊆ uq
∗ and clause (δ) in the definition of q ∈ P holds by (5), and

clause (η) by (6) in the construction. So let us carry the induction.
For ε = 0 use clause (3) and for limit ε take unions (see clause (2)). Suppose we have defined
for ε and let us define for ε+1. By an assumption above B�

ε = Ap�

Υ(ε,�)∩(
⋃
ξ<ε

Ap�

Υ(ξ,�)∪up3−�

∗ )

has cardinality < σ and so Z�
ε =: {j < θ : γp�

Υ(ε,�),j ∈ B�
ε} is a subset of θ of cardinality < σ.

Hence, by assumption (E) of the theorem 1.2, we can find a sequence 〈tj(ε, �) : j ∈ Z�
ε〉 such

that: tj(ε, �) < θ∗ and j ∈ btj(ε,�) for j ∈ Z�
ε and 〈btj(ε,�) : j ∈ Z�

ε〉 is a sequence of pairwise
disjoint open subsets of Y ∗.
Lastly, we let

w�,ε+1
ζ,i = w�,ε

ζ,i ∪
{
γp�

Υ(ε,�),s : for some j ∈ Z�
ε we have

γp�

Υ(ε,�),j ∈ w�,ε
ζ,i and

s ∈ btj(ε,�)

}
.

Clearly this is O.K. and we are done. Remember that the union of < σ set from B is clopen
for part (2) of 1.2.]

So we have proved (∗)5 hence also (∗)4. We sometime need a stronger version of (∗)5
(∗)6 in (∗)5 if in addition for � = 1, 2 we are given Z� ⊆ up�

∗ \up3−�

∗ such that (∀ζ ∈
vp�

∗ )[|Ap�

ζ ∩ Z�| < σ] then we may add to the conclusion:

(f) � ∈ {1, 2}, ζ ∈ vp3−�

∗ \vp�

∗ , i < θ∗ ⇒ wq
ζ,i ∩ Z� = ∅.

More generally
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(f)+ if g� : (vp3−�

∗ \vp�

∗ ) × θ∗ × Z� → {0, 1} satisfies g(ζ, j1, γ) = 1 = g(ζ, j2, γ) ⇒
bj1 ∩ bj2 �= ∅ for � = 1, 2, then we can add
� ∈ {1, 2}, ζ ∈ vp3−�

∗ \vp�

∗ , i < θ∗, γ ∈ Z� ⇒ [γ ∈ wq
ζ,i ↔ g�(ζ, i, γ) = 1].

[Why? During the proof of (∗)5 when for each ζ ∈ vp3−�

∗ \vp�

∗ , we define 〈w�,ε
ζ,i : i < θ∗〉 by

induction on ε we add
(7) i < θ∗, γ ∈ Z� ∩ (up3−� ∪

⋃
ξ<ε

Ap�

Υ(ξ,�)) implies γ ∈ w�,ε
ζ,i ↔ g�(ζ, i, γ) = 1.

In the proof when we use assumption (E), instead of using B�
ε = Ap�

ζ(ε,�)∩(
⋃
ξ<ε

Ap�

ζ(ξ,�)∪up3−�

)

we use B�
ε = Ap�

ζ(ε,�) ∩ (
⋃
ξ<ε

Ap�

ζ(ξ,�) ∪ up3−� ∪ Z�) which still has cardinality < σ. In the end

if Z� �
⋃

ξ<ε∗
�

Ap�

ζ ∪ up3−�

∗ we let wq
ζ,i =: w

�,ε∗
� +1

ζ,i =: w
�,ε∗

�

ζ,i ∪ {γ ∈ Z� : g(ζ, i, γ) = 1}.]

Now we come to the main point

(∗)7 in VP, if i(∗) < cf(θ) and X∗ =
⋃

i<i(∗)
Xi then some closed Y ⊆ X∗ is homeomorphic

to Y ∗.

[Why? Toward contradiction assume p∗ ∈ P and p∗ �P “〈X
˜

i : i < i(∗)〉 is a

counterexample to (∗)7”. So in particular p∗ �P “〈X
˜

i : i < i(∗)〉 is a partition of

X
˜

∗, i.e., of
⋃{up

∗ : p ∈ G
˜

P}” and let X
˜

i(∗) =: λ\ ∪ {X
˜

i : i < i(∗)}.
For each α < λ let 〈(pα,j , iα,j) : j < κ〉 be such that:

(i) 〈pα,j : j < κ〉 is a maximal antichain3 of P′ above p∗

(ii) pα,j �P “α ∈ X
˜ iα,j

” and α ∈ upα,j , so iα,j ≤ i(∗) and α ∈ u
pα,j∗ ⇔ iα,j < i(∗)

(iii) p∗ ≤ pα,j

(iv) pα,j ∈ P′.
[Why can we demand α ∈ upα,j ? By clause (v) of (∗)1. Why not j < jα ≤ κ? For notational
simplicity and as above any member p of P there are κ pairwise contradictory members (by
the information on the set of points of X

˜

∗, see (∗)1 above).]

Now we define a function F , Dom(F ) = λ as follows:

F (α) is
⋃

{upα,j : j < κ} ⊆ [λ]≤κ.

So by clause (C) of the assumption of 1.2 we can find ζ(∗) < λ∗ and A ⊆ Aζ(∗) of order
type θ such that: if α �= β are from A then α /∈ F (β). Let A = {βε : ε < θ} with no
repetitions. We can find ζ(∗∗) ∈ λ∗\ ∪ {vpα,j : j < κ, α ∈ Aζ(∗)}\{ζ(∗)} the set Aζ(∗∗)
is disjoint to ∪{vpα,j : j < κ, α ∈ Aζ(∗)}, let 〈γj : j < θ〉 be an increasing sequence of

members of Aζ(∗)) and let p+ ∈ P be defined by: up+
= up∗ ∪ Aζ(∗∗), u

p+

∗ = up∗
∗ ∪ {γj :

j < θ}, vp+
= vp∗ ∪ {ζ(∗∗)}, vp+

∗ = vp+

∗ ∪ {ζ(∗∗)}, wp+

ζ,i = wp∗
ζ,i if wp∗

ζ,i is well defined and

wp+

ζ(∗∗),i = {γj : j ∈ bi}. Clearly p ≤ p+. Now we shall choose by induction on ε ≤ θ, pε, gε

and if ε < θ also jε < κ such that:
(a) pε ∈ P, p+ ≤ pε

3if we demand only ∈ � then we should increase F (α) accordingly
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upε = up+ ∪
⋃

ε(1)<ε

u
pβε(1),jε(1)

upε∗ = up+

∗ ∪
⋃

ε(1)<ε

u
pβε(1),jε(1)
∗

vpε = vp+ ∪
⋃

ε(1)<ε

v
pβε(1),jε(1)

vpε∗ = vp+

∗ ∪
⋃

ε(1)<ε

v
pβε(1),jε(1)
∗

(of course p0 = p+)
(b) pε+1 ≥ pβε,jε and jε = Min{j < κ : pβε,j is compatible with pε and iβε,j < i(∗)}
(c) gε is a function, increasing with ε, from vpε∗ ×θ∗×i(∗) into the family of open subsets

of Y ∗ (for part (2), clopen)
(d) if bj1 ∩ bj2 = ∅ then gε(ζ, j1, i) ∩ gε(ζ, j2, i) = ∅ when both are defined
(e) letting Υξ = otp{ξ1 < ξ : iβξ,jξ

= iβξ1 ,jξ1
}, for every ζ ∈ vpε∗ and i < θ∗ and ξ < ε

we have:
βξ ∈ wpε

ζ,j ⇔ Υξ ∈ gε(ζ, j, iβξ,jξ
)

(f) pε is increasing continuous in Pε

(g) if ξ < ε and j < θ∗ then βξ ∈ wpε

ζ(∗∗),j ⇔ Υξ ∈ bj .

It is easy to carry the definition. For ε = 0, pε = p∗. If they are defined for ε let us define for
ε + 1 so pε, jε, gε are well defined, hence pε, pβε,jε are two compatible members of P hence
the assumptions (i) − (iv), (iv)2 in (∗)5 holds with pε, pβε,jε here standing for p1, p2 there.

First we define gε+1 with domain (vpε∗ ∪ v
pβε,jε∗ ) × θ∗ extending gε, so we have to define

〈gε+1(ζ, j, i) : ζ ∈ v
pβε,jε∗ \vpε∗ and j < θ∗, i < i(∗)〉 and the restriction are for each (ζ, i)

separately. For each ζ ∈ v
pβε,jε∗ \vpε∗ the set Z ′

ζ,i = {ξ < ε : iβξ,jξ
= i and Υξ ∈ upε} ⊆ θ has

cardinality < σ hence we can find a sequence 〈Uζ,i
ξ : ξ ∈ Z ′

ζ,i〉 of pairwise disjoint open sets
of Y ∗ such that ξ ∈ Z ′

ζ,i ⇒ Υξ ∈ Uζ,i
ξ .

Now we define

gε+1(ζ, j, i) = ∪{Uζ,i
ξ : ξ ∈ Z ′

ζ and βξ ∈ w
pβε,jε

ζ,i }.

It is easy to check that gε+1 is as required in clauses (c) + (d).
We intend to use (∗)6 toward this, let

Z2
ε = {βε}

g1
ε :(vpε∗ \vpβε,jε∗ ) × θ∗ → {0, 1}

be defined by g1
ε(ζ, j, βε) = 1 ⇔ Υε ∈ gε(ζ, j, iβε,jε)

Z1
ε = {βξ : ξ < ε}

g2
ε :(vpβε,jε∗ \vpε∗ ) × θ∗ × Z1

ε → {0, 1}
be defined by g2

ε(ζ, j, βε) = 1 ⇔
Υξ ∈ gε+1(ζ, j)βξ,jξ

.
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In limit ε take union. In all cases jε is well defined by clause (i) above noting then βε /∈ upε

so by (∗)1 we know that pε � “βε /∈ X
˜

∗, i.e., βε ∈ X
˜

i(∗)”.

Having carried the induction let i∗ < i(∗) be minimal such that the set Z = {ε < θ :
iβε,jε = i∗} has cardinality θ; it exists as i(∗) < cf(θ). Note: ζ(∗) /∈ vpβε,j for ε < θ, j < κ
as A ∩ F (βε) is the singleton {βε} so |A ∩ upβε,j | ≤ 1. Now we define p:

up = upθ

up
∗ = upθ∗

vp = vpθ ∪ {ζ(∗)}

vp
∗ = vpθ∗ ∪ {ζ(∗)}

Ap
ζ(∗) = {βε : ε ∈ Z} and γp

ζ(∗),ε is the ε-th member of Ap
ζ(∗), equivalently the unique βξ

such that iβξ,jξ
= i∗ & Υξ = ε and wp

ζ,i is

(α) wpθ

ζ,i if ζ ∈ vpθ

(β) wpθ

ζ(∗∗),j if ζ = ζ(∗).
We can easily check that p ∈ P and p∗ ≤ pβε,jε , p

+ ≤ p ∈ P (but we do not ask pε ≤ p).
Clearly p forces that {βε : ε ∈ Z} is included in one X

˜
i, that is X

˜
i∗ .

Let g : θ → λ be g(ξ) = βε when ξ < θ, ε ∈ Z, otp(Z ∩ ε) = ξ. Now p ≥ p∗ and we are done
by (∗)8 below.]

(∗)8 if p ∈ P and ζ ∈ vp
∗ then

p � “the mapping j �→ γp
ζ,j for j < θ is a homeomorphism from Y ∗ onto the closed

subspace X
˜

� {γp
ζ,j : j < θ} of X

˜
”

[Why? Let p ∈ G,G ⊆ P be generic over V.
(α) If b ∈ B (recall that B is a basis of Y ∗), then for some open set U of X

˜
[G]

(clopen for part (2)) we have

U ∩ {γp
ζ,j : j < θ} = {γp

ζ,j : j ∈ b}

[Why? As b = bi for some i < θ∗ and p forces by clause (ε) + (ζ) of the
definition of p ∈ P and clause (iv) of (∗)1 above that
Ũ

ζ,i
∩ {γp

ζ,j : j < θ} = {γp
ζ,j : j ∈ bi}, see �1 above.]

(β) If b is an open set for Y ∗, then for some open subset U of X
˜

we have

U ∩ {γp
ζ,j : j < θ} = {γp

ζ,j : j ∈ b}

[Why? As b =
⋃
i∈Z

bi for some Z ⊆ θ∗ and apply clause (α)]

(γ) if U is an open subset of X
˜

∗[G] and γp
ζ,j(∗) ∈ U (so ζ ∈ up

∗), then for some

i(∗) < θ∗ we have

γp
ζ,j(∗) ∈ wp

ζ,i(∗) ∩ {γp
ζ,j : j < θ} ⊆ Ũζ,i(∗)[G] ∩ {γp

ζ,j : j < θ} ⊆ U .
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[Why? By the definition of the topology X
˜

∗[G] we can find n < ω, ξ� < λ∗

and j� < θ∗ for � < n such that γp
ζ,j(∗) ∈

⋂
�<n

Ũξ�,j�
[G] ⊆ U . [Why? By �.]

We can find q ∈ G ⊆ P such that p ≤ q and ξ� ∈ vq
∗ for � < n. [Why? Recall

(∗)1 and �1.] For each � < n, by clause (η) in the definition of P we know
that Uq

ξ�,ζ,j�
=: {j < θ : γq

ζ,j ∈ Uq
ξ�,j�

} is an open set for Y ∗, and necessarily

j(∗) ∈ Uq
ξ�,ζ,j�

. Let i(∗) < θ be such that j(∗) ∈ bi(∗) ⊆
⋂
�<n

Uq
ζ,ξ�,j�

hence

γp
ζ,j(∗) ∈ Ũζ,i(∗)[G] ∩ {γp

ζ,j : j < θ} ⊆
⋂
�<n

Ũξ�,j�
[G] ⊆ U as required. So i(∗) is

as required.]
(δ) {γp

ζ,j : j < θ} is a closed subset of X
˜

∗

[Why? Let β ∈ λ\{γp
ζ,j : j < θ} and let p ≤ q ∈ P; it suffices to find

q+, q ≤ q+ ∈ P and ξ ∈ vq+

∗ and i < θ∗ such that β ∈ uq+\uq+

∗ or β ∈ wq+

ξ,i and

wq+

ξ,i ∩{γp
ζ,j : j < θ} = ∅. If β /∈ uq

∗ define q+ like q except that uq+
= uq ∪{β}

(but uq+

∗ = uq
∗ as in clause (i) of (∗)1). So without loss of generality β ∈ uq

∗.
We can find a set u ⊆ uq

∗ such that β ∈ u, Aq
ζ ∩ u = ∅ and ζ′ ∈ vq

∗ ⇒ {j <

θ : γq
ζ′,j ∈ u} is an open subset of Y ∗, (why? just as in the proof of (∗)5; that

is let 〈ξε : ε < ε∗〉 be a list vq
∗ such that Bε = Aξε\ ∪ {Aξε(1) : ε(1) < ε} has

cardinality < σ, and as any two members of A has intersection of cardinality
< σ without loss of generality ξ0 = ζ, and choose uε ⊆ ∪{Aξε(1) : ε(1) < ε} by
induction on ε ≤ ε∗ such that ε′ < ε ⇒ uε′ = uε ∩ ∪{Aξε(1) : ε(1) < ε′} and
β ∈ ∪{Aξε(1) : ε(1) < ε} ⇒ β ∈ uε and [ε(1) < ε ⇒ {j : γq

ξε(1),j
∈ uε} is open

in Y ∗] and u1 = u0 = ∅. For part (2) we ask “clopen subset of Y ∗”. In the
end let u = uε∗ ∪ {β}).
By ⊗1 in the beginning of the proof we can find ξ ∈ λ∗\vq such that ∅ = Aξ∩uq

(why? apply ⊗1 with α′ < β′ ∈ λ\uq and B = uq, and then (∗)1) and let
γε,i ∈ Aξ for i < θ be increasing. We define q+ as follows.

vq+
= vq ∪ {ξ}

vq+

∗ = vq
∗ ∪ {ξ}

uq+
= uq ∪ Aξ

uq+

∗ = uq
∗ ∪ {γξ,j : j < θ}

wq+

ζ,i is wq
ζ,i if ζ ∈ vq

∗ and is {γξ,j : j ∈ bi} ∪ u if ζ = ξ & 0 ∈ bi and is {γξ,j : j ∈
bi} if ζ = ξ & 0 /∈ bi. So q+ is as required above and this suffices.]
Lastly, we would like to know that X

˜

∗ is a Hausdorff space. We prove more

(∗)9 In VP if u1 ⊆ u2 ∈ [λ]<σ then for some ζ, i we have

wζ,i ∩ u2 ∩ X
˜

∗ = u1 ∩ X
˜

∗

[Why? Let p0 ∈ P force that u
˜
1 ⊆ u

˜
2 form a counterexample, as P is κ-complete

some p1 ≥ p0 forces u
˜
1 = u1, u

˜
2 = u2 and without loss of generality p1 ∈ P′.
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By (∗)1 and κ-completeness without loss of generalityu2 ⊆ up1 and as by (∗)1
we have p1 � “u2 ∩ X

˜

∗ = u2 ∩ up1∗ ” we can ignore the elements of u2\up1∗ so

without loss of generality u2 ⊆ up1∗ .
Let ζ(∗) ∈ λ∗\vp1 be such that Aζ(∗) ∩ up1 = ∅ (as in the proof of (∗)8(δ)). Let
γζ(∗),j ∈ Aζ(∗), for j < θ be increasing. Let u ⊆ up1∗ be such that u ∩ u2 = u1 and
ζ′ ∈ vp1∗ ⇒ {j < θ : γp1

ζ′,j ∈ u} is open (for part (1)) or is clopen (for part (2)) in Y ∗

(exists as in the proof of (∗)5 and of (∗)8(δ)) and define q ∈ P:

uq = up1 ∪ Aξ

uq
∗ = up1∗ ∪ {γζ(∗),j : j < θ}

vq = vp ∪ {ζ(∗)}

vq
∗ = vp1 ∪ {ζ(∗)}

wq
ζ,i is: wp1

ζ,i if ζ ∈ vp1∗ , is {γζ(∗),j : j ∈ bi} ∪ u if ζ = ζ(∗) & 0 ∈ bi and is {γζ(∗),j : j ∈
bi} if ζ = ζ(∗) & 0 /∈ bi. It is easy to see that q is required.]

Together all is done. �1.2

∗ ∗ ∗

Now when do the assumptions of 1.2 hold?

1.4 Claim. 1) Assume

(a) a ∈ [Reg ∩λ\κ]θ and J = [a]<σ

(b) Πa/J is (λ∗)+-directed,

(c) σ is regular, λ > κ++, κ > θ > σ

(d) λ∗ > λ > κ<κ = κ > θ;

(e) λ∗ < 2λ is regular.

Then

(f) In V1 = VLevy(λ∗,2λ) we have (a),(c),(d) and (e) and 2λ = λ∗ and

(g) the assumptions (A)(i), (B1), (B2), (C) of Theorem 1.2 hold (recall (A)(i) means we
omit θ∗ and the demand (∀α < κ)(|α|σ < κ).

