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Abstract. This paper is on the analysis of a single product, periodic review inventory
model, where the distributions of demands vary with the state of the environment
variable. The state of the environment is assumed to follow a discrete-time Markov
chain. The optimal inventory policy to minimize the total discounted expected cost
is derived via dynamic programming. For the finite-horizon model, we show that an
environmental-dependent base-stock policy is optimal, and derive some characteristics
of the optimal policy. Under additional conditions, we further derive the monotonicity
of the optimal policy.

1 Introduction The inventory control has long focused on managing certain specific
types of probability in the demand for the products. But, on the other hand, consumer’s
liking becomes variously in the real-life. The demand is fluctuated by the economic climate,
weather condition, trend of public opinion, and so forth. Mere including a purely random
component in the demand process will be impossible to express such situations.

So, in this paper, under the assumption that the environmental process follows a discrete-
time Markov chain, we model a single product inventory system of which the distributions
of demands depend on environmental fluctuations, and discuss the management policy. We
further investigate the effect of the environmental fluctuations on the optimal policy. The
main advantage of the Markov chain approach is that it provides a national and flexible
framework for formulating various changes described above.

The effect of a randomly changing environment in inventory model received only limited
attention in the earlier paper. Kalymon[12] studies a multiple-period inventory model in
which the unit cost of the product is determined by a Markov process, and the distribution
of demand in each period depends on the current cost. Feldman[8] models the demand en-
vironment as a continuous-time Markov chain. The demand is modulated by a compound
Poisson process where the parameters are determined by the state of the environment. But
he studies only the steady-state distribution of the inventory position. Song and Zipkin[18]
present a continuous-review inventory model where the demand process is a Markov mod-
ulated Poisson process, and they derive some basic characteristics of the optimal policy
and algorithms for computing the optimal policy. In recent articles, Özekici and Parlar[15]
develop an infinite-horizon periodic-review inventory model with unreliable suppliers where
the demand, supply and cost parameters are influenced by a random environment. Cheng
and Sethi[2] analyze the joint promotion-inventory management problem for a single item
in the context of Markov decision processes.

The purpose of this paper is to show that the environmental-dependent base-stock policy
is optimal, and that the optimal policy have the monotonicity for review periods by analyz-
ing finite-horizon periodic-review inventory model where the demand distribution depend
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on a Markov environmental process. In addition, we derive the monotonicity of the opti-
mal policy for the environmental states by ordering them. In this paper, we focus on the
finite-horizon analysis, since it gives us concrete and realistic insights.

This paper is organized as follows; Section 2 presents the formulation of the general
problem as a dynamic programming model. Section 3 provides analysis for finite-horizon
problem. Section 4 investigates the effect of the environmental fluctuations on the optimal
policy. The paper concludes with some final remarks in Section 5.

2 Assumption and Notation In this section, we introduce notations and basic assump-
tions used throughout the paper:

n : number of periods remaining in the finite-horizon problem;
E = {1, 2, . . . , R} : a finite set of possible environmental state;
In : the state of the environment observed at the beginning of period n;
I = {In; n ≥ 0} : a Markov chain on E;
P (i, j) : the transition probability that the environmental state changes from

i to j in one period, i, j ∈ E;
Dn : the total demand during period n;
Ai(z) = P [Dn ≤ z|In = i] : the conditional distribution function of Dn

when In = i;
ai(z) : the probability density function corresponding to Ai(z);
Xn : the inventory level observed at the beginning of period n;
Yn(i, xn) : the order-up-to level if the environmental state is i and the in-

ventory level is xn at the beginning of period n;
c : a unit ordering cost;
c0 : a unit ordering cost in period 0;
h : a unit holding cost incurred at the end of period;
p : a unit shortage cost incurred at the end of period;

We assume Ai(0) = 0, ai(·) > 0.
To motivate ordering, we assume that p > c as in standard models. Also, we assume that
unsatisfied demands are fully backlogged.

