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ABSTRACT. We prove the consistency (modulo supercompact) of a negative answer to the
Cantor discontinuum partition problem (i.e., some Hausdorff compact space cannot be parti-
tioned to two sets not containing a closed copy of Cantor discontinuum). In this model we have
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This was presented in a lecture in the Logic Colloquium, Berlin '97, and then in the set theory workshop,
Budapest, Summer ’98.

This research was partially supported by the Israel Science Foundation, Publication 668.

I would like to thank Alice Leonhardt for the beautiful typing.



450 SAHARON SHELAH

ANNOTATED CONTENT

§1  General spaces: consistency from strong assumptions

[We define X* — (Y*)} for topological spaces X*,Y*. Then starting with a Hausdorff
space Y* with 6 points such that any set of < o < # members is discrete and k = k<% € (6, \)
and appropriate A C [A]? such that any two members has intersection < o, we force
appropriate X*. We then show that the assumption holds under appropriate pcf assumption
and finish with some improvements, varying the topological and set theoretical assumptions.]

82 Consistency from supercompact, with clopen basis

[We deal here with the set theoretic assumption. We show that the assumptions can be
gotten from supercompact for the case we agree to have CH, relying on earlier consistency
results. We also investigate the order of consistency between relatives of “S C {6 < A :
cf(6) = k} is stationary with no stationary subset in I[\]”, and existence of non trivial (in
an appropriate sense) of A C [A]",[A; # A2 € A= |41 N 43| < 0]]

63 Equi-consistency

[We show that some versions of the topological question and suitable combinatorial ques-
tions are equi-consistents. See [Sh:108], [HJSh:249], [Sh:460], [HJSh:697]. We then indicate
the changes needed for the not necessarily closed subspace case colouring by more colours
and other spaces. For discussion see [Sh:666],§1.]

84  Decomposing families of almost disjoint functions
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§1 GENERAL SPACES: CONSISTENCY FROM STRONG ASSUMPTIONS

In our main theorem, 1.2, we give set theoretic sufficient conditions for being able to
force counterexamples to the Cantor discontinuum partition problem, possibly replacing
the Cantor discontinuum by any other space. It has a version for spaces with clopen basis.
Then (in claim 1.4) we connect this to pcf theory: after easy forcing the assumptions of
Theorem 1.2 can be proved, if we start with a suitable (strong) pcf assumption (whose
status is not known). Then in claim 1.7 we deal with variants of the theorem, weakening
the topological and/or set theoretic assumptions. Further variants are discussed in the end
of the section (T3 spaces without clopen basis and variants of 1.4) This continues Juhasz
Hajnal Shelah [HJSH:249]. [Sh 460] if 2% > R,, then it is doubtful if (3X)(X — (Cantor
discontinuum)y, ) is consistent; e.g. if |a] < R, = |pef(a)] < Noq732 or if V = V@ where Q
is a c.c.c. forcing making the continuum > JV1, then there is no such space. On the case
with > cf() colours see 4.17. Bill Weiss has proved the existence of such partitions under
V=L

Recall

1.1 Definition. Let n € [1,w) (though we concentrate on n =1) .

1) We say X* — (Y*)y, if X*, Y™ are topological spaces and for every h : [X*]" — 6 there
is a closed subspace Y of X* homeomorphic to Y* such that h [ [Y]™ is constant (if n =1
we may write h: X* — 0 and h | Y).

2) If we omit the “closed”, we shall write —, instead of —. We write (Y*)2, meaning: for
every h: [X*]" — v < 6. We use -, -, for the negations.

1.2 Theorem. Assume

(A) (i) A>k>0>0>Ng and Kk = K<
(i1) (Vo< k)(lal” <k) and k> 60* >0
(B)1 AC [N\ and
Aq 75142 ceA= |A10A2| <o
(B)2 A is (< k)-free (or k-free) which means: if A C A, |A’| < k then for some list
{Ac e < (} of A, for every e < { we have
A-n | Ael <o
{<e
(C) if F : X — [\=", then some A € A (or just some A such that (JA")(A C A" &
|A| =0 & A’ € A) is F-free which means
(%) for a# B from A we have a ¢ F(f3)
(D) Y* is a Hausdorff space with set of points 0 and a basis B = {b; : i < 6*}
(E) if Y is a subset of Y* with < o points, then' Y is a discrete subset,
i.e. there is a sequence of open (for Y*) pairwise disjoint sets (U, : y € Y), such
that y € Uy
(if o = Xg this follows from being Hausdorff).

Then
1) for some k-complete kT -c.c. forcing notion P, in V¥ there is X* such that:

(a) X* is a Hausdorff topological space with A points and basis of size |A| + 0*
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(b) X* — (Y*)L cf(0) (that is, if X* = U X,; where i(x) < cf(6)) then some closed
1< ()
subspace Y of X* homeomorphic to Y* is included in some single X; (i.e. (3i)(Y C

2) If in addition Y* has a clopen basis B of cardinality < 0* such that the union of any < o
members of B is clopen, then we can require that X* has a clopen basis.

1.8 Remark. We may define the conditions historically (see [ShSt 258], [RoSh 733], so put
only the required conditions). Then we can allow 6* = k, but see 1.7.

Proof. We write the proof for part (1) and indicate the changes for part (2). Without loss
of generality

®, Va<B<NVBeNMNF Ae A{a, B} CA & ANBC {a,B}].

[Why? As we can use {{2a : & € A} : A € A}, without loss of generality J{A :
A€ A} = {2a : a < A} and choose Ay 5, € [N for @ < B < v < A such
that {o, 8} C Anpy and (Aap~r\{o, B} 1 @ < B < v < A) are pairwise disjoint
subsets of {2« + 1 : & < A}, each of cardinality # and we replace A by A* =:
AU{Aupy + a < B < v < A}. Now clauses (A), (D), (E) are not affected.
Clearly clause (B); holds (i.e. A* C [\]? and A # B € A* = |AN B| < o). Also
clause (C) is inherited by any extension of the original A. Lastly for clause (B)a, if
A C A |A| < K, let (A¢c 1 ¢ < ¢*) be a list of A’ N A as guaranteed by (B), and
let (A¢: € [¢",¢" +|A\A|)) list with no repetitions A"\ A, now check.]

Q. B is a basis of Y* of cardinality 6*, and for part (2), B is as there.

[Why? Straight.]

Let A={A¢;: (< X}and B={b;:i<6*}.

We define a forcing notion P:

p € P has the form p = (u, U, v, Vs, W) = (uP, v, vP, oL, wP) such that:
us Cu € [N<F

v, Cv € [N

w=wP = (we,;: ¢ € v and i < 0%) = (wf; : ( € vayi < 07)

w

() (evi=A:Cu

(€) letting A? =: U{we,i 1 i < 0"} N A for ¢ € v, it has cardinality 6 and for simplicity
even order type 6, of course A’g C u¥ and for some sequence <Wé) jiJ< 0) listing its
members with no repetitions we have
wg ; NAL ={7{;:j<0andj€b}

(n) if ¢ € v¥,i < 0" and € € v then the set U{ . ; is an open subset (for part (2), clopen
subset) of the space Y* where U{ ., =: {j <0 :7¢,; € w ;}.

&) convention if ¢ € A*\v} we stipulate U’Zg),i = (.

The order is: p < ¢ iff u? C u?, vl = ud NuP,vP C v4, v = vINP and ¢ € V) =
U’Zg),i :wgﬂv NuP.
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Clearly
(¥)o P is a partial order.

What is the desired space in VF? We define a P-name X* of a topological space as
follows:

X set of points (J{uf : p € Gp}

The topology is defined by the following basis:

{ﬂ Ui, n <wand o < A, ip < 0" for £ < n} where
£<n

Xy Uci|Gpl = U{wé’,i : p € Gp satisfies ¢ € v}}; so

IF“if ¢ € X\ U{v} : p € Gp} and i < 0* then U ;[Gp] = 07
(for part (2), also their compliments and hence their Boolean combinations).
Now we shall prove

(¥)1 for a < A\,¢ < A* and p € P we have

(i) plF“aeX* iff a € ul and

) plk“ad¢ X*7 iff @ € uP\ul and
(#31) Ikp “N*=U{ovP :p € Gp}

) if ¢ €Y and i < 6 then
plk “Ue; Null = wgi”
(v) {p€P:ae€wuP} is a dense open subset of P

(vi) {p€P:(e€vP}isa dense open subset of P.
[Why? Easy, e.g. let p € P,& € M*\vP and a # (3 are from A\u?, we define ¢ € P
by: u? = w? U{a,B},ul = vk U{a},v? = vP U {}, 08 = of and wg,i = wg’i for
Cevi=0vl andi < 6*. Easily P “p<¢”,3 € ul\ui,a € uf and £ € v?\vi ]
()2 P is k-complete, in fact if (p. : € < J) is increasing in P and 0 < & then p = U De
e<d
is an upper bound where uP = U uPe, ul = U ube P = U vPe ol = U vPs and
e<é e<d e<9d e<d
wg ; = U{w(?; e < 6 satisfies ¢ € vi°} for ¢ € v,
[Why? Straight.]
(x)3 P'={peP:if ( <A and |[A¢ NuP| > o then ¢ € vP} is a dense subset of P

[why? for any p € P we define by induction! on ¢ < o+ : p. € P is increasing continuous
with €. Let pg = p, if p. is defined, we define p.41 by

vPert = {( < A" : (€ vP®or |[Ac NuPe| > o}
W = (= )

uPett = yPe U U{AC :( ePett}

Lof course, if §* < & is a limit ordinal such that cf(6*) # cf(c) then we may use (p : € < §*) and ps=
is as required
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WET = b (= ul)

wis™ st wis (= wg ) if ¢ € vbe i < 6
(and there are no other cases).
By assumption (A)(i3), the set vP<*+! has cardinality < x, so p.4+1 belongs to P.
Clearly p. < pe+1 € P. Now for € limit let p. = U pe. Clearly we can carry the definition.
§<¢
Now py+ = U pe is as required because if Ac € A, |A¢ NuPet| > o then for some ¢ < o

e<o
we have |A¢ NuP<| > o hence ( € vP<+! hence Ay C uPstt C uPot.

Note that we use here o™ < x which follows from o < 6 < k.]
(x)4 P satisfies the kT -c.c.
[Why? Let p; € P for j < ™, without loss of generalityp; € P’ for j < x*. Now
by the A-system lemma for some unbounded S C x* and v® € [A\*]<F u® € [\]<F
we have:
jeS=v® CoPi & u® CuPiand (vPI\v® : j € S) are pairwise disjoint and
(uPi\u® : j € S) are pairwise disjoint. Without loss of generality otp(v?P?), otp(uP7)
are constant for j € S and any two p;,p; are isomorphic over v®, u® (if not clear
see 1.7).
Now for ji,72 € S the condition pj,,p;, are compatible because of the following
(*)s]
(x)5 assume p!,p? € P satisfies
@) ¥ 0@\ ) =0 and ¥ N (@ \ud)
(i7) N (vpl\vfl) =0 and ¥ N (upl\uﬁl) =
1 2 1 2
(i) if ¢ € v¥ NoY then AY = A7 and
1 2
i <O = wl ;N (u" NP’ = wg ;N (u" N uP”)

0
0

(iw), if¢e vfl\vfz then |Ac NuP’| < o or just |A§1 N < o
(iv)e similarly? for ¢ € UEQ\Ufl we have |A€2 N u”1| <o.

Then there is ¢ € P such that:

e) pt <gqandp?<gq.
[Why? To define the condition ¢ by clauses (a)-(d) above we just have to define w{ ; (for
Cevl= W Ut and i < 0%). If ¢ € W o we let wl; = wé’; U wé’i for i < 6* (clearly

i
tef{l,2} = wi,n ' = wy ;); this will be enough to guarantee P |= “l <q & p? <q”

2note that if p',p? € P’, then clauses (iv)1, (iv)2 holds automatically, but the proof of 1.7 which is very
similar to the proof of 1.2, uses this version.
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provided that we have q € P and that for £ = 1,2 we shall define w(, for ¢ € Ufs_z\vfe
— 3—

such that w{; N u? = =wg,; and w{; Cui;so only clauses (d) + (1) in the definition of
membership in P are problematlc

Now for é =1,2, let vf \v* B be hsted as (Y(e,?) : € < €}) with no repetitions such that

T( N U Ar(g 0 B ) is of cardinality < o for each € < ¢j.
{<e

[Why possible? By the assumption (B)2 and clause (iv), above.]
o

Now for each ¢ € v \v} we choose by induction on & < & the sequence <w§i 1< 0%)
such that , , s

0 - _
D we; Cul U U A’;(g,e)(g ul Uul ).

{<e

2) wéf is increasing continuous with e.

00 p3t
3) w( i :g,i
0, 3=t ’ L’
4) e’ <e=wi N (W U U Al en) = w(i -

5)Ifi<j <0 and byNb; =0 (hence wfsl_e ﬁwgsj_e = ()) then wcl ﬁw“ 0.
6) For each i < 0* the set {j < 6 : 71‘(& 0. € wg’f } is an open set in Y* (for part (2) of
1.2: clopen).]
If we succeed then we let w(, be w?&} for £ € {1,2},¢ € vfgi[; clearly by clauses (3) +
(4) in the construction for &’ = 0 we have w{, N W= wé’gi[ and by clause (1) in the
construction we have wc C u? and clause (d) in the definition of ¢ € P holds by (5), and
clause (1) by (6) in the construction. So let us carry the induction.

For € = 0 use clause (3) and for limit ¢ take unions (see clause (2)). Suppose we have defined
, P ¢ 3
for € and let us define for €+ 1. By an assumption above B = A’}(E,Z) N( U Aff(&,é) Uu? )
{<e
has cardinality < o and so Z¢ =: {j < 6 : 'yf}e(a 0. € B!} is a subset of § of cardinality < o.

Hence, by assumption (E) of the theorem 1.2, we can find a sequence (t;(e,?) : j € Z£) such
that: t;(e,£) < 0" and j € by, (. ) for j € 7! and (be,(e0) 7 € Z*%) is a sequence of pairwise
disjoint open subsets of Y*.

Lastly, we let

£
westt = wiiu {4 ().« : for some j € ZL we have

¢ ¢
V(e € Wei 2nd
5 € b0}
Clearly this is O.K. and we are done. Remember that the union of < o set from B is clopen

for part (2) of 1.2.]
So we have proved (*)s; hence also (x)4. We sometime need a stronger version of (x)5

()¢ in ()5 if in addition for £ = 1,2 we are given Z;, C uf \u* " such that (V¢ €
e £
! )[|A’<’ N Z¢| < o] then we may add to the conclusion:

(f) Ce{l2n,¢ed i <o 5wl N Z =0
More generally
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()T if ge: (vff_z\vfé) x 0% x Zy — {0,1} satisfies g(C,j1,7) = 1 = g(C,j2,7) =
bj, Nbj, # 0 for £ = 1,2, then we can add

te{l1,2},Ce vfgfz\vfl,i <O v€EZy= [y ewl,; < gC i) = 1]

[Why? During the proof of (*)s5 when for each ¢ € vfgil\vi’e, we define (wéf 11 < 6%) by
induction on € we add , ,
. N 3— . . l, .
(M i< 0 ,veZn(uP U U Apr(g’é)) implies v € w.; < go((,4,7) = 1.
{<e
In the proof when we use assumption (E), instead of using Bf = AP ﬂ(U A7 uu?” )
P P : 82 = e ¢(6:)
{<e
we use BE = A?,_, N (U AP U Uz ) which still has cardinality < o. In the end
e e ¢(&.0 ¢ y=o
{<e

. ¢ 3t Ler+1 Le; .
itZ, ¢ U A7 Ul welet wl; =: ng.é =: wc? U{y € Z:g((i,7v) =1}

£<ep
Now we come to the main point

(¥)7 in VP ifi(x) < cf() and X* = U X then some closed Y C X* is homeomorphic
1< (%)

to Y.

[Why? Toward contradiction assume p* € P and p* Ikp “(X; : 4 < i(x)) is a

counterexample to (*)7”. So in particular p* IFp “(X; : i < i(*)) is a partition of

X*, de., of J{u¥ : p € Gp}” and let X,y = A\ U{X; :i <i(x)}.

For each a < X let ((pa,j,ta,j) : j < k) be such that:

(i) (Pa,j :j < k) is a maximal antichain® of P’ above p*
(i) pa,jlFp ‘€ X

”

and a € uPoi | 80 i ; < i(x) and o € uS™ & iy ; < i(*)

)
)
Ta,j
(@) p* < pa,
(i) pay € P
[Why can we demand o € uP~i? By clause (v) of (x);. Why not j < j, < k? For notational

simplicity and as above any member p of P there are k pairwise contradictory members (by
the information on the set of points of X*, see (x); above).]