2) We can in (g) above strengthen (C) to

(C)∗ if x̄β = 〈xβ,i : i < iβ〉 for β < λ and iβ < κ then we can find i(∗) and A ∈ [λ]θ such
that
(i) β ∈ A ⇒ iβ = i(∗)

(ii) if β1 < β2 are from A and i1, i2 < i(∗) then xβ1,i2 = xβ2,i2 ⇒ xβ1,i1 = xβ2,i1 &
xβ1,i1 = xβ1,i2

(iii) if i < i(∗) and β1, β2, β3 ∈ A are distinct then xβ1,i = xβ2,i ⇒ xβ1,i = xβ3,i.
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Proof. Let a = {λε : ε < θ} without repetitions; without loss of generality λε > κ++. Let
J ′ = [θ]<σ. In V we can find 〈fα : α < λ∗〉 such that � below holds. We first proof below.

1.5 Observation. Assume a = {λε : ε < θ} is a set of regular cardinals, J ′ is an ideal on
θ such that Πλε/J ′ is (λ∗)+-directed, λ∗ = cf(λ∗) > sup(a), and σ regular and θ < κ ≤
Min(a) (or at least for every regular κ′ < κ the set {ε < θ : λε ≤ κ′} belongs to J ′ and, of

course, a is a set of regular cardinals > θ). Then

� we can find 〈fα : α < λ∗〉 satisfying fα ∈
∏
ε<θ

λε such that

(a) f̄ = 〈fα : α < λ∗〉 is <J′-increasing

(b) f̄ has a <J′-lub f∗

(c) if a ∈ (J ′)+ then sup{cf(f∗(i)) : i ∈ a} ≥ sup({λε : ε ∈ a})
(d) if α1 < λ∗ & α2 < λ∗ & ε1 < θ & ε2 < θ & fα1(ε1) = fα2(ε2) then

ε1 = ε2

(e) for every Z ∈ [λ∗]≤κ we can find ā = 〈aα : α ∈ Z〉 such that aα ∈ J ′ and
α < β & α ∈ Z & β ∈ Z & ε ∈ θ\aα\aβ ⇒ fα(ε) < fβ(ε)

(f) if σ ≤ θ and J ′ = [θ]<σ, then for every Z ∈ [λ∗]≤κ for some sequence ā = 〈aα :
α ∈ Z〉 satisfying aα ∈ J ′ for α ∈ Z and some well ordering <∗ of Z we have
α ∈ Z & β ∈ Z & α <∗ β & ε ∈ θ\aβ ⇒ fα(ε) �= fβ(ε).

Proof. By the proof of [Sh:g, Ch.II, 1.4] or see [Sh:506] we get: for some 〈fα : α < λ∗〉 with
fα ∈ Πa we have (a) + (b) + (c) + (e).

Clause (d) is easy, just replace fα by f ′
α ∈

∏
ε<θ

λε which is defined by f ′
α(εε) =: θ×fα(ε)+ε

and replace f∗ by f∗∗, Dom(f∗∗) = θ, f∗∗(ε) = θ × f∗(ε) recalling θ < Min(a). We shall
prove that 〈f ′

α : α < λ∗〉 is also as required in clause (f). So let Z ∈ [λ∗]≤κ be given; let
Z = {γε : ε < |Z|} be with no repetitions. Let 〈aβ : β ∈ Z〉 be as guaranteed by clause (e).
We can choose by induction on ζ < |Z|, Zζ ⊆ Z increasing continuous in ζ and Zζ such that
Z0 = ∅, |Zζ+1\Zζ| ≤ σ, [Zζ �= Z ⇒ Zζ �= Zζ+1] and Zζ+1\Zζ ⊆ Zζ ⊆ Zζ+1, |Zζ | ≤ σ, γε ∈
Zε+1 and α ∈ Zζ & β ∈ Zζ & ε /∈ aβ & ε ∈ aα & fα(ε) = fβ(ε) ⇒ β ∈ Zζ (actually
the β /∈ Zζ , are irrelevant).
Why does such a sequence exist? The only problem is, given Zζ to choose Zζ . Now as
|aα| < σ (because aα ∈ J ′ ⊆ [a]<σ) and by the choice of 〈aα : α ∈ Z〉 we have

(∗) (∀ε < θ)(∀γ < λε)(∃≤1β ∈ Z)(ε /∈ aβ & fβ(ε) = γ)
hence there are no problems, (in fact if σ is uncountable we can ask < σ). With more
details, we define Zζ

n by induction on n < ω as follows; Zζ
0 = {γε}, Zζ

n+1 = Zζ
n ∪ {β :

for some α ∈ Zζ
n and ε ∈ aα we have ε /∈ aβ & fβ(ε) = fα(ε)}.

As σ is a regular and α ∈ Z ⇒ |aα| < σ, by (∗) we can prove by induction on n that
|Zζ

n| < σ, hence Zζ = ∪{Zζ
n : n < ω} is as required. Now list Zζ as 〈αζ

ξ : ξ < ξ∗ζ 〉 such that
ξ∗ζ = |Zζ | ≤ σ.
Define a well ordering <∗ of Z as follows
α < β ⇔ (∃ζ)[α ∈ Zζ ∧ β /∈ Zζ ] ∨ (∃ζ)(α ∈ Zζ\Zζ ∧ β ∈ Zζ\Zζ ∧ (∃ξ1, ξ2)(α = αζ

ξ1
∧ β =

αζ
ξ2

∧ ξ1 < ξ2).
Now we define a′

α ∈ J ′ for α ∈ Z as follows: if α = αζ
ξ ∈ Zζ+1\Zζ then a′

α = ∪{aαζ
ε

: ε ≤ ξ};
as ξ < |Zζ | ≤ σ and σ is regular and β ∈ Z ⇒ |aβ | < σ clearly |a′

α| < σ. Now suppose
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〈a′
α : α ∈ Z〉 fails clause (f) for <∗ which is a well ordering of Z. So there are ε < θ and

α <∗ β from Z which exemplifies this and let ζ be such that α ∈ Zζ\Zζ and let ξ be such
that α = αζ

ξ ; so by the definition of <∗ we have β /∈ Zζ and β /∈ {αζ
ξ′ : ξ′ ≤ ξ}. As aα ⊆ a′

α

and the choice of 〈aα : α ∈ Z〉 and as ε /∈ aβ (by the choice of α, β, ε) necessarily ε ∈ aα

hence β ∈ Zζ (so β ∈ Zζ\Zζ) but as said above β /∈ {αζ
ξ′ : ξ′ ≤ ζ}, so by the choice of a′

β

we get easy contradiction. �1.5

Continuation of the proof of 1.4. Clearly in V1 we have (a),(c),(d) of 1.4 and � of 1.5
above.
As in V, λ < λ∗ = cf(λ∗) < 2λ, clearly in V1 we have 2λ = λ∗ (and we can forget V and
the assumption (b), recall (b) says “Πa is (λ∗)+-directed”. More on the existence of f̄ as
in �, see [Sh:g, Ch.VIII, §5]).

So we can in V1 let 〈hα : α < λ∗〉 list the functions h : λ → [λ]κ. Now for each ζ < λ∗

we define a function gζ : κ++ → [κ++]≤κ by4

gζ(γ) =
{

β < κ++ : for some ε1, ε2 < θ we have

θ × κ++ × fζ(ε1) + θ × β + ε1 ∈

hζ [θ × κ++ × fζ(ε2) + θ × γ + ε2]
}

.

So we can ([Ha61]) for each ζ < λ∗ find Zζ ∈ [κ++]κ
++

such that

β1 �= β2 ∈ Zζ ⇒ β1 /∈ gζ(β2).

For ζ < λ∗ let

Aζ = {θ × κ++ × fζ(ε) + θ × β + ε : ε < θ and β < κ++ is the ε-th member of Zζ}.

Now we shall check.

Let A = {Aζ : ζ < λ∗}. Clearly

(∗)1 Aζ ∈ [λ]θ (hence A ⊆ [λ]θ)
[why? recall that θ < κ, κ++ < λ]

(∗)2 ζ1 �= ζ2 ⇒ |Aζ1 ∩ Aζ2 | < σ
[Why? Let α ∈ Aζ1 ∩ Aζ2 so for some (β1, ε1), (β2, ε2), for � = 1, 2 we have α =
θ × κ++ × fζ�

(ε�) + θ × β� + ε� and β� < κ++, ε� < θ. Clearly this implies ε1 =
ε2, β1 = β2, fζ1(ε1) = fζ2(ε2), and otp(β� ∩ Zζ�

) = ε�, so β� is determined just by
fζ�

(ε�), ζ� and ε� (with no use of α) and by clause (d) of � also ε� is determined by
fζ�

(ε�) hence |Aζ1 ∩ Aζ2 | ≤ |{α ∈ Aζ1 : there are (β1, β2, ε1, ε2) as above}| ≤ |{ε <
θ : fζ1(ε) = fζ2(ε)}| < σ as ζ1 < ζ2 → fζ1 <J fζ2 recalling J = [θ]<σ.]

(∗)3 |A| = λ∗

[Why? By the choice of A and (∗)1 + (∗)2.]
4actually θ × κ++ × γ = κ++ × γ
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(∗)4 if F : λ → [λ]≤κ, then some A ∈ A is F -free
[Why? For some α we have F = hα, so Zα, Aα were chosen to make this true.]

(∗)5 if A′ ∈ [A]<κ, then we can list A′ as {Aζi : i < i(∗)} such that
|Aζi ∩

⋃
j<i

Aζj | < σ for each i < i(∗) [Why? Let A′ = {Aζ : ζ ∈ Z} where Z ⊆

λ∗, |Z| < κ, so by clause (f) of � we can find 〈aα : α ∈ Z〉, <∗ as there. Let
Z = {ζi : i < i(∗)} be <∗-increasing with i and so

Aζi ∩
⋃
j<i

Aζj ⊆ {θ × κ++ × fζi(ε) + θ × βζi,ε + ε : ε ∈ aζi}

which has cardinality < σ where βζi,ε is the ε-th member of Zα.]
So clause (A)(i) holds by clause (d) of our assumption (note, θ∗ does not appear here),
clause (B)1 holds by (∗)1 + (∗)2 and (B)2 holds by (∗)5 and lastly (C) holds by (∗)4.
2) Similar, just in order to get more in the proof of (∗)4 we let 〈hα : α < λ∗〉 list the relevant
h-s and choose Zζ accordingly. �1.4

1.6 Remark. We can get (C)∗ for any κ such that {θ ∈ a : (2<κ)+ ≤ θ} ∈ J .

1.7 Claim. 1) We can change the assumptions of Theorem 1.2 by omitting (A)(ii) and by
replacing (E) by (E)− and (C) by (C)′, i.e., having:
(A)(i) λ > κ > θ ≥ σ ≥ ℵ0 and κ = κ<κ and θ∗ ≤ κ

(i.e., this is (A)(i) without (A)(ii), i.e., omitting “(∀α < κ)(|α|σ < κ), κ > θ∗ ≥ θ”)
(C)′ if F : λ → [λ]≤κ then we can find A′ ∈ A and A ⊆ A′ of order type θ such that:

if β ∈ A then β /∈ ∪{F (α) : α ∈ A ∩ β}
(E)− if Y0, Y1 are disjoint subsets of Y ∗ each with < σ points, then there are open disjoint

sets U0,U1 of Y ∗ such that Y0 ⊆ U0, Y0 ⊆ Y1.
2) We can similarly weaken the assumptions in 1.2(2), omitting “the union of < σ members
of B belong to B”, but in (E)− demand U0 to be clopen.

Proof. We indicate the changes in the proof.
We can further demand from 〈bi : i < θ∗〉 that
⊗3 b2i ∩ b2i+1 = ∅ and if bi0 ∩ bi1 = ∅ then for some j we have (b2j , b2j+1) = (bi0 , bi1)

and if Y0, Y1 ∈ [Y ∗]<σ are disjoint then for some i we have Y0 ⊆ b2i, Y1 ⊆ b2i+1.
Note that θ<σ ≤ κ so no problem arises with the number of bi’s.

In the definition of P we replace clause (δ) by
(δ)− wζ,i ⊆ u∗ and wζ,2i ∩ wζ,2i+1 = ∅

and in the definition of the order when P |= p ≤ q we add ζ ∈ vq
∗\vp

∗ ⇒ |Aζ ∩ up| < σ.
However, as we have weakened assumption (A), the κ+-c.c. may fail. So we define: the
pair (f, g) is an isomorphism from p ∈ P onto q ∈ P if:

(i) f is a one-to-one order preserving mapping from up onto uq

(ii) g is a one-to-one order preserving mapping from vp onto vq

(iii) f maps up
∗ onto uq

∗
(iv) g maps vp

∗ onto vq
∗

(v) if ζ ∈ vp
∗ then Ag(ζ) = {f (β) : β ∈ Aζ}

(vi) if ζ ∈ vp
∗ and j < θ then γq

g(ζ),j = f(γp
ζ,j)

(vii) if ζ ∈ vp
∗ and i < θ∗ then
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wq
g(ζ),i = {f (β) : β ∈ wp

ζ,i}.

We say p, q are isomorphic if such (f, g) exists. Clearly being isomorphic is an equivalent
relation. Let χ be large enough and C be an elementary submodel of (H(χ),∈, <∗) of
cardinality κ such that λ, κ, θ∗, θ, σ, Y ∗, 〈bi : i < θ∗〉,A, P belong to C and κ>C ⊆ C. Let

Q = {p ∈ P : for some q ∈ P ∩ C the conditions p, q are isomorphic}.

In the rest of the proof P is replaced by Q, each time we construct a condition we have to
check if it belongs to Q.

The only place we use (∀α < κ)(|α|σ < κ) is in the proof of (∗)3. So omit (∗)3, and this
requires us first to improve the proof of (∗)4 (and second (∗)7, see later). Let pj ∈ Q for
j < κ+ and let vj = {ζ < λ∗ : Aζ ∩ upj has cardinality ≥ σ} ∪ vpj , so clearly |vj | ≤ κ and
vpj ⊆ vj .

For some stationary S ⊆ {δ < κ+ : cf(δ) = κ}, the conditions pj for j ∈ S are pairwise
isomorphic and j ∈ S implies vpj ∩ (

⋃
i<j

vi) = v⊗ and upj ∩ (
⋃
i<j

(upi ∪ ∪
⋃

ζ∈vi

Aζ)) = u⊗.

Also without loss of generality for j1, j2 ∈ S the isomorphism (f, g) from pj1 to pj2 satisfies
f � u⊗ = idu⊗ , g � v⊗ = idv⊗ . We would like to apply (∗)5 from the proof of 1.2 to pi, pj

for any j > i from S, so we have to verify clauses (i), (ii), (iii), (iv)1, (iv)2 there. Now only
clause (iv)2 is problematic. Now if i �= j are from S and ζ ∈ vpi∗ \vpj∗ and |Api

ζ ∩upj | ≤ σ, note
that Api

ζ ⊆ upi hence Api

ζ ∩upj ⊆ upi ∩upj = u⊗ ⊆ vmin(S)+1. So for i, j ∈ S\{min(S), pi, pj

are compatible by (∗)5 in the proof of 1.2.
In the proof of (∗)5 and (∗)6 (hence (∗)7), clause (E)− gives us less but the change in

the definition of P (weakening (δ) to (δ)−) demands less and they fit, e.g., during the proof
of (∗)5 we can deal with each pair (wζ,2i, wζ,2i+1) separately.

The second place in which we use (∗)3 is during the proof of (∗)7. The proof is similar
but:

� F (α) now is a subset of λ which includes ∪{upα,j : j < κ} and satisfies A ∈ A &
|A ∩ F (α)| ≥ σ ⇒ A ⊆ F (α).

[Why such F (α) exists? As in the proof of (∗)3.] Then first, we apply clause (C)′ from 1.7
to find ζ(∗) < λ∗ and A ⊆ Aζ(∗) of order type θ such that A satisfying the demands of (C)′.
Second, choosing pε by induction on ε, choosing pε+1, verifying the conditions in (∗)5 they
hold because of the change in the definition of the order of P.

Lastly, for proving “X
˜

is Hausdorff”, clause (δ)− is weaker but as Y ∗ is Hausdorff (and

the choice of 〈bi : i < θ∗〉) there is no problem. �1.7

1.8 Concluding Remarks. 1) We could make in 1.2 only some of the changes from 1.7, i.e.,
(α) in 1.2 we replace (A),(C) by (A)(i),(C)∗ of 1.7

(β) in 1.2 replace (E) by (E)−.
2) In 1.2(1) can we make the space regular (T3)?

In view of 1.2(2) this may be not so interesting, still needed for a regular X∗ → (R)1ℵ0
.

Note that for X to be a T3-space it is enough that there is a family B of open subsets such
that their finite intersections forms a basis, (∀x �= y ∈ X)(∃U ∈ B)(x ∈ U & y /∈ U) and
x ∈ U0 ∈ B ⇒ (∃U1,U2 ∈ B)(x ∈ Ui1 ⊆ Ui0 & Ui0 ∪ Ui2 = X & Ui1 ∩ Ui2 = ∅). Let
R0 ⊆ {(i, j) : bi∩bj = ∅} (so to include generalization, as in 1.7 we chose R0 ⊆ {(2i, 2i+1) :
i < θ∗}) and R1 ⊆ {(i, j) : bi ∪ bj = Y ∗}, R2 ⊆ {(i, j) : bi ⊆ bj}).
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We need: for i0 < θ∗, j < θ such that j ∈ bi0 there are i1, i2 < θ∗ such that j ∈ bi1 , bi1 ⊆
bi0 , bi0 ∪ bi2 = Y ∗, bi1 ∩ bi2 = ∅ and moreover (i1, i0) ∈ R2, (i0, i2) ∈ R1, (i1, i2) ∈ R0. If Y ∗

is a T3-space with a basis of cardinality ≤ θ∗ then there is no problem to find such b̄.
Then we should change the definition of P, clause (δ) to

(δ)− (a) wp
ζ,i ⊆ up

∗
(b) (i, j) ∈ R0 ⇒ wp

ζ,i ∩ wp
ζ,j = ∅;

(c) (i, j) ∈ R1 ⇒ wp
ζ,i ∪ wp

ζ,j = u∗
(d) (i, j) ∈ R2 ⇒ wp

ζ,i ⊆ wp
ζ,j

(θ) if α ∈ wp
ζ,i0

then for some i1, i2 we have α ∈ wζ
ζ,i1

, (i1, i0) ∈ R2, (i0, i2) ∈ R1, (i1, i2) ∈
R0 [follows from the next]
(or use a three place relation R).

So there is no problem to generalize the proof of 1.2.
3) In 1.4, as indicated in the proof, we can replace in the assumption (b) + (e), i.e. “Πa/J
is (λ∗)+-directed, λ∗ < 2λ is regular” by: λ∗ = 2λ and

(∗) there is f̄ = 〈fα : α < λ∗〉, fα ∈ Πa such that for every Z ∈ [λ∗]<κ we can find
〈aα : α ∈ Z〉, aα ∈ J such that α �= β ∈ Z & ε ∈ θ\aα\aβ ⇒ fα(ε) �= fβ(ε).

4) By the proof of 1.5, if a, J = [a]<σ and f̄ are as in (∗) of 1.8(3) then
(∗)′ there is f̄ ′ = 〈f ′

α : α < λ∗〉, f ′
α ∈ Πa such that for every Z ∈ [λ∗]<κ we can find

〈aα : α ∈ Z〉, aα ∈ J and well ordering <∗ of Z such that α <∗ β ∈ Z & ε ∈
θ\aβ ⇒ f ′

α(ε) �= f ′
β(ε) (in fact f̄ ′ = f̄).