Remark 1 The basic assumption of this model is that the demand distribution at any
period depends on the state of the environment at the beginning of that period. Therefore,
the decision maker observes both the inventory level and the environmental state to decide
on the optimal order quantity which is delivered immediately.

Remark 2 The admissibility condition requires that Yn(i, xn) ≥ xn since we do not allow
for disposing of any inventory without satisfying demand. For any yn, it is noted that the
inventory level Xn is a Markov chain, where

Xn−1 = xn + [yn(i, xn) − xn]+ − Dn, n ≥ 0.

Figure 1 illustrates the behavior of the inventory level.
Now, let V n

i (x) be the minimum expected total discount cost of operating for n-period
with the state of the environment i and the initial inventory level x, under the best ordering
decision is used at period n through period 1. Then, a dynamic programming equation
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Figure 1: The behavior of the inventory level

(DPE) for the problem can be given by

V 0
i (x) = 0,(1)

V n
i (x) = min

y≥x

{
cy + Li(y) + α

R∑
j=1

P (i, j)
∫ ∞

0

V n−1
j (y − z)dAi(z) − cx

}
,(2)

n > 0, i ∈ E,

where y is the inventory level after the order is delivered.

Li(y) = h

∫ y

0

(y − z)dAi(z) + p

∫ ∞

y

(z − y)dAi(z), n > 0, i ∈ E

is the expected one-period holding and shortage cost function, and α is the discount factor
per period. The first and second derivatives of Li(y) are

L′
i(y) = (h + p)Ai(y) − p, L′′

i (y) = (h + p)ai(y) > 0.

To simplify our analysis, by using the relation

Wn
i (x) = V n

i (x) + cx, n ≥ 0,

we change (1) and (2) to following DPE.

W 0
i (x) = c0x,

Wn
i (x) = min

y≥x

{
Gn

i (y)
}
,(3)
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where

Gn
i (y) = cy(1− α) + cα

∫ ∞

0

zdAi(z) + Li(y)

+α

R∑
j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi(z).(4)

Furthermore, in this paper, we assume that no action is taken in period 0. So, c0 = 0.
Thus,

W 0
i (x) = 0.

The decision variable in this model is y, so (4) which is a function of y plays a central
role in getting the optimal value y∗.

We assume that all parameters and costs are nonnegative, and that all relevant functions
are differentiable.

3 Finite-Horizon Analysis In this section, we analyze the finite-horizon problem for
the model introduced in the last section.

When n = 2, from (3) and (4),

W 2
i (x) = min

y≥x

{
G2

i (y)
}
,

G2
i (y) = cy(1 − α) + cα

∫ ∞

0

zdAi(z) + Li(y)

+α

R∑
j=1

P (i, j)
∫ ∞

0

W 1
j (y − z)dAi(z).

We obtain the first two derivatives of G2
i (y) as follows:

G′2
i (y) = c(1 − α) + L′

i(y) + α

R∑
j=1

P (i, j)
∫ ∞

0

W ′1
j (y − z)dAi(z),

G′′2
i (y) = L′′

i (y) + α

R∑
j=1

P (i, j)
∫ ∞

0

W ′′1
j (y − z)dAi(z).

For n = 1,

W 1
i (x) = min

y≥x

{
G1

i (y)
}
,

G1
i (y) = cy(1 − α) + cα

∫ ∞

0

zdAi(z) + Li(y),

G′1
i (y) = c(1 − α) + L′

i(y), G′′1
i (y) = L′′

i (y) > 0.

Then,

lim
y→∞G′1

i (y) = c(1 − α) + h > 0, lim
y→0

G′1
i (y) = c(1 − α) − p < 0.

So, there exists a unique S1
i such that G′1

i (S1
i ) = 0, i.e.,

S1
i = A−1

i

[p − c(1 − α)
h + p

]
.
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S1
i is nonnegative and finite because p− c(1− α) > 0 and p− c(1− α) < h + p. Hence, the

optimal policy for period 1 is the environmental-dependent base-stock policy defined by

Y ∗
1 (i, x) =

{
S1

i (x ≤ S1
i ),

x (x > S1
i ),

and the optimal cost incurred by this policy is

W 1
i (x) =

{
G1

i (S
1
i ) (x ≤ S1

i ),
G1

i (x) (x > S1
i ).