Now we define a function F, Dom(F) = A as follows:
F(a) is U{u”‘” 1§ <K} C NS

So by clause (C) of the assumption of 1.2 we can find ((x) < A* and A C A¢(, of order
type 6 such that: if o # (3 are from A then o ¢ F(8). Let A = {f. : ¢ < 8} with no
repetitions. We can find ((x) € A"\ U {vP>9 : j < K, € Ac) J\{C(%)} the set Acy
is disjoint to U{vPes : j < K, € A¢e}, let (y; @ j < ) be an increasing sequence of
members of A¢(,y) and let pt € P be defined by: w =P U Ag(**),u§+ =¥ U {n; :
J <Ot = UGG}l = o U{Ce) ) wl = wf if wl is well defined and
wé):**))i = {v;j : j € b;}. Clearly p < p*. Now we shall choose by induction on ¢ < 0, p, g.
and if € < 4 also j. < k such that:

(a) pE € Pap+ S ps

3if we demand only € P then we should increase F'(c) accordingly
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uPe = uP" U U uPPe)-de(1)
e(l)<e
wPe =P U U uy =
e(l)<e
vPe =P U U vPPe(1)de(1)
e(l)<e
P = Uf+ U U vfﬁs(l)ds(l)
e(l)<e
(of course pg = pt)
(b) pet1 > ps. ;. and jo = Min{j < K : pg_; is compatible with p. and ig_; < i(x)}
(¢) ge is a function, increasing with &, from v7° x 6* X i(x) into the family of open subsets
of Y* (for part (2), clopen)
(d) if bj, Nbj, =0 then g.(¢, j1,4) N g=(¢, j2, i) = O when both are defined
(e) letting Ye¢ = otp{&1 < & :ip, . = ig,, je, }» fOor every ¢ € vi° and i < 0" and { <¢
we have:
ﬁﬁ € w(,sj s Tﬁ € gE(Cvja iﬁ&jg)
(f) pe is increasing continuous in P,
(9) if £ <eand j < 0" then ¢ € wgz**m < Te €b;.

It is easy to carry the definition. For € = 0, p. = p*. If they are defined for ¢ let us define for
€ 4 1 50 pe, Je, g are well defined, hence p.,pg. ;. are two compatible members of [P hence
the assumptions (i) — (iv), (iv)2 in (x)5 holds with p., ps. ;. here standing for p', p? there.

First we define g.,1 with domain (v?° Uvl?7¢) x 0* extending g., so we have to define
(9er1(C,7,4) = ¢ € W8P \ol* and j < 6*,i < i(*)) and the restriction are for each ((,1)
separately. For each ¢ € v{”7#\vl* the set 2/, = {{ <& :ig, j. = i and Y¢ € uPe} C 0 has

cardinality < ¢ hence we can find a sequence <L[§’i €€ Zél) of pairwise disjoint open sets

of Y* such that £ € Z’,i = T¢ € Ug“
Now we define

9e11(C, 1) = VU + € € Z[ and B € wie Y.

It is easy to check that g., is as required in clauses (c¢) + (d).
We intend to use (x)g toward this, let

Zg = {ﬁs}

g2\l x 8* - {0,1)
be defined by g;(c»ﬁ ﬂa) =17, € ga((aj» i657j5)

Zal = {,85 E< E}
g2 (0259 \ure) x 0% x Z1 — {0,1}

be defined by g2(¢,5,3:) = 1 &
Te € ger1(C, ) Be je



458 SAHARON SHELAH

In limit € take union. In all cases j. is well defined by clause (i) above noting then (. ¢ uPe
so by ()1 we know that p. ¥ “B. & X*, i.e., B € X"

Having carried the induction let i* < i(*) be minimal such that the set Z = {¢ < 6 :
ig.,j. = 1} has cardinality 0; it exists as i(x) < cf(6). Note: ((x) ¢ vP%i for e < 0,j < K
as AN F(0.) is the singleton {0} so |ANwuPsei| < 1. Now we define p:

uP = yPe
ul = ub?
vP = 0P U{((¥)}

vl = o U{C(x)}

A’g(*) ={f: : ¢ € Z} and ’y?(*) . is the e-th member of Ag(*), equivalently the unique [
such that ig, j. = i* & T¢=¢ and wy, is

(0) wl, if ¢ € v

(8) wit,., it C = (x).

We can easily check that p € P and p* < pg_,.,p" < p € P (but we do not ask p. < p).
Clearly p forces that {3. : € € Z} is included in one X, that is X ;.

Let g: 0 — Abe g(§) = B when £ < 0,e € Z, otp(ZNe) =& Now p > p* and we are done
by (x)s below.]
(x)s if p € P and ¢ € v¥ then
p Ik “the mapping j — ’yg j for j < 6 is a homeomorphism from Y* onto the closed
subspace X [ {7{;:j < 0} of X”

[Why? Let p € G,G C P be generic over V.
() If b € B (recall that B is a basis of Y*), then for some open set U of X [G]

(clopen for part (2)) we have
UN{VE 5 <0y ={,;:7€b}

[Why? As b = b; for some i < 0* and p forces by clause (&) + (¢) of the
definition of p € P and clause (iv) of (x); above that
U N{g; <0y ={;:7€bi}, see Ky above,]

¢i ’

(8) If bis an open set for Y*, then for some open subset U of X we have
UN{VE 5 <0t ={,;:7€b}
[Why? As b= U b; for some Z C 6* and apply clause ()]
(v) ifU is an operieszubset of X*[G] and '757j(*) € U (so ¢ € uf), then for some
i(*x) < 0* we have

Ve i) € We iy NAE ;10 <O} CUCi[GIN{E ;15 <0} CU.
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[Why? By the definition of the topology X*[G] we can find n < w,& < \*

and j, < 6* for £ < n such that 'yé)j(*) € ﬂ Ue, ;|G CU. [Why? By K|
I<n
We can find ¢ € G C P such that p < ¢ and & € vi for £ < n. [Why? Recall

(¥); and X;.] For each ¢ < n, by clause () in the definition of P we know
that U ., = {j <0:7f; €U ;} is an open set for Y*, and necessarily
J(x) € Uf ., Let i(x) < 6 be such that j(x) € by C ﬂ U, ;, hence
I<n
Ve ey EUcim[GIN{AE; 14 <0} C ﬂ Ue, i, [G] CU as required. So i(x) is
<n
as required.]

(0) {~¢;:7 <0} is aclosed subset of X*
[Why? Let 8 € )\\{'ygj :j < 0} and let p < g € P; it suffices to find

+ + +
q¢t,q<qt €Pand £ €v? andi < 6* such that 8 € u? \ul or 3 € wg ; and

wg; N{v ;17 <0} =0.If B ¢ ul define g™ like g except that ui" =utU{B}
(but u?" = as in clause (i) of (*)1). So without loss of generality 3 € uf.
We can find a set u C uf such that 3 € u, AT Nu =0 and (' € vf = {j <
0: *yg/J € u} is an open subset of Y*, (why? just as in the proof of (x)s; that
is let (& : e < ¢*) be alist v such that B. = A¢ \ U{A¢,, : (1) < e} has
cardinality < o, and as any two members of .4 has intersection of cardinality
< o without loss of generality {o = ¢, and choose u. C U{A¢_,, : (1) < e} by
induction on € < €* such that ¢’ < & = ue = ue NU{A¢_,, : £(1) < €'} and
BeUAg, (1) <e} = B E€u: and [¢(1) <e = {j: ’yge(l),j € u} is open
in Y*] and u; = up = 0. For part (2) we ask “clopen subset of Y*”. In the
end let u = ue« U {B}).

By ®: in the beginning of the proof we can find £ € A*\v? such that ) = AcNu?
(why? apply ®1 with ¢/ < 8/ € Mu? and B = u?, and then (x)1) and let
Ve,i € Ag for i < 6 be increasing. We define ¢* as follows.

v?" =07 U{€}
vl =10 {€}
ul =ty Ae

uf =ulU{ye,:5 <0}
wgt iswl;if eviandis {ye;:j€biUuif (=& & 0€b;andis {ye,;:J €
bi}if (=¢& & 0¢b;. So g is as required above and this suffices.]
Lastly, we would like to know that X* is a Hausdorff space. We prove more

(*)o In VF if u; C ug € [\]<9 then for some (,i we have
wc,iﬂuQﬁX* :ulﬂX*

[Why? Let pg € P force that u3 C ug form a counterexample, as P is k-complete

some p; > pg forces uy = wui,us = ug and without loss of generalityp; € P'.
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By (x); and k-completeness without loss of generality us C uP! and as by ()1
we have p; IF “ug N X* = uy Nub'” we can ignore the elements of uz\ul' so

without loss of generality us C uf'.

Let ¢(x) € A*\vP* be such that Ay NuPt = ) (as in the proof of (x)s(d)). Let
Ye(x),j € A¢(x), for j < 0 be increasing. Let u C u! be such that v Nus = u; and
("€l = {j <0:90; € u}is open (for part (1)) or is clopen (for part (2)) in Y*
(exists as in the proof of (x)5 and of (x)g(d)) and define ¢ € PP

u? = uP* U A
ul = ul U{y¢, 1 <0}
v =oP U{((%)}

vl =oP U{((+)}

wd;ist w if C € vk, is {y¢y 1 J €bifUuif (= ((x) & 0€b; and is {7, :J €
bi} if ¢ =((x) & 0¢ b;. It is easy to see that ¢ is required.]
Together all is done. Uio
* * *

Now when do the assumptions of 1.2 hold?

1.4 Claim. 1) Assume

(a)

a € [Reg N\\k]? and J = [a]<°
Ma/J is (A\*)T-directed,

o is reqular, A\ > kTt k>0 >0
M >A>KrF=x>0;

N < 2% s regular.

Then

In 'V, = VLew(\'2Y) e pape (a),(c),(d) and (e) and 2* = \* and

the assumptions (A)(i), (B1), (Bz2), (C) of Theorem 1.2 hold (recall (A)(i) means we
omit 0 and the demand (Va < k)(|a|” < k).

2) We can in (g) above strengthen (C) to

if Tg = (xg,; 11 <ig) for B <\ andig < k then we can find i(x) and A € [\)? such

that

(i) BeA=ig=1i(x)

(i7) if 1 < B2 are from A and iy,i0 < i(x) then xa, i, = Tay.is = Ty, = Tosiy &
LBiyin = TPz

(133) if i <i(x) and B1, B2, B3 € A are distinct then xg, ; = T8, = Tg,,i = Tpy,i-
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Proof. Let a = {)\. : € < 6} without repetitions; without loss of generality A\. > 1. Let
J'=10]<°. In V we can find (f, : @ < A*) such that X below holds. We first proof below.

1.5 Observation. Assume a = {\; : ¢ < 6} is a set of regular cardinals, J' is an ideal on
6 such that II\./J’ is (A\*)*-directed, \* = cf(A\*) > sup(a), and o regular and § < k <
Min(a) (or at least for every regular £’ < x the set {e < 6 : Ac < £’} belongs to J' and, of
course, a is a set of regular cardinals > ). Then

X we can find (f, : @ < A*) satisfying f, € H Ae such that

(a) f={(fa:a<A*)is <y-increasing -

(b) f hasa <g-lub f*

(c) ifae (J)T then sup{cf(f*(i)):i € a} > sup({\: : ¢ € a})

(d) ifar <A & as <A & g1 <0 & e9<0 & fo,(61) = fa,(e2) then

E1 = €9

(e) for every Z € [A\*]=F we can find @ = (a, : a € Z) such that a, € J' and
a<fB & acZ & peZ & ccb\an\ag = fale) < fale)

(f) ifo <@and J = [0]<7, then for every Z € [\*]=* for some sequence @ = (a, :
a € Z) satisfying a, € J' for @ € Z and some well ordering <* of Z we have

acZ & BeZ & a<*f & ce€b\ag= fule) # fa(e).

Proof. By the proof of [Sh:g, Ch.II, 1.4] or see [Sh:506] we get: for some (f, : o < A*) with
fa € Ila we have (a) + (b) + (¢) + (e).

Clause (d) is easy, just replace f, by f/, € H Ae which is defined by f/ (e.) =: OX fo(e)+e

e<0

and replace f* by f**, Dom(f**) =6, f**(¢) = 6 x f*(¢) recalling § < Min(a). We shall
prove that (f/ : a < \*) is also as required in clause (f). So let Z € [A\*]=* be given; let
Z = {~. : € < |Z|} be with no repetitions. Let (ag : 8 € Z) be as guaranteed by clause (e).
We can choose by induction on ¢ < |Z|, Z; C Z increasing continuous in ¢ and Z ¢ such that
Zy =0, |Zc+1\Zc| <o, [ZC #* 7 = Z¢ #* ZC+1] and Z<+1\ZC c z¢ C 241, |Z<| < 0,7 €
Zeyranda €28 & Be€Z: & edag & € €aq & fole) = fa(e) = B € Z¢ (actually
the B ¢ Z;, are irrelevant).
Why does such a sequence exist? The only problem is, given Z¢ to choose Z¢. Now as
lae| < o (because a, € J' C [a]<7) and by the choice of (ay : o € Z) we have

(x) (Ve <O)(Vy <A)EF=BeZ)(edas & fs(e) =)
hence there are no problems, (in fact if o is uncountable we can ask < ¢). With more
details, we define Z$ by induction on n < w as follows; Z§ = {’yE},ZfZJrl = Z5u {8 :
for some o € Z§ and ¢ € a, we have € ¢ ag & fz(e) = fa(e)}.
As o is a regular and o € Z = |an| < o, by (%) we can prove by induction on n that
|Z$| < o, hence Z¢ = U{Z§ : n < w} is as required. Now list Z¢ as (ozg 1§ < &) such that
=12 <.
Define a well ordering <* of Z as follows
a< e (3{)[0& € Z: N 1) ¢ Zg] V (HC)(OA € ZC\Zg ACRS ZC\Zg N (361,62)(0& = Ozgl AP =
Olg2 NE < fg)
Now we define a], € J' for o € Z as follows: if o = 042 € Z¢+1\Z¢ then ag, = U{a, ¢ 1e < &
as £ < |Z°| < o and o is regular and 8 € Z = |ag| < o clearly |a/,| < 0. Now suppose
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(al, : a € Z) fails clause (f) for <* which is a well ordering of Z. So there are ¢ < 6 and
a <* @ from Z which exemplifies this and let ¢ be such that o € ZC\Zg and let £ be such
that a = ag; so by the definition of <* we have 5 ¢ Z; and § ¢ {ag/ :¢ <&} Asa, Cdl
and the choice of (ay : @ € Z) and as ¢ ¢ ag (by the choice of «, 3,¢€) necessarily € € a,
hence B € Z¢ (so 3 € Z°\Z,) but as said above 3 ¢ {ag, 1 &' < (}, so by the choice of aj

we get easy contradiction. Ulis

Continuation of the proof of 1.4. Clearly in Vi we have (a),(c),(d) of 1.4 and K of 1.5
above.
Asin V. A < \* = cf(A*) < 2%, clearly in V; we have 2* = \* (and we can forget V and
the assumption (b), recall (b) says “Ila is (\*)*-directed”. More on the existence of f as
in X, see [Sh:g, Ch.VIII, §5]).

So we can in Vi let (hq : o < A*) list the functions h : A — [A]". Now for each { < A*
we define a function g¢ : £ — [k TF]SF byt

gc(y) = {6 < k1t for some €1,e9 < 0 we have
O x kT X fe(e1) +0x B+er €

hc[@ x kT x fc(Eg) + 6 x "/—I—EQ]}.

So we can ([Ha61]) for each ¢ < A* find Z¢ € [KTF)*"" such that

Br# P2 € Z¢e = 1 ¢ g¢(B).

For ¢ < A\* let

Ac ={0x kT x fe(e) +0 x B+e:e <0 and B < kT is the e-th member of Z,}.
Now we shall check.

Let A= {A¢:{ < A} Clearly

(¥)1 Ac € [A]? (hence A C [A]?)
[why? recall that 6 < k, kT < A]

(x)2 0 # G =|Ag NA,| <o
[Why? Let o € A¢, N A¢, so for some (f1,€1), (B2,€2), for £ = 1,2 we have a =
0 x kT X fe,(e0) +60 x B+ €0 and B < k7T, g0 < 0. Clearly this implies e; =
€2, 01 = B2, fe,(€1) = fe,(e2), and otp(Be N Z¢,) = e, so B¢ is determined just by
feo(er), (e and ¢ (with no use of «) and by clause (d) of X also ¢, is determined by
feo(e0) hence A, N Ae,| < {a € A, : there are (81, 02,1,€2) as above}| < [{e <
6 : f(1(5) = f(2(6)}| <cas( <G — fCl <J fCQ recalling J = [9]<G']

(%) [A] = A"
[Why? By the choice of A and (*)1 + (¥)2.]

dactually @ x k1T x v =rt+ x v
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(¥)4 if F: X — [A\J=", then some A € A is F-free
[Why? For some a we have F' = h,, S0 Z,, A, were chosen to make this true.]
*)5 if A" € [A]<F, then we can list A" as {A¢, : i < i(*)} such that
Gi
|Ac, N | J Ag)| < o for each i < i(x) [Why? Let A" = {A¢ : ¢ € Z} where Z C
j<i
A 1Z] < K, so by clause (f) of X we can find (a, : @ € Z),<* as there. Let
Z ={¢; 1 <i(x)} be <*-increasing with ¢ and so

AN J A C{OX KT X fe(e)+0x Bec+e: e €ag}
j<i
which has cardinality < o where (3, . is the e-th member of Z,.]