5) See more 4.17: for more colours.
6) If CON(ZFC +∃ supercompact) then CON(CH + there is a T3-topological space with
ℵω+1 needs such that X → (R)1ℵ0

).
[Why? Similar to the proof of 2.6 below, using 1.8(2).]
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§2 Consistency from supercompact

In the first section we got consistency results concerning Cantor discontinuum partition
problem but using pcf statement of unclear consistency status (they come from 1.4); this is
very helpful toward finding the consistency strength, and unavoidable if e.g. we like CH to
fail (see §3), but it does not give a well grounded consistency result. Here relying on Theorem
1.2 of the first section, we get consistency results using “only” supercompact cardinals.
First we give a sufficient condition for clause (C) of Theorem 1.2 which is reasonable under
instances of G.C.H. We then (2.2) quote Hajnal Juhasz Shelah [HJSh 249], [HJSh 697] (for
σ = ℵ0, σ > ℵ0, respectively) and from it (in claim 2.3), in the natural cases, prove that the
assumptions of 1.2 hold deducing (in 2.6) the consistency of CH + there is a T3-space X with
clopen basis with ℵω+1 point such that X → (Cantor set)1ℵ0

starting with a supercompact
cardinal. This gives a (consistent) negative answer to the Cantor discontinuum partition
problem. We can even make it compact. We also try to clarify the relations between such
properties of, e.g., ℵω+1.

2.1 Observation: If clauses5 (A)(i) + (B)1 of Theorem 1.2 holds, then clause (C) there
follows from

(C)+ if 〈Yi : i < κ+〉 is a partition of λ then for some A ∈ A and i < κ+

we have A ⊆ Yi.

Proof. Let F : λ → [λ]≤κ be given. Choose by induction on ζ ≤ λ a set Uζ ⊆ λ and
gζ : Uζ → κ+, both increasing continuous with ζ such that:

(∗)(i) if α ∈ Uζ then F (α) ⊆ Uζ and

(ii) if α ∈ Uζ then F (α)\{α} ⊆ {β ∈ Uζ : gζ(β) �= gζ(α)}.
For ζ = 0 let Uζ = ∅ = gζ , for ζ limit take unions. If Uζ = λ, let Uζ+1 = Uζ and
gζ+1 = gζ, otherwise let αζ = Min{λ\Uζ} and let Wζ ∈ [λ]≤κ be such that αζ ∈ Wζ

and (∀α ∈ Wζ)[F (α) ⊆ Wζ ]. Let εζ = sup{gζ(β) : β ∈ Uζ ∩ Wζ} so εζ < κ+ and let
Uζ+1 = Uζ ∪Wζ and let gζ+1 extend gζ such that gζ+1 � (Wζ\Uζ) is one to one with range
⊆ [εζ , εζ + κ).
Clearly ζ ⊆ Uζ = Dom(gζ) so g = ∪{gζ : ζ < λ} is a function with domain λ.
Now applying (C)+ to the partition which g defines, we get some A ∈ A on which g is
constant so by (∗)(ii) we are done. �2.1

By [HJSh 249], [HJSh 697], or see more below in 2.7 – 2.9, (toward equiconsistency) we
have:

2.2 Claim. Assume V |= GCH (for simplicity) and σ < χ < χ<χ
0 ≤ κ < µ < µ+ =

λ and σ, χ, χ0, κ, λ are regular, cf(µ) = σ and χ is a supercompact cardinal (or just λ-
supercompact), e.g. µ = χ+σ

0 .
Then for some forcing notion P, which is σ-complete of cardinality χ0, in VP, 2σ = σ+, 2σ+

= χ0 = σ++ (and GCH holds) and some B̄ = 〈Bδ : δ ∈ S〉 satisfies for any regular
κ ∈ (χ0, µ):

(∗)(i) S ⊆ {δ < λ : cf(δ) = σ+} is stationary,
Bδ ⊆ δ, otp(Bδ) = σ+ and δ1 �= δ2 ∈ S ⇒ |Bδ1 ∩ Bδ2 | < σ

5actually from (B)1, only “(B)−1 A ⊆ [λ]θ” is used; as we do not change A and the cardinals this is O.K.



ANTI-HOMOGENEOUS PARTITIONS OF A TOPOLOGICAL SPACE 467

(ii) λ = µ+ = 2µ, µ strong limit and letting θ = σ+ we have σ < θ < κ = κ<κ < µ; note
that if µ = χ+ω

0 then λ = ℵω+1

(iii) cf(µ) = σ (this actually follows) by (i) and (ii)

What we need is getting in such model, condition (C)+ of 2.1 which also is from [HJSh 697]
but for completeness we shall prove what we use.

2.3 Claim. Assume
(a) B̄ = 〈Bδ : δ ∈ S〉, σ, κ, µ, λ are as in the conclusion (∗) of the previous claim 2.2

and
(b) S reflects in no ordinal of cofinality ≤ κ (holds automatically if κ < σ+σ, see [Sh

108], [Sh 88a]), but see 2.7, 2.8.
Then without loss of generality σ, θ =: σ+, λ,A = {Bδ : δ ∈ S} (and θ∗ = θ) satisfies the
set theoretic requirements (A), (B)1, (B)2, (C) in Theorem 1.2 and even (C)∗ of 1.4.

Proof. Without loss of generality “δ ∈ S ⇒ µω divides δ”, and as we are assuming µ is
strong limit of cofinality σ and λ = µ+ = 2µ and δ ∈ S ⇒ cf(δ) = σ+ �= σ = cf(µ) we have
♦S ([Sh:108]). So let 〈fδ : δ ∈ S〉 be such that fδ : δ → [δ]κ satisfy (∀f : λ → [λ]κ)(∃statδ ∈
S)(fδ = f � δ). For each δ ∈ S, let Bδ = {αδ,ε : ε < σ+} be increasing with ε and let
gδ : κ++ → [κ++]≤κ be defined by

gδ(β) =
{
γ < κ++ : for some ε1, ε2 < σ+ we have

κ++ × αδ,ε1 + γ ∈ fδ(κ++ × αδ,ε2 + β)
}
.

So by the free subset lemma (Hajnal [Ha61]) there is Zδ ∈ [κ++]κ
++

such that γ1 �=
γ2 ∈ Zδ ⇒ γ1 /∈ gδ(γ2). Let γδ,ε ∈ Zδ be strictly increasing with ε < σ+ and let B′

δ =
{κ++ × αδ,ε + γδ,ε : ε < σ+}. So clauses (A), (B)1 are immediate. Now clearly (C) of 1.2
holds and lastly (B)2 of 1.2 follow from the assumption (b) on S (see [Sh 108]). In order to
get (C)∗ of 1.7 we should shrink Zδ further.

Now A = {B′
δ : δ ∈ S} are as required in Theorem 1.2. �2.3

In similar spirit, we do further analysis.

2.4 Claim. Assume
(a) λ is regular, θσ < λ

(b) B̄ = 〈Bδ : δ ∈ S〉, where S ⊆ λ is stationary
(c) Bδ ⊆ δ and Bδ has cardinality θ

(d) if δ1 �= δ2 are from S then σ > |Bδ1 ∩ Bδ2 |
(e) ♦S.

Then for some 〈B′
δ : δ ∈ S′〉 we have

(α) S′ ⊆ S

(β) B′
δ ⊆ δ has order type θ

(γ) for δ1 �= δ2 from S′ we have σ > |B′
δ1

∩ B′
δ2
|

(δ) if Z ⊆ λ is unbounded in λ then for stationarily many δ ∈ S′ we have Bδ ⊆ Z
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(ε) S′ is stationary

(ζ) if F : λ → [λ]≤κ, κ = cf(κ), κ++ < λ then for stationarily many δ ∈ S′ the set Bδ

is F -free.

2.5 Remark. 1) If (a)-(d) of 2.4 hold in V, then (a)-(e) holds after we force with Levy(λ, 2<λ),
note that if λ = 2<λ this is equivalent to adding a Cohen subset to λ.
2) We can add (in 2.4 see proof below):

(δ)+ if Zε ⊆ λ = sup(Zε) for ε < θ then for stationarily many δ ∈ S′ we have: for every
ε < θ, the ε-th member of Bδ belong to Zε

(β)1 if δ ∈ S ⇒ cf(δ) = cf(θ) then Bδ is unbounded in δ

(β)2 if δ ∈ S ⇒ cf(δ) = θ1 �= cf(θ) so θ1 < θ then Bδ has order type θ × θ1 and is
unbounded in δ.

Proof. Without loss of generality otp(Bδ) = θ and δ = sup(Bδ).
Let Z̄ = 〈Zδ : δ ∈ S〉 be such that Zδ ⊆ δ and for every Z ⊆ λ the set {δ ∈ S : Z∩δ = Zδ}

is stationary, such a sequence exists as ♦S holds.
Now we choose B′

δ ⊆ δ by induction on δ such that B′
δ �= ∅ ⇒ otp(B′

δ) = θ. We let B′
δ be

Z∗
δ = {α ∈ Zδ : otp(Zδ ∩ α) ∈ Bδ} when otp(Z∗

δ ) = θ & (∀δ′ ∈ S ∩ δ)[|Z∗
δ ∩ B′

δ′ | < σ] and
let B′

δ be ∅ otherwise. Let S′ = {δ ∈ S : B′
δ �= ∅} and we shall prove that 〈B′

δ : δ ∈ S′〉 is
as required.

Clauses (α), (β), (γ) are obvious and clause (ε) follows from clause (δ), so let us prove
clause (δ).

Let Z ⊆ λ be unbounded. So CZ = {δ < λ : δ = sup(Z ∩ δ) = otp(Z ∩ δ)} is a club of λ
and let SZ = {δ ∈ S : Z ∩ δ = Zδ}. By the choice of Z̄ clearly SZ is a stationary subset of
λ, so also SZ ∩ CZ is a stationary subset of λ. Let S′

Z = {δ ∈ SZ ∩ CZ : B′
δ = Zδ}, so it is

enough to prove that S′
Z is a stationary subset of λ, we shall prove more:

(∗) S∗
Z = SZ ∩ C\S′

Z is not a stationary subset of λ.

Toward contradiction assume S∗
Z is stationary.

Now for every δ ∈ S∗
Z , clearly Z∗

δ is a subset of Zδ = Z∩δ of order type θ, but B′
δ �= Z∗

δ hence
(∃α1 ∈ S∩δ)(|Z∗

δ ∩B′
α1
| ≥ σ), so we choose such αδ ∈ S∩δ. So for some stationary S∗∗

Z ⊆ S∗
Z

and α∗ we have (∀δ ∈ S∗∗
Z )[αδ = α∗]. Now δ ∈ S∗∗

Z implies σ ≤ |Z∗
δ ∩ B′

α∗ | hence for some
A∗

δ ∈ [B′
α∗ ]σ we have A∗

δ ⊆ Z∗
δ . As |[B′

α∗ ]σ| ≤ θσ < λ = cf(λ), possibly shrinking S∗∗
Z for

some A∗ we have δ ∈ S∗∗
Z ⇒ A∗

δ = A∗. Now easily δ ∈ S∗∗
Z ⇒ Bδ ⊇ {otp(γ ∩ Z) : γ ∈ A∗}

which has cardinality σ, so δ1 �= δ2 ∈ S∗∗
Z ⇒ σ ≤ |Bδ1 ∩ Bδ2 |, contradiction.

Lastly, clause (ζ) follows from clause (δ) by 2.1 as λ is regular or alternatively if F : λ →
[λ]≤κ, by [Ha61] some unbounded Z ⊆ λ is F -free so by clause (δ) there are stationarily
many δ ∈ S′ such that B′

δ is F -free. �2.4

Proof of 2.5(2). Without loss of generality (∀δ ∈ S)(cf(δ) = θ1) for some θ1.
Let δ∗ ∈ [θ, θ+), cf(δ∗) = θ1 for what we state in 2.5 we have δ∗ is θ if θ1 = θ and is θ×θ1

if θ1 < θ. Let h : δ∗ → θ be one to one onto. Let 〈〈Zδ,ε : ε ≤ δ∗〉 : δ ∈ S〉 be such that for
every sequence Z̄ = 〈Zε : ε ≤ δ∗〉 satisfying Zε ⊆ λ the set {δ ∈ S : (∀ε ≤ δ∗)(Zε∩δ = Zδ,ε)}
is stationary, it exists as ♦S holds. Moreover, we can find 〈Cδ : δ ∈ S〉 such that Cδ is a
closed unbounded subset of order type δ∗, let Cδ = {γδ,ε : ε < δ∗} and if Zε ⊆ λ for ε < δ∗

then the following subset of S is stationary
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{δ ∈ S :Zδ,ε = Zε ∩ δ for ε < δ∗ and

otp(Zε ∩ γδ,ζ) = γδ,ζ for ε < ζ < δ∗ and

γδ,ε is closed under pr (a pairing function)}.

Let

Z∗
δ = {α :for some ε < δ∗ and β we have

γδ,ε < α < γδ,ε+1, β ∈ Aδ, otp(β ∩ Aδ) = h(ε)

and α is the pr(γδ,ε, β)-th member of Zδ,ε}.

Now check. �2.5

2.6 Conclusion: If CON(ZFC +∃ supercompact), then CON(CH + there is a T3-topological
space X with clopen basis, even compact, with ℵω+1 nodes such that if we divide X to
countably many parts, at least one contains a closed copy of the Cantor discontinuum ω2).

Proof. By 2.2 + 2.3 we get a universe with GCH and σ = ℵ0, θ = ℵ1, κ = ℵ2, λ = ℵω+1

satisfying the set theoretic requirements of 1.2. So as the Cantor discontinuum satisfies
clauses (D), (E) of 1.2 and the demand in 1.2(2) we are done by 1.2. �2.6

∗ ∗ ∗

Lastly, we start to resolve the connection between the various statements around. Now
[HJSh 249] continue and strengthen [Sh 108], [Sh 88a] (and [HJSh 697] continue them). We
show that by a “small nice forcing” (not involving extra large cardinals assumption) we can
get the result of [HJSh 249] used above from the one in [Sh 108], [Sh 88a]. (See also [Sh
652, §5] on the semi-additive colouring involved, i.e. it is proved that consistently there is
a colouring of the kind appearing in the analysis (there, or see the proof of 2.7 below)). On
I[λ] see [Sh 108], [Sh 88a], [Sh 420, §1]. However, there is a price, our “small nice forcing”
has to violate G.C.H. quite strongly.

2.7 Claim. Assume
(a) cf(µ) = κ < µ and (∀α < µ)(|α|κ < µ) and λ = µ+

(b) S ⊆ {δ < λ : cf(δ) = κ+} is stationary, S /∈ I[λ] and

(c) 2κ+
< λ and κ = κ<κ.

Then for some forcing notion Q we have:
(α) Q is (< κ)-complete, |Q| = κ+ and Q is κ+-c.c.
(β) in VQ, for some stationary S′ ⊆ S there is a sequence 〈Aδ : δ ∈ S′〉 such that each

Aδ is an unbounded subset of δ of order type κ+ and δ1 �= δ2 ∈ S′ ⇒ |Aδ1 ∩Aδ2 | < κ

Proof. Let µ =
∑
i<κ

λi where λi < µ is increasing continuous with i, λ0 > κ. Choose

Ā = 〈Aα : α ∈ S〉, with Aα = {γα,ε : ε < κ+} being any unbounded subset of α of order
type κ+ and γα,ε increasing with ε.
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We can find āα = 〈aα
i : i < κ〉 for α < µ+ such that

(∗)1 α =
⋃
i<κ

aα
i , aα

i is increasing continuous in i, |aα
i | ≤ λi

(∗)2 if α ∈ aβ
i then aα

i ⊆ aβ
i .

Without loss of generality

(∗)3 Aα ⊆ aα
0 .

Let c : [µ+]2 → κ be c{α, β} = Min{i : α ∈ aβ
i } for α < β < λ+ so

� α < β < γ ⇒ c{α, γ} ≤ Max{c{α, β}, c{β, γ}}.
For α ∈ S let cα : [κ+]2 → κ be defined by:

for ε < ζ < κ+ we let

cα{ε, ζ} = c{γα,ε, γα,ζ}.

Let C = {cα : α ∈ S} so cα ∈ ([κ+]2)κ, hence |C| ≤ 2κ+
. Let for c ∈ C, Sc = {α ∈ S :

cα = c}, so 〈Sc : c ∈ C〉 is a partition of S to ≤ 2κ+
< µ+ sets hence necessarily for

some c∗ ∈ C we have

(∗)4 Sc∗ /∈ I[λ] and in particular is stationary.

We fix c∗. We define a forcing notion Q:

(A) p ∈ Q iff p = (up, ξp) where up ∈ [κ+]<κ and ξp < κ and Rang(c∗ � [up]2) ⊆ ξp

(B) Q |= p ≤ q iff: (p, q ∈ Q and)
(i) up ⊆ uq

(ii) ξp ≤ ξq

(iii) for every β ∈ up and α ∈ (uq\up) ∩ β we have c∗{α, β} ≥ ξp.

Now
(∗)5 (a) Q is a (< κ)-complete partial order of cardinality κ+

(b) Q′ =: {p ∈ Q : up has a maximal element} is a dense subset of Q′

(c) if α < κ+ then Q′
α = {p ∈ Q : up has a maximal element and

max(u′) > α} is a dense subset of Q′.
[Why? As κ = κ<κ clearly |Q| = κ+ and Q is closed under union of length < κ,
together we have Clause (a), as for clause (b), for any p ∈ Q choose j ∈ (sup(up) +
1, κ+) and define q = (uq, ξq) by uq = up ∪ {j} and ξq = sup({ξp} ∪ Rang(c∗ �
[uq]2)) + 1 clearly p ≤ q ∈ Q (clause (iii) of (B) is empty) and uq has a last member
j. Clause (c) has the same proof except that we choose j > α]

(∗)6 Q satisfies the κ+-c.c.
[Why? Assume toward contradiction that 〈pi : i < κ+〉 are pairwise incompatible.
Without loss of generality pi ∈ Q′. As κ = κ<κ without loss of generality 〈upi :
i < κ+〉 is a ∆-system with heart u∗. Also without loss of generality ξpi = ξ∗. So
C = {δ < κ+ : upδ\u∗ is disjoint to δ and (∀j < δ)(upj ⊆ δ)} is a club of κ+.
For δ ∈ C let εδ = Min(upδ\δ) and ζδ = max(upδ ) so δ ≤ εδ ≤ ζδ. Now assume
α < β are from C, and pα, pβ is incompatible. Why is q = (upα ∪ upβ , ξ) not a
common upper bound where we let ξ = sup({ξ∗} ∪ Rang(c � [upα ∪ upβ ]2)) + 1?
As q ∈ Q and as upα ∩ α = upβ ∩ β, upα ⊆ β and ξ∗ = ξpα = ξpβ ≤ ξq clearly
pα ≤ q, hence necessarily ¬(pβ ≤ q) so clause (iii) of (B) fails, i.e. for some
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γ2 ∈ upβ and γ1 ∈ uq ∩ γ2\upβ (hence γ1 ∈ upα\α and γ2 ∈ upβ\β) we have
c∗{γ1, γ2} < ξpβ = ξ∗. But εα ≤ γ1 and εα < γ1 ⇒ c∗{εα, γ1} < ξpα = ξ∗ and
γ2 ≤ ζβ and γ2 < ζβ ⇒ c∗{γ2, ζβ} < ξpβ = ξ∗. Hence by � above necessarily
c∗{εα, ζβ} < ξ∗.
So for δ ∈ Sc∗ , 〈γδ,εi : i ∈ C〉 is strictly increasing hence with limit δ and for each
i ∈ C, γδ,ζi is above {γδ,εj : j < i} but < δ and

j < i ⇒ c{γδ,εj , γδ,ζi} < ξ∗ ⇒ γδ,εj ∈ a
γδ,ζi

ξ∗ .