Furthermore, for x > S1
i ,

W ′1
i (x) = G′1

i (x) > 0, W ′′1
i (x) = G′′1

i (x) > 0.

Then,

G′′2
i (y) > 0,

lim
y→∞G′2

i (y) = c(1 − α2) + h(1 + α) > 0, lim
y→0

G′2
i (y) = c(1 − α) − p < 0.

So, there exists a unique S2
i such that G′2

i (S2
i ) = 0.

Hence,

Y ∗
2 (i, x) =

{
S2

i (x ≤ S2
i ),

x (x > S2
i ),

W 2
i (x) =

{
G2

i (S
2
i ) (x ≤ S2

i ),
G2

i (x) (x > S2
i ).

Furthermore, for x > S2
i ,

W ′2
i (x) = G′2

i (x) > 0, W ′′2
i (x) = G′′2

i (x) > 0.

On the other hand,

G′2
i (y) − G′1

i (y) = α

R∑
j=1

P (i, j)
∫ ∞

0

W ′1
j (y − z)dAi(z) ≥ 0.

So,

S2
i ≤ S1

i ,

W ′2
i (x) ≥ W ′1

i (x).

Moreover,

G2
i (y) − G1

i (y) = α

R∑
j=1

P (i, j)
∫ ∞

0

W 1
j (y − z)dAi(z) ≥ 0.

So,

W 2
i (x) − W 1

i (x) ≥ min
y≥x

{
G2

i (y) − G1
i (y)

} ≥ 0.



424 H. MATSUMOTO and Y.TABATA

For an n-period problem,

Wn
i (x) = min

y≥x

{
Gn

i (y)
}
,

Gn
i (y) = cy(1 − α) + cα

∫ ∞

0

zdAi(z) + Li(y)

+α
R∑

j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi(z),

G′n
i (y) = c(1 − α) + L′

i(y) + α

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi(z),

G′′n
i (y) = L′′

i (y) + α
R∑

j=1

P (i, j)
∫ ∞

0

W ′′n−1
j (y − z)dAi(z).

To use induction, we assume that the following properties hold for the (n−1)-period problem
where the state of the environment is j ∈ E.

G′n−1
j (Sn−1

j ) = 0, G′′n−1
j (y) > 0,

lim
y→∞G′n−1

j (y) = c(1 − αn−1) + h

n−2∑
k=0

αk > 0,

lim
y→0

G′n−1
j (y) = c(1 − α) − p < 0,

Wn−1
j (x) =

{
Gn−1

j (Sn−1
j ) (x ≤ Sn−1

j ),
Gn−1

j (x) (x > Sn−1
j ),

W ′n−1
j (x) =

{
0 (x ≤ Sn−1

j ),
G′n−1

j (x) (x > Sn−1
j ),

≥ 0,

W ′′n−1
j (x) =

{
0 (x ≤ Sn−1

j ),
G′′n−1

j (x) (x > Sn−1
j ),

≥ 0,

Wn−1
j (x) ≥ Wn−2

j (x), W ′n−1
j (x) ≥ W ′n−2

j (x).

Then,

G′′n
i (y) > 0,

lim
y→∞G′n

i (y) = c(1 − αn) + h

n−1∑
k=0

αk > 0, lim
y→0

G′n
i (y) = c(1 − α) − p < 0.

So, there exists a unique Sn
i such that G′n

i (Sn
i ) = 0.

Hence,

Y ∗
n (i, x) =

{
Sn

i (x ≤ Sn
i ),

x (x > Sn
i ),

Wn
i (x) =

{
Gn

i (Sn
i ) (x ≤ Sn

i ),
Gn

i (x) (x > Sn
i ).