So clause (A)(i) holds by clause (d) of our assumption (note, 6* does not appear here),
clause (B); holds by (x)1 + (x)2 and (B)2 holds by (x)5 and lastly (C) holds by (x)4.

2) Similar, just in order to get more in the proof of (x)4 we let (h, : a < A*) list the relevant
h-s and choose Z accordingly. 04

1.6 Remark. We can get (C)* for any x such that {# € a: (2<%)T <0} € J.

1.7 Claim. 1) We can change the assumptions of Theorem 1.2 by omitting (A)(ii) and by
replacing (E) by (E)~ and (C) by (C)', i.e., having:
(A)(E) A>k>0>0>Rg and kK =k~ and 0* < k
(i.e., this is (A)(i) without (A)(i1), i.e., omitting “(Va < k)(|a|” < K),k > 0* > 67)
(CY if F: X — [\=" then we can find A’ € A and A C A’ of order type 0 such that:
if € Athen f¢ U{F(a):aa€ AN S}
(E)~ if Yo, Y1 are disjoint subsets of Y* each with < o points, then there are open disjoint
sets Uy, Uy of Y* such that Yy C Uy, Yy C Y.
2) We can similarly weaken the assumptions in 1.2(2), omitting “the union of < ¢ members
of B belong to B”, but in (E)~ demand Uy to be clopen.

Proof. We indicate the changes in the proof.
We can further demand from (b; : i < 6*) that

X3 bzi n b21‘+1 = @ and if bio n bil = @ then for somej we have (sz,b2j+1) = (bi07b’i1)
and if Yy, Y7 € [Y*]<9 are disjoint then for some ¢ we have Yy C by, Y1 C bojy.

Note that <° < k so no problem arises with the number of b;’s.
In the definition of P we replace clause (0) by

(6)" we,i C ux and we,2i Nwe 2ip1 =0
and in the definition of the order when P = p < ¢ we add ¢ € v{\v} = [A; NuP| < 0.

However, as we have weakened assumption (A), the kT-c.c. may fail. So we define: the
pair (f,g) is an isomorphism from p € P onto ¢ € P if:

(1) f is a one-to-one order preserving mapping from u? onto u?
(#4) g is a one-to-one order preserving mapping from v? onto v4

(i73) f maps uf onto uf

(U if € v% then AQ(O = {f(ﬂ) NS A(}

(vi) if ¢ € v} and j < 6 then 7;1(4) = f(ng)

)
)

(iv) g maps vf onto v}
)
) g
)

(vid) if ¢ € v¥ and i < 6* then
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wg(g),i ={f(B): B¢ w;g,i}-

We say p, ¢ are isomorphic if such (f, g) exists. Clearly being isomorphic is an equivalent
relation. Let x be large enough and € be an elementary submodel of (H(x),€,<*) of
cardinality & such that A, k, 6*,0,0,Y*, (b; : i < 0*), A, P belong to € and "~ € C €. Let

Q= {p € P: for some g € PN € the conditions p, ¢ are isomorphic}.

In the rest of the proof P is replaced by Q, each time we construct a condition we have to
check if it belongs to Q.

The only place we use (Voo < k)(|a]” < &) is in the proof of (x)3. So omit (*)s, and this
requires us first to improve the proof of ()4 (and second (x)7, see later). Let p; € Q for
Jj < kT and let v; = {¢ < A* : Ac NuP’ has cardinality > o} UvPi, so clearly |v;| < k and
vPi C wj.

For some stationary S C {0 < T : ¢f(6) = £}, the conditions p; for j € S are pairwise
isomorphic and j € S implies vPi N (U v;) = v® and uPi N (U(up'i uu U Ae)) = u®.

i<j i<j ¢ew;
Also without loss of generality for jq,j2 € S the isomorphism (f, ¢g) from p;, to p;, satisfies
f1u® = id,e,g | v¥ = id,e. We would like to apply ()5 from the proof of 1.2 to p;, p;
for any j > i from S, so we have to verify clauses (4), (i%), (44), (iv)1, (iv)2 there. Now only
clause (iv)q is problematic. Now if i # j are from S and ¢ € v{*\v}’ and |AZ'NuPi| < o, note
that A? C wPi hence A? NuPi C uPi NuPi = u® C pines)41. So for 4,5 € S\{min(S),p;, p;
are compatible by ()5 in the proof of 1.2.

In the proof of (%)s and (x)¢ (hence (x)7), clause (F)~ gives us less but the change in
the definition of P (weakening (J) to (§)~) demands less and they fit, e.g., during the proof
of (x)5 we can deal with each pair (w¢ 2i, w¢ 2i41) separately.

The second place in which we use (x)s is during the proof of (x)7. The proof is similar
but:

® F(a) now is a subset of A which includes U{uP*i : j < k} and satisfies A € A &
|[ANF(a)| > 0= AC F(a).
[Why such F(«) exists? As in the proof of (x)3.] Then first, we apply clause (C)’ from 1.7
to find ((x) < A* and A C A¢(,) of order type 6 such that A satisfying the demands of (C)’.
Second, choosing p. by induction on €, choosing p.1, verifying the conditions in (x)5 they
hold because of the change in the definition of the order of P.
Lastly, for proving “X is Hausdorfl”, clause ()~ is weaker but as Y* is Hausdorff' (and

the choice of (b; : i < 6*)) there is no problem. Oy 7

1.8 Concluding Remarks. 1) We could make in 1.2 only some of the changes from 1.7, i.e.,

(o) in 1.2 we replace (A),(C) by (A)(i),(C)* of 1.7

(6) in 1.2 replace (E) by (E)~.

2) In 1.2(1) can we make the space regular (73)?

In view of 1.2(2) this may be not so interesting, still needed for a regular X* — (R)j .
Note that for X to be a Ts-space it is enough that there is a family B of open subsets such
that their finite intersections forms a basis, (Vo #y € X)(FU € B)(z e U & y ¢ U) and
rely € B= (3[/[1,]/{2 € B)(x € Z/{il - Z/{io & Z/{io Uuiz =X & uﬁ ﬁMiz = (Z)) Let
Ro € {(4,7) : binb; = 0} (so to include generalization, as in 1.7 we chose Ry C {(2¢,2i+1) :
1 < 0*}) and Ry C {(Z,j) 1 b; U bj = Y*},Rz - {(Z,j) 1 b; C bj})
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We need: for ig < 6%,j < 0 such that j € b;, there are 41,42 < 6* such that j € b;,,b;, C
b’io)big U bi2 =Y, bil n bi2 = () and moreover (il, io) € Ra, (io,ig) € Ry, (il, iz) € Ry. Y™
is a Ty-space with a basis of cardinality < #* then there is no problem to find such b.
Then we should change the definition of P, clause (4) to

(0) (a) wf, Cu

(¢) (ij) € Ry =wl,Uul, =u
(d) (Z,]) € Ry = wgi - u}g,j

(0) ifa e wg,ig then for some i1, i we have o € wg,il, (i1,10) € Ra, (ig,12) € Ry, (i1,12) €
Ry [follows from the next]
(or use a three place relation R).
So there is no problem to generalize the proof of 1.2.
3) In 1.4, as indicated in the proof, we can replace in the assumption (b) + (e), i.e. “Ila/J
is (A*)*-directed, \* < 2* is regular” by: A\* = 2* and
(¥) there is f = (fo : @ < A*), fo € Ila such that for every Z € [A\*]<% we can find
(ag 1 € Z),aq € Jsuch that a # B € Z & e € O\an\ag = fol(e) # f5(e).
4) By the proof of 1.5, if a,J = [a]<? and f are as in (x) of 1.8(3) then
(¥)" there is f' = (f’ : a < X\*), f,, € Ila such that for every Z € [\*]<* we can find
(aa : @ € Z),aq € J and well ordering <* of Z such that o <* g€ Z & ¢ ¢
N\ag = fi(€) # fj(e) (in fact [/ = f).
5) See more 4.17: for more colours.
6) If CON(ZFC +3 supercompact) then CON(CH + there is a T3-topological space with
R, 11 needs such that X — (R)y, ).
[Why? Similar to the proof of 2.6 below, using 1.8(2).]
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82 CONSISTENCY FROM SUPERCOMPACT

In the first section we got consistency results concerning Cantor discontinuum partition
problem but using pcf statement of unclear consistency status (they come from 1.4); this is
very helpful toward finding the consistency strength, and unavoidable if e.g. we like CH to
fail (see §3), but it does not give a well grounded consistency result. Here relying on Theorem
1.2 of the first section, we get consistency results using “only” supercompact cardinals.
First we give a sufficient condition for clause (C) of Theorem 1.2 which is reasonable under
instances of G.C.H. We then (2.2) quote Hajnal Juhasz Shelah [HJSh 249], [HJSh 697] (for
o = Ng,0 > Ny, respectively) and from it (in claim 2.3), in the natural cases, prove that the
assumptions of 1.2 hold deducing (in 2.6) the consistency of CH + there is a T3-space X with
clopen basis with R, 11 point such that X — (Cantor set)} ~starting with a supercompact
cardinal. This gives a (consistent) negative answer to the Cantor discontinuum partition
problem. We can even make it compact. We also try to clarify the relations between such
properties of, e.g., N 41.

2.1 Observation: If clauses® (A)(i) + (B); of Theorem 1.2 holds, then clause (C) there
follows from
(CYt if (Y; 14 < k™) is a partition of X then for some A € A and i < k™
we have A CY;.

Proof. Let F : A — [A=" be given. Choose by induction on ¢ < A a set Us C X and
gc : Uc — k™, both increasing continuous with ¢ such that:

(*)(4) if @ € U then F(a) C Ue and

(i2) if a € Ug then F(a)\{a} € {8 € Uc : g¢(B) # g¢(@)}-

For ¢ = 0 let Us = 0 = g¢, for ¢ limit take unions. If Us = X, let Usyy = Ue and
gc+1 = ge, otherwise let ae = Min{A\\U¢} and let We € [A]" be such that ar € W¢
and (Va € W¢)[F(a) € We]. Let ¢ = sup{gc(B) : B € Us N W¢} so e¢ < kT and let
Uerr = Us UWe and let geq1 extend g¢ such that geq [ (We\Ue) is one to one with range
C [e¢,e¢ + 5).

Clearly ¢ C Us = Dom(g¢) so g = U{g¢ : ¢ < A} is a function with domain A.

Now applying (C)T to the partition which g defines, we get some A € A on which g is
constant so by (x)(i¢) we are done. O

By [HJSh 249], [HJSh 697], or see more below in 2.7 — 2.9, (toward equiconsistency) we
have:

2.2 Claim. Assume V |= GCH (for simplicity) and 0 < x < xgX < k < p < pt =
A and o,x, X0, K, A are reqular, cf(u) = o and x is a supercompact cardinal (or just A-
supercompact), e.g. 1= xg°-

Then for some forcing notion P, which is o-complete of cardinality xo, in VF,27 = o, 20"
= xo = ot (and GCH holds) and some B = (Bs : § € S) satisfies for any regular
K € (X0, p):

(x)(1) SC{0<\:cf(6) =0T} is stationary,
Bs C 6, otp(Bs) =o' and 61 # 62 € S = |Bs, N Bs,| < o

Sactually from (B)1, only “(B)7 A C [A]?” is used; as we do not change A and the cardinals this is O.K.
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(i1) A= pt = 2% u strong limit and letting 0 = o we have 0 < 0 < k = k<% < p; note
that if p = xg* then A = N, 41
(#i1) cf(u) = o (this actually follows) by (i) and (ii)

What we need is getting in such model, condition (C')* of 2.1 which also is from [HJSh 697]
but for completeness we shall prove what we use.

2.3 Claim. Assume
(a) B=(Bs:0 € 8),0,k,1u,\ are as in the conclusion (x) of the previous claim 2.2
and
(b) S reflects in no ordinal of cofinality < x (holds automatically if k < o7, see [Sh
108], [Sh 88a]), but see 2.7, 2.8.
Then without loss of generality 0,0 =: ot N\, A ={Bs : 6 € S} (and 0* = 0) satisfies the
set theoretic requirements (A), (B)1, (B)a, (C) in Theorem 1.2 and even (C)* of 1.4.

Proof. Without loss of generality “d € S = p* divides §”, and as we are assuming p is
strong limit of cofinality ¢ and A = u™ =2* and 6 € S = cf(d) =0 # o = cf(u) we have
Os ([Sh:108]). So let (fs : 6 € S) be such that fs:d — [0]" satisfy (Vf : XA — [A]7) (T €
S)(fs = f 1 6). Foreach 6 € S, let Bs = {as. : € < ot} be increasing with ¢ and let
gs : k7T — [k ]S be defined by

gs(B) = {"y < k™" : for some €1,e9 < 0 we have

KT X ase, +7 € fs(kTT X ase, + ﬂ)}

So by the free subset lemma (Hajnal [Ha61]) there is Zs € [s7F]* " such that v, #
Yo € Zs = 1 & gs(72). Let vs5. € Zs be strictly increasing with ¢ < o and let Bj =
{KTT X ase + 5. : € <oT}. So clauses (A4), (B); are immediate. Now clearly (C) of 1.2
holds and lastly (B)2 of 1.2 follow from the assumption (b) on S (see [Sh 108]). In order to
get (C)* of 1.7 we should shrink Zs further.

Now A = {Bj: § € S} are as required in Theorem 1.2. Oa.3

In similar spirit, we do further analysis.

2.4 Claim. Assume

(a) X is reqular, 67 < A

(b) B=(Bs:0€S), where S C X\ is stationary
(¢) Bs C 6 and Bj has cardinality 0
(d) if 61 # 02 are from S then o > |Bs, N Be,|
(e) Os.
Then for some (Bjs: 0 € S") we have
() ’C S
(8) B C 6 has order type 0
() for 61 # b2 from S" we have o > |Bjs N By, |
(0) if Z C X is unbounded in \ then for stationarily many 6 € S’ we have Bs C Z
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(e) S’ is stationary

Q) if F: X — [N=F,k = cf(k),k™ < X\ then for stationarily many 6 € S’ the set B;s
18 F-free.

2.5 Remark. 1) If (a)-(d) of 2.4 hold in V, then (a)-(e) holds after we force with Levy (), 2<*) ]
note that if A\ = 2<* this is equivalent to adding a Cohen subset to .
2) We can add (in 2.4 see proof below):

()t if Z. C XA = sup(Z.) for € < 6 then for stationarily many § € S’ we have: for every
€ < 0, the e-th member of Bs belong to Z.

(8)1 if 6§ € S= cf(d) = cf(d) then Bs is unbounded in §

(B)2 it d € S = cf(d) =61 # cf(d) so 6, < 0 then B; has order type 6 x 6; and is
unbounded in 4.

Proof. Without loss of generality otp(Bs) = 6 and § = sup(Bs).

Let Z = (Z5 : 6 € S) be such that Z5 C § and for every Z C Atheset {§ € S: ZN6 = Z5}

is stationary, such a sequence exists as {g holds.
Now we choose Bj C ¢ by induction on ¢ such that B§ # ) = otp(Bj) = 0. We let B be
ZF ={a € Zs : otp(Zs Nv) € Bs} when otp(Z;) =6 & (V& € SNO)[|Z; N Bs| < o] and
let B§ be 0 otherwise. Let S” = {6 € S : B} # (0} and we shall prove that (Bj : § € ') is
as required.

Clauses («), (8), () are obvious and clause () follows from clause (), so let us prove
clause (0).

Let Z C X be unbounded. So Cz = {0 < A:§ =sup(ZNd) =otp(ZNJ)} is a club of A
and let Sz = {§ € S: ZNJ = Zs}. By the choice of Z clearly Sy is a stationary subset of
A, so also Sz N Cy is a stationary subset of . Let S, = {§ € Sz N Cz : By = Zs}, so it is
enough to prove that S7, is a stationary subset of A, we shall prove more:

(x) S3 = Sz NC\SY is not a stationary subset of A.

Toward contradiction assume S7 is stationary.

