CANONICAL DECOMPOSITION OF TUPLES OF OPERATORS CAUSED BY SYSTEMS OF OPERATOR INEQUALITIES

TAKATERU OKAYASU AND YASUNORI UETA

Received August 13, 2003

ABSTRACT. Let $\mathcal{B}(\mathcal{H})^n$ be the algebra of all *n*-tuples of bounded linear operators on a separable Hilbert space \mathcal{H} , and \mathcal{G} a set of maps on $\mathcal{B}(\mathcal{H})^n$ belong to an appropriate class. Then any *n*-tuple T can be decomposed into the direct sum $T_0 \oplus T'$ of the maximum \mathcal{G} -definite (respectively, \mathcal{G} -semidefinite) part T_0 and the completely non \mathcal{G} -definite (resp., non \mathcal{G} -semidefinite) part T'. It follows that any bounded operator T has the maximum *k*-hyponormal part for any positive integer k, and so, it can be decomposed into the direct sum $T = T_0 \oplus T_1 \oplus T_2 \oplus \cdots \oplus T_s$ of the completely non hyponormal part T_0 , the *k*-hyponormal but non (k + 1)-hyponormal part T_k $(1 \le k < \infty)$ and the maximum subnormal part T_s .

1 Introduction Let \mathcal{H} be a separable Hilbert space, and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} . It is known that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum subspace which reduces T to a positive operator, and that for any pair of self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ there exists the maximum subspace \mathcal{M} of \mathcal{H} which reduces A and B and on which $A \leq B$ holds. These facts inspire the existence of maximum subspaces on which given operator inequalities hold. For a given family \mathcal{G} , however, of polynomials in two noncommuting variables, it is shown in [6] that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum T-reducing subspace \mathcal{M} on which T is \mathcal{G} -definite (resp., \mathcal{G} -semidefinite), i.e., $p(T|_{\mathcal{M}}, (T|_{\mathcal{M}})^*) = O$ (resp., $p(T|_{\mathcal{M}}, (T|_{\mathcal{M}})^*) \geq O$) holds for any $p \in \mathcal{G}$. We concerned in [8] with a larger family \mathcal{G} than that of polynomials and made some considerations on the maximum subspaces on which given essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) tuples of operators are \mathcal{G} -definite (resp., \mathcal{G} -semidefinite). In this paper, we will consider the maximum subspaces on which given systems of operator inequalities are satisfied.

2 Maximum *G*-definite, and *G*-semidefinite parts Let $\mathcal{B}(\mathcal{H})^n$ be the algebra of all *n*-tuples of operators in $\mathcal{B}(\mathcal{H})$, \mathcal{S} a subset of $\mathcal{B}(\mathcal{H})$, and \mathcal{S}^n the set of all *n*-tuples whose terms are in \mathcal{S} . For tuples $\mathbf{A} = (A_1, A_2, \ldots, A_n)$, $\mathbf{B} = (B_1, B_2, \ldots, B_n) \in \mathcal{B}(\mathcal{H})^n$, the map $\lambda_{\mathbf{A}, \mathbf{B}}$ is defined by

$$\tau_j(\lambda_{\boldsymbol{A}} \ \boldsymbol{B}(\boldsymbol{T})) = A_j T_j B_j \quad (1 \le j \le n),$$

where $\tau_j(T_1, T_2, \ldots, T_n) = T_j$ $(1 \le j \le n)$, and for $\boldsymbol{p} = (p_1, p_2, \ldots, p_n) \in \mathcal{P}_n$, the set of all *n*-tuples of polynomials in 2n noncommuting variables $z_1, z_2, \ldots, z_n, \bar{z}_1, \bar{z}_2, \ldots, \bar{z}_n$, the map $\psi_{\boldsymbol{p}}$ is defined by

 $\tau_j(\psi_p(\mathbf{T})) = p_j(T_1, T_2, \ldots, T_n, T_1^*, T_2^*, \ldots, T_n^*).$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47A13, 47A56.

 $Key \ words \ and \ phrases.$ Operator inequalities, definite tuples, essentially definite tuples, k-hyponormal operators.

Let $\mathcal{E}_{\mathcal{S}}$ be the pointwise norm closed subalgebra generated by the maps $\lambda_{\boldsymbol{A}, \boldsymbol{B}}, \boldsymbol{A}, \boldsymbol{B} \in \mathcal{S}^n$ and $\psi_{\boldsymbol{p}}, \boldsymbol{p} \in \mathcal{P}_n$. For a subset \mathcal{G} of $\mathcal{E}_{\mathcal{S}}$, a tuple \boldsymbol{T} is said to be \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) if $\tau_j(\phi(\boldsymbol{T})) = O$ (resp., $\tau_j(\phi(\boldsymbol{T})) \geq O$) $(1 \leq j \leq n)$ hold for any $\phi \in \mathcal{G}$.