Furthermore, for x > Sn
i ,

W ′n
i (x) = G′n

i (x) > 0, W ′′n
i (x) = G′′n

i (x) > 0.
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The behavior of Wn
i (x) and Gn

i (x) is shown graphically in Figure 2. On the other hand,

G′n
i (y) − G′n−1

i (y)

= α

R∑
j=1

P (i, j)
∫ ∞

0

{
W ′n−1

j (y − z) − W ′n−2
j (y − z)

}
dAi(z) ≥ 0.

So,

Sn
i ≤ Sn−1

i ,

W ′n
i (x) ≥ W ′n−1

i (x).

Moreover,

Gn
i (y) − Gn−1

i (y)

= α

R∑
j=1

P (i, j)
∫ ∞

0

{
Wn−1

j (y − z) − Wn−2
j (y − z)

}
dAi(z) ≥ 0.

Hence,

Wn
i (x) − Wn−1

i (x) ≥ min
y≥x

{
Gn

i (y) − Gn−1
i (y)

} ≥ 0.

4 The monotonicity of the optimal policy for the environmental states In this
section, we investigate the effect of the environmental fluctuations on the optimal policy.

To simplify our analysis, we introduce the concept of ”stochastic ordering”, and set some
additional assumptions.

Definition 1 Let F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) denote cumulative distribu-
tions of the one-dimension random variables, X and Y , respectively. We define that ”Y is
stochastically larger than X” or that ”G is stochastically larger than F”, as follows:

F (t) ≥ G(t), −∞ < t < ∞.

Then, it is represented by F ≤SL G or X ≤SL Y .
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Theorem 1 The following condition is necessary and sufficient to be X ≤SL Y

EΦ(X) ≤ EΦ(Y )

where Φ is any non-decreasing function for which expectations exist.

We assume that the following relation holds on the demand distributions in respective
states.

Assumption 1 A1 ≤SL A2 ≤SL · · · ≤SL AR, i.e., A1(y) ≥ A2(y) ≥ · · · ≥ AR(y).

We further make an assumption on the transition probability.

Assumption 2 The transition probability P (i, j) is assumed to be ”totally positively 2
(TP2)”.

Now, when Assumption 1 and 2 hold, we prove the following (1) ∼ (5).

For any states i and i′ (1 ≤ i < i′ ≤ R),
(1)Wn

i (x) ≥ Wn
i′ (x),

(2)Gn
i (y) ≥ Gn

i′ (y),
(3)W ′n

i (x) ≥ W ′n
i′ (x),

(4)G′n
i (y) ≥ G′n

i′ (y),
(5)Sn

i ≤ Sn
i′ .

We use induction to prove them.
For n = 1, they are apparent from the last section. For the (n − 1)-period problem where
the state of the environment is j ∈ E, we assume that Wn−1

j (x) is non-increasing in j.
Then, since

∑R
j=r P (i, j) is non-decreasing in i from Assumption 2, we have

R∑
j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi′(z) ≥

R∑
j=1

P (i′, j)
∫ ∞

0

Wn−1
j (y − z)dAi′(z).

Since Wn−1
j (x) is non-decreaing in x, we obtain from Theorem 1

R∑
j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi(z) ≥

R∑
j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi′ (z).

Hence,

R∑
j=1

P (i, j)
∫ ∞

0

Wn−1
j (y − z)dAi(z) ≥

R∑
j=1

P (i′, j)
∫ ∞

0

Wn−1
j (y − z)dAi′(z).

So,

Gn
i (y) ≥ Gn

i′(y).

Moreover,

Wn
i (x) ≥ Wn

i′ (x).
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Next, for (n − 1)-period problem where the state of the environment is j ∈ E, we assume
that W ′n−1

j (x) is non-increasing in j. Then, from Assumption 2, we have

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi′(z) ≥

R∑
j=1

P (i′, j)
∫ ∞

0

W ′n−1
j (y − z)dAi′(z).