By [Sh:108] it follows that S ∈ I[λ] (or directly, for every γ < λ, |{〈γδ,εj : j ∈
C ∩ i∗〉 : δ ∈ S, i∗ ∈ Cζ , γδ,ζ∗

i
= γ}| < λ as for each i < κ+ (and γ) we have

≤ |aγ
ξ∗ ||i∗| ≤ (λξ∗)|i| ≤ µ possibilities); contradiction to (∗)4. So Q satisfies the

κ+-c.c.]

Now clearly for every i < κ+ there is pi ∈ Q′ such that i < max(upi), hence (by
(∗)6), for some i(∗) < κ+ we have pi(∗) �Q “W

˜
1 = {i : pi ∈ G and cf(i) = κ} is

stationary in κ+”. Let pi(∗) ∈ G ⊆ Q with G generic over V and W1 = W
˜

1[G]. Let

C = {δ < κ+ : (∀i < δ)[sup(upi) < δ]}, it is a club of κ+. Let W2 = C ∩W1 and for
i ∈ S2 let εi = Min(upi\i), ζi = max(upi). Now

(∗)7 if i ∈ W2 and ξ < κ, then {j ∈ W1 ∩ i : c∗(εj , εi) < ξ} has cardinality < κ.
[Why? By density argument for some q ∈ G we have pi ≤ q and ξq > ξ. Now if j ∈ W1∩i\uq

then pj ∈ G hence for some q+ ∈ G ⊆ Q we have q ≤ q+ & pj ≤ q+, so εj ∈ uq+ ∩ εi and
as q ≤ q+ by the definition of ≤Q, necessarily c∗(εi, εj) ≥ ξq > ξ, as asserted.]

Now for δ ∈ Sc∗ define A′
δ = {γδ,ε : ε ∈ W2}. So A′

δ is an unbounded subset of δ of order
type κ+.

(∗)8 if δ1 �= δ2 are from Sc∗ then A′
δ1

∩ A′
δ2

has cardinality < κ.

[Why? Without loss of generality δ1 < δ2, let ε(∗) ∈ S2 be such that δ1 < γδ2,ε(∗). As-
sume toward contradiction that A = A′

δ1
∩ A′

δ2
has cardinality ≥ κ. Recall (by (∗)3)

that β ∈ A ⇒ c{β, δ1} = 0; now letting ξ∗ = c{δ1, γδ2,ε(∗)} < κ we get by � that
β ∈ A ⇒ c{β, γδ2,ε(∗)} ≤ max{c{β, δ1}, c{δ1, γδ1,ε(∗)} = max{0, ξ∗} = ξ∗.
So A− = {ε < κ+ : γδ2,ε ∈ A} has cardinality κ and ε ∈ A− ⇒ c∗{ε, ε(∗)} ≤ ξ∗, contradict-
ing (∗)7.]
So we are done. �2.7

2.8 Claim. Assume
(A)(i) λ > κ > θ > σ ≥ ℵ0 and κ = κ<κ

(B)1 A ⊆ [λ]θ and A1 �= A2 ∈ A ⇒ |A1 ∩ A2| < σ.
Then for some forcing notion Q and Q-name Ã′ of a subset of A we have:

(a) Q is a strategically (< κ)-complete forcing notion (hence add no new sequence of
length < κ)

(b) Q is κ+-c.c. forcing notion of cardinality λ<κ

(c) in VQ, clauses (A)(i), (B)1 above still hold for A hence for Ã′ and Ã′ satisfies also

(B)2 from 1.2, i.e.
A is (< κ)-free
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(d) if λ, κ,A satisfies clause (C) of 1.2 in V, then λ, κ, Ã satisfies clause (C) in VQ

(e) like clause (d) for (C)∗ from 1.4

Proof. Let A = {Aζ : ζ < λ∗} with no repetitions.
Let Q be the set of p = (v, v∗) = (vp, vp

∗) such that:
(a) v∗ ⊆ v ∈ [λ∗]<κ

(b) there is a list ζ̄ = 〈ζ(ε) : ε < ε∗〉 of v∗ such that for every ε < ε∗ we have Aζ(ε) ∩⋃
ξ<ε

Aζ(ξ) has cardinality < σ; we call 〈ζ(ε) : ε < ε∗〉 a witness, also the list ζ̄ and

the the well ordering on vp
∗ it induces are called witnesses.

The order is defined by

p ≤ q iff (α) vp
∗ ⊆ vq

∗ and

(β) vp\vp
∗ ⊆ vq\vq

∗
(γ) every ζ̄ witnessing p ∈ Q can be end-extended to ζ̄′

witnessing q ∈ Q.

Define Q-names Y
˜

= ∪{vp
∗ : p ∈ G

˜
Q} and Ã′ = {Aζ : ζ ∈ Y

˜
}. Now

(∗)1 Q is a partial order
(∗)2 |Q| = (λ∗)<κ ≤ (λ<θ)<κ = λ<κ

(∗)3 any increasing continuous sequence of members of Q of length < κ has a least upper
bound.
Hence

(∗)4 Q is strategically (< κ)-complete.

For p ∈ Q let up = ∪{Aζ : ζ ∈ vp}
(∗)5 for p ∈ Q we have up ∈ [λ]<κ and p ≤ q ⇒ up ⊆ uq.

Let Q′ = {p ∈ Q : if ζ < λ∗ and |Aζ ∩up| ≥ σ then ζ ∈ vp}; compare with the proof
of 1.7. For p ∈ Q let vp

⊗ = {ζ < λ∗ : |Aζ ∩ up| ≥ σ}, so:

(∗)6 (a) vp ⊆ vp
⊗ and p ∈ Q ⇒ |vp

⊗| ≤ κ and
(b) if (∀α < κ)[|α|σ < κ] then p ∈ Q ⇒ |vp

⊗| < κ, and
(c) if p ∈ Q then (p ∈ Q′) ⇒ (vp

⊗ = vp) and
(d) Q′ is a dense subset of Q if (∀α < κ)[|α|σ < κ]

[Why? E.g. for clause (d), let p ∈ Q we choose by induction on ε ≤ σ+(< κ) a condition pε

such that: p0 = p, vpε∗ = vp
∗ , pε is increasing continuous with ε and vpε+1 = {ζ < λ∗ : ζ ∈ vpε

or just |Aζ ∩upε | ≥ σ}. There are no problems and pσ+ is as required as |Aζ ∪upσ+ | ≥ σ ⇒
for some ε < σ+, |Aζ ∩ upε | ≥ σ ⇒ for some ε < σ+, ζ ∈ vpε+1 ⊆ vpσ+ .]

(∗)7 if p ∈ Q′, ζ ∈ λ∗\vp or just p ∈ Q, ζ ∈ λ∗\vp
⊗ then p′ = (vp ∪ {ζ}, vp

∗ ∪ {ζ}) and
p′′ = (vp ∪ {ζ}, vp

∗) are in Q (even p ∈ Q′ ⇒ p′ ∈ Q′) and are ≥ p.

We say p0, p1 ∈ Q are isomorphic if otp(vp0 ) = otp(vp1 ), otp(up0) = otp(up1), and
OPvp1 ,vp0 maps vp0∗ onto vp1∗ , OPup1 ,up0 maps up0 onto up1 and for ζ ∈ vp0 , α ∈ up0

we have α ∈ Aζ ⇔ OPup1 ,up0 (α) ∈ AOPvp1 ,vp0 (ζ)
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(∗)8 Q satisfies the κ+-c.c.
[Why? Let pα ∈ Q for α < κ+. Let vα =

⋃
β<α

v
pβ

⊗ and uα = ∪{Aζ : ζ ∈ vα} so

upβ ⊆ uα for β < α and 〈vα : α < κ+〉, 〈uα : α < κ+〉 are increasing continuous.
As vpα ∈ [λ∗]<κ, we can find stationary S ⊆ {δ < κ+ : cf(δ) = κ} and v such that
α ∈ S ⇒ vpα ∩ vα = v. Similarly without loss of generalityα ∈ S ⇒ upα ∩ uα = u.
Without loss of generality for α, β ∈ S the conditions pα, pβ are isomorphic, the
isomorphisms being the identity v and u. So vpα∗ ∩ v = v∗ for some v∗ ⊆ v. Let <∗

α

be a well ordering of vpα∗ which witnesses pα ∈ Q, so without loss of generality<∗
α�

v∗ =<∗. Let α < β be in S and define q = (vpα ∪ vpβ , vpα∗ ∪ vpα∗ ). Clearly vq
∗ ⊆ vq ∈

[λ∗]<κ, also ζ ∈ vpα\vpβ or ζ ∈ vpβ\vpα implies |Aζ ∩ u| < σ.
(Why? If not by the isomorphism of pα and pβ we can find ζ1 ∈ vpα\vpβ , ζ2 ∈
vpβ\vpα such that ζ2 = OPvpβ ,vpα (ζ1) and ζ ∈ {ζ1, ζ2} and Aζ1 ∩ u = Aζ2 ∩ u, so
|Aζ�

∩ u| ≥ |Aζ1 ∩ Aζ2 | ≥ σ hence ζ2 ∈ v
pζ1⊗ hence ζ2 ∈ v so ζ2 ∈ vpα ∩ vpβ hence

ζ1 = ζ2 ∈ vpα ∩ vpβ , contradiction.
Hence ζ ∈ vpα\vpβ ⇒ |Aζ ∩ upβ | < σ (otherwise Aζ ∩ upβ ⊆ uβ ∩ upβ = u hence

|Aζ ∩u| ≥ σ and get a contradiction by the previous statement) and ζ ∈ vpβ\vpα ⇒
|Aζ ∩ vpα | < σ (similar proof). Now define a two-place relation <∗ on vq

∗:

ζ1 <∗ ζ2 iff ζ1 <∗
α ζ2 (so ζ1, ζ2 ∈ vpα)

or ζ1 ∈ vpα∗ & ζ2 ∈ v
pβ∗ \vpα∗

or {ζ1, ζ2} ⊆ v
pβ∗ \vpα∗ & ζ1 <∗

β ζ2

Easily <∗ is a well order of vq
∗ (as ζ ∈ v

pβ∗ \vpα∗ ⇒ |Aζ ∩upα | < σ), and it is a witness.
So q ∈ Q. Does pα ≤ q? Clauses (α), (β) are very straight and for clause (γ), as
pα, pβ are isomorphic for any given witness <1, a well ordering of vpα∗ , we can find
<2, a witness for pβ which is a well ordering of v

pβ∗ , and is conjugate to <1; now
use <1, <2 as we use <∗

α, <∗
β above. So really pα ≤ q. Similarly pβ ≤ q.]

(∗)9 �Q “Ã′ = {Aζ : ζ ∈ ∪{vp
∗ : p ∈ G

˜
Q}} is (< κ)-free”.

[Why? Read the definitions of Q and of being (< κ)-free, remembering that forcing
with Q add no new sets of ordinals < κ as it is strategically (< κ)-complete.]

(∗)10 if p, q ∈ Q are compatible, then they have an upper bound r ∈ Q such that vr =
vp ∪ vq

(∗)11 if A satisfies clause (C) of 1.2 then Ã′ satisfies it in VQ.

[Why? Assume p∗ ∈ Q, p∗ �Q “F
˜

: λ → [λ]≤κ is a counterexample”. As Q satisfies the

κ+-c.c. and as increasing the F
˜
(α) is O.K., without loss of generality each F

˜
(α) is an object

from V so for some function F : λ → [λ]≤κ from V we have F
˜

= F . As we can increase

each F (α), without loss of generality ζ ∈ vp∗
⊗ ⇒ Aζ ⊆

⋂
α

F (α). As V,A satisfies clause

(C) there are ζ and A ∈ [Aζ ]θ which is F -free, by the previous sentence ζ /∈ vp∗
⊗ . Define

q = (vq, vq
∗), vq = vp∗ ∪ {ζ}, vq

∗ = vp∗
∗ ∪ {ζ}. It is easy to prove p∗ ≤ q ∈ Q, the point being

|Aζ ∩∪{Aξ : ξ ∈ vp∗
∗ }| < σ which holds as ζ /∈ vp∗

⊗ , and q forces that A ∈ [Aζ ]θ is as required
concerning F .] �2.8

2.9 Observation. Assume that κ = κ<κ < λ and S ⊆ λ stationary. Then for some κ+-c.c.,
strategically κ-complete forcing notion Q of cardinality λ<κ, we have �Q “S is the union of
≤ κ sets each not reflecting any δ of cofinality < κ”.
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Proof. Straightforward. [Used in (C) ⇒ (D) of the proof of 3.2 below.] �2.9

So putting together the claims above we can conclude, e.g.
2.10 Conclusion If (∗) below holds, then there is a forcing notion P of cardinality 2µ = µσ

not adding sequences of length < κ, not collapsing cardinals ≤ µ+ (or > 2µ), not changing
cofinalities such that in VP the cardinals (σ < θ < κ = κ<κ, 2κ ≤ µ) satisfies the assumption
of 1.2; also its conclusion and (C)∗ of 1.7 where

(∗) σ = cf(σ), θ = σ+ < κ = κ<κ < µ, µ strong limit singular of cofinality σ such that
{δ < µ+ : cf(δ) = σ+} /∈ I[λ].



ANTI-HOMOGENEOUS PARTITIONS OF A TOPOLOGICAL SPACE 475

§3 Equi-consistency

Let ω2 denote here the Cantor discontinuum.
The following theorem clarifies the consistency strength of the problem to a large extent.
We can hardly expect a stronger kind of result as long as inner models for supercompacts
have not been discovered. Concentrating on ω2 is for historical reason; we can replace ℵ0

by µ. Also, using the same claims we can replace λ > �2 by other restrictions. Note that
3.7 continues [Sh 460, §3], [HJSh 249]. The claims will give more, naturally. However, a
real problem is:
3.1 Problem: What occurs if we demand GCH?

3.2 Theorem. The following are equi-consistent with ZFC + κ = cf(κ) > 2ℵ0 . (In fact
we get more than equiconsistency: the model for one statement is gotten from another by
(set) forcing. Moreover, the forcing notions we use are from a very restricted family where
κ is involved in its definition. We use only forcing notions which preserves the cardinals
and cofinalities ≤ (2ℵ0)+ and even ≤ κ and do not change the value of 2ℵ0 , in fact finite
composition of κ-complete ones and c.c.c. of cardinality ≤ 2ℵ0 ones; so we can add 2ℵ0 = ℵ1

or 2ℵ0 = ℵ2 or 2ℵ0 = ℵω3+ω+3 or whatever, to all clauses simultaneously)

(A)[ω2] = (A)(ω2) there is a compact Hausdorff space X such that X →w (ω2)12 but no
subspace with ≤ 2<κ points has this property6 (on →w see 1.1(2) and ω2 is the Cantor
discontinuum)

(A)+ like (A)(ω2) replacing ω2 by “for any Hausdorff space Y ∗ with ≤ 2ℵ0 points”

(B)[ω2] = (B)(ω2) there is a compact Hausdorff space X with clopen basis such that X →
(ω2)1

< cf(2ℵ0)
but no subspace with ≤ 2<κ points has this property

(B)+ like (B)[ω2] replacing ω2 by “for any Hausdorff space Y ∗ with ≤ 2ℵ0 points” and
demand X has a clopen basis only if Y has; i.e. for every Hausdorff space Y ∗ with ≤ 2ℵ0

points there is a Hausdorff space X with clopen basis if Y ∗ has, such that X → (Y ∗)1
<cf(2ℵ0 )

but no subspace of X with ≤ 2<κ points has this property
(C) there are λ, S, f̄ such that

(1) (a) S ⊆ λ is stationary, λ > 2<κ is regular
(2) (b) f̄ = 〈fδ : δ ∈ S〉
(3) (c) fδ is a one-to-one function from A ⊆ ω2 of cardinality 2ℵ0 to δ

(4) (d) if δ1 �= δ2 then {η ∈ ω2 : fδ1(η) = fδ2(η)} has scattered closure (in the
topological space ω2)

(D) there are λ, S, Ā such that
(1) (a) S ⊆ λ is stationary, λ > 2<κ is regular
(2) (b) Ā = 〈Aδ : δ ∈ S〉
(3) (c) Aδ is a subset of δ of cardinality 2ℵ0

(4) (d) for δ1 �= δ2 from S we have Aδ2 ∩ Aδ1 is finite
(5) (e) {Aδ : δ ∈ S} is κ-free, that is, for any u ∈ [S]<κ there is a sequence 〈Bδ : δ ∈ u〉

such that Bδ ∈ [Aδ]<ℵ0 and 〈Aδ\Bδ : δ ∈ u〉 are pairwise disjoint
(6) (f) if F : λ → [λ]≤κ then for some δ ∈ S the set Aδ is F -free.

6of coures, if, e.g., κ = (2ℵ0 )+ this holds
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3.3 Remark. 1) Note that we can easily add clauses sandwiched between two existing ones.
We can also add the parallel statement on X → [Y ]1

cf(2ℵ0 )
, see 3.12, 3.13, 3.8.

2) We can add the case of regular spaces (i.e. T3) or work as in 1.7.
3) Clearly most of the proof of most arrows in the proof (of 3.2) have little to do with the
properties of the topological space ω2; still mainly 3.14 does, so

3.4 Question: With what can we replace the space ω2 (but see 4.17(2))?
We make some definitions and prove some claims before proving 3.2. One of them (3.13)

depends on §4, also 3.7, 3.8 which are not explicitly needed. The following definition is used
in 3.7. To see the point of this definition look at Example 3.6 below and part (2) of the
definition.

3.5 Definition. 1) For a cardinal κ and I0, I1 such that I� ⊆ {(a, b) : a, b ⊆ κ are disjoint
(normally κ = ∪{a∪ b : (a, b) ∈ I0 ∪ I1}) so we may forget to mention κ) and cardinal θ we
say that a cardinal λ is (I0, I1, θ)-approximate or (κ, I0, I1, θ)-approximate if we can find
P̄ = 〈Pα : α ∈ C〉 such that

(i) C a club of λ

(ii) Pα ⊆ [α]<θ for α ∈ C and |Pα| ≤ Min(C\(α + 1))
(iii) for any 1-to-1 function f from κ to λ, for some α ∈ C at least one of the following

holds
(a) for some c ∈ Pα and (a, b) ∈ I1 we have (∀i ∈ a)(f(i) ∈ c) and (∀i ∈ b)[f(i) ≥

α]
(b) for some (a, b) ∈ I0 we have

(α) (∀i < κ)(f(i) < α → i ∈ a)
(β) (∀i < κ)[i ∈ b → α ≤ f(i) < Min(C\(α + 1))].

2) If c� is a function from P(κ) to P(κ) and K ⊆ P(κ) and

I1[κ, c�, K] = I1[c�, K] = I1 = {(a, b) : a ⊆ κ, b ∈ K and b ⊆ c�(a)}

I0[κ, c�, K] = I0[c�, K] = I0 = {(a, b) : a ⊆ κ, b ∈ K and a ∩ b = ∅}
then we may say λ is (K, c�, θ)-approximate or (κ,K, c�, θ)-approximate instead of λ is
(I0, I1, θ)-aproximate.
3) We may replace κ by another set of this kind call the domain of the tuple (understood
from I0, I1). We may write this set before I0, i.e. in the place of κ for clarification.
4) We may replace (I0, I1, θ) by (I, θ) if I is a set of pairs (I0, I1) such that 〈Pα : α ∈
C〉 satisfies the requirement above for all the triples (I0, I1, θ) such that (I0, I1) ∈ I (not
necessarily all pairs have the same domain A).
Similarly, K stands for a set of tuples (κ,K, c�, θ) or in short (κ,K, c�) when θ is understood
from the context or even (K, c�) as in part (2). (We may even vary θ).