Now for every 6 € S}, clearly Z; is a subset of Z5 = ZN0 of order type 6, but B§ # Z} hence
(a1 € SN6)(|1Z5NBY, | > o), so we choose such a5 € SNJ. So for some stationary S3* C S7
and o we have (V§ € S3*)[as = o*]. Now § € S3* implies 0 < |Z} N B,,.| hence for some
A5 € [Bl,.]7 we have A5 C Z5. As |[B,.]7| <67 < A = cf()), possibly shrinking S7* for
some A* we have 6 € S} = A} = A*. Now easily § € S* = B; 2 {otp(yNZ) : v € A*}
which has cardinality o, so 61 # d2 € S5 = o < |Bs, N Bs,|, contradiction.

Lastly, clause (¢) follows from clause (4) by 2.1 as A is regular or alternatively if F': A —
[A]=%, by [Ha61] some unbounded Z C X is F-free so by clause (§) there are stationarily
many § € S’ such that Bj is F-free. Os 4

Proof of 2.5(2). Without loss of generality (V§ € S)(cf(d) = 61) for some 6.

Let 6* € [0,07), cf(6*) = 6, for what we state in 2.5 we have §* is 6 if 61 = 6 and is 6 x 6,
if 1 < 6. Let h: 6* — 60 be one to one onto. Let ((Zs. : e < 6*):d € S) be such that for
every sequence Z = (Z. : € < §*) satisfying Z. C Atheset {§ € S: (Ve < 6*)(Z.N6 = Zs.)}
is stationary, it exists as s holds. Moreover, we can find (Cs : 6 € S) such that Cs is a
closed unbounded subset of order type 6*, let Cs = {75 : € < 6*} and if Z. C A for ¢ < §*
then the following subset of S is stationary
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{6 €8 :Z5.=2.N6 for e < §* and
otp(Z: Nvs,¢) = v5,¢c for e < ¢ < 6" and

vs.c 18 closed under pr (a pairing function)}.

Let
Z; = {a :for some € < 0" and § we have
Vs.e < < V5041, 0 € As, otp(BN As) = h(e)
and « is the pr(vs., 5)-th member of Zs.}.
Now check. U5

2.6 Conclusion: If CON(ZFC +3 supercompact), then CON(CH + there is a T5-topological
space X with clopen basis, even compact, with R,;1 nodes such that if we divide X to
countably many parts, at least one contains a closed copy of the Cantor discontinuum ws).

Proof. By 2.2 4+ 2.3 we get a universe with GCH and 0 = Ng,0 = Ny, 6 = Ng, A = N,
satisfying the set theoretic requirements of 1.2. So as the Cantor discontinuum satisfies
clauses (D), (E) of 1.2 and the demand in 1.2(2) we are done by 1.2. O

* * *

Lastly, we start to resolve the connection between the various statements around. Now
[HJSh 249] continue and strengthen [Sh 108], [Sh 88a] (and [HJSh 697] continue them). We
show that by a “small nice forcing” (not involving extra large cardinals assumption) we can
get the result of [HJSh 249] used above from the one in [Sh 108], [Sh 88a]. (See also [Sh
652, §5] on the semi-additive colouring involved, i.e. it is proved that consistently there is
a colouring of the kind appearing in the analysis (there, or see the proof of 2.7 below)). On
I[A] see [Sh 108], [Sh 88a], [Sh 420, §1]. However, there is a price, our “small nice forcing”
has to violate G.C.H. quite strongly.

2.7 Claim. Assume
(a) cf(p) =k < p and (Vo < p)(|a)t < p) and X = p*
(b) S C{d < A:cf(6) =~rT} is stationary, S ¢ I[N and
(c) 2¢7 < X and k= k<",

Then for some forcing notion Q we have:
(o) Q is (< k)-complete, |Q| = kT and Q is kT -c.c.

(B) in VO, for some stationary S’ C S there is a sequence (As: 6 € S') such that each
As is an unbounded subset of § of order type kKt and §; # 62 € S' = |As, N As,| < K

Proof. Let p = Z)‘i where \; < p is increasing continuous with 7, \¢g > k. Choose
<K

A= (A, :a€elf), with A, = {Va,e : € < KT} being any unbounded subset of « of order

type kT and 7, increasing with .
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We can find a®* = (a® : i < k) for @ < put such that
(D a=Jataf
i<K
; B a B
(x)2 if o € @} thena® Ca

i

is increasing continuous in i, [a®| < \;

Without loss of generality
(%)3 Aq C af.
Let ¢ : [uT]2 — & be ¢{o, B} = Min{i: a € a?’} for a < f < At so
K a<f<y=c{a,v} < Max{c{a, 5}, c{8,7}}.

For a € S let ¢, : [k7]? — &k be defined by:
fore < ¢ < kT we let

Ca{57 C} = C{’Ya,sv ’Ya,C}~

Let C ={cq: €5} 50 ¢y € ([“ﬂz)m, hence |C| < 25" Let for c € C,S.={aesS:
Co = C}, 80 (S. : ¢ € C) is a partition of S to < 25" < ut sets hence necessarily for
some ¢, € C we have

(¥)a Se, ¢ I[N and in particular is stationary.
We fix ¢.. We define a forcing notion Q:
(A) p e Qiff p= (uP,£P) where uP € [kT]<" and &P < k and Rang(c* | [uP]?) C &P
(B) QFEp < qiff: (p,q € Qand)
(1) uwP Cul
(1) &P <¢!

(i7i) for every 8 € uP and o € (u?\uP) N B we have c.{a, 3} > &P.

(x)5 (a) Qs a (< k)-complete partial order of cardinality x™
(b)) Q' =:{pe€ Q:uP has a maximal element} is a dense subset of Q'

(¢) ifa<k® then Q, = {p € Q: uP has a maximal element and

max(u') > a} is a dense subset of Q'.
[Why? As k = k<% clearly |Q| = 1 and Q is closed under union of length < x,
together we have Clause (a), as for clause (b), for any p € Q choose j € (sup(uP) +
1,xk%) and define ¢ = (u9,£%) by u? = P U {j} and &9 = sup({¢”} U Rang(c, |
[u9]?)) + 1 clearly p < g € Q (clause (iii) of (B) is empty) and u? has a last member
j. Clause (c) has the same proof except that we choose j >

()6 Q satisfies the xT-c.c.
[Why? Assume toward contradiction that (p; : i < k™) are pairwise incompatible.
Without loss of generality p; € Q. As k = k<" without loss of generality (u?® :
i < k1) is a A-system with heart u*. Also without loss of generality £Pi = £*. So
C = {0 <kt : uPs\u* is disjoint to § and (Vj < §)(uPi C §)} is a club of sT.
For § € C let e5 = Min(u??\d) and (s = max(uP?) so 0 < g5 < (5. Now assume
a < f are from C, and po,pg is incompatible. Why is ¢ = (uP> U uP8,£) not a
common upper bound where we let £ = sup({¢*} U Rang(c | [uPe UuP?]?)) + 17
As g € Q and as uP> Na = uPs N G,uPe C B and £ = P = P8 < €9 clearly
Pa < ¢, hence necessarily —(pg < ¢) so clause (iii) of (B) fails, i.e. for some
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Y2 € uPf and v; € u? N y\uP? (hence 71 € uP>\a and 2 € uP?\3) we have
{2} < €98 = &*. But 64 < 41 and €4 < 71 = cifen, 1} < P = £F and
v2 < (g and v2 < (3 = ci{2,(s} < &P = £*. Hence by X above necessarily
ci{ea,Ca} < &*.

So for § € S, (Vs,e; = @ € C) is strictly increasing hence with limit § and for each
i € C,v5,¢, is above {75, : j <i} but < 4§ and

J<i=c{Vse; V50 <& = Vs, € azf'gi.

By [Sh:108] it follows that S € I[)] (or directly, for every v < A, [{{vse, : J €
Cni*)y:d € 8,i* € Covser = v} < A as for each i < kT (and ) we have
< |ag*||i*| < (Ae)ll < p possibilities); contradiction to (x)4. So Q satisfies the
kt-c.c.]
Now clearly for every i < x™ there is p; € Q' such that i < max(u??), hence (by
(%)s), for some i(x) < kKt we have p;,) kg “W1 = {i : p; € G andcf(i) = K} is
stationary in kT”. Let Pi(s) € G € Q with G generic over V and Wy = W1 [G]. Let
C={6 <kt :(Vi<d)[sup(ufi) < 4]}, it is a club of k*. Let Wo = CNW; and for
i € Sy let ¢, = Min(uPi\i),(; = max(uP*). Now
()7 if i € Wy and € < k, then {j € W1 Ni: ci(ej, ) < &} has cardinality < k.

[Why? By density argument for some ¢ € G we have p; < g and {2 > £. Now if j € Wi Ni\u?

then p; € G hence for some ¢ € G C Q we have ¢ < ¢" & p; <q',so¢; € u?" Ne; and

as ¢ < ¢t by the definition of <9, necessarily c.(g;, ;) > €9 > &, as asserted.]

Now for § € S., define A = {ys. : € € Wa}. So Aj is an unbounded subset of § of order

type k.

(¥)s if 61 # d2 are from S, then Aj N Aj has cardinality < .

[Why? Without loss of generality d; < d2, let (%) € Sz be such that d1 < 75, (). As-

sume toward contradiction that A = Aj N Aj has cardinality > x. Recall (by (¥)3)

that 3 € A = c{B,01} = 0; now letting &* = ¢{d1,75,,c+)} < & we get by X that

6 cA= C{ﬁv 75275(*)} < Inax{c{ﬂ, 51}a C{ala 751,8(*)} = maX{O, 5*} = f*

So A= ={e <kt : s, € A} has cardinality x and e € A~ = ¢, {e,e(x)} < &*, contradict-

ing (+)7.]

So we are done. Os 7

2.8 Claim. Assume
(A1) A>k>0>0>Ng and K = K<"
(B)1 ACN? and A; # A3 € A= |A1 N Ay <o.

Then for some forcing notion Q and Q-name A’ of a subset of A we have:

(a) Q is a strategically (< k)-complete forcing notion (hence add no new sequence of
length < k)

(b) Q is k*-c.c. forcing notion of cardinality A<F
(¢) in VO, clauses (A)(i), (B)1 above still hold for A hence for A" and A’ satisfies also

(B)2 from 1.2, i.e.
A is (< K)-free
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(d) if N\, k, A satisfies clause (C) of 1.2 in 'V, then X\, k, A satisfies clause (C) in V©
(e) like clause (d) for (C)* from 1.4

Proof. Let A= {A¢:{ < A} with no repetitions.
Let Q be the set of p = (v,v,) = (vP, L) such that:
(a) vy Cove [N]<F
(b) there is a list ¢ = (¢(¢) : € < €*) of v, such that for every ¢ < &* we have A¢() N

U A¢(e) has cardinality < o3 we call (((g) : € < €*) a witness, also the list ¢ and

{<e
the the well ordering on v% it induces are called witnesses.

The order is defined by

p<qiff (a)  of Cof and
(B) o\l Cof\uf
() every ¢ witnessing p € Q can be end-extended to ¢’
witnessing g € Q.

Define Q-names Y = U{v} : p € Gg} and A’ = {A; : ( € Y}. Now

(¥)1 Q is a partial order
(¥)2 Q] = (\)=" < (A0)<m = A<»
()3 any increasing continuous sequence of members of Q of length < k has a least upper

bound.
Hence

(¥)4 Q is strategically (< x)-complete.

For p € Qlet u? = U{A¢ : ( € vP}
()5 for p € Q we have u? € [\]<" and p < g = uv? C ul.
Let Q' ={p e Q:if { < A* and |A¢NuP| > o then ¢ € vP}; compare with the proof
of 1.7. For p € Q let v, = {¢ < X* : |A¢c NwP| > g}, so:
(%) (a) vP Cof and pe Q= |vh| <k and
(b) if (Va < k)[||” < k] then p € Q = |[vf| < K, and
(¢) ifpeQthen (pe Q)= (v] =vP) and
(d) @ is a dense subset of Q if (Va < k)[|a|” < K]

[Why? E.g. for clause (d), let p € Q we choose by induction on € < o+ (< k) a condition p.
such that: pg = p,vi® = v¥, p. is increasing continuous with & and vP=+* = {{ < \* : ( € vP*
or just |Ac NuP<| > o}. There are no problems and p,+ is as required as |[Ac UuPot| > 0 =
for some £ < o, |Ac NuPe| > o = for some ¢ < 0", ( € vPett C vPot ]
(¥)7 if p € Q',¢ € A*\vP or just p € Q,( € A*\vg, then p’ = (vP U {¢},v¥ U {(}) and
p’ = (vP U{(},v¥) are in Q (even p € Q' = p’ € Q') and are > p.

We say po, p1 € Q are isomorphic if otp(vP?) = otp(vP?), otp(uP?) = otp(uP!), and
OP,»1 wro maps v{° onto v}, OPyr1 yro maps uP® onto uP* and for ¢ € vP°, v € uP°

we have o € A¢ & OPyuri yro (@) € Aop

wP1,upo ()
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(x)s Q satisfies the xT-c.c.
[Why? Let p, € Q for @ < k*. Let v, = U ved and uq = U{A¢ : ¢ € va} so
<o

uPs C g for B < o and (v 1 @ < k1), {uy : o < kT) are increasing continuous.
As vPe € [A\*]<F, we can find stationary S C {§ < k* : ¢f(§) = r} and v such that
a € S = vPe Nwv, = v. Similarly without loss of generality o € S = uP> Nu, = u.
Without loss of generality for o, 3 € S the conditions p,,ps are isomorphic, the
isomorphisms being the identity v and u. So vi* Nv = v, for some v, C v. Let <},
be a well ordering of vi* which witnesses p, € Q, so without loss of generality <} |
v, =<*. Let a < 3 be in S and define ¢ = (vP> UvPs, vf> Uvk*). Clearly vf Cv? €
[A*]<F, also ¢ € vP>\vPs or ¢ € vP#\vP~ implies [Ac Nu| < 0.
(Why? If not by the isomorphism of p, and pg we can find ¢; € vP*\vPs (y €
vPe\vPe such that (o = OP,ps 4pa (1) and ¢ € {¢1,¢2} and A¢, Nu = A¢, Nu, so
|A¢, Nu| > |A¢, N Ag,| > o hence (2 € vgl hence (s € v so (o € vP> NP8 hence
(1 = (2 € vP> NvP8 | contradiction.

Hence ¢ € vP*\vP? = |A¢ NuP?| < o (otherwise A¢ NuP? C ug NuP? = u hence
|A¢ Nu| > o and get a contradiction by the previous statement) and ¢ € vPs\vP> =
|A¢ NvPe| < o (similar proof). Now define a two-place relation <* on v{:

G <" G iff ¢ <}, G2 (so (1, ¢ € vP)
or (1 € vP> & (o € vEP\wPe

or {¢1, G2} S v\l & G < G2

Easily <* is a well order of v{ (as ¢ € v}”\vl* = |A¢NuPe| < o), and it is a witness.

So ¢ € Q. Does p, < g7 Clauses («),(03) are very straight and for clause (v), as
Pa, pp are isomorphic for any given witness <!, a well ordering of v}, we can find
<?, a witness for pg which is a well ordering of v2?, and is conjugate to <!; now
use <!, <% as we use <%, <j above. So really p, < ¢. Similarly ps < ¢.]

()9 kg “A" ={A¢: ¢ e U{v} : p € Go}}is (< K)-free”.
[Why? Read the definitions of Q and of being (< x)-free, remembering that forcing
with @ add no new sets of ordinals < & as it is strategically (< k)-complete.]

(%)10 if p,q € Q are compatible, then they have an upper bound r € Q such that v" =
vP U v?

(¥)11 if A satisfies clause (C) of 1.2 then A’ satisfies it in V©.

[Why? Assume p* € Q,p* kg “F : A — [A]SF is a counterexample”. As Q satisfies the
kt-c.c. and as increasing the F'(a) is O.K., without loss of generality each F(«) is an object

from V so for some function F : A — [\ from V we have F' = F. As we can increase

each F(«a), without loss of generality ¢ € vg = A; C ﬂF(a). As V, A satisfies clause

(C) there are ¢ and A € [A¢]? which is F-free, by the previous sentence ¢ ¢ vg. Define

q= (v1,vd),v9 =P U{¢}, vl = WP U {¢}. Tt is easy to prove p* < g € Q, the point being

|AcNU{A¢ : € € v }| < o which holds as ¢ ¢ vg, and ¢ forces that A € [A¢]? is as required
concerning F'.] Uas

2.9 Observation. Assume that Kk = k<% < X\ and S C ) stationary. Then for some k'-c.c.,
strategically k-complete forcing notion Q of cardinality A<", we have IFg “S is the union of
< k sets each not reflecting any ¢§ of cofinality < k”.
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Proof. Straightforward. [Used in (C) = (D) of the proof of 3.2 below.] Oa.g

So putting together the claims above we can conclude, e.g.
2.10 Conclusion If (%) below holds, then there is a forcing notion P of cardinality 2# = u®
not adding sequences of length < &, not collapsing cardinals < p* (or > 2#), not changing
cofinalities such that in V¥ the cardinals (0 < 6 < k = k<%, 2% < p) satisfies the assumption
of 1.2; also its conclusion and (C)* of 1.7 where
(x) 0= cf(0),0 =0T < k = K<F < pu, u strong limit singular of cofinality o such that
{6 <pt:cf(d)=0"} ¢ I[N.
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§3 EQUI-CONSISTENCY

Let “2 denote here the Cantor discontinuum.