Since W ′n−1
j (x) is non-decreasing in x, we obtain from Theorem 1

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi(z) ≥

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi′(z).

Hence,

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi(z) ≥

R∑
j=1

P (i′, j)
∫ ∞

0

W ′n−1
j (y − z)dAi′(z).

So,

G′n
i (y) ≥ G′n

i′ (y),
Sn

i ≤ Sn
i′ .

Moreover,

W ′n
i (x) ≥ W ′n

i′ (x).

We further introduce a concept stronger than Definition 1, and set a new assumption.

Definition 2 Let X and Y be the one-dimension random variables with cumulative dis-
tributions F (x) = P (X ≤ x), G(y) = P (Y ≤ y), and probability densities f(x) = F ′(x),
g(y) = G′(y), respectively. We define that ”Y is larger than X in the sense of first moment
ordering” or that ”g is larger than f in the sense of first moment ordering”, as follows.

g(t) = f(t + C), ∀t ≥ 0

where C is an any positive constant. Then, it is represented by f ≤FM g or X ≤FM Y .

Assumption 3 a1 ≤FM a2 ≤FM · · · ≤FM aR.

When Assumption 2 and 3 hold, we prove that Sn
i is constant in n. First, to simplify our

analysis, we introduce a new notation. Let νi be a mean of the demand in an any state i,
i.e., νi =

∫ ∞
0

zdAi(z), ∀i.
Then, from Assumption 3,

a1(y − ν1) = a2(y − ν2) = · · · = aR(y − νR).

Since the demand should not be negative, a1(y) = 0, ∀y ≤ 0. Hence,

ai(y) = 0, ∀y ≤ νi − ν1, i = 1, . . . R.(5)

¿From S1
i = A−1

i

[
p−c(1−α)

h+p

]
,

S1
1 − ν1 = S1

2 − ν2 = · · · = S1
R − νR.(6)
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Now, for the (n−1)-period problem where the state of the environment is j ∈ E, we assume
that Sn−1

j = S1
j . Then, from the last section,

W ′n−1
j (x)

{
= 0 (x ≤ Sn−1

j ),
≥ 0 (x > Sn−1

j ).

Since Sn−1
1 ≤ Sn−1

2 ≤ · · · ≤ Sn−1
R from Assumption 2,

R∑
j=1

P (i, j)W ′n−1
j (x)

{
= 0 (x ≤ Sn−1

1 = S1
1),

≥ 0 (x > Sn−1
1 = S1

1).

Moreover, from (5) and (6),

R∑
j=1

P (i, j)
∫ ∞

0

W ′n−1
j (y − z)dAi(z)

{
= 0 (y ≤ S1

1 + νi − ν1 = S1
i ),

≥ 0 (y > S1
1 + νi − ν1 = S1

i ).

Hence,

Sn
i = S1

i .

Therefore, when Assumption 2 and 3 hold, Sn
i is constant in n.

5 Concluding Remarks In this paper, first, we show the existence of the environmental-
dependent optimal base-stock policy and its monotonicity for review periods by analyzing
finite-horizon periodic-review inventory model where the demand distributions depend on
a Markov environment process. We further show that the optimal policy have the mono-
tonicity for the environmental states by ordering them.

When the cost-parameters depend on a Markov environment process, we can prove the
existence of the environmental-dependent optimal base-stock policy. Also, in the presence
of a fixed ordering cost, we can show the existence of the environmental-dependent optimal
(s, S) policy. Furthermore, we can derive the optimal policy in the model that incorporates
variable capacity and stochastically proportional yield. But, in above cases, it is difficult
to clarify the effect of the environmental fluctuations on the optimal policy. It is a future
direction to investigate the effect of the environmental fluctuations on the optimal policy
in more complex model.

In our model, we analyze the inventory system that depends on the exogenous factors.
So, it is also one of the possible extensions to present the inventory system that depends
on the endogenous factors where the demand is influenced by the order quantity, price
discount, marketing activity, and so on.
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