Concerning 4.4 below
3.6 Examples: 1) Let C be a Cantor set (say ω2),
c�C is the (topological) closure operation on subsets of C
KC = {A ⊆ C : A is closed perfect hence uncountable} and IC

� = I�[C, c�, KC] for � = 0, 1;
see Definition 3.5(2).
2) Let R be the real line, c�R be the (topological) closure operation on subsets of R and
KR = {A ⊆ R : A is closed perfect uncountable, bounded (from below and above)} and
IR
� = I�(R, c�R, KR) for � = 0, 1.
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3.7 Lemma. Assume

(a) λ > χ ≥ κ ≥ θ and σ are infinite cardinals,

(b) c� is a partial function from [λ]<θ to K ⊆ [λ]≤κ

(c) K is a set of triples (κ,K∗, c�∗) with K∗ ⊆ P(κ), c�∗ a function from [κ]<θ to P(κ)
as in Definition 3.5(2) above (for θ)

(d) if b ∈ K, then for some (κ,K∗, c�∗) ∈ K and one to one function f from κ into b,
we have:
(α) b′ ∈ K∗ ⇒ {f (α) : α ∈ b′} ∈ K

(β) a′, b′ ⊆ κ & c�∗(a′) = b′ ⇒ c�{f (α) : α ∈ a′} ⊇ {f (α) : α ∈ b′}
(e) for every A ∈ [λ]≤χ we can find a [K, σ]-colouring c of A, where:

� for any A ⊆ λ, c is a [K, σ]-colouring of A means that c is a function from A
to σ such that a ∈ K & a ⊆ A ⇒ Rang(c � a) = σ

(f) for every µ, if χ < µ ≤ λ then µ is (K, θ)-approximate.

Then there is [K, σ]-colouring c of λ.

Proof. See after the proof of 4.14 below. (The reader may prefer to read first §4 up to the
proof of 3.7, 3.13).

3.8 Conclusion: 1) Assume

(a) every cardinal µ, 2ℵ0 < µ ≤ λ is (C,KC, c�C,ℵ1)-approximate (using the notation
of 3.6(1))

(b) X is a Hausdorff topological space.

Then X � (Cantor set)12 moreover X � [Cantor set]1
2ℵ0 , see Definition 3.12 below.

2) We can replace in part (1), C by R.

Proof. By 3.7 (and 3.6). �3.8

3.9 Claim. The forcing notions in 1.2 and in 2.8 satisfies, e.g., the condition ∗σ+

κ+ ; see
below Definition 3.10(1A).

Proof. Included in the proof of 1.2, 2.8, respectively. �3.9

3.10 Definition. 1) Let D be a normal filter on µ+ to which {δ < µ+ : cf(δ) = µ} belongs.
A forcing notion Q satisfies ∗ε

D where ε is a limit ordinal < µ, if player I has a winning
strategy in the following game ∗ε

D[Q] defined as follows:
Playing: the play finishes after ε moves.

In the ζ-th move:
Player I — if ζ �= 0 he chooses 〈qζ

i : i < µ+〉 such that qζ
i ∈ Q

and (∀ξ < ζ)(∀Di < µ+)pξ
i ≤ qζ

i and he chooses a
function fζ : µ+ → µ+ such that for the D-majority
of i < µ+, fζ(i) < i;
if ζ = 0 let qζ

i = ∅Q, fζ = is identically zero.
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Player II — he chooses 〈pζ
i : i < µ+〉 such that (∀Di)qζ

i ≤ pζ
i and pζ

i ∈ Q.

The Outcome: Player I wins provided that for some E ∈ D: if
µ < i < j < µ+, i, j ∈ E and

∧
ξ<ε

fξ(i) = fξ(j) then the set {pζ
i : ζ < ε} ∪ {pζ

j : ζ < ε} has

an upper bound in Q.
1A) If D is D∗

µ+ =: {A ⊆ µ+ : for some club E of µ+ we have i ∈ E & cf(i) = µ ⇒ i ∈ A}
we may write µ instead of D (in ∗ε

D and in the related notions defined below and above).
Usually we assume D∗

µ+ ⊆ D.
2) We may allow the strategy to be non-deterministic, e.g. choose not fζ just fζ/D.
3) We say a forcing notion Q is ε-strategically complete if for the following game,

⊗ε
Q player

I has a winning strategy.
A play last ε moves. In the ζ-th move:
Player I - if ζ �= 0 he chooses qζ ∈ Q such that (∀ξ < ζ)pξ ≤ qζ if ζ = 0 let qζ = ∅Q.
Player II - he chooses pζ ∈ Q such that qζ ≤ pζ .

The Outcome: In the end Player I wins provided that he always has a legal move.

3.11 Lemma. If µ = µ<µ, ε a limit ordinal < µ, then the property “Q is (< µ)-strategically
complete and has ∗ε

µ” is preserved by (< µ)-support iteration.

Proof. See [Sh 546] and history there; in each coordinate we preserve that the sequence of
conditions is increasingly continuous and on each stationary S ⊆ {δ < µ+ : cf(δ) = µ} on
which the pressing down function is constant the conditions form a ∆-system.

�3.11

We can also consider

3.12 Definition. 1) We say X∗ → [Y ∗]nθ if X∗, Y ∗ are topological spaces and for every
h : [X∗]n → θ there is a closed subspace Y of X∗ homeomorphic to Y ∗ such that for some
α < θ, α /∈ Rang(h � [Y ]n) is not θ.
2) If we omit the “closed” we shall write →w instead of → and �, �w denote the negations.
[Compare with 3.2, 3.7.]

3.13 Claim. 1) Assume X is a Hausdorff space with λ points. Assume further X → [ω2]1θ
and µ ≥ 2ℵ0 but no subspace X∗ of X with ≤ µ points satisfy X∗ → [ω2]1θ and µ = µℵ0 .
Then

(∗) we can find a regular κ ∈ (µ, λ], a stationary S ⊆ κ and a sequence f̄ = 〈fα : α ∈ S〉
such that:
(i) Dom(fα) ⊆ ω2 has cardinality 2ℵ0

(ii) fα is one-to-one and is a homeomorphism from ω2 � Dom(fα) onto X �
Rang(fα)

(iii) if α �= β are from S, then {η ∈ Dom(fα) : fα(η) ∈ Rang(fβ)} has scattered
closure in ω2

(iv) for a club of δ ∈ S we have Rang(fα) ⊆
⋃

β∈α∩S

Rang(fβ).
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2) Similarly for →w and/or for R instead ω2.

We shall prove it later (after the proof of 4.14).
3.14 Observation: There is a c.c.c. forcing notion Q of cardinality 2ℵ0 such that:

�Q “there is h : ω2 → ω such that :

(α) if C(∈ V) is closed scattered then each

C ∩ h−1{n} is finite, and

(β) if A ⊆ (ω2) is uncountable (and from V)

then |A ∩ h−1{n}| = |A| for each n”.

Proof. Let p ∈ Q be (fp, Cp) where fp is a finite function from ω2 to ω and Cp is a finite
family of closed scattered subsets of ω2.
The order is:

p ≤ q iff fp ⊆ f q, Cp ⊆ Cq and C ∈ Cp & η ∈ C ∩ Dom(fq) &

η �= ν & ν ∈ C ∩ Dom(fq)\Dom(fp) ⇒ f q(η) �= f q(ν).

Clearly
(∗)1 Q is a forcing notion of cardinality 2ℵ0

(∗)2 Q satisfies the c.c.c.
[why? let pα ∈ Q for α < ω1, let Dom(fα) = {ηα,� : � < �α}, Cpα = {Cα,k : k < kα}
both lists with no repetitions and let mα = Min{m : 〈ηα,� � m : � < �α〉 is with
no repetitions}. Without loss of generality mα = m(∗), �α = �(∗), kα = k(∗), ηα,� �
m(∗) = ν�. By ∆-system lemma without loss of generality for some �(∗∗) ≤ �(∗) we
have:

(α) � < �(∗∗) ⇒ 〈ηα,� : α < ω1〉 is with no repetitions
(β) α < ω1 & � ∈ [�(∗∗), �(∗)) ⇒ ηα,� = η�

(γ) {ηα,� : α < ω1, � < �(∗∗)} is with no repetitions.

Now as each Cα,k is closed and scattered it is necessarily countable so without loss
of generality

α < β < ω1 & � < �(∗∗) ⇒ ηβ,� /∈
⋃

k<k(∗)
Cα,k.

We now choose by induction on � ≤ �(∗∗) sets A�, B� ∈ [ω1]ℵ1 , decreasing with n
such that

α ∈ A�+1 & β ∈ B�+1 & α < β → ηα,� /∈
⋃

k<k(∗)
Cβ,k.]

This is straight: let A0 = ω1 = B0; let A�, B� be given. Clearly for some α∗
� ∈ A�

the set {ηα,� : α ∈ A�\α∗
�} is ℵ1-dense in itself, i.e. (∀α ∈ A�\α∗

� )(∀n < ω)(∃ℵ1β ∈
A�)(ηβ,� � n = ηα,� � n). Let T� = {ηα,� � n : α ∈ A�\α∗

� and n < ω}, it is a subtree
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of ω>2 and lim(T�) is a perfect subset of ω2. So for each β ∈ B� for some ν�
β ∈ T� we

have (∀ρ ∈
⋃
k

Cβ,k)(¬ν�
β �ρ) so for some ν� ∈ T� we have B�+1 =: {β ∈ B� : ν�

β = ν�}
is uncountable and let A�+1 =: {α ∈ A� : ν� � ηα,�}.
For α < β, α ∈ A�(∗∗), β ∈ B�(∗∗), we have pα, pβ are compatible.]

(∗)3 if A ⊆ ω2 is uncountable and n < ω then IA,n =: {p : for some η ∈ A, fp(η) = n} is
dense open.
[Why? Let p ∈ Q. Now as C∗ =: ∪{C : C ∈ Cp} is closed and scattered hence
countable clearly for some η ∈ A we have η /∈ C∗ so q = (fp ∪ {(η, n)}, Cp) satisfies
p ≤ q ∈ Q ∩ IA,n.]

(∗)4 for each η ∈ ω2 the set
Iη = {p : η ∈ Dom(fp)} is dense open
[why? being open is trivial; as for density for p ∈ Q let n = sup(Rang(fp)) + 1
and without loss of generality p /∈ Iη hence η /∈ Dom(fp), now letting q = (fp ∪
{(η, n)}, Cp) we have p ≤ q ∈ Iη.]

(∗)5 for each closed scattered C, the set IC = {p : C ∈ Cp} is dense open
[why? immediate as p ∈ Q ⇒ p ≤ (fp, Cp ∪ {C}) ∈ Q.]

Let f
˜

= ∪{fp : p ∈ G
˜
}, it is a Q-name.

(∗)6 f
˜

is a function from (ω2)V to ω and for each closed scattered C ∈ V, f � C is one

to one except on a finite set.
[Why? For any p ∈ Q there is q such that p ≤ q ∈ Q & C ∈ Cq, now [q ≤ r ∈ Q ⇒
f r � (C\ Dom(fq)) is one to one]; so q �Q “f

˜
� (C\ Dom(fq)) is one to one, so as

Dom(fq) is finite we are done.]

(∗)7 �Q “A ∩ f
˜

−1{n} has cardinality |A| for A ∈ V, A ⊆ ω2, A uncountable”.

[Why? As in V we can find pairwise disjoint Ai ⊆ A for i < |A|, |Ai| = |A| and
apply (∗)3.]

Together we are done. �3.14

Proof of Theorem 3.2.

(B)+ ⇒ (B)[ω2]
Trivial (special case).

(A)+ ⇒ (A)[ω2]
Trivial (a special case).

(B)+ ⇒ (A)+

Trivial (stronger demands).

(B)[ω2] ⇒ (A)[ω2]
Trivial (stronger demands).

(A)[ω2] ⇒ (C)
By 3.13 for θ = 2, µ = 2<κ.

(C) ⇒ (D)
Forcing by Levy(κ, 2<κ) change nothing so without loss of generalityκ = κ<κ. Let

λ, S, f̄ = 〈fα : α ∈ S〉 be as in clause (C) of 3.2. Next let Q be the forcing notion
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from 3.14 which is a c.c.c. forcing notion of cardinality 2ℵ0 , so we get the conclusion of 3.14
so let h be as there and let g : (ω2)V → 2ℵ0 be one to one. W log α ∈ S ⇒ (2α0)ω|α. For
each α ∈ S let

Aα =: {(2ℵ0) × f(η) + g(η) : η ∈ Dom(fα) and h(η) = 0}.

we get: Aα ⊆ ω2, |Aα| = 2ℵ0 and for α �= β from S, Aα ∩ Aβ is finite. So clauses (a)-(d)
of clause (D) from Theorem 3.2 holds. Then we force by Levy(λ, 2<λ), nothing changes
but we get ♦S . By 2.4 without loss of generality clause (f) of (D) of 3.2 holds. By 2.8
without loss of generality we have the κ-freeness (i.e., clause (e) of (D) of 3.2 which is equiv-
alent to (B)2 of 1.2) while clause (f) of (D) of 3.2 (= clause (C) of 1.2) is preserved by clause
(d) of the conclusion of 2.8.

(D) ⇒ (B)+ and (D) ⇒ (A)+[2ω]
We do it by forcing but for the proof any κ such that ℵ1 ≤ cf(κ) = κ, 2<κ < λ can serve.

We can force by Levy(κ, 2<κ), so without loss of generalityκ = κ<κ.
First assume that κ > 2ℵ0 (as in the main case) and we restrict ourselves to spaces Y ∗

with a basis of cardinality < κ which is no restriction if κ > �2 or if we are proving
just (D) ⇒ (A)+[2ω], then we can use a product of forcing instead of iteration. Now any
strategically (< κ)-complete κ+-c.c. forcing notion preserves (D), we do not use this in this
first case, but still note it. By forcing by Levy(λ, 2<λ) (see 4.3) without loss of generality♦S

for the S of clause (D), this will be preserved for any forcing notion P if P has density ≤ λ,
which holds in our case.
Let 〈Y ∗

i : i < i∗〉 list the topological spaces as in clause (B)+ with set of points 2ℵ0 or
i∗ = 1 & Y ∗

0 = ω2, depending on what we are proving. For each i < i∗, let Qi be
the forcing from 1.2, the assumption of 1.2 holds by (D) and the assumptions on Y ∗

i and
X
˜

∗
i be the Qi-name of the topological space which Qi produces. Let Q be the product of

{Qi : i < i∗} with support < κ. Now Q is κ-complete. Hence by our present assumption no
new relevant space Y ∗ is added by forcing by Q.
Why is X

˜

∗
i as required, i.e., X

˜

∗
i → (Y ∗

i )1
<cf(2ℵ0 )

also in VQ? Forcing by Q add more

“colouring” c
˜
, i.e., functions from X

˜

∗
i , i.e., λ into some ordinal < 2ℵ0 . However, the proof

of 1.2 can be repeated for this case.
Second, consider the general case.

Now we use iterated forcing 〈Pj , Qi : j ≤ i(∗), i < i(∗)〉 with (< κ)-support, each satisfying
the ∗σ+

κ+ version of κ+-c.c. and for simplicity (< κ)-strategically complete (see 3.9). Now let
each Q

˜
i be as in 1.2 for some Y

˜

∗
i (a Pi-name of a topological space as in 1.2) and it forces an

example X
˜

∗
i . With suitable bookkeeping (if κ > 2ℵ0 is easier) we finish as those iterations

preserve “(< κ)-strategic completeness hence no new set of ordinals of cardinality < κ and
(the strong version of) κ+-c.c.” is preserved, see 3.11.
Still we have to prove that the example X∗

i we force to satisfy “X∗
i → (Y ∗

i )1σ if σ < cf(2ℵ0)”
has this property not only in VPi+1 but also in VPi(∗) . For this we repeat the relevant part
of the proof of 1.2 noting the explicit way the Qi’s; this will be presented in full in [Sh:F567].
�3.2

For self-containment we recall (really [Sh:g, II,2.2] and see [Sh 108], [Sh 88a]).

3.15 Claim. Assume κ is strongly compact and χ = cf(χ) ≤ cf(µ) < κ < λ = cf(λ) = µ+

(so λ = λ<κ and (∀α < µ)(|α|<κ < µ)) and a ⊆ Reg ∩ µ\κ, µ = sup(a), |a| = cf(µ) and
f̄ = 〈fα : α < λ〉 is a <Jbd

a
-increasing cofinal sequence in Πa.
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Then for some µ0 ∈ (χ, κ), we have cf(µ0) = cf(µ) < µ, (∀α < µ0)(|α|χ < µ0) and if
P = Levy(χ, µ0) ∗ Levy

˜
(µ++

0 , κ), in VP we have

(a) Sµ+

µ+
0

= {δ < µ+ : V |= cf(δ) = µ+
0 } ⊆ {δ < µ+ : cf(δ) = χ+} does not belong to

I[µ+],
(b) bad(f̄) ⊇ S∗ = {δ < µ+ : cf(δ) = µ+

0 , f̄ � δ has a <Jbda -lub
f ∈ Πa such that θ ∈ a ⇒ cf(f(θ)) < cf(δ)} is a stationary subset of µ+

(c) forcing by P, preserve µ+
0 is a cardinal and the stationarity of subsets of Sµ+

µ+
0

(from

V) and preserve “δ ∈ S∗ is not a good point in f̄” and f̄ = 〈fα : α < λ〉 is <Jbd
a

-
increasing cofinal in Πa; if µ = κ+ω, a = {µ+n : n ∈ (0, ω)} we get the result for∏
n<ω

ℵn/Jbd
ω .

Proof. The choice of µ0 (and clause (a)) is a main point in [Sh 108], [Sh 88a]. Now S∗ =
∪{S∗

µ+
0

: µ+
0 < κ, cf(µ0) = cf(µ) < µ0} is stationary by [Sh:g, 2.2, 5.6] using (∗)′ not (∗), so

for some µ+
0 , Sµ+

0
is stationary, and (c) is obvious. Of course, (b) ⇒ (a) by [Sh:g, I]. �3.15

Remark: We can joint 2.7 to 3.2; we will return to this elsewhere.
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§4 Decomposing families of almost disjoint functions

Let (I, J) be a pair of ideals on say θ = Dom(I, J) such that I ⊆ J and we consider a
family F of functions each from some A ∈ J+ to λ which are almost disjoint in the sense
that

� if f �= g are from F then {i < θ : i ∈ Dom(f) ∩ Dom(g) and f(i) = g(i)} ∈ I.
A decomposition is a representation of F as

⋃
α
Fα such that the Fα are pairwise disjoint,

“small” and f ∈ Fα ⇒ {i ∈ Dom(f) : f(i) /∈ ⋃{Rang(g) : g ∈ Fj for some j < α}}
is “small”. We try to prove that if such decomposition does not exist, then there are
“transparent” counterexamples.

This helps the equiconsistency in §3 and continue [Sh 161], [HJSh 249], [Sh:g, II,§6], [Sh
460, 3.9].
The reader can concentrate on the case that Y is a singleton.

4.1 Definition. 1) Let Y denote a set of pairs of the form (I, J) where
(a) I ⊆ J are ideals over a common set called Dom(I, J) = Dom(I) = Dom(J) or just
(b) ∅ ∈ I ⊆ J ⊆ P(Dom(I, J)) and [A ⊆ B ∈ I ⇒ A ∈ I], [A ⊆ B ∈ J ⇒ A ∈ J ],

Dom(I, J) /∈ J .
Let I+ = P(Dom(I))\I and J+ = P(Dom(J))\J .