The following theorem clarifies the consistency strength of the problem to a large extent.
We can hardly expect a stronger kind of result as long as inner models for supercompacts
have not been discovered. Concentrating on “2 is for historical reason; we can replace Rg
by p. Also, using the same claims we can replace A > J by other restrictions. Note that
3.7 continues [Sh 460, §3], [HJSh 249]. The claims will give more, naturally. However, a
real problem is:

3.1 Problem: What occurs if we demand GCH?

3.2 Theorem. The following are equi-consistent with ZFC + k = cf(k) > 2%0. (In fact
we get more than equiconsistency: the model for one statement is gotten from another by
(set) forcing. Moreover, the forcing notions we use are from a very restricted family where
K 1s involved in its definition. We use only forcing notions which preserves the cardinals
and cofinalities < (2%0)* and even < k and do not change the value of 2%°, in fact finite
composition of k-complete ones and c.c.c. of cardinality < 2%° ones; so we can add 280 = Ny
or 280 =Ny or 2% =R 3, 5 or whatever, to all clauses simultaneously)

(A)[“2] = (A)(us) there is a compact Hausdorff space X such that X —,, (¥2)3 but no
subspace with < 2<% points has this property® (on —,, see 1.1(2) and “2 is the Cantor
discontinuum,)

(AT like (A) w2y replacing “2 by “for any Hausdorff space Y* with < 2% points”

(B)[“2] = (B)(u,) there is a compact Hausdorff space X with clopen basis such that X —
(“’2)1< cf(2%0) but no subspace with < 2<% points has this property

(B)* like (B)[*2] replacing “2 by “for any Hausdorff space Y* with < 280 points” and
demand X has a clopen basis only if Y has; i.e. for every Hausdorff space Y* with < 2%0

points there is a Hausdorff space X with clopen basis if Y* has, such that X — (Y*)1<Cf(2no)

but no subspace of X with < 2<* points has this property
(C) there are \, S, f such that

1) (a) S C X is stationary, A > 2<" is regular

2) () f=(fs:0€8)

3) (c) fs is a one-to-one function from A C “2 of cardinality 2% to §
)

4) (d) if 61 # 02 then {n € “2 : f5,(n) = fs5,(n)} has scattered closure (in the
topological space “2)

(
(
(
(

(D) there are \, S, A such that

(1) (a) S C X is stationary, A > 2<% is regular

(2) (b) A=(As:0€8)

(3) (c) As is a subset of & of cardinality 2%°

(4) (d) for 61 # o from S we have As, N As, is finite

(5) (e) {As:0 € S} is k-free, that is, for any u € [S]<" there is a sequence (Bs : § € u)

such that Bs € [As]<®° and (As5\Bs : 0 € u) are pairwise disjoint
(6) (f) if F: X — [N=F then for some § € S the set As is F-free.

6of coures, if, e.g., k = (280)* this holds
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3.8 Remark. 1) Note that we can easily add clauses sandwiched between two existing ones.
We can also add the parallel statement on X — [Y]lcf(gno), see 3.12, 3.13, 3.8.

2) We can add the case of regular spaces (i.e. T3) or work as in 1.7.

3) Clearly most of the proof of most arrows in the proof (of 3.2) have little to do with the
properties of the topological space “2; still mainly 3.14 does, so

3.4 Question: With what can we replace the space “2 (but see 4.17(2))?

We make some definitions and prove some claims before proving 3.2. One of them (3.13)
depends on §4, also 3.7, 3.8 which are not explicitly needed. The following definition is used
in 3.7. To see the point of this definition look at Example 3.6 below and part (2) of the
definition.

3.5 Definition. 1) For a cardinal x and Iy, I; such that I, C {(a,b) : a,b C & are disjoint
(normally k = U{aUb: (a,b) € Iy UI}) so we may forget to mention ) and cardinal 6 we
say that a cardinal A is (lo, I1,0)-approximate or (k, Iy, I1,6)-approximate if we can find
P = (P4 : a € C) such that
(7) C aclub of A
(i1) Po C [a]<Y for a € C and |P,| < Min(C\(a + 1))
(#i7) for any 1-to-1 function f from & to A, for some a € C' at least one of the following
holds
(a) for some ¢ € P, and (a,b) € I; we have (Vi € a)(f(i) € ¢) and (Vi € b)[f (i) >
a
]
(b) for some (a,b) € Iy we have
() (Vi <r)(f(i) <a—i€a)
B) (Vi<k)lieb—a<f(i)< Mn(C\(a+1))].

2) If ¢f is a function from P(x) to P(k) and K C P(x) and
Lk, cd, K| =L[cl,K] =11 = {(a,b) : a Ck,be K and b C cf(a)}

Iylk,cl, K| = Iy[el, K] = Iy = {(a,b) :a C k,b€ K and anNb =0}

then we may say X is (K, ¢/, 6)-approximate or (k, K, cl, )-approximate instead of A is
(lo, I1, 6)-aproximate.

3) We may replace x by another set of this kind call the domain of the tuple (understood
from Iy, I1). We may write this set before I, i.e. in the place of x for clarification.

4) We may replace (I, I1,0) by (I,0) if I is a set of pairs (o, I1) such that (P, : « €
C') satisfies the requirement above for all the triples (Iy, I1, ) such that (Ip,I;) € I (not
necessarily all pairs have the same domain A).

Similarly, K stands for a set of tuples (k, K, ¢/, ) or in short (k, K, ¢f) when 6 is understood
from the context or even (K, cf) as in part (2). (We may even vary 6).

Concerning 4.4 below

3.6 Examples: 1) Let C be a Cantor set (say “2),

cl€ is the (topological) closure operation on subsets of C

K€ ={AC C: Ais closed perfect hence uncountable} and IC = I;[C, cf, K€] for £ = 0, 1;
see Definition 3.5(2).

2) Let R be the real line, ¢/® be the (topological) closure operation on subsets of R and
K® = {A C R : Ais closed perfect uncountable, bounded (from below and above)} and
I} = Ii(R, cf® K®) for £ =0, 1.
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3.7 Lemma. Assume
(a) A>x >k >0 and o are infinite cardinals,
(b) ¢t is a partial function from [N]<? to K C [\]=F
(¢) K is a set of triples (k, K*, c*) with K* C P(k),cl* a function from [k]<% to P(k)
as in Definition 3.5(2) above (for 0)
(d) if b € K, then for some (k, K*, c€*) € K and one to one function f from k into b,
we have:
() VeK*={f(a):aeb}eK
(B) )V Ck & clF(a)=b0=c{f(e):a€d}D{f(a) : ael}
(e) for every A € [NJSX we can find a [K,o]-colouring ¢ of A, where:
X for any A C A, ¢ is a [K, o]-colouring of A means that ¢ is a function from A
to o such thata € K & a C A= Rang(c|a)=o0c
(f) for every pu, if x < pu < A then p is (K, 6)-approzimate.
Then there is [K, o]-colouring c of .

Proof. See after the proof of 4.14 below. (The reader may prefer to read first §4 up to the
proof of 3.7, 3.13).

3.8 Conclusion: 1) Assume

(a) every cardinal p,2% < p < Xis (C, K©,clC R;)-approximate (using the notation
of 3.6(1))

(b) X is a Hausdorff topological space.

Then X — (Cantor set); moreover X — [Cantor set]}y, , see Definition 3.12 below.
2) We can replace in part (1), C by R.

Proof. By 3.7 (and 3.6). Us.s

3.9 Claim. The forcing notions in 1.2 and in 2.8 satisfies, e.g., the condition *Zi, see
below Definition 3.10(1A).

Proof. Included in the proof of 1.2, 2.8, respectively. O3

3.10 Definition. 1) Let D be a normal filter on ™t to which {§ < ™ : ¢f(d) = u} belongs.
A forcing notion Q satisfies *¢, where € is a limit ordinal < p, if player I has a winning
strategy in the following game *%,[Q] defined as follows:
Playing: the play finishes after € moves.
In the (-th move:
Player I — if ¢ # 0 he chooses (¢° : i < ut) such that ¢ € Q
and (V¢ < ¢)(VPi < ;ﬁ)pf < qf and he chooses a
function f¢ : pt — pt such that for the D-majority
of i < pt, fe(i) < i
if ¢ =0let ¢¢ = (g, fc = is identically zero.
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Player II — he chooses (p$ : i < ) such that (V’Dz')qi< < pf and pg e Q.

K2

The Outcome: Player I wins provided that for some E € D: if

w<i<j<u',i,j€E and /\fg(z) = fe(j) then the set {pl< (< e}U{pjc- : ¢ < €} has
£<e
an upper bound in Q.

1A)If Dis D7, =: {A C p* : for some club E of " we have i € E & cf(i) = p =i € A}
we may write g instead of D (in %5, and in the related notions defined below and above).
Usually we assume D;+ CD.

2) We may allow the strategy to be non-deterministic, e.g. choose not f¢ just f¢/D.

3) We say a forcing notion Q is e-strategically complete if for the following game, ®fQ player
I has a winning strategy.

A play last € moves. In the ¢-th move:

Player I - if ¢ # 0 he chooses ¢¢ € Q such that (V& < ()pe < g¢ if ¢ =0 let gc = 0g.

Player II - he chooses p¢ € Q such that gc < pe.

The Outcome: In the end Player I wins provided that he always has a legal move.

3.11 Lemma. If u = pu<* € a limit ordinal < u, then the property “Q is (< u)-strategically
complete and has *},” is preserved by (< w)-support iteration.

Proof. See [Sh 546] and history there; in each coordinate we preserve that the sequence of
conditions is increasingly continuous and on each stationary S C {§ < ut : ¢f(d) = u} on
which the pressing down function is constant the conditions form a A-system.

Us.11

We can also consider

3.12 Definition. 1) We say X* — [Y*]p if X*, Y™ are topological spaces and for every
h : [X*]™ — 0 there is a closed subspace Y of X* homeomorphic to Y* such that for some
a < 6,a¢ Rang(h | [Y]™) is not 6.

2) If we omit the “closed” we shall write —,, instead of — and -, -+, denote the negations.
[Compare with 3.2, 3.7.]

3.13 Claim. 1) Assume X is a Hausdorff space with \ points. Assume further X — [~2]}
and p > 280 but no subspace X* of X with < p points satisfy X* — [“2]}) and p = pRo.
Then
(¥) we can find a reqular k € (u, \], a stationary S C x and a sequence f = (fo : a € S)
such that:
(i) Dom(f.) C “2 has cardinality 2%

(ii) fa is one-to-one and is a homeomorphism from “2 | Dom(f,) onto X |
Rang(fa)

(133) if o # B are from S, then {n € Dom(fa) : fo(n) € Rang(fs)} has scattered
closure in “2

(iv) for a club of 6 € S we have Rang(f,) C U Rang(f3).
BeEanS
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2) Similarly for —., and/or for R instead “2.

We shall prove it later (after the proof of 4.14).

3.14 Observation: There is a c.c.c. forcing notion Q of cardinality 2% such that:

IFg “there is h : “2 — w such that :
() if C(€ V) is closed scattered then each
C N h~'{n} is finite, and
(6) if A C(¥2) is uncountable (and from V)
then |[AN A~ {n}| = |A| for each n”.

Proof. Let p € Q be (fP,CP) where f? is a finite function from “2 to w and CP is a finite
family of closed scattered subsets of “2.

The order is:

Clearly
()1
(*)2

p<gqiff fPC fI,CP CC%and C €C? & ne€ CN Dom(f?) &
n#v & veCn Dom(f?)\Dom(f?)= fi(n) # fi(v).

Q is a forcing notion of cardinality 2%°

Q satisfies the c.c.c.

[why? let po € Q for a < wy, let Dom(fo) = {Nae : € < Lo}, CP> = {Co i : k < kot
both lists with no repetitions and let my = Min{m : (Do [ m : £ < £,) is with
no repetitions}. Without loss of generality mo = m(x), o = €(%), ko = k(*), Mo |
m(x) = vg. By A-system lemma without loss of generality for some £(xx) < £(x) we
have:

(@) 0 < L(xx) = (Nae : @ < wi) is with no repetitions
(B) a<wy & L [L(xx),0(%)) = Nae =
(7) {Nae : @ <wi, € < €(xx)} is with no repetitions.

Now as each Cy 1, is closed and scattered it is necessarily countable so without loss
of generality

a<B<w & L<lix)=ng0¢ () Con

k<k(x)

We now choose by induction on ¢ < {(*x) sets Ay, By € [w1]™, decreasing with n
such that

a€ A1 & BEBy & a<B—onaed U Cs.k]
k<k(x)

This is straight: let Ag = w1 = Bo; let Ay, By be given. Clearly for some of € Ay
the set {nac: o € Af\aj} is Ny-dense in itself, i.e. (Va € Aj\aj)(Vn < w)(F4 €
A (e [m=mnae [n). Let Tp = {nae [ n:a € Aj\a; and n < w}, it is a subtree
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of “»2 and lim(7}) is a perfect subset of “2. So for each 3 € By for some Vé € T, we
have (Vp € Ucﬁ,k)(_‘Véqﬂ) so for some v, € Ty we have By =: {# € By : ué =}
k

is uncountable and let Apy1 =: {a € Ay : Vg <4Na e}
For oo < B, € Ayusy, B € Byasy, we have po,pg are compatible.]

(x)3 if A C“2is uncountable and n < w then T4, =: {p: for some n € A, fP(n) =n}is
dense open.
[Why? Let p € Q. Now as C* =: U{C' : C' € CP} is closed and scattered hence
countable clearly for some 1 € A we have n ¢ C* so ¢ = (f? U{(n,n)},CP) satisfies
P S q S QQIA;rp]

(%)4 for each n € “2 the set
Z, ={p:n € Dom(fP)} is dense open
[why? being open is trivial; as for density for p € Q let n = sup(Rang(f?)) + 1
and without loss of generality p ¢ Z, hence n ¢ Dom(f?), now letting ¢ = (f? U
{(n,n)},CP) we have p < ¢ € Z,,.]

(%)s for each closed scattered C, the set Zo = {p : C € CP} is dense open
[why? immediate as p € Q = p < (fP,CPU{C}) € Q]
Let f=U{f?:p€ G}, it is a Q-name.

(*)¢ f is a function from (“2)V to w and for each closed scattered C € V, f | C is one
to one except on a finite set.
[Why? For any p € Q thereis ¢ suchthat p<¢geQ & CeC%now [g<reQ=
[ 1 (C\ Dom(f?)) is one to onel; so g kg “f [ (C\ Dom(f?)) is one to one, so as
Dom(f?) is finite we are done.]

(¥)7 kg “AN f~'{n} has cardinality [A| for A € V, A C “2, A uncountable”.
[Why? As in V we can find pairwise disjoint A; C A for i < |4]|,|4;| = |A| and
apply (+)3.]

Together we are done. Us.14

Proof of Theorem 3.2.
(B)* = (B)[“2

Trivial (special case).

(At = (4)[~2

Trivial (a special case).
(B)t = (A)*"
Trivial (stronger demands).

(B)[“2] = (A)[~2]

Trivial (stronger demands).

(A2 = (C)
By 3.13 for 6 = 2, u = 2<F.

(C) = (D)

Forcing by Levy(k,2<") change nothing so without loss of generality x = £<%. Let

A S, f

= (fa : @ € S) be as in clause (C) of 3.2. Next let Q be the forcing notion
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from 3.14 which is a c.c.c. forcing notion of cardinality 2%, so we get the conclusion of 3.14
so let h be as there and let g : (“2)V — 2% be one to one. Wloga € S = (2%°)¥|a. For
each a € S let

Ag =:{(2%) x f(n) + g(n) : n € Dom(fa) and h(n) = 0}.

we get: A, C “2,|A,| = 2% and for o # B from S, A, N Ag is finite. So clauses (a)-(d)
of clause (D) from Theorem 3.2 holds. Then we force by Levy(A,2<*), nothing changes
but we get $g. By 2.4 without loss of generality clause (f) of (D) of 3.2 holds. By 2.8
without loss of generality we have the k-freeness (i.e., clause (e) of (D) of 3.2 which is equiv-
alent to (B)s of 1.2) while clause (f) of (D) of 3.2 (= clause (C) of 1.2) is preserved by clause
(d) of the conclusion of 2.8.