Let κ(Y) = sup{|Dom(I, J)| : (I, J) ∈ Y}. We call Y standard if for each (I, J) ∈ Y, the
set Dom(I, J) is a cardinal; we call Y disjoint if 〈Dom(I, J) : (I, J) ∈ Y〉 is a sequence of
pairwise disjoint sets.
2) NFr1(λ,Y) means that for some λ∗ > λ we have NFr1(λ∗, λ,Y) which means that λ ≥
|Y| + κ(Y) and there are 〈F(I,J) : (I, J) ∈ Y〉 exemplifying it which means:

(a) F(I,J) ⊆ {f : f a function, Dom(f) ∈ J+}
(b) if f �= g ∈ F(I,J) then

{x : x ∈ Dom(f) ∩ Dom(g) but f(x) = g(x)} belongs to I

(c) λ ≥ | ∪ {Rang(f ) : f ∈ F(I,J) and (I, J) ∈ Y}|
(d) λ < λ∗ =

∑{|F(I,J)| : (I, J) ∈ Y}.
2) NFr2(λ,Y) means that λ is regular > |Y| + κ(Y) and there is 〈fδ : δ ∈ S〉 such that

(a) S ⊆ λ is stationary and is the disjoint union of 〈S(I,J) : (I, J) ∈ Y〉
(b) Dom(fδ) ∈ J+ and Rang(fδ) ⊆ δ for each δ ∈ S(I,J)

(c) δ1 �= δ2 ∈ S(I,J) ⇒ {x : x ∈ Dom(fδ1) ∩ Dom(fδ2) and fδ1(x) = fδ2(x)} ∈ I.
3) We omit N from NFr in parts (1) and (2) for the negation. If Y = {(I, J)} we may write
just (I, J).

4.2 Fact: 1) NFr1(λ,Y) is preserved by increasing Y to Y ′ when |Y ′| + κ(Y ′) ≤ λ. Also
NFr2(λ,Y) is preserved by increasing Y to Y ′ if |Y ′|+κ(Y ′) < λ. Similarly if NFr1(λ∗, λ,Y),
λ∗ ≥ λ∗

1 > λ1 ≥ λ, λ1 ≥ |Y1| + κ(Y1) and Y1 ⊇ Y then NFr1(λ∗
1, λ1,Y1).

2) NFr1(λ,Y) is equivalent to NFr1(λ+, λ,Y) which is equivalent to (∃(I, J) ∈ Y) NFr1(λ+,
λ, (I, J)).
3) If λ∗ is regular or at least cf(λ∗) > |Y| then NFr1(λ∗, λ,Y) iff there is (I, J) ∈ Y such
that NFr1(λ∗, λ, {(I, J)}).
4) NFr1(λ,Y) implies NFr2(λ+,Y).
5) NFr2(λ,Y) iff there is (I, J) ∈ Y such that NFr2(λ, {(I, J)}) and |Y| < λ.
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Proof. Check.

4.3 Claim. 1) Assume that NFr2(λ, {(I, J)}) and let f̄ = 〈fδ : δ ∈ S〉 exemplifies it and
τ++ < λ, τ ≥ |Dom(I, J)| and for simplicity κ = Dom(I, J). If ♦S then we can find
〈f ′

δ : δ ∈ S ∩ E〉 exemplifying NFr2(λ, {(I, J)}) and E a club of λ such that
(∗) if F : λ → [λ]≤τ then for some δ ∈ S ∩ E the set Rang(f ′

δ) is F -free (i.e. α �= β ∈
Rang(f ′

δ) ⇒ β /∈ F (α)).

2) The forcing of adding a Cohen subset of λ (i.e. (λ>2, �)) preserve “Ā exemplifies
NFr2(λ, {(I, J)})” (as it preserves “S is stationary”), add no bounded subsets to λ and
forces ♦S.

Proof. 1) As in the proof of 2.3.
Let h̄ = 〈hδ : δ ∈ S〉 be such that hδ : δ → [δ]≤τ and for every h : λ → [λ]≤τ the set

{δ ∈ S : hδ = h � δ} is a stationary subset of λ; such ḡ exists as we assume ♦S . Let
E = {δ < λ : τ++ × ω divide δ} it is a club of λ and for δ ∈ S ∩ E we define the function
gδ : τ++ → [τ++]≤τ by

gδ(β) = {γ < τ++ :for some ε1, ε2 < Dom(I, J) we have

τ++ × fδ(ε1) + γ ∈ hδ(τ++ × fδ(ε2) + β}.

Note that |gδ(β)| ≤ τ as hδ(τ++ × fδ(ε2) + β) has cardinality ≤ τ and the number relevant
of ε1, ε2 is ≤ |Dom(I, J)| = κ ≤ τ . So by [Ha61] there is an unbounded subset Zδ of κ++

such that β1 �= β2 ∈ Zδ ⇒ β1 /∈ gδ(β2).
Let Zδ = {γδ,ε : ε < τ++}, with γδ,ε increasing with ε. Now for δ ∈ S ∩ E we define
f ′

δ : Dom(I, J) → δ by

f ′
δ(ε) = τ++ × fδ(ε) + γδ,ε.

Now clearly f ′
δ is a function from κ = Dom(I, J) into λ, in fact, it is into δ as Rang(fδ) ⊆

δ & (τ++ × ω)|δ. Also for δ1 �= δ2 from S ∩ E

{ε < κ : f ′
δ1

(ε) = f ′
δ2

(ε)} = {ε < κ : τ++ × fδ1(ε) + γδ1,ε

= τ++ × fδ2(ε) + γδ2,ε} ⊆ {ε < κ : fδ1(ε) = fδ2(ε)} ∈ I.

Lastly, if δ ∈ S ∩ E and ε1 �= ε2 < κ and f ′
δ(ε1) ∈ hδ(f ′

δ(ε2)) then

τ++ × fδ(ε1) + γδ,ε1 = f ′
δ(ε1) ∈ hδ(f ′

δ(ε1)) = hδ(τ++ × fδ(ε2) + γδ,ε2)

⊆
⋃
ε<κ

hδ(τ++ × fδ(ε) + γδ,ε2)

so γδ,ε1 ∈ gδ(γδ,ε2) by the definition of gδ, but γδ,ε1 , γδ,ε2 are distinct members of Zδ,
contradiction to its choice. By the choice of 〈hδ : δ ∈ S〉, for every F : [λ] → [λ]≤τ for
stationary many δ ∈ S (hence δ ∈ S ∩E0 we have hδ = h � δ & δ ∈ S ∩E hence Rang(f ′

δ)
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is F -free.
2) Straight. �4.3

∗ ∗ ∗

Now we give sufficient conditions for the existence of decomposition which implies easily (in
the cases needed see later) the existence of suitable colouring. The reader may concentrate
on the case Y is a singleton.

4.4 The Decomposition Claim. Assume:

(a) Y is as in Definition 4.1(1)

(b) λ > µ ≥ |Y| + κ(Y)

(c) for no regular κ ∈ (µ, λ] do we have NFr2(κ,Y)

(d) c� is a function from [λ]≤µ to [λ]≤µ

(e) for A,B ∈ [λ]≤µ we have A ⊆ c�(A) and7 A ⊆ B ⇒ c�(A) ⊆ c�(B)

(f) P ⊆ [λ]≤µ has cardinality8 ≤ λ or at least has a dense9 such subfamily and satisfies:
for every A ∈ P there are a pair (I, J) ∈ Y, a set U ∈ J+ and a one to one function
f : U → A such that:

(α)f,A,I if U ′ ⊆ U & U ′ ∈ I+ then for some A′ ∈ P we have A′ ⊆ A ∩ c�({f (i) : i ∈ U ′})
(β)f,A,I there are U ′

α ⊆ U ,U ′
α ∈ I+ for α < α∗ for some α∗ ≤ µ such that for any U ′ ⊆

U ,U ′ ∈ I+ for some α < α∗ we have U ′
α ⊆ U ′ or at least A ∩ c�({f (i) : i ∈ U ′

α}) ⊆
A ∩ c�{f (i) : i ∈ U}.

(g) if A ∈ P then10 c�(A) = A.

Then
Dec(λ,P , µ,Y): for every χ > λ and x ∈ H(χ) there is a sequence 〈Mα : α < λ〉 such

that:

(i) Mα ≺ (H(χ),∈, <∗
χ)

(ii) µ ∪ {Y , λ, µ, x} ⊆ Mα and ‖Mα‖ = µ

(iii)
⋃

α<λ

Mα includes λ

(iv) Assume A ∈ P and define α(A) = Min{α ≤ λ : if α < λ then for some
(I, J) ∈ Y and U ∈ J+ and f : U → A which is one-to-one, we have {f,U} ∈ Mα

hence Rang(f ) ⊆ Mα and {i ∈ U : f(i) ∈
⋃

β≤α

Mβ} ∈ J+}}. Then α(A) < λ and

for some (I, J),U , f which are witnesses to α(A) = α we have:
{i ∈ U : f(i) ∈

⋃
β<α

Mβ} ∈ J , [we could have added here and in 4.5: moreover

for some X ∈ Mα of cardinality ≤ µ (so X ⊆ Mα) we have {i ∈ U : f(i) ∈
X\

⋃
β<α

Mβ} ∈ J+.]

7no real harm in adding c	(A) = c	(c	(A))
8see 4.5 below
9i.e. there is P ′ ⊆ P such that (∀A ∈ P)(∃B ∈ P ′)[B ⊆ A] and |P ′| ≤ λ
10used in 4.7
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(v) For any pregiven σ = cf(σ) ≤ µ we can demand Mα =
⋃
ε<σ

Mα,ε, Mα,ε increasing

with ε and 〈Mα,ζ : ζ ≤ ε〉 ∈ Mα,ε+1 and µ ∪ {Y , λ, µ, x} ⊆ Mα,ε.

Now below we shall prove that Claim 4.4 follows from the following variant (we change (d),
(e), (f)).

4.5 Claim. Assume
(a)′ Y is as in Definition 4.1(1)
(b)′ |X | = λ > µ ≥ |Y| + κ(Y)
(c)′ for no regular κ ∈ (µ, λ] do we have NFr2(κ,Y)
(d)′ F̄ = 〈Ft : t ∈ T 〉, T is a partial order of cardinality11 ≤ λ or at least density12 ≤ λ;

we consider the Ft’s as indexed sets such that t �= s ⇒ Fs ∩Ft = ∅ though they may
have common members, so f ∈ Ft(f)

(e)′ for each t ∈ T each member f ∈ Ft is a one-to-one function such that for some
(I, J) = (If , Jf ) ∈ Y we have Dom(f) ∈ J+, Rang(f ) ⊆ X

(f)′ if t ∈ T and f ∈ Ft, then there is a subset T [f ] of T of cardinality ≤ µ such that
T [f ] is a cover of T<f> which means (∀s ∈ T<f>)(∃t ∈ T [f ])[s ≤T t] where for
f ∈ Ft we let

T<f> =: {r ∈ T : and for some g ∈ Fr we have (Ig, Jg) = (If , Jf ) and

{i : i ∈ Dom(f), i ∈ Dom(g) and f(i) = g(i)} ∈ I+
f = I+

g }.

THEN
Dec(λ, F̄ , µ,Y): for every χ > λ and x ∈ H(χ) there is a sequence 〈Mα : α < λ〉 such

that:
(i) Mα ≺ (H(χ),∈, <∗

χ)

(ii) µ ∪ {Y , λ, µ, x} ⊆ Mα and ‖Mα‖ = µ

(iii)
⋃

α<λ

Mα includes λ

(iv) if s ∈ T , then for some t, s ≤T t ∈ T and for some α < λ and g ∈ Ft we have
(α) {i ∈ Dom(g) : g(i) ∈

⋃
β<α

Mβ} ∈ Jg

(β) t, g ∈ Mα hence Rang(g) ⊆ Mα

(v) for any pregiven σ = cf(σ) ≤ µ we can demand Mα =
⋃
ε<σ

Mα,ε where 〈Mα,ε : ε < σ〉

is increasing, µ∪{Y, λ, µ, M, ∗} ⊆ Mα,ε, Mα =
⋃
ε<σ

Mα,ε, 〈Mα,ζ : ζ ≤ ε〉 ∈ Mα,ε+1 and

〈Mβ : β < α〉 ∈ Mα,ε.

Before proving 4.5 we deduce 4.4 from it and prepare the ground.

Proof of 4.4 from 4.5. Clearly without loss of generalityY is disjoint and let the set of
elements of T be P and for A ∈ T we let

11light assumption by 4.2(4)
12i.e., there is T ′ ⊆ T satisfying |T ′| ≤ λ and (∀s ∈ T )(∃t ∈ T ′)(s ≤T t)
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FA =
{

f : for some (I, J) ∈ Y, we have Dom(f) ∈ J+ and,

f is one to one into A and clauses (α)f,A,I , (β)f,A,I of (f) of 4.4 hold
}

and for any f ∈ FA let (If , gf) be as in the definition of FA.
We define the partial order ≤T on T by: A1 ≤T A2 iff A2 ⊆ A1. We have to check

that the assumptions in 4.5 holds, now clauses (a)′, (b)′, (c)′ are the same as (a), (b), (c) of
4.4, and clauses (d)′, (e)′ are obvious. As for clause (f)′ it follows by clause (f) and the
definition of 〈FA : A ∈ P〉.
[Why? We are given in (f)′ the objects t ∈ T, f ∈ Ft so t = A ∈ P and let (I, J) = (If , Jf ) ∈
Y and U = Dom(f) ∈ J+. Now as f ∈ FA by the definition of FA let 〈U ′

α : α < α∗〉 be as
in subclause (β) of clause (f) of 4.4. For each α < α∗ choose A′

α as in subclause (α)f,A,I

of clause (f) of 4.4 for U ′ = U ′
α so in particular A′

α ∈ P and A′
α ⊆ A ∩ c�{f (i) : i ∈ U ′

α}.
Let us choose T [f ] =: {A′

α : α < α∗}, so obviously T [f ] ∈ [P ]≤µ = [T ]≤µ as α∗ ≤ µ. Let us
check that T [f ] is as required in clause (f)′ of 4.5. For being a cover: let r ∈ T〈f〉, i.e., let
r = A′ and (by the definition of T〈f〉 inside 4.5), there is g ∈ Fr such that (Ig, Jg) = (If , Jf )
satisfying U ′ =: {i : i ∈ Dom(f) and i ∈ Dom(g) and f(i) = g(i)} ∈ I+

f , so U ′ ∈ I+. So
(by clause (β)f,A,I from (f) from 4.4) for some α < α∗ we have A ∩ c�{f (i) : i ∈ U ′

α} ⊆
A ∩ c�{f (i) : i ∈ U ′}; by the choice of T [f ] we have A′

α ∈ T [f ], let s = A′
α.

Now s ∈ T[f ] and (by the choice of A′
α) clearly s = A′

α ⊆ A which means r ≤ s. Lastly,
T [f ] has cardinality ≤ |α∗| ≤ µ. So clause (f)′ of 4.5 holds.]

Finally let χ be large enough and x ∈ H(χ). So by 4.5 there is a sequence 〈Mα : α < λ〉
for our 〈FA : A ∈ T 〉, x, χ as required there. It is enough to show that 〈Mα : α < λ〉 is
as required in the conclusion of 4.4. Now clauses (i), (ii), (iii) and (v) of the conclusion of
4.4 are just like clauses (i), (ii), (iii) and (v) of the conclusion of 4.5, so we should check
only clause (iv). So assume A ∈ P and let α(A) be as defined there. By clause (iv) of
the conclusion of 4.5 applied to s = A there are t, α, g as there, i.e. s ≤T t, α < λ, g ∈ Ft

and {i ∈ Dom(g) : g(i) ∈
⋃

β<α

Mβ} ∈ Jg, Dom(g) ∈ J+
g and t, g ∈ Mα. So t ∈ P , t ⊆ A,

Rang(g) ⊆ t ⊆ s = A, Dom(g) ⊆ Mα and Rang(g) ∈ Mα. So α is as required.
�4.4

4.6 Observation. 1) If in Claim 4.4 we add as an assumption clause (g) stated below and
θ ≤ µ, then we can find a function h from λ to µ such that for every A ∈ P we have
θ = Rang(f � A); where

(h) if (I, J) ∈ Y and U ∈ J+ then13 |U| = µ.
2) Assume

(a)′′ Y as in Definition 4.1(1)

(b)′′ λ > µ ≥ |Y| + κ(Y)
(c)′′ P ⊆ [λ]≤µ

(d)′′ the conclusion of 4.4 holds
(e)′′ as (h) above.

13if J is not an ideal we should say: if (I, J) ∈ Y ,U1 ∈ J+,U0 ∈ J then |U1\U0| = µ
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Then we can find h : λ → µ such that A ∈ P ⇒ µ = Rang(f � A).

Proof. 1) For each α < λ let Bα = Mα ∩ λ\ ∪ {Mβ : β < α}, and choose hα : Bα → µ such
that

A ∈ Mα ∧ A ∈ [λ]µ ∧ |A ∩ Bα| = µ ⇒ Rang(hα � (A ∩ Bα)) = µ.

Let h : λ → µ extend every hα.
2) Similarly. �4.6

Below we think of the functions from F as say continuous embedding.

4.7 Claim. 1) In 4.4 (i.e. if its assumption so its conclusion holds), we have (A)θ ⇒ (B)θ

where
(A)θ if P ′ ⊆ P has cardinality ≤ µ, then we can find h : ∪{A : A ∈ P ′} to θ such that

A ∈ P ′ ⇒ θ = Rang(h � A) = θ

(B)θ we can find h : λ → θ such that A ∈ P ⇒ θ = Rang(h � A)
provided that we add in clause (f) of 4.4 the statement

(γ)θ in (β) we can add:
if U1 ∈ J then for some α < α∗, c�{f (i) : i ∈ U ′

α} is disjoint to {f (i) : i ∈ U1}.
2) In 4.5 we can conclude (A)θ ⇒ (B)θ when

(A)θ if T ′ ⊆ T, |T ′| ≤ µ and G is a function with domain ∪{Ft : (∃s ∈ T ′)(s ≤T t)}
such that G(f) ∈ Jf , then we can find a function h and 〈(ts, fs) : s ∈ T ′〉 such that
s ≤T ts and fs ∈ Fts and s ∈ T ′ ⇒ θ = {(h(fs(i)) : i ∈ Dom(fs)\G(fs)}

(B)θ we can find a function h : λ → θ as in (A)θ for T ′ = T .

provided that e.g. (γ)′θ below holds.

3) In part (1) we can replace (γ)θ by

(γ)′θ if U ∈ J+ and U1 ∈ J then |U\U1| = µ.

Proof. 1) Recall that A ∈ P ⇒ c�(A) = A. Let {A∗
α,ζ : ζ < ζα ≤ µ} list {A ∈ P : α(A) = α}

and let (Iα
ζ , Jα

ζ ),Uα
ζ , fα

ζ witness α(Ai) = α. So by the assumption of 4.4, clause (f)(γ)
appearing only in 4.7(1) there is A′

α,ζ ∈ P ∩ Mα such that A′
α,ζ ⊆ c�{fα

ζ (i) : i ∈ Uζ and

fζ(i) ∈ Mα\
⋃

β<α

Mβ} ⊆ A∗
α,ζ . Clearly A′

α,ζ ∈ P and α(A′
α,ζ) = α and we apply clause

(A)θ to Pζ = {A′
α,ζ : ζ < ζα} getting hα :

⋃
ζ<ζα

A′
α,ζ → θ so without loss of generality hα :

λ ∩ Mα\
⋃

β<α

Mβ → θ. Now h =
⋃

α<λ

hα is as required.

2), 3) Similar. �4.7

4.8 Remark. In part (1) of 4.7 we can omit clause (γ) if we replace (A)θ by
(A)1θ if P ′ ⊆ P has cardinality ≤ µ and 〈(A∗

α,ζ , I
α
ζ , Jα

ζ ,Uα
ζ , fα

ζ ) : ζ < ζ∗α〉 is as in the proof
of 4.7, then for some function h with domain ∪{Aα,ζ : ζ < ζα}\ ∪ {Bα,ζ : ζ < ζα}
we have Bα,ζ ⊆ Uα

ζ , Bα,ζ ∈ Jα, Rang(h � (Rang(fα
ζ � (Uα

ζ ) ∩ Dom(h))) = θ.

The following is close to [Sh 161, §3] (or see [Sh 523, §3] or [EM]).
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4.9 Definition. 1) We say Γ = (S, λ̄) is a full (λ, µ)-set if:

(a) S �= ∅ is a set of finite sequences of ordinals

(b) S is closed under initial segments

(c) λ̄ = 〈λη : η ∈ S〉 and λ<> = λ

(d) for each η ∈ S, the set {α : ηˆ〈α〉 ∈ S} is empty or the regular cf(λη)

(e) λη > µ iff λη �= µ iff (∃α)(ηˆ〈α〉 ∈ S) iff η ∈ S\Smx where Smx is the set of
�-maximal η ∈ S

(f) (α) if λη > µ is a successor cardinal then α < λη ⇒ λ+
ηˆ〈α〉 = λη

(β) if λη > µ is a limit cardinal then 〈ληˆ〈α〉 : α < cf(λη)〉
is (strictly) increasing with limit λη.

4.10 Observation/Definition: 1) If Γ = (S, λ̄) is a full (λ, µ)-set, then from S and λ we
can reconstruct λ̄ hence Γ, so we may say “S is a full (λ, µ)-set” or “λ̄ = λ̄[S]”. Also if
S �= {<>}, from S we can reconstruct λ and µ.
2) Let Smx = {η ∈ S : λη = µ}.
3) If η ∈ S and λη �= µ then for every ordinal α we have α < cf(λη) ⇔ ηˆ〈α〉 ∈ S.

4.11 Fact/Definition: 1) If S is a full (λ, µ)-set and η ∈ S let S<η> =: {ν : ηˆν ∈ S}, it is a
full (λη, µ)-set.
2) If for each α < cf(λ), Sα is a full (λα, µ) set and (λα = λ0 & λ = λ+

0 ) or 〈λα : α < cf(λ)〉
is (strictly) increasing with limit λ, λ0 ≥ µ, then
S = {<>} ∪

⋃
α< cf(λ)

{〈α〉ˆη : η ∈ Sα} is a full (λ, µ)-set.

3) For a full (λ, µ)-set S and η ∈ S, let η+ = 〈η(�) : � < k〉ˆ〈η(k) + 1〉 if �g(η) = k + 1 but
<>+ will be used though not well defined.

Proof. Straightforward.

4.12 Definition. 1) We define by induction on λ the following. For a set X of cardinality
λ, χ large enough and x ∈ H(χ) we say N̄ is a full µ-decomposition of X for H(χ), x (or
(λ, µ)-decomposition) if for some full (λ, µ)-set S

(∗) N̄ is an S-decomposition of X inside H(χ) for x, which means that for the uniquely
determined 〈λη : η ∈ S〉, letting λ<>+ = λ we have:
(a) N̄ = 〈(Nη, N+

η ) : η ∈ S〉
(b) Nη ≺ N+

η ≺ (H(χ),∈, <∗)

(c) {X, x} ∈ N+
η and � < �g(η) ⇒ {Nη��, N+

η��} ∈ N+
η

(d) ‖N+
η ‖ = λη+ = |(N+

η \Nη) ∩ X | and λη+ ⊆ N+
η

(e) if λ<> > µ, then 〈N<α> : α < cf(λ<>)〉 is ≺-increasing continuous with union
containing N+

<>

(f) N+
<α> = N<α+1> for α < cf(λ<>) and N<0> = N<> has cardinality µ

(g) for each α < cf(λ<>(S)) the sequence 〈(N<α>ˆη, N+
<α>ˆη) : η ∈ S<α>〉 is a

(λη, µ)-decomposition of X ∩ N+
<α>\N<> for H(χ) and x′ =: 〈x,Nα, N+

α 〉.
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2) We say N̄ is a full (λ, µ, σ)-decomposition of X for H(χ), x if σ = cf(σ) ≤ µ and in
addition

(h) for each η ∈ S\Smax there is a sequence 〈Nη,ε : ε ≤ σ〉 which is ≺-increasing
continuous, Nη,0 = Nη, for each ε < σ we have 〈Nη,ζ : ζ ≤ ε〉 ∈ Nη,ε+1 and
N+

η = Nη,σ [alternatively the objects we demand ∈ N+
η belong to Nη,σ (in clauses

(c) and (h))] and in (c) we add � < �g(η) ⇒ 〈Nη��,ε : ε ≤ σ〉 ∈ N+
η .

3) We can write 〈Nη : η ∈ S ∪ {<>+} instead of 〈(Nη, N+
η ) : η ∈ S〉 by clause (f) so

N〈〉+ = N+
〈〉 .

4.13 Definition. 1) Let X, λ, µ,Y, F̄ be as in 4.5 so T = Dom(F̄).
We say N̄ is good for (x,X,Y, T, F̄) if:

(a) N̄ is a full (λ, µ)-decomposition of X for H(χ) and x′ =: 〈x,X, λ, µ,Y, T, F̄〉; let
N̄ = 〈(Nη, N+

η ) : η ∈ S〉 and λ̄ = λ̄[S]

(b) if s ∈ T , then for some t ∈ T, s ≤T t and for some η ∈ Smx (i.e., λη = µ) there
is f ∈ Ft and so (If , Jf ) ∈ Y,Uf ∈ J+

f and f : Uf → Rang(g) witnessing it, such
that:
(∗)1 {i ∈ Uf : f(i) ∈ ∪{Nν : ν ≤�x η and ν ∈ Smx}} belongs to Jf

(∗)2 t, f belong to ∩{N+
η�� : � < �g(η)} ∩ N+

η

hence

(∗)3 {i ∈ Uf : f(i) ∈ ∩{N+
η�� : � < �g(η)} ∩ N+

η \ ∪ {Nν : ν ≤�x η and ν ∈ Smx}}
belongs to J+

f .

2) We may omit x if clear from the context.

4.14 The Main Claim. Under the assumption of 4.5, for x ∈ H(χ), σ = cf(σ) ≤ µ and
χ large enough there is a full (λ, µ, σ)-decomposition of X for χ, x good for (X,Y, T, F̄).

Proof. By induction on λ = |X | for all possible (T, F̄) without loss of generality |T | = λ.

Case 1: λ = µ.
Trivial.

Case 2: λ = cf(λ) > µ.
Choose 〈Nα : α < cf(λ)〉 such that the set x∗ =: {x, X, F̄ , µ, λ, f �→ T<f>, f �→ T [f ]}

belongs to N0, Nα ≺ (H(χ),∈<∗
χ), Nα is ≺-increasingly continuous, 〈Nβ : β ≤ α〉 ∈ Nα+1,

each Nα has cardinality < λ and Nα∩λ is an initial segment if α > 0 and ‖N0‖ = µ, µ ⊆ N0.
For t ∈ T let α(t) =: Min{α : for some f ∈

⋃
s≥t

Fs and (If , Jf ) ∈ Y (as in 4.5 clause (e)′)

we have {i : i ∈ Dom(f) and f(i) ∈ Nα} ∈ J+}. By renaming X = λ.
Let S = {β < λ : for some t ∈ T we have β = α(t)} ⊆ λ. For each β ∈ S choose
tβ ∈ T and sβ satisfying tβ ≤T sβ such that β = α(tβ) and fβ ∈ Fsβ

witness this. Let
Uβ = {i ∈ Dom(fβ) : fβ(i) ∈ Nβ} and let f ′

β =: fβ � Uβ and let (Iβ , Jβ) = (Ifβ
, Jfβ

)
so Uβ ∈ J+

β and Rang(fβ) ⊆ Nβ ∩ λ. Now without loss of generality fβ ∈ Nβ+1 (hence
sβ , Iβ , Jβ ∈ Nβ+1) as all the requirements on fβ have parameters in Nβ+1 so we could have
chosen fβ in Nβ+1.
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Assume toward contradiction that S is stationary. Now as Y ∈ N0, |Y| ≤ µ < λ clearly
Y ⊆ N0 hence for some y ∈ Y the set Sy = {β ∈ S : (Iβ , Jβ) = y} is stationary. Let
y = (I∗, J∗) and S′

y = {β ∈ Sy : Nβ∩λ = β}, clearly it is stationary. It suffices to show that
〈f ′

δ : δ ∈ S′
y〉 exemplifies NFr2(λ,Y) contradicting assumption (c)′ from 4.5. Clearly S′

y ⊆ λ

and δ ∈ S′
y ⇒ Dom(f ′

δ) ∈ J+ and Rang(f ′
δ) ⊆ δ, i.e., let us prove clause (c) of Definition

4.1(2) holds. If not, for some δ1 < δ2 in S′
y we have B =: {i : i ∈ Dom(f ′

δ1
), i ∈ Dom(f ′

δ2
)

and fδ1(i) = fδ2(i)} ∈ I+, hence tδ2 ∈ T〈fδ1 〉 (see 4.5, clause (f)′) hence by an assumption
there is t′δ2

such that tδ2 ≤T t′δ2
∈ T [fδ1]. But x∗, F̄ , fδ1 belong to Nδ1+1 ≺ Nδ2 hence

T [fδ1] ∈ Nδ1+1 but T [fδ1] has cardinality ≤ µ (see clause (f)′ of 4.5) hence T [fδ1] ⊆ Nδ1+1

but t′δ2
∈ T [fδ1 ] so t′δ2

∈ Nδ1+1 hence Ft′δ2
∈ Nδ1+1 hence there is f ′ ∈ Ft′δ2

∩ Nδ1+1 hence
Rang(f ′) ⊆ Nδ1+1 contradicting the demand α(tδ2 ) = δ2. So in Definition 4.1(2) only “S is
a stationary subset of λ” may fail, but something has to fail. So S is not stationary.

Let E be a club of λ disjoint to S and we can find N̄ ′ = 〈N ′
α : α < λ〉 like 〈Nα : α < λ〉

such that E, N̄ ∈ N ′
0 so for N̄ ′, S = ∅. Recall that by the assumption of 4.5, T has

cardinality ≤ λ hence T ⊆ ∪{Nα : α < λ}. So for α ∈ (0, λ) for some δ ∈ E we have
N ′

α ∩ λ = δ so N ′
α ∩ T = Nδ ∩ T, N ′

α ∩
⋃
t

Ft ∩
⋃
β

Nβ = Nδ ∩
⋃
t

Ft. Now for each α

we use the induction hypothesis on Xα =: X ∩ N ′
α+1\N ′

α and 〈F̄ 〈α〉
t : t ∈ T 〈α〉〉 where

T 〈α〉 = {t ∈ T : t ∈ N ′
α+1, t /∈ N ′

α and, moreover, for every f ∈ Ft the set {i ∈ Dom(f) :
f(i) ∈ N ′

α} belongs to J} and F 〈α〉
t = {f � U : U is {i ∈ Dom(f) : f(i) ∈ Xα} and

f ∈ Ft ∩ N ′
α+1\N ′

α}, and xα = 〈x∗, α, N̄ ′〉 so by it we get 〈Nα
η : η ∈ Sα〉 and we let

S = {<>} ∪ {< α > ˆν : ν ∈ Sα, α < λ} and N<α>ˆν = Nα
ν , N<> = N ′

0, N<>+ =
⋃
α

N0
α.

Note that if λ > µ+, |T | > λ, we can still manage14 but not needed. Also if σ = cf(σ) ≤ µ,
we can guarantee clause (h) of 4.12(2); similarly to Case 3.

Case 3: λ singular > µ.
Let λ =

∑
i< cf(λ)

λi and 〈λi : i < cf(λ)〉 increasing continuous, λ0 > µ+ + cf(λ). We

choose by induction on ζ < µ+ a sequence 〈Nζ
i : i < cf(λ)〉 such that:

(a) N ζ
i is ≺-increasing continuous in i

(b) 〈λi : i < cf(λ)〉,X, λ, µ, F̄ all belong to N ζ
0

(c) λi ⊆ N ζ
i and ‖N ζ

i ‖ = λi except that ‖N0
0‖ = µ, µ ⊆ N0

0

(d) for each i, 〈Nζ
i : ζ ≤ µ+〉 is ≺-increasing continuous

(e) 〈〈Nε
i : i < cf(λ)〉 : ε ≤ ζ〉 ∈ N ζ+1

i .

For each i < cf(λ) and ζ < µ+ and (I, J) ∈ Y let Fζ,i
(I,J) be a maximal family of functions

f ∈ {f � U : U ∈ J+, f ∈
⋃
t∈T

Ft,U ⊆ Dom(f)} such that Rang(f ) ⊆ X ∩ N ζ
i and

f �= g ∈ Fζ,i
(I,J) ⇒ {i : i ∈ Dom(f), i ∈ Dom(g) and f(i) �= g(i)} ∈ I. Without loss of

generality Fζ,i
(I,J) ∈ N ζ+1

0 and by 4.2(4) and assumption 4.5 clause (c)′ we know |Fζ,i
(I,J)| ≤ λi,

so a list of it of length ≤ λi belongs to N ζ+1
i hence Fζ,i

(I,J) ⊆ N ζ+1
i . So if t ∈ T and we

define α(t) as in Case 2 for 〈Nµ+

α : α ≤ cf(µ)〉, we get that α(t) is necessarily nonlimit.

14we should strengthen the induction hypothesis: instead X we have X0 ⊆ X1 such that |X0| = λ, and
continues naturally
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Then let Nα = Nµ+

α if α ∈ (0, cf(λ)) and N0 = N0
0 and proceed as there (recalling that in

Definition 4.12 we have not demanded that Nη ∈ N+
η ). �4.14

Proof of 4.5.
Fix σ = cf(σ) ≤ µ and by 4.14 we can find a full (λ, µ, σ)-decomposition of X for χ, x

which is good for (X,Y, F̄ ). Let N = 〈Nη : η ∈ S〉 and note that <�x linearly order S
in an order of order type λ, so let 〈ηα : α < λ〉 list S in <�x-increasing order. Choose
Mα = ∩{N+

ηα�� : � < �g(η)} ∩ Nηα and check that 〈Mα : α < λ〉 is as required in 4.5
(reading Definition 4.13).
This completes the proof of 4.4 above, too. �4.4,4.5

Proof of Lemma 3.7.
Just15 by 4.14 above and 4.7, we do not elaborate as 3.7, 3.8 are not used in other proofs.

Proof of 3.13. We use 4.4 + 4.7(1) above.
1) Without loss of generality let λ be the set of points of X where X, µ are given in 3.13,
I = {A ⊆ ω2 : the closure of A is countable}, J the following ideal on ω2

{U ⊆ ω2 : |U| < 2ℵ0}

and

Y = {(I, J)}.

So the conclusion (∗) of 3.13 just means “for some regular κ ∈ (µ, λ] we have NFr2(κ,Y)”
and toward contradiction assume it fails. Clearly χ ≥ µ. Let c� : [λ]≤µ → [λ]≤µ be

c�(A) =
{
α :α ∈ A or for some countable B ⊆ A,α belongs

to the closure of B in the topological space X and

c�(B) has cardinality ≤ 2ℵ0
}

(if we like to have c�(A) = c�(c�(A)), iterate this ω1-times).
Let us consider the assumptions of 4.4 and 4.7. Now clause (a) holds by the explicit choice
of Y above, as for clause (b), we have |Y| = 1, κ(Y) = 2ℵ0 which is ≤ µ by the assumption
of 3.13. Clause (c) is the assumption toward contradiction above, clause (d) (on c�) holds
as clearly A ∈ [λ]≤µ implies c�(A) = ∪{c�(B) : B ∈ [A]≤ℵ0 and |c�(B)| ≤ 2ℵ0} and [A]≤ℵ0

has cardinality ≤ µℵ0 = µ and each countable B contribute at most 2ℵ0 points. Clause (e)
holds by the properties of closure. Lastly, for clause (f) including subclause (γ) which was
added in 4.7 we define

P = {A :A ⊆ λ is a subset of A,

has cardinality continuum and X � A is homeomorphic to ω2}.

So for A ∈ P let f = fA be a homeomorphism from the topological space ω2 onto the
space X � A and UA = ω2; we shall show that they are as required in (f) of 4.4. Now for

15recall that 3.7 is not used in the proof of 4.18
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A ∈ P , X � A is a compact space and X is Hausdorff, hence A is a closed subset of X . If
U ′ ⊆ ω2,U ′ /∈ I, i.e. U ′ is not scattered letting U ′′ = {ν ∈ U ′: for no open nb of ν in ω2 is
U ′ scattered} and f = fA, then we have

A′ = c�{f (i) : i ∈ U ′′} = {f (i) : i ∈ c�ω2(U ′′)} ⊆ A

is homeomorphic to ω2 hence ∈ P , and this proves clause (α).
Let 〈U ′

α : α < 2ℵ0〉 list the countable nonscattered subsets of ω2, it clearly exemplifies clause
(β) (of (f) of 4.4).

Lastly, clause (γ) (which does not appear in 4.4 but in 4.7(1)), any perfect subsets of ω2
contain 2ℵ0 many pairwise disjoint perfect subsets so any member of J is disjoint to all but
< 2ℵ0 of them.
So as all the assumptions of 4.4 hold so we can apply 4.7(1). There for our θ = µ, if (A)θ

of 4.7(1) holds, then we get (B)θ which says X � [ω2]1θ contradicting an assumption. But
(A)θ of 4.7 holds as we have assumed in 3.13: for every subspace X∗ of X with ≤ µ points,
X∗ � (ω2)1θ and as for (δ) there it was checked above.
2) For →w we observe it is the same proof. For R we just should be more accurate about
closure; note that the topological closure of a countable set may have cardinality bigger
than 2ℵ0 . For A ⊆ X let c�(A) = c�(A, X) = ∪{Rang(f ) : f a one to one mapping from R
to X which is a homeomorphism onto X � Rang(f ) and such that Yf = {x ∈ R : f(x) ∈ A}
is a dense subset of R. But for any such f1, f2, if some Y ⊆ Yf1 ∩ Yf2 is countable dense
and [x ∈ Y ⇒ f1(y) = f2(y)] then f1 = f2, so the proof is similar. Alternatively replaced R
by [0, 1]R. �3.13

As should be clear from the previous part of the paper, NFr2(λ,Y) is closely connected
to pcf theory. In particular, on the one hand, §1 uses essentially the cases of NFr1 whose
consistency is not clear (i.e. hopefully it will be proved that they are impossible). On the
other hand, §2 uses a case of NFr2, say for I = [ω1]<ℵ0 . So let us explicate the obvious
relation (and the connection to [Sh 460, 3.9]).
The reader may wonder why not finer properties complimentary to the existence of large
almost disjoint families were used, as in [Sh 430]; the answer is that here assumption like
µσ = σ are natural (and limitations on time).