(D) = (B)* and (D) = (A)*[2¢]

We do it by forcing but for the proof any & such that Xy < cf(k) = k,2<% < X can serve.
We can force by Levy(k,2<%), so without loss of generality k = k<".
First assume that £ > 2% (as in the main case) and we restrict ourselves to spaces Y*
with a basis of cardinality < k which is no restriction if x > Ty or if we are proving
just (D) = (A)*[2¥], then we can use a product of forcing instead of iteration. Now any
strategically (< k)-complete xT-c.c. forcing notion preserves (D), we do not use this in this
first case, but still note it. By forcing by Levy(\,2<*) (see 4.3) without loss of generality {5
for the S of clause (D), this will be preserved for any forcing notion P if P has density < A,
which holds in our case.
Let (Y;* : i < i*) list the topological spaces as in clause (B)* with set of points 2% or
=1 & Y = “2, depending on what we are proving. For each ¢ < i*, let Q; be
the forcing from 1.2, the assumption of 1.2 holds by (D) and the assumptions on Y;* and
X7 be the Q;-name of the topological space which Q; produces. Let Q be the product of

{Q; : i < i*} with support < k. Now Q is k-complete. Hence by our present assumption no
new relevant space Y* is added by forcing by Q.

Why is X} as required, ie., X — (Yi*)l<cf(230) also in V@? Forcing by Q add more

“colouring” ¢, i.e., functions from X7, i.e., A into some ordinal < 2%°. However, the proof

ol
of 1.2 can be repeated for this case.
Second, consider the general case.
Now we use iterated forcing (P, Q; : j <i(*),7 < i(*)) with (< k)-support, each satisfying
the *Zi version of kT-c.c. and for simplicity (< k)-strategically complete (see 3.9). Now let
each Q; be as in 1.2 for some Y (a P;-name of a topological space as in 1.2) and it forces an

example X ¥. With suitable bookkeeping (if x > 2% is easier) we finish as those iterations

preserve “(< k)-strategic completeness hence no new set of ordinals of cardinality < x and
(the strong version of) k*-c.c.” is preserved, see 3.11.

Still we have to prove that the example X} we force to satisfy “X* — (V;*)} if o < cf(2%0)”
has this property not only in VF#+1 but also in VFit). For this we repeat the relevant part
of the proof of 1.2 noting the explicit way the Q;’s; this will be presented in full in [Sh:F567].
Us.2

For self-containment we recall (really [Sh:g, I1,2.2] and see [Sh 108], [Sh 88a]).

3.15 Claim. Assume k is strongly compact and x = cf(x) < cf(u) <k < A= cf(A) = pu™
(so A = A<" and (Va < p)(|a|<" < p)) and a C Reg N p\k, p = sup(a), la| = cf(n) and

f={a:a<A)isa < gva-increasing cofinal sequence in Ila.
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Then for some o € (x, k), we have cf(uo) = cf(u) < p, Vo < po)(laX < wo) and if
P = Levy(x, to) * Leyy(,uarJr, k), in VE we have

(a) SZI ={0<put Vi) =pt} C {6 <pt:cf(6) = x*} does not belong to

Iy,
(b) bad(f) 2 S* = {5 < put :cf(0) = pug, f | § has a < joa, -lub
f € Ua such that 0 € a = cf(f(0)) < cf(8)} is a stationary subset of u*

+
(¢) forcing by P, preserve ud is a cardinal and the stationarity of subsets of SZ+ (from
0

V) and preserve ‘6 € S* is not a good point in f” and f = (fo : a0 < \) is <gpa-
increasing cofinal in Ma; if p = k¥ a = {u™™ :n € (0,w)} we get the result for

1T R/ 25

n<w

Proof. The choice of pp (and clause (a)) is a main point in [Sh 108], [Sh 88a]. Now S* =
U{S:+ L ug < kycf(po) = cf(u) < po} is stationary by [Shig, 2.2, 5.6] using ()’ not (x), so
9]

for some ug, Sugf is stationary, and (c) is obvious. Of course, (b) = (a) by [Sh:g, I]. Os.15

Remark: We can joint 2.7 to 3.2; we will return to this elsewhere.
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§4 DECOMPOSING FAMILIES OF ALMOST DISJOINT FUNCTIONS

Let (I,J) be a pair of ideals on say § = Dom(I, J) such that I C J and we consider a
family F of functions each from some A € J* to A which are almost disjoint in the sense
that

® if f # g are from F then {i < 0 :i € Dom(f) N Dom(g) and f(i) = g(i)} € I.
A decomposition is a representation of F as | J F, such that the F, are pairwise disjoint,

“small” and f € Fo = {i € Dom(f) : f(i) ¢ U{Rang(g) : g € F; for some j < a}}
is “small”. We try to prove that if such decomposition does not exist, then there are
“transparent” counterexamples.

This helps the equiconsistency in §3 and continue [Sh 161], [HJSh 249], [Sh:g, I1,86], [Sh
460, 3.9].
The reader can concentrate on the case that ) is a singleton.

4.1 Definition. 1) Let ) denote a set of pairs of the form (I, J) where
(a) I C J areideals over a common set called Dom(I,.J) = Dom(I) = Dom(J) or just
() eI CJCPDom(l,J)and [ACBel=AclI,[ACBeJ=AclJ,
Dom(I,J) ¢ J.
Let I'™ = P(Dom(1))\I and J* = P(Dom(J))\J.

Let k(Y) = sup{|Dom(I, J)| : (I,J) € Y}. We call Y standard if for each (I,J) € Y, the
set Dom(I, J) is a cardinal; we call ) disjoint if (Dom(Z,J) : (I,J) € }) is a sequence of
pairwise disjoint sets.

2) NFr;(A,Y) means that for some A* > A we have NFry(A\*, A, ) which means that A\ >
|V| + x(Y) and there are (F; sy : (I,J) € V) exemplifying it which means:

(a) F,5) €{f: f afunction, Dom(f) € J*}
(b) if f # g € F(1,5) then
{z : 2 € Dom(f)N Dom(g) but f(x) = g(x)} belongs to I
(¢) A>|U{Rang(f): f € F(r.) and (I,J) € Y}
(@) A< X =3 A1Funl:(L,J) eV}
2) NFra()\,)) means that A is regular > || 4+ «()) and there is (fs : § € S) such that
(a) S C \is stationary and is the disjoint union of (S(;, ;) : (1,J) € V)
(b) Dom(fs) € J© and Rang(f5) C d for each § € S(; )
(c) 01 # 62 € S1,5y = {x: v € Dom(fs,) N Dom(fs,) and fs, (x) = fs5,(x)} € 1.

3) We omit N from NFr in parts (1) and (2) for the negation. If ¥ = {(I, J)} we may write
just (I, J).

4.2 Fact: 1) NFri()\,)) is preserved by increasing ) to V' when |V'| + x()’) < A. Also
NFra(A, DY) is preserved by increasing YV to V' if |V'|+x(Y’) < A. Similarly if NFrq (A*, A, Y),
A>T > A > A0 > (Vi + k() and Vi D Y then NFri (A, Ar, V1).

2) NFrq (), ) is equivalent to NFri (A1, A\, V) which is equivalent to (3(I,J) € V) NFry (AT,
A (1, J)).

3) If A* is regular or at least cf(A\*) > |V| then NFr;(A*, A, Y) iff there is (I,J) € Y such
that NEr; (A%, \, {(1, J)}).

4) NFri(),Y) implies NFry(AT,)).

5) NFra(A,Y) iff there is (I, J) € Y such that NFro(A, {(Z,J)}) and | Y| < A.
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Proof. Check.

4.3 Claim. 1) Assume that NFra(\, {(I,J)}) and let f = (fs : 6 € S) exemplifies it and
Tt < N7 > |Dom(I,J)| and for simplicity x = Dom(l,J). If {g then we can find
(f5 : 0 € SN E) exemplifying NFro(X\, {(I,J)}) and E a club of X such that

(%) if F: X — [A|=7 then for some § € SN E the set Rang(f}) is F-free (i.e. a # 3 €

Rang(f5) = 8 ¢ F(a)).

2) The forcing of adding a Cohen subset of X\ (i.e. (*>2,<)) preserve “A evemplifies
NFro(A, {(I,J)})” (as it preserves “S is stationary”), add no bounded subsets to A and
forces $g.

Proof. 1) As in the proof of 2.3.

Let h = (hs : § € S) be such that hs : 6 — [§]=7 and for every h : A — [A]<7 the set
{6 € S: hs = h | &} is a stationary subset of \; such § exists as we assume g. Let
E={0 < X:7"" xw divide 6} it is a club of A and for § € SN E we define the function
gs i THY = [THH]ST by

g5(B) = {y < 71 :for some e1,e2 < Dom(I,.J) we have
7 x fsler)+v € hg(T++ x f5(e2) + OB}

Note that |gs5(8)| < 7 as hs(7TT x fs(e2) + B) has cardinality < 7 and the number relevant
of €1,&2 is < |Dom(7, J)| = x < 7. So by [Ha61] there is an unbounded subset Zs of k*+

such that 81 # (2 € Z5 = B1 ¢ gs(B2).
Let Zs = {v5. : € < 771}, with s, increasing with e. Now for § € SN E we define

f5 : Dom(I,J) — 0 by
fé(E) =7 x fs5() + s,

Now clearly f§ is a function from x = Dom(Z, J) into A, in fact, it is into 6 as Rang(fs) C
§ & (77 x w)|d. Also for &1 # 0 from SN E

{e<r:f5,(e)=fi,(e)) ={e <r: 7" X f5,(6) +761.e
=7 x f52(€) +752,6} - {8 <kK: f51(5) = f¢52(€)} €l

Lastly, if § € SN E and €1 # €2 < k and f§(e1) € hs(f5(e2)) then

T X fs(e1) + 5,60 = fi(e1) € hs(f5(e1)) = hs(TFF x fs(e2) + 7s5.c,)
C U hs(rt x f5(e) +15)

e<k

SO Vs.e1 € 95(7Vs5,e,) by the definition of gs, but Vs, V56, are distinct members of Zj,
contradiction to its choice. By the choice of (hs : § € S), for every F : [A\] — [A]S7 for
stationary many § € S (hence § € SN EQ we have hs =h [ § & § € SNE hence Rang(f;)
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is F-free.
2) Straight. Ua.3

Now we give sufficient conditions for the existence of decomposition which implies easily (in
the cases needed see later) the existence of suitable colouring. The reader may concentrate
on the case ) is a singleton.

4.4 The Decomposition Claim. Assume:
(a) Y is as in Definition 4.1(1)

®) 2> 5> Y]+ ()

(¢) for no regular k € (u, ] do we have NFra(k,))

(d) cl is a function from [NJSH to [\]SF

(e) for A, B € [A<* we have A C cl(A) and” A C B = cl(A) C cl(B)
(f) P

C [NJSH has cardinality® < X or at least has a dense® such subfamily and satisfies:
for every A € P there are a pair (I,J) €Y, a setUd € JT and a one to one function
f:U— A such that:

(@)far f U CU & U €I then for some A’ € P we have A" C ANcl({f(i):ieU'})
(B)f,a,1 there are U, C U,U, € IT for o < o* for some o < p such that for any U C
U U € I for some a < o we have U, CU" or at least ANcl({f(i):ie€U,})C
Anct{f(i):ielU}.
(g9) if A€ P then'® cl(A) = A.
Then
Dec(A\,P,u,Y): for every x > X and x € H(x) there is a sequence (My : av < ) such
that:
(1) Ma < (H(x), & <3)
(11) pU{Y, A\ 2} © Mo and [[Mal = p
(4i7) U M, includes X
a<
(iv) Assume A € P and define a(A) = Min{a < A:if a < X then for some
(I,J)eY andU € J* and f : U — A which is one-to-one, we have {f, U} € M,
hence Rang(f) C M, and {i € U : f(i) U Mg} € J*}}. Then a(A) < X\ and

BLla
for some (I, J) U, [ which are witnesses to a(A) = a we have:
{i el : f(3) U Mg} € J, [we could have added here and in 4.5: moreover

B<a
for some X € M, of cardinality < u (so X C M,) we have {i € U : f(i) €

X\ |J Mpyeat

B<a

"no real harm in adding cf(A) = cf(cl(A))

8see 4.5 below

9.e. there is P’ C P such that (VA € P)(3B € P')[B C A] and |P/| < A
10ysed in 4.7
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(v) For any pregiven ¢ = c¢f(0) < p we can demand M, = U Mg.e, M, . increasing

e<o

with € and (Ma ¢ : (<€) € Myep1 and pU{Y, A\, p,x} C Mg .

Now below we shall prove that Claim 4.4 follows from the following variant (we change (d),
(), (£).
4.5 Claim. Assume
(a)" Y is as in Definition 4.1(1)
0) X[ =A>p= Y[+ r()
(¢)
(d)

" for no regular k € (p, \] do we have NFry(k,))

"' F=(F :te€T),T is a partial order of cardinality’ < X or at least density'® < \;
we consider the F;’s as indexed sets such that t # s = FsNFy = () though they may
have common members, so [ € Fyy)

(e) for each t € T each member f € F; is a one-to-one function such that for some

(I,J) = (Iy,Js) € Y we have Dom(f) € J*,Rang(f) C X

() ift €T and f € Fi, then there is a subset T[f] of T of cardinality < p such that

T[f] is a cover of T<ys which means (Vs € T<ys)(3t € T[f])[s <r t] where for

f e F welet

T<fs =:{r € T : and for some g € F, we have (Iy,Jy) = (It, Jf) and
{i :i € Dom(f),i € Dom(g) and f(i) =g(i)} € I;r =17}

THEN
Dec(\, F, 1, Y): for every x > X\ and x € H(x) there is a sequence (M, : a < \) such
that:
(1) Mo < (H(x), € <5)
(i4) pU {ya Avuvx} € My and ”MaH =
(vi1) U M, includes X
a<A
(iv) if s €T, then for some t,s <pt €T and for some a < X and g € F; we have
(@) {i€ Dom(g):g(i) € | J M} € J,
B<a
(8) t,g € M, hence Rang(g) C M,
(v) for any pregiven o = cf(o) < p we can demand M, = U Mg . where (Mo . :e < o)
e<o
is increasing, pU{Y, A\, p, M, %} C My o, M, = U Mae,(Mac:¢<e) € Myer1 and

e<o

(Mg:08<a)e My..

Before proving 4.5 we deduce 4.4 from it and prepare the ground.

Proof of 4.4 from 4.5. Clearly without loss of generality Y is disjoint and let the set of
elements of T' be P and for A € T we let

Mlight assumption by 4.2(4)
12j.e., there is T/ C T satisfying |T’| < X and (Vs € T)(3t € T')(s <1 t)
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Fa= {f : for some (I,J) € Y, we have Dom(f) € J* and,

f is one to one into A and clauses ()f a,r, (8)f,a,1 of (f) of 4.4 hold}

and for any f € F4 let (I, gy) be as in the definition of Fjy.

We define the partial order <7 on T by: A; <p Ay iff Ay C A;. We have to check
that the assumptions in 4.5 holds, now clauses (a)’, (b)’, (¢)’ are the same as (a), (b), (¢) of
4.4, and clauses (d)', (e)’ are obvious. As for clause (f)’ it follows by clause (f) and the
definition of (F4 : A € P).

[Why? We are givenin (f)’ the objectst € T, f € Fysot = A € Pandlet (I,J) = (I, Jf) €
Y and U = Dom(f) € J*. Now as f € F4 by the definition of F4 let (U, : o < o*) be as
in subclause (8) of clause (f) of 4.4. For each o < a* choose A/, as in subclause (a)f 4,1
of clause (f) of 4.4 for U’ = U/, so in particular A, € P and A, C Anecl{f(i) :i e U}
Let us choose T'[f] =: {A, : a < a*}, so obviously T[f] € [P]<# = [T]< as o* < p. Let us
check that T[f] is as required in clause (f)" of 4.5. For being a cover: let r € Ty, i.e., let
r = A’ and (by the definition of T’y inside 4.5), there is g € F,. such that (I, J,) = (I, Jy)
satisfying U’ =: {i : i € Dom(f) and i € Dom(g) and f(i) = g(i)} € I, soU’ € I'*. So
(by clause ()4, from (f) from 4.4) for some o < a* we have ANcl{f(i):i e U} C
ANct{f(i):ie€U'}; by the choice of T[f] we have A, € T[f], let s = A/,

Now s € Tiy and (by the choice of A)) clearly s = A}, € A which means r < s. Lastly,
T[f] has cardinality < |a*| < p. So clause (f)" of 4.5 holds.]