4.15 Claim. 1) If NFr1(λ∗, λ,Y) and I∗ is an ideal on κ = κ(Y), satisfying (∗) below, then
there is F ⊆ κλ such that f �= g ∈ F = {i < κ : f(i) = g(i)} ∈ I∗ and |F| = λ∗ where

(∗) if (I, J) ∈ Y and A ∈ J+ then for some one-to-one function h from κ into A we
have Rang(h) /∈ J and for every B ⊆ κ we have [{h(α) : α ∈ B} ∈ I ⇒ B ∈ I∗].

2) If NFr1(λ∗, λ, {(I∗, J∗)}) or (λ∗, λ,Y, I∗) is as in part (1), and 2κ ≤ λ then for some
sequence θ̄ = 〈θi : i < κ〉 of regular cardinals ∈ [2κ, λ] we have

∏
i<κ

θi/I∗ has true cofinality

which is ≥ λ∗.
3) Assume

(a) NFr2(λ,Y), so λ regular > |Y|
(b) Y ′ a family of pairs (I, J) satisfying κ(Y ′) ≤ κ and: if (I, J) ∈ Y, h is a function

from Dom(I, J) into a limit ordinal δ, then for some A ∈ J+, h′′(A) is bounded in
δ and (I � A, J � B) ∈ Y ′.

Then for some λ′ < λ, we have NFr1(λ, λ′,Y ′).

Proof. Straight.
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4.16 Conclusion. If µ is a limit cardinal satisfying ⊗µ below, then λ = cf(λ) > µ > κ
implies Fr2(λ, ([µ]<µ, [µ]<κ)) where

⊗µ for every λ > µ for some θ < µ we have:
if a ⊆ Reg ∩ λ\µ and |a| < µ then pcfθ-complete(a) ⊆ λ.

Proof. Easy by 4.15.

4.17 Concluding Remark. 1) Of course, we may replace in 3.2 the space ω2 by many others,
e.g. R, or any Hausdorff Y ∗ space with 2ℵ0 points such that for any uncountable A ⊆ Y ∗, for
some countable B ⊆ A, |c�Y ∗(B)| = 2ℵ0 moreover if Z ⊆ Y ∗, |Z| < 2ℵ0 for some uncountable
B′ ⊆ c�Y ∗(B) we have c�Y ∗(B′) is disjoint to Z.

We can also add variants with →w replacing →. As long as the space has ≤ 2ℵ0

points, the only place we should be concerned is the proof of 3.13, we reconsider the
choice of c� in the proof. In all cases for an embedding f from Y ⊆ Y ∗ to X , let
c�(Rang(f )) = {x ∈ X : for some y ∈ Y ∗, f ∪ {〈y, x〉} is an embedding of Y ∗ � (U ∪ {x})
to X � ((Rang(f)) ∪ {y})} and f+ = f ∪ {〈y, x〉 : x, y as above}. The point is that for this
choice of c�, if Y1 ⊆ Y2 ⊆ Y ∗, Y2 ⊆ c�Y ∗(X1) and f embeds Y2 into X with Rang(f ) not
necessarily close, then (f � X1)+ is a function from some Y3 ⊆ Y ∗ into X extending f .
2) We may like to add to 3.2 the case with continuum many colours that is let (Bm)<µ[ω2]
and (Bm)+<µ be defined like (B)[ω2], (B)+, replacing )1

< cf(2ℵ0 )
by )1<µ and we add

(Bm)<�+
2
[ω2], (B)+

<�+
2

to the list of equivalent statements. Similarly for (A). More is proved,

that is X → (ω2)1<λ where X has λ points (or we get λ when we ask for compact X). The
main point is adopting 1.2 (and 1.7).

For this we add also (Cm)�2,�2,ℵ2 where for κ ≥ θ ≥ σ we let

(Cm)κ,θ,σ there are λ, S, f̄ such that

(a) S ⊆ λ is stationary > κ+, κ > θ ≥ σ

(b) f̄ = 〈fδ : δ ∈ S〉
(c) Dom(fδ) = θ, each fδ(i) is a subset of δ\i of cardinality ≤ κ and 〈min(fδ(i)) : i < θ〉

is increasing with limit δ (can ask i < j < θ ⇒ f(sup(fδ(i)) < min(fδ(j))

(d) if δ1 < δ2 are in S then {i < θ : fδ2(i) ∩
⋃
j<θ

fδ1(j) �= ∅} has cardinality < σ

(e) if F� : λ → [λ]≤κ for � = 0, 1 and F0(α) ∈ [λ\α]≤κ, then for some δ ∈ S we have:
(α) fδ is (F0, F1)-free which means:

for i �= j < θ, the set F1(fδ(i)) is disjoint to F0(fδ(j))

(β) there are 〈αi : i < θ〉 such that fδ(i) = F0(αi) and sup[
⋃
j<i

fδ(i)] < αi.

Similarly for (D). Why is this O.K.? See below, noting that we get more.
3) As before, (Bm)+ ⇒ (Bm)[ω2] ⇒ (Am)[ω2] and (Bm)+ ⇒ (Am)+ ⇒ (Am)[ω2], also easily
(C) ⇒ (C)+�2,�2,ℵ2

; (Bm)+ ⇒ (B)+, (Am)+ ⇒ (A)+, (Bm)[ω2] ⇒ (B)[ω2] and (Am)[ω2] ⇒
(A)[ω2]

(f) if (F0, F1) is a pair of functions with domain λ and F0(i) ∈ [λ\i]≤κ
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3A) The forcing in 2.8, with the role of Aζ being replaced by
⋃
i<θ

fζ(i) and Ap
ζ ⊆

⋃
i<θ

fδ(i)

such that i < θ ⇒ |Ap
ζ ∩ fδ(i)| ≤ 1 works.

4) Also
�4 (D)�2,�2,ℵ2 implies the consistency of (Bm)+

<�+
2
.

As before without loss of generality for some κ = κ<κ ≥ θ = 2ℵ0 , σ are such that (C)κ,θ,σ

hold. Now we just need to repeat the proof of 1.2. The asymmetry in clause (d) does not
hurt as if δ2 �= δ2, A

p1
δ1

, Ap2
δ2

are well defined, then it follows that |Ap1
δ1

∩ Ap2
δ2
| < σ.

In the crucial point we let p∗ � “c
˜

: λ → µ
˜

for some µ
˜

< λ”. Really less is enough:

let p∗ � “Z
˜

⊆ λ is unbounded” and we shall find q and δ ∈ S such that p∗ ≤ q ∈ P

and q � “X
˜

∗ � Ap
δ is a copy of the space Y (e.g. ω2) and Ap

δ ⊆ Y ”. How? We define

F0(α) = {β : β ∈ [α, λ) and p∗ � β �= Min(Z
˜
\α)}.

F1(α) = ∪{upα,i : i < κ} where 〈pα,i : i < κ〉 is a maximal antichain above p∗ such that
pα,i forces α ∈ Z

˜
or forces α /∈ Z

˜
.

Now we repeat the proof of 1.2, but instead deciding the colour we decide the right member
of Z

˜
.

5) Lastly, we get (C)+κ,θ,ν from (C)κ,θ,ν . So assume λ > κ+, κ > θ ≥ σ and 〈Aδ : δ ∈ S〉
are as in (C) and as before (by forcing) without loss of generality♦S . Now we can actually
prove (C)κ,θ,σ for λ. So we prove

�5 if
(α) λ > κ+, κ > θ ≥ σ, κσ < λ

(β) J an ideal on θ such that (∀A ∈ J+)(∃a ∈ J+)(a ⊆ A)
(γ) S ⊆ λ is stationary, f̄ = 〈fδ : δ ∈ S〉, fδ : θ → θ increasing, δ1 < δ2 ⇒ {i < θ :

fδ1(i) = fδ2(i)} ∈ J+

(δ) ♦S .

Then (C)κ,θ,σ as witnessed by λ.
So let 〈(F δ

0 , F δ
1 ) : δ ∈ S〉 be such that F δ

� : δ → [δ]<κ for � = 0, 1 be such that: if
F� : λ → [λ]≤κ for � = 0, 1 then S(F0,F1) = {δ ∈ S : F0 � δ = F δ

0 and F1 � δ = F δ
1 } is

stationary. We now choose by induction on δ ∈ S a function fδ such that:
(a) if there is a function f with domain θ satisfying the conditions below then fδ is such

a function, otherwise fδ is constantly ∅
(α) f(i) ∈ [δ]≤κ\{∅}
(β) i < j ⇒ sup(fδ(i)) < min(fδ(j))
(γ) for each i < θ for some αi < δ we have F δ

0 (αi) = fδ(i) and
sup(

⋃
j<i

f(j)] < αi ≤ min f(i))

(δ) 〈min(f(i)) : i < θ〉 converge to δ

(ε) for i �= j < θ the set F δ
1 (f(i)) and F δ

6 (f(j)) are disjoint
(ζ) if δ1 ∈ δ ∩ S then

{i < δ : f(i) ∩
⋃
j<θ

fδ1(j) �= ∅} has cardinality < σ.

Let S− = {δ ∈ S : fδ is not constantly ∅} and we suffice to prove that f̄ = 〈fδ : δ ∈ S−〉
is as required. Most clauses hold by the definition and we should check clause (e), so let
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F0, F1 be as there. Let SF0,F1 = {δ ∈ S : F0 � δ = F δ
0 and F1 � δ = F δ

1 }, so this set is
stationary.
For every α ∈ S∗ = {δ < λ : cf(δ) = κ+} let g(α) = sup(α ∩ F1(α)) < α so g is constantly
α(∗) on some stationary S∗∗ ⊆ S.
E0 = {δ < λ : otp(S∗∗∩δ) = δ and α < δ ⇒ sup(F0(α)) < δ and α < δ ⇒ sup(F1(α)) < δ}.
Let E∗

1 = {δ < λ : otp(E0∩δ) = δ} and for δ ∈ E1∩SF0,F1 let A′
δ = {α ∈ E0 : otp(α∩E0) ∈

Aδ}, so Aδ ⊆ δ = sup(Aδ), otp(Aδ) = θ and δ1 �= δ2 ∈ E1 ∩ SF0,F1 ⇒ |Aδ1 ∩ Aδ2 | < σ.

Let Aδ = {α′
δ,i : i < θ} increasingly and let αδ,i = Min(S∗∗\(α′

δ,i + 1)) so αδ,i < α′′
δ,i+1

(even αδ,i < Min(E1\(α′
δ,i + 1) and choose f ′

δ a function with domain θ by

f ′
δ(i) = F0(αδ,i) = F δ

0 (α′
i)

(the last equality as F� � δ = F δ
� as δ ∈ SF0,F1).

Clearly f ′
δ(i) = F0(αi) ⊆ Min(E1\(α′

� + 1)) and

γ ∈ f ′
δ(i) ⇒ F (γ) ⊆ Min(E1\(α′

δ,i + 1)) ≤ α′
δ,i+1 < α′

δ,i+1

γ ∈ f ′
δ(i) ⇒ F (γ) ∩ αδ,i ⊆ α(∗) < α0

Now f ′
δ satisfies almost all the requirements on fδ and if f ′

δ = fδ for stationarily many
δ ∈ E1 ∩ SF0,F1 we are done. Let W = {δ ∈ E1 ∩ SF0,F1 : f ′

δ �= fδ}, we shall prove that W
is not stationary - this is more than enough.

So for δ ∈ W necessarily for some h(δ) ∈ δ ∩ S we have

wδ = {i < θ : f ′
δ(i) ∩

⋃
j<θ

f(δ)(j) �= 0}

has cardinality ≥ σ, so by Fodor’s lemma for some δ(∗) we have W1 = {δ ∈ W : h(δ) = δ(∗)}
is stationary.
Similarly as θσ < λ = cf(λ) for some w∗ ∈ [θ]σ, w2 = {δ ∈ w1 : w∗ ⊆ wδ} is stationary.
As σ[

⋃
j<θ

fδ(∗)(j)]σ has cardinality κσ which is < λ without loss of generality for some h∗ :

w∗ →
⋃
j<δ

fδ(∗)(j) the set

W3 = {δ ∈ W2 : (∀i ∈ w∗)(h∗(i) ∈ f ′
δ(i) ∩

⋃
j<θ

fδ(∗)(j))}

is stationary. So if δ1 < δ2 are in w3 the set {i < θ : f ′
δ1

(i) = f ′
δ2

(i)} include w∗. But
f ′

δ1
(i) = f ′

δ2
(i) implies that αδ1

i = αδ2
i , hence Aδ1 ∩ Aδ2 has cardinality ≥ σ continuously.

6) W has a � clause (δ), we add: Rang(fδ) is bound in δ?
This is equivalent to: for some fixed µ < λ, (∀δ)(Rang(fδ) ⊆ µ). Repeating the proof and
replacing club of C ∈ [µ]µ we get clause (C)κ,θ,σ witnessing λ with Rang(fδ) ⊆ µ. We then
get versions of the (A)’s and (B)’s with µ points.
(Note one special point: we should rephrase the “weak ∆-system argument, by using it on
a tree with two levels.
7) Note that by part (5) we get a stronger version of the topological statements: for any λ
(or µ in (6)) points there is a close copy of ω2 (or the space Y ) included in it. Of course, if we
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like the space to be compact this refers only to any set of λ (or µ) points among the original
ones. Note the Boolean Algebra of clopen sets (when Y has such a basis) satisfies the c.c.c.
(remember in the cases only up

ζ,2i ∩ up
ζ,2i+1 = ∅ is demanded, the Boolean Algebra is free)

so we cannot control the set of ultrafilters (= points), but if we allow more disjointness
demand we may, but we have not considered it.

4.18 Claim. If µ = µ<µ. Then there is a µ-complete µ+-c.c. forcing notion Q of cardi-
nality 2µ such that

�Q “ there is a function h : µµ → µ such that

(α) if C ∈ V is a closed subset of µµ of cardinality ≤ µ

then α < µ ⇒ |C ∩ h−1{α}| < µ

(β) if A ∈ V is a subset of µµ of cardinality > µ

then α < µ ⇒ |A ∩ h−1{α}| = |A|”.

Proof. As in the proof of 3.14, it suffices to prove:
(∗) Assume that i∗, j∗ < µ and ηα,i ∈ µµ for α < µ+, i < i∗ is with no repetitions and

Cα,j ⊆ µµ is closed with ≤ µ points for α < µ+, j < j∗. Find α < β such that
i < i∗ & j < j∗ ⇒ ηα,i /∈ Cβ,j .

Why (∗) holds? Assume not. First choose δ∗ < µ+ such that:
(∗∗) if β < µ+ and ζ < µ then for some α < δ∗ we have i < i∗ ⇒ ηα,i � ζ = ηβ,i � ζ.

We can find β such that δ∗ < β < µ+ and {ηβ,i : i < i∗} is disjoint to
⋃

j<j∗
Cδ∗,j ,

noting that β exists as |
⋃

j<j∗
Cδ∗,j| ≤ µ. Let ζ∗ < µ be large enough such that

i < i∗ & j < j∗ ⇒ ¬(∃ν)(ηβ,i � ζ � ν ∈ Cδ∗,j). Lastly, choose α < δ∗ such that
i < i∗ ⇒ ηα,i � ζ = ηβ,i � ζ.

Now the pair (α, δ∗) can serve as (α, β) above. �4.18
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Glossary

§1 General spaces: Consistency from strong assumptions.

Definition 1.1 X∗ → (Y ∗)n
θ , (having a closed copy of Y ), monochromatic for a colouring of

n-tuples by θ colours, X∗ →w (Y ∗)n
θ (not necessarily a closed copy).

Theorem 1.2 A sufficient condition for a forcing adding a space X∗ such that X∗ →
(Y ∗)n

<cf(θ), consisting on conditions on the cardinals
((A), (B)1, (B)2, (C)) and on the space Y ∗

((D), (E)) [Saharon: copy and revise to be a proof of 1.5].

Claim 1.4: Sufficient pcf conditions for the set theoretic hypothesis of 1.2.

Observation 1.5: on beautifying nice scales.

Claim 1.7: A variant of 1.2.

Comments 1.8: We deal with some variants (e.g. regular spaces X∗, Y ∗).

Concluding Remarks 1.8: Mainly on T3 spaces.

§2 Consistency from supercompacts

Observation 2.1: How to deduce (C) from (C)+, a new condition.

Claim 2.2: Quoting a “consistency by a supercompact”.

Claim 2.3: Sufficient condition of the set theoretic assumption of 1.2.

Conclusion 2.6: Getting from a supercompact a universe with CH + there is a Hausdorff
space X with clopen basis such that X → (Cantor discontinuum)1ℵ0

.

Claim 2.7: Upgrading by a small forcing a stationary S /∈ I[µ+] included in {δ < µ+ :
cf(δ) = cf(µ)+} to Ā = 〈Aδ : δ ∈ S′ ⊆ S〉, S′ stationary, Aδ ⊆ δ = sup A0, δ1 �= δ2 ⇒
|Aδ1 ∩ Aδ2 | < cf(µ).

Claim 2.8: Upgrading A as in 2.7 to A � S′ which is κ-free by a cf(µ)+-c.c., (< cf(µ))-
complete forcing notion.

Observation 2.9: By forcing we can partition S to nonreflectiving subsets.

Conclusion 2.10: Getting the necessary assumptions from non trivial I[λ].

§3 Equi-consistency

Problem 3.1: What if we assume G.C.H.?

Theorem 3.2: Equi-consistency of several related statements, some are versions of “there is
X → (ω2)12”, and some relate to pcf statement (and relative to I[λ] non trivial).



ANTI-HOMOGENEOUS PARTITIONS OF A TOPOLOGICAL SPACE 499

Question 3.4: Phrase such theorems for other spaces.

Definition 3.5: Is (κ, I0, I1, θ)-approximate.

Example 3.6: On the Cantor discontinuum.

Lemma 3.7: Sufficient conditions for the existence of a [K, σ]-colouring of λ.

Conclusion 3.8: A sufficient condition on “λ has approximation” for X → [Cantor set]1
2ℵ0 .

Claim 3.9: The forcing notions of §1 satisfies a strong κ+-c.c.

Definition 3.10: A strong µ+-c.c. called ∗ε
D.

Lemma 3.11: “Q is (< µ)-strategically complete and has ∗ε
µ” is preserved by (< µ)-support

iteration.

Definition 3.12: X∗ → [Y ∗]nθ .

Claim 3.13: From X � [ω2]1
2ℵ0 to 〈fα : α ∈ S〉, to help 3.2.

Proof of 3.2:

Observation 3.14: Existence of forcing replacing “countable scattered” by finite.

Claim 3.15: The old claim on I[λ] non trivial from a strongly compact.

§4 Helping equi-consitency

Definition 4.1: NFr�(λ,Y), variant of almost free not free.

Fact 4.2: Basic properties of NFr�.

Claim 4.3: Improving examples for NFr by forcing (toward freeness).

The Decomposition Claim 4.4: Analyzing NFr.

Claim 4.5: A variant of the previous claim 4.4.

Observation 4.6: Improving 4.4.

Claim 4.7: Getting a colouring from decomposition.

Definition 4.9: Defining (S, λ̄) a full (λ, µ)-set.

Observation 4.10: On λ-set (λ̄ is computable from S).

Fact/Definition 4.11: Analyzing full sets.

Definition 4.12: N̄ is a µ-decomposition of X for H(χ), x.
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Definition 4.13: N̄ , a full µ-decomposition is good for (X,Y, F̄).

Claim 4.14: In 4.5, there is a good decomposition.

Proof of 3.13:

Claim 4.15: On NF1

Conclusion 4.16: On Fr(λ, [µ]<µ, [µ]<κ)

Concluding Remarks 4.17:

Claim 4.18: Properties of NFr.
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