Finally let x be large enough and « € H(x). So by 4.5 there is a sequence (M, : a < A)
for our (F4 : A € T),x,x as required there. It is enough to show that (M, : o < A) is
as required in the conclusion of 4.4. Now clauses (i), (ii), (iii) and (v) of the conclusion of
4.4 are just like clauses (i), (ii), (iii) and (v) of the conclusion of 4.5, so we should check
only clause (iv). So assume A € P and let a(A) be as defined there. By clause (iv) of
the conclusion of 4.5 applied to s = A there are t,«, g as there, i.e. s <pt,a <\ g€ F
and {i € Dom(g) : g(i) € U Mg} € Jg, Dom(g) € Jf and t,g € M,. Sot € P,t C A,

B<a
Rang(g) Ct C s = A, Dom(g) C M, and Rang(g) € M,. So « is as required.
Ui

4.6 Observation. 1) If in Claim 4.4 we add as an assumption clause (g) stated below and
0 < u, then we can find a function A from A to p such that for every A € P we have
6 = Rang(f [ A); where

(h) if (I,J) € Y and U € J* then'® U] = p.
2) Assume

(a) Y as in Definition 4.1(1)

(0)" A>p =Y+ k()
(©)" P CA=H
(d)" the conclusion of 4.4 holds
(e)” as (h) above.

13if J is not an ideal we should say: if (I,J) € Y,Us € JT,Uy € J then |U;\Up| = 1
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Then we can find h : A — p such that A € P = u = Rang(f | A).

Proof. 1) For each a < A let By, = My N A\ U{Mjg: 8 < a}, and choose h, : B, — p such
that

Ae M, NAe N ANJAN B, =u= Rang(ha [ (AN By)) = u.

Let h : A — p extend every h,.
2) Similarly. Uae

Below we think of the functions from F as say continuous embedding.

4.7 Claim. 1) In 4.4 (i.e. if its assumption so its conclusion holds), we have (A)g = (B)g
where

(A)g if P' C P has cardinality < p, then we can find h : U{A : A € P’} to 0 such that
AeP =0=Rang(h | A) =06

(B)g we can find h: X — 0 such that A € P = 6 = Rang(h | A)
provided that we add in clause (f) of 4.4 the statement

(7)o in (B) we can add:
if Uy € J then for some a < o*,cl{f(i) : i € UL} is disjoint to {f (i) : i € Ur}.
2) In 4.5 we can conclude (A)g = (B)o when

(A if TV C T,|T"| < p and G is a function with domain U{F; : (s € T')(s <r t)}
such that G(f) € J¢, then we can find a function h and ((ts, fs) : s € T') such that
s<rtsand fs € Ft, and s € T' = 0 = {(h(fs(4)) : i € Dom(f)\G(fs)}

(B)g we can find a function h: X — 0 as in (A)g for T' =T.

provided that e.g. (y)', below holds.
3) In part (1) we can replace (7)o by
(V) fU € J and Uy € J then [U\Uy | = p.

Proof. 1) Recall that A € P = cl(A) = A. Let {A, . : ( < (o < p}list {A€P:a(A) =a}
and let (I&,J&),UE, f& witness a(A;) = a. So by the assumption of 4.4, clause (f)(7)
appearing only in 4.7(1) there is A), . € P N M, such that A} . C cl{f&(i) : i € U and

fe(@) € Ma\ U Mg} C A7 .. Clearly A, . € P and (4], /) = « and we apply clause

B<a
(A)o to Pe = {A], - : ¢ < (o} getting hq : U Aj, ¢ — 0 so without loss of generality h,, :
<<<a
AN Mg\ U Mg — 6. Now h = U he is as required.
B<a a<
2), 3) Similar. Oy

4.8 Remark. In part (1) of 4.7 we can omit clause () if we replace (A)g by
(A)g if P' C P has cardinality < p and ((A}, ., I¢, J&UE, f&) : ¢ < () is as in the proof
of 4.7, then for some function h with domain U{A,¢ : ( < (o }\ U{Ba,c : ¢ < (a}
we have By ¢ CUE, Ba¢ € Ja, Rang(h [ (Rang(f¢ [ (UE) N Dom(h))) = 6.

The following is close to [Sh 161, §3] (or see [Sh 523, §3] or [EM]).
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4.9 Definition. 1) We say ' = (S, A) is a full (\, u)-set if:

(a) S # 0 is a set of finite sequences of ordinals

() S is closed under initial segments

() A=\, :nel)and Acs = A

d) for each n € S, the set {a: n"(a) € S} is empty or the regular cf(\,)
)

e) Ay > p iff Ay # p iff Ba)(n (a) € 9) iff n € S\S™ where S™ is the set of
<1—max1ma1 nes

(
(
(f) () if A, > p is a successor cardinal then a < A, = /\:]im Ay

> =
(B) if Ay > pis a limit cardinal then (X\,-(q) : @ < cf(A))
is (strictly) increasing with limit A,;.

4.10 Observation/Definition: 1) If I' = (5, )) is a full (A, y)-set, then from S and A we
can reconstruct A hence T', so we may say “S is a full (\,p)-set” or “A = A1 Also if
S # {<>}, from S we can reconstruct A and p.

2) Let S™ ={neS:\, =pu}

3) If n € S and A, # p then for every ordinal o we have a < cf(\,;) & 7 (o) € S.

4.11 Fact/Definition: 1) If S'is a full (A, p)-set and n € S'let S<"> = {v:n'v € S},itis a
full (A, p)-set.

2)If for each a < cf(N), Sy is a full (Ag, pt) set and (Ao = Ao & A= AJ)or Ay : v < cf(N))
is (strictly) increasing with limit A, A\g > p, then
S={<>}uU U {{a)"n:n € Sy} isafull (A p)-set.

a< cf(X)

3) For a full (A, u)-set S and n € S, let n* = (n(¢) : £ < k)" (n(k) + 1) if Lg(n) = k + 1 but
<>7T will be used though not well defined.

Proof. Straightforward.

4.12 Definition. 1) We define by induction on A the following. For a set X of cardinality
A, x large enough and = € H(x) we say N is a full y-decomposition of X for H(x),z (or
(A, pr)-decomposition) if for some full (A, p)-set S

() N is an S-decomposition of X inside H(x) for =, which means that for the uniquely
determined (A, : 7 € S), letting A+ = A we have:
(@) N =((Ng,N;f):n€S)

b) Ny < Ny < (H(x), €, <)

¢) {X,z} € N,f and £ < lg(n) = {Nn[[,N;;_M} € NS

(d) [INSN =X+ = [(N;FAN,) N X | and A+ C N,F

(e) if Aes > p, then (Neys @ < cf(Acs)) is <-increasing continuous with union
containing NX.

(f) Ni,o =Ncgi1s for a < cf(Acs) and Nogs = N has cardinality p

(g9) for each a < cf(A<x(S)) the sequence (Ncas-y, NZ,s-,) i1 € S5°7) is a

(A, pt)-decomposition of X N NZ, - \N< for H(x) and 2’ =: (z, N,, NF).
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2) We say N is a full (), p,0)-decomposition of X for H(x),z if ¢ = cf(c) < p and in
addition
(h) for each n € S\S™** there is a sequence (N,. : ¢ < o) which is <-increasing
continuous, Ny o = N,, for each ¢ < o we have (N, ¢ : ( < ¢) € N4 and
N;r = N,,» [alternatively the objects we demand € N,;r belong to N, » (in clauses
(c) and (h))] and in (c) we add £ < £g(n) = (Nypee € <o) € N,F.

3) We can write (N, : n € SU{<>"} instead of ((N,,N,7) : n € S) by clause (f) so

— Nt
N+ = NF.

4.13 Definition. 1) Let X, )\,N,Jf,]-: be as in 4.5 so T = Dom(F).
We say N is good for (z, X, Y, T, F) if:
(a) N is a full (A, p)-decomposition of X for H(x) and =’ =: (2, X, \, 1, ¥, T, F); let
N ={((Ny,N,f) :n € 5) and A = Al
(b) if s € T, then for some t € T,s <r t and for some n € S™ (i.e., A, = p) there
is f € F; and so (I, Jy) € V,Uf € J;r and f : Uy — Rang(g) witnessing it, such
that:
(x)1 {iely: f(i) € U{N, : v <4y n and v € S™}} belongs to J¢
()2 t, f belong to N{N, : £ < Lg(n)} NN,
hence
(x)3 {ieUy: f(i) e ﬁ{N;rM <Ly} NSNULN, 1 v <pp pand v € S}
belongs to J;r.

2) We may omit x if clear from the context.

4.14 The Main Claim. Under the assumption of 4.5, for x € H(x),o = cflo) < p and
X large enough there is a full (\, p, o)-decomposition of X for x,x good for (X,¥,T,F).

Proof. By induction on A = | X| for all possible (T, F) without loss of generality |T'| = \.

Case 1: A = p.
Trivial.

Case 2: A= cf(A) > p.

Choose (N, : a < cf(\)) such that the set a* =: {@, X, F,u, A\, f — Ty, [ — T[f]}
belongs to No, No < (H(x), €<} ), No is <-increasingly continuous, (Ns : 8 < a) € Nay1,
each N, has cardinality < A and N, N\ is an initial segment if o > 0 and || No|| = p, 0 C No.
For t € T let a(t) =: Min{« : for some f € U Fs and (If,J¢) € Y (as in 4.5 clause (e)’)

s>t

we have {i: 7 € Dom(f) and f(i) € N} € J*}. By renaming X = \.

Let S = {8 < A : forsomet € T wehave § = «a(t)} C A. For each 3 € S choose
tg € T and sg satisfying t3 <7 sg such that 8 = a(tg) and fz € F,, witness this. Let
Ug = {i € Dom(fs) : fg(i) € Ng} and let fé =: fs | Up and let (Ig,Jg) = (Ifﬁ,Jfﬁ)
so Ug € J;{ and Rang(fg) € Ng N A. Now without loss of generality f3 € Ng41 (hence
sg,1g,Jg € Ng41) as all the requirements on fz have parameters in Ny so we could have
chosen fs in Ngi1.
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Assume toward contradiction that S is stationary. Now as ) € Ny, |V| < p < A clearly
Y C Ny hence for some y € Y the set S, = {# € S : (Ig,J3) = y} is stationary. Let
y=(I*,J*)and S, = {B € S, : NgNA = B}, clearly it is stationary. It suffices to show that
(f5: 6 €8, exemplifies NFra(), ) contradicting assumption (c)’ from 4.5. Clearly ) C A
and § € S; = Dom(f;) € J* and Rang(f;) C d, i.e., let us prove clause (c) of Definition
4.1(2) holds. If not, for some §; < d2 in S;, we have B =: {i: i € Dom(fs,),i € Dom(fs,)
and fs, (1) = fs5,(i)} € I'", hence ts5, € Ty, ) (see 4.5, clause (f)') hence by an assumption
there is 5 such that t5, <r t5, € T[f5]. But «*, F, fs, belong to Ns,;1 < Ns, hence
T[fs,] € Ns,+1 but T[fs,] has cardinality < p (see clause (f) of 4.5) hence T'[fs5,] C N5, +1
but th € Tfs,] so tgz € N, 41 hence .7-}32 € N, +1 hence there is f/ € .7-}32 N Ns, +1 hence
Rang(f') C Ns,+1 contradicting the demand «(ts,) = d2. So in Definition 4.1(2) only “S is
a stationary subset of A” may fail, but something has to fail. So S is not stationary.

Let E be a club of A disjoint to S and we can find N’ = (N, : a < ) like (N, : v < \)
such that E,N € N/ so for N’,S = (). Recall that by the assumption of 4.5, T has
cardinality < A hence T C U{N, : a < A}. So for @ € (0,)) for some 6 € E we have
N,NA=6s0o N,NT = N;nT,N,n|JFn|JNs = Nmet. Now for each o

t B
we use the induction hypothesis on X, =: X N N/, ;\N/, and (fta t € T() where
T ={teT:te N, t¢ N and, moreover, for every f € F; the set {i € Dom(f) :
f(@) € NL} belongs to J} and .7-',500 ={flTU:Uis {i € Dom(f): f(i) € Xo} and
f e Fin N/ \N.}, and 2o = (2%, ,N') so by it we get (N : n € S%) and we let
S={<>}u{<a>"v:ive S, a<and Neas-, = N&, Nes = Nj, Nesr = NS,

Note that if A > p*,|T| > A, we can still manage'* but not needed. Also if o = cf(0) < p,
we can guarantee clause (h) of 4.12(2); similarly to Case 3.

Case 3: A singular > pu.
Let A\ = Z Ai and (\; @ @ < cf())) increasing continuous, Ag > pt + cf(\). We
1< cf(X)
choose by induction on ¢ < ut a sequence (Nf : i < cf(\)) such that:
(a) N; ¢ is <-increasing continuous in i
) (A 1i < cf(N)), X, A, i, F all belong to N§

(b
(¢) A € N¢ and ||N¢|| = \; except that [|[NO| = u, n C N

d) for each i, (N; : ¢ ¢ < pt) is <-increasing continuous
) ((NF i< cf(N) e <¢) e N;T

For each i < cf(\) and ¢ < p* and (I,J) € Y let ]:1 7 be a maximal family of functions

fef{ftu:-ueJtfe|JF.UC Dom(f)} such that Rang(f) € X NNy and
teT

f#geFy, = {i:iec Dom(f),i € Dom(g) and f(i) # g(i)} € I. Without loss of

generality .7-'(411]) € NOH1 and by 4.2(4) and assumption 4.5 clause (¢)’ we know |]-"(<I’iJ)| <\,

so a list of it of length < A; belongs to NiCJrl hence .7-'(4[’ 5 S Nf“. So if t € T and we

define «a(t) as in Case 2 for (Ng+ ca < cf(u)), we get that «(t) is necessarily nonlimit.

(
(e

14we should strengthen the induction hypothesis: instead X we have Xo C X1 such that | Xo| = A, and
continues naturally
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Then let N, = N(;ﬁ if @ € (0,cf(\)) and Ny = N and proceed as there (recalling that in
Definition 4.12 we have not demanded that N, € N;r) Oy 14

Proof of 4.5.

Fix 0 = cf(0) < p and by 4.14 we can find a full (A, y, 0)-decomposition of X for x,x
which is good for (X,Y,F). Let N = (N, : n € S) and note that <, linearly order S
in an order of order type A, so let (n, : a < A) list S in <y,-increasing order. Choose
Mo = N{N,", : £ < Lg(n)} N Ny, and check that (M, : @ < ) is as required in 4.5
(reading Definition 4.13).

This completes the proof of 4.4 above, too. O4a4a5

Proof of Lemma 3.7.
Just'® by 4.14 above and 4.7, we do not elaborate as 3.7, 3.8 are not used in other proofs.

Proof of 3.13. We use 4.4 + 4.7(1) above.
1) Without loss of generality let A be the set of points of X where X, u are given in 3.13,
I ={A C¥“2:the closure of A is countable}, J the following ideal on “2

{Uc2: Ul < 2%}
and

Y=A{,)}

So the conclusion (x) of 3.13 just means “for some regular x € (u, A\] we have NFry(x,))”
and toward contradiction assume it fails. Clearly x > pu. Let cf : [A]SF — [A]SF be

cl(A) = {a:a € A or for some countable B C A, o belongs
to the closure of B in the topological space X and

c/(B) has cardinality < 2%}

(if we like to have ¢f(A) = cl(cl(A)), iterate this wi-times).

Let us consider the assumptions of 4.4 and 4.7. Now clause (a) holds by the explicit choice
of Y above, as for clause (b), we have |Y| = 1, k()) = 280 which is < p by the assumption
of 3.13. Clause (c) is the assumption toward contradiction above, clause (d) (on ¢f) holds
as clearly A € [A]S* implies cf(A) = U{cl(B) : B € [A]=% and |cf(B)| < 2%} and [A]=Re
has cardinality < 0 =y and each countable B contribute at most 2%¢ points. Clause (e)
holds by the properties of closure. Lastly, for clause (f) including subclause () which was
added in 4.7 we define

P={A:AC \is asubset of A,

has cardinality continuum and X [ A is homeomorphic to “2}.

So for A € P let f = f4 be a homeomorphism from the topological space “2 onto the
space X [ A and Uy = “2; we shall show that they are as required in (f) of 4.4. Now for

5recall that 3.7 is not used in the proof of 4.18
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A e P, X | Aisa compact space and X is Hausdorfl, hence A is a closed subset of X. If
U Cw2,U ¢ 1,ie. U is not scattered letting U’ = {v € U’: for no open nb of v in “2 is
U’ scattered} and f = fa, then we have

A = ct{f(i):ieU"y = {f(i) i€ cloyUd")} C A

is homeomorphic to “2 hence € P, and this proves clause («).
Let (U, : a < 2%0) list the countable nonscattered subsets of “2, it clearly exemplifies clause
(B) (of (f) of 4.4).

Lastly, clause () (which does not appear in 4.4 but in 4.7(1)), any perfect subsets of “2
contain 2% many pairwise disjoint perfect subsets so any member of .J is disjoint to all but
< 2%0 of them.

So as all the assumptions of 4.4 hold so we can apply 4.7(1). There for our 6 = p, if (A)y
of 4.7(1) holds, then we get (B)y which says X - [“2]} contradicting an assumption. But
(A)g of 4.7 holds as we have assumed in 3.13: for every subspace X* of X with < p points,
X* - (“2)} and as for (§) there it was checked above.

2) For —,, we observe it is the same proof. For R we just should be more accurate about
closure; note that the topological closure of a countable set may have cardinality bigger
than 2%, For A C X let cf(A) = cf(A, X) = U{Rang(f) : f a one to one mapping from R
to X which is a homeomorphism onto X | Rang(f) and such that Yy = {z € R: f(z) € A}
is a dense subset of R. But for any such f1, fa, if some Y C Yy NYy, is countable dense
and [z € Y = fi(y) = f2(y)] then f1 = fa, so the proof is similar. Alternatively replaced R
by [0, 1]r. Us.13

As should be clear from the previous part of the paper, NFro(A, ) is closely connected
to pcf theory. In particular, on the one hand, §1 uses essentially the cases of NFr; whose
consistency is not clear (i.e. hopefully it will be proved that they are impossible). On the
other hand, §2 uses a case of NFry, say for I = [w;]<N. So let us explicate the obvious
relation (and the connection to [Sh 460, 3.9]).

The reader may wonder why not finer properties complimentary to the existence of large
almost disjoint families were used, as in [Sh 430]; the answer is that here assumption like
1 = o are natural (and limitations on time).

4.15 Claim. 1) IfNFri(A\*,\,Y) and I* is an ideal on k = k()), satisfying (x) below, then
there is F C "X such that f g€ F={i<k: f(i) =g(i)} € I* and |F| = \* where
(x) if (I,J) € Y and A € JT then for some one-to-one function h from k into A we
have Rang(h) ¢ J and for every B C k we have [{h(a):a € B} € I = B € I"*].
2) If NFry(N, 0, {(I*,J*)}) or (A, N\, V,I*) is as in part (1), and 2% < X then for some
sequence 0 = (0; : i < k) of regular cardinals € [2%, \] we have H 0;/I" has true cofinality
which is > \*. e
3) Assume
(a) NFry(\, ), so X reqgular > ||
(b) V' a family of pairs (I,J) satisfying (¥') < k and: if (I,J) € Y, h is a function
from Dom(1, J) into a limit ordinal &, then for some A € J* 1W'(A) is bounded in
Sand (ITAJ[B)eY.
Then for some X' < X\, we have NFri(\, X', V).

Proof. Straight.
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4.16 Conclusion. If p is a limit cardinal satisfying ®,, below, then A = cf(A) > p > &
implies Fra (A, ([u]<#, [4]<")) where

®, for every A > p for some 6 < ;v we have:
if a C Reg NA\p and |a| < p then pcfy-complete(d) C A.

Proof. Easy by 4.15.

4.17 Concluding Remark. 1) Of course, we may replace in 3.2 the space “2 by many others,
e.g. R, or any Hausdorff Y* space with 28 points such that for any uncountable A C Y*, for
some countable B C A, |cly~(B)| = 2% moreover if Z C Y*,|Z| < 2% for some uncountable
B’ C ¢ly+(B) we have cly-(B’) is disjoint to Z.

We can also add variants with —,, replacing —. As long as the space has < 2%o
points, the only place we should be concerned is the proof of 3.13, we reconsider the
choice of ¢f in the proof. In all cases for an embedding f from ¥ C Y* to X, let
cl(Rang(f)) = {x € X : for some y € Y*, f U {(y,z)} is an embedding of Y* | (U U {z})
to X | (Rang(f))U{y})} and f* = fU{(y,x) : 2,y as above}. The point is that for this
choice of ¢/, if Y1 C Yy CY* Yy C ¢ly«(X1) and f embeds Ys into X with Rang(f) not
necessarily close, then (f | X1)¥ is a function from some Y3 C Y* into X extending f.

2) We may like to add to 3.2 the case with continuum many colours that is let (By,)<,[*2]
and (Bp)f, be defined like (B)[*2],(B)*, replacing )L ei2voy DY )%, and we add
(Bm)<:l;r [“2], (B)<:+ to the list of equivalent statements. Similarly for (4). More is proved,

that is X — (¥2)L, where X has A points (or we get A\ when we ask for compact X). The
main point is adopting 1.2 (and 1.7).

For this we add also (Cy,)3,,3,,8, Where for £ > 6 > o we let

(Crm)rp.0 there are A, S, f such that

(a) S C \is stationary > kT, k>0 > ¢
(b) f=(fs:0€8)
(¢) Dom(fs) =0, each f5(i) is a subset of §\i of cardinality < x and (min(fs(7)) : ¢ < 6)

is increasing with limit ¢ (can ask i < j < 6 = f(sup(f5(¢)) < min(f5(7))

(d) if 61 < 6y are in S then {i < 6: f5,(i) N (] f5,(j) # 0} has cardinality < o
j<o
(e) if Fy: A — [A\J=F for £ = 0,1 and Fy(a) € [M\\a]=*, then for some & € S we have:
() fsis (Fo, F1)-free which means:
for i # j < 0, the set Fy(fs5(4)) is disjoint to Fo(f5(4))

(B) there are (o : i < 0) such that fs(i) = Fo(e;) and sup[U f5(3)] < au.

j<i

Similarly for (D). Why is this O.K.? See below, noting that we get more.
3) As before, (By,)T = (Bn)[“2] = (Am)[¥2] and (By,)" = (Am)t = (4,,)[%2], also easily
(C) = ()3, 3, .5 (Bm)T = (B)T, (Am)* = (A)F, (Bw)[*2] = (B)[*2] and (An)[*2] =
(A)[~2]

(f) if (Fy, Fy) is a pair of functions with domain A and Fy(i) € [A\i]=*
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3A) The forcing in 2.8, with the role of A¢ being replaced by U fe(i) and A7 C U f5(3)
i< <6

such that 7 < 6 = [A7 N fs(i)| < 1 works.

4) Also

Xy (D)a,,3,x, implies the consistency of (By,)*t

<3
As before without loss of generality for some K = k<% > @ = 2% & are such that (k.0

hold. Now we just need to repeat the proof of 1.2. The asymmetry in clause (d) does not
hurt as if oo # 02, AS', AS? are well defined, then it follows that |Af' N AT?| < 0.

In the crucial point we let p* IF “c : A — p for some p < A”7. Really less is enough:
let p* IF “Z C X is unbounded” and we shall find ¢ and § € S such that p* < ¢ € P
and ¢ IF “X* | AY is a copy of the space Y (e.g. “2) and A} C Y”. How? We define
Fola) = {B: B € [a,\) and p* ¥ § # Min(Z\a)}.

Fi(a) = U{uP>i : i < k} where (pa; : i < k) is a maximal antichain above p* such that
Pa,i forces a € Z or forces o ¢ Z.

Now we repeat the proof of 1.2, but instead deciding the colour we decide the right member
of Z.

5) Lastly, we get (C)t,  from (C)xg.,. So assume A > kT, 5 > 60 > o and (45 : § € S)

are as in (C) and as b%fec;llj"e (by forcing) without loss of generality ¢s. Now we can actually
prove (C)y.0,0 for A. So we prove
X5 if
(@) A>kT,k>0>0,k7 <\
(8) J an ideal on € such that (VA € J")(3a € J")(a C A)

(v) S C \is stationary, f = (fs: 6 € S), fs : 0 — 0 increasing, §; < d2 = {i < 0 :
f51 (Z) = f52(7’)} SPA
(@) <s.

Then (C)y,0,0 as witnessed by A.

So let ((FS,FY) : 6 € S) be such that F} : § — [§]<" for £ = 0,1 be such that: if
Fp: X — [ASF for £ = 0,1 then Sipypy = {6 €S:Fy[6=F andF [ 6§ =F}is
stationary. We now choose by induction on § € S a function fs such that:

(a) if there is a function f with domain 6 satisfying the conditions below then fs is such
a function, otherwise fs is constantly ()

(@) f(i) € [6]="\{0}

(B) i <j=sup(fs(i)) <min(f5(5))

(y) for each i < @ for some «; < & we have F¢(;) = f5(i) and
sup({J /()] < e < min £())

(min(f(7)) : 4 < 0) converge to &

(e) fori#j <6 theset F{(f(i)) and FS(f(j)) are disjoint
(¢) if 6 € NS then

{i<d: f(i)n U f5.(j) # 0} has cardinality < o.
j<o

—~
(=0
~—

Let S~ = {6 € S : fs is not constantly )} and we suffice to prove that f = (fs : 6 € S™)
is as required. Most clauses hold by the definition and we should check clause (e), so let
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Fo, F1 be as there. Let S, = {0 € S: Fy | d = Fg and Fy | 0 = Ff}, so this set is
stationary.

For every a € S* = {6 < A : cf(d) = kT} let g(a) = sup(a N Fi(a)) < « so g is constantly
a(x) on some stationary S** C S.

Ey={6 <X:otp(S**Nd) =6 and o < § = sup(Fp(«)) < d and o < § = sup(F1()) < d}.
Let Ef = {0 < A:otp(EyNd) =6} and for 6 € E1 NSk, r, let Ay = {a € Ey : otp(anNEp) €
As}, s0 As C § =sup(As), otp(As) =0 and §1 # d2 € E1 N Spy.p, = |As, N As,| < 0.

Let A; = {ag, : i < 0} increasingly and let as; = Min(S™*\(aj, + 1)) so as; < ag, 4
(even as; < Min(E7\(ag,; + 1) and choose f; a function with domain ¢ by

F3(i) = Folass) = Fy (o)

(the last equality as Fy [ 6 = F{ as § € Sg,.r,)-
Clearly f5(i) = Fo(cow) € Min(E1\(aj + 1)) and

v € f5(i) = F(y) € Min(Ei\(a5; +1)) < aj00 < Q41

7€f5():>F( )ﬂag,igoz(*)<o<0

Now f§ satisfies almost all the requirements on fs and if f§ = f5 for stationarily many
d € E1 NSk, we are done. Let W = {§ € E1 NSk, r, : f5 # [5}, we shall prove that W
is not stationary - this is more than enough.

So for § € W necessarily for some h(J) € 6 NS we have

={i<0: f;()n | fio)(4) # 0}

j<o

has cardinality > o, so by Fodor’s lemma for some §(*) we have Wy = {§ € W : h(d) = d(x)}

is stationary.

Similarly as 7 < XA = cf(\) for some w* € [0]7,we = {§ € w1 : w* C ws} is stationary.

As "[U fs5(+(7)]” has cardinality x” which is < A without loss of generality for some h* :
Jj<o

w* — U Js5(+)(J) the set
j<é

={0eWy: (View)(h* (i) € f5(i) 0 | Fso

j<0

is stationary. So if §; < J2 are in w3 the set {i < 0 : f; (i) = f5,(4)} include w*. But
f5,(i) = f5,(i) implies that o = a2, hence As, N As, has cardinality > o contmuously
6) W has a X clause (§), we add Rang(f(;) is bound in 47

This is equivalent to: for some fixed p < A, (Vd)(Rang(fs) C ). Repeating the proof and
replacing club of C' € [u]* we get clause (C')y,0,0 witnessing A with Rang(fs) C u. We then
get versions of the (A)’s and (B)’s with p points.

(Note one special point: we should rephrase the “weak A-system argument, by using it on
a tree with two levels.

7) Note that by part (5) we get a stronger version of the topological statements: for any A
(or v in (6)) points there is a close copy of “2 (or the space Y') included in it. Of course, if we
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like the space to be compact this refers only to any set of A (or u) points among the original
ones. Note the Boolean Algebra of clopen sets (when Y has such a basis) satisfies the c.c.c.
(remember in the cases only “221 N u€,2¢+1 = () is demanded, the Boolean Algebra is free)
so we cannot control the set of ultrafilters (= points), but if we allow more disjointness
demand we may, but we have not considered it.

4.18 Claim. If u = u~*. Then there is a u-complete u™-c.c. forcing notion Q of cardi-
nality 2% such that

lFg « there is a function h : " — p such that
(o) if C €V is a closed subset of *u of cardinality < u
then a < p=|CNh Ha}| < p
(B) f A€V is a subset of " of cardinality >
then a < pu = |[ANh~Ha}| = |A]".

Proof. As in the proof of 3.14, it suffices to prove:
(x) Assume that i*,7* < p and 1,,; € *u for @ < pt,i < * is with no repetitions and
Ca,; C Hu is closed with < p points for @ < p*,j < j*. Find a < 8 such that
1< & §<j =100 ¢Cpy

Why (%) holds? Assume not. First choose 6* < u™ such that:
(xx) if B < pt and ¢ < p then for some o < §* we have i < i* = 14, [ (=1, | C.

We can find 3 such that 6* < 8 < p* and {ng; : i < i*} is disjoint to U Cs~ j,
J<j*
noting that 3 exists as | U Cs« ;| < pu. Let ¢* < p be large enough such that
J<J*
i<t & j<jt= () | (av € Cs+ ;). Lastly, choose o < 6* such that
t<i" = Mai [ C=mg [ ¢
Now the pair (a, d*) can serve as («, 3) above. Oaas
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GLOSSARY

§1 General spaces: Consistency from strong assumptions.

Definition 1.1 X* — (Y™*)y, (having a closed copy of Y'), monochromatic for a colouring of
n-tuples by € colours, X* —,, (Y*)} (not necessarily a closed copy).

Theorem 1.2 A sufficient condition for a forcing adding a space X* such that X* —
(Y*)Z .4(g), consisting on conditions on the cardinals

((A), (B)1,(B)2,(C)) and on the space Y*
(D), (E)) [Saharon: copy and revise to be a proof of 1.5].
Claim 1.4: Sufficient pcf conditions for the set theoretic hypothesis of 1.2.
Observation 1.5: on beautifying nice scales.
Claim 1.7: A variant of 1.2.

Comments 1.8: We deal with some variants (e.g. regular spaces X*, Y™*).

Concluding Remarks 1.8: Mainly on 73 spaces.

62 Consistency from supercompacts

Observation 2.1: How to deduce (C) from (C)*, a new condition.
Claim 2.2: Quoting a “consistency by a supercompact”.
Claim 2.3: Sufficient condition of the set theoretic assumption of 1.2.

Conclusion 2.6: Getting from a supercompact a universe with CH + there is a Hausdorff

space X with clopen basis such that X — (Cantor discontinuum)zﬂg.

Claim 2.7: Upgrading by a small forcing a stationary S ¢ I[u"] included in {§ < u* :
cf(d) = cf(u)t} to A= (A5 : 6§ € 8" C S), 5 stationary, As C 6 = sup Ag,d1 # 02 =
|A51 N A52| < Cf(ﬂ)

Claim 2.8: Upgrading A as in 2.7 to A | S’ which is k-free by a cf(u)T-c.c., (< cf(u))-
complete forcing notion.

Observation 2.9: By forcing we can partition S to nonreflectiving subsets.
Conclusion 2.10: Getting the necessary assumptions from non trivial I[A].

63 Equi-consistency

Problem 3.1: What if we assume G.C.H.?

Theorem 3.2: Equi-consistency of several related statements, some are versions of “there is
X — (¥2)}”, and some relate to pcf statement (and relative to I[\] non trivial).
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Question 3.4: Phrase such theorems for other spaces.
Definition 3.5: Is (., Iy, I1, #)-approximate.
Example 3.6: On the Cantor discontinuum.

Lemma 3.7: Sufficient conditions for the existence of a [K, o]-colouring of A.

1

Conclusion 3.8: A sufficient condition on “X has approximation” for X — [Cantor set],, -

Claim 3.9: The forcing notions of §1 satisfies a strong xT-c.c.

Definition 3.10: A strong pt-c.c. called *5,.

e

Lemma 3.11: “Q is (< p)-strategically complete and has *,

iteration.

is preserved by (< p)-support

Definition 3.12: X* — [Y*]7.
Claim 3.13: From X — [“2]}, to (fa : @ € S), to help 3.2.

Proof of 3.2:

Observation 3.14: Existence of forcing replacing “countable scattered” by finite.

Claim 3.15: The old claim on I[A] non trivial from a strongly compact.

84 Helping equi-consitency

Definition 4.1: NF'ry(\,)), variant of almost free not free.
Fact 4.2: Basic properties of NFry.
Claim 4.3: Improving examples for NFr by forcing (toward freeness).

The Decomposition Claim 4.4: Analyzing NFr.

Claim 4.5: A variant of the previous claim 4.4.
Observation 4.6: Improving 4.4.
Claim 4.7: Getting a colouring from decomposition.

Definition 4.9: Defining (S, \) a full (A, u)-set.

Observation 4.10: On A-set () is computable from S).

Fact/Definition 4.11: Analyzing full sets.

Definition 4.12: N is a pu-decomposition of X for H(x), .
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Definition 4.13: N, a full y-decomposition is good for (X, Y, F).

Claim 4.14: In 4.5, there is a good decomposition.
Proof of 3.13:

Claim 4.15: On NF;

Conclusion 4.16: On Fr(\, [u]<H, [1]<")

Concluding Remarks 4.17:

Claim 4.18: Properties of NFr.
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