If a subspace \mathcal{M} of \mathcal{H} reduces T (i.e., \mathcal{M} reduces each term of T), put

$$T|_{\mathcal{M}} = (T_1|_{\mathcal{M}}, T_2|_{\mathcal{M}}, \ldots, T_n|_{\mathcal{M}})$$

If a subspace \mathcal{M} reduces \mathcal{S} (i.e., \mathcal{M} reduces any operator in \mathcal{S}), then for any $\phi \in \mathcal{G}$, the map $\phi_{\mathcal{M}}$ of $\mathcal{B}(\mathcal{M})^n$ into itself can be defined by the canonical way, and when \mathcal{M} reduces T, the concepts of $\mathcal{G}_{\mathcal{M}}$ -definiteness and $\mathcal{G}_{\mathcal{M}}$ -semidefiniteness for $T|_{\mathcal{M}}$ make sense, where $\mathcal{G}_{\mathcal{M}} = \{\phi_{\mathcal{M}} : \phi \in \mathcal{G}\}.$

We have the following:

Theorem 1. Let \mathcal{G} be a subset of $\mathcal{E}_{\mathcal{S}}$. Then any tuple $\mathbf{T} \in \mathcal{B}(\mathcal{H})^n$ has the maximum subspace \mathcal{M} of \mathcal{H} which reduces \mathbf{T} and \mathcal{S} such that $\mathbf{T}|_{\mathcal{M}}$ is \mathcal{G} -definite (resp., \mathcal{G} -semidefinite), and the maximum subspace \mathcal{N} of \mathcal{H} which reduces \mathbf{T} and \mathcal{S} such that $\mathbf{T}|_{\mathcal{N}'}$ is essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) on any subspace \mathcal{N}' of \mathcal{N} which reduces \mathbf{T} and \mathcal{S} , and on which the C^* -algebra generated by the terms of \mathbf{T} and members of \mathcal{S} is irreducible.

In the case, $\mathcal{M} \subseteq \mathcal{N}$ holds and the projection onto \mathcal{M} is contained in the center of the von Neumann algebra generated by the terms of T and members of S.

Proof. First, we consider the \mathcal{G} -semidefinite case. T is \mathcal{G} -semidefinite on a subspace \mathcal{M} of \mathcal{H} which reduces T and \mathcal{S} if and only if

$$(\tau_j(\phi(\mathbf{T})) - |\tau_j(\phi(\mathbf{T}))|)\xi = o \text{ for any } \xi \in \mathcal{M}, \ \phi \in \mathcal{G}, \text{ and } 1 \le j \le n,$$

so, it suffices to show that the subspace

$$\mathcal{M} = \bigcap \Big\{ \operatorname{Ker} \Big(\big(\tau_j(\phi(\mathbf{T})) - |\tau_j(\phi(\mathbf{T}))| \big) A \Big) : \phi \in \mathcal{G}, A \in \mathcal{A}, 1 \le j \le n \Big\}$$

of \mathcal{H} , where \mathcal{A} is the C^* -algebra generated by the terms of T and members of \mathcal{S} , is the maximum subspace which reduces T and \mathcal{S} , and on which T is \mathcal{G} -semidefinite. Since $I \in \mathcal{A}$, it is clear that $T|_{\mathcal{M}}$ is $\mathcal{G}_{\mathcal{M}}$ -semidefinite. Let \mathcal{M}' be arbitrary subspace of \mathcal{H} which reduces T and \mathcal{S} , and on which T is \mathcal{G} -semidefinite. Then \mathcal{M}' reduces \mathcal{A} and $\tau_j(\phi_{\mathcal{M}'}(T))$ for any $\phi \in \mathcal{G}$ and $1 \leq j \leq n$. Hence we have

$$(\tau_j(\phi(\mathbf{T})) - |\tau_j(\phi(\mathbf{T}))|)A\xi = o \text{ for any } \xi \in \mathcal{M}', \ \phi \in \mathcal{G}, \ A \in \mathcal{A} \text{ and } 1 \leq j \leq n.$$

Therefore we have $\mathcal{M}' \subseteq \mathcal{M}$ and hence \mathcal{M} is the maximum subspace. For $B \in \mathcal{A}', \xi \in \mathcal{M}, \phi \in \mathcal{G}, A \in \mathcal{A}$ and $1 \leq j \leq n$, we see that

$$\left(\tau_j(\phi(\mathbf{T})) - |\tau_j(\phi(\mathbf{T}))|\right)AB\xi = B\left(\tau_j(\phi(\mathbf{T})) - |\tau_j(\phi(\mathbf{T}))|\right)A\xi = c$$

and hence $B\xi \in \mathcal{M}$. Thus \mathcal{M} reduces B. Consequently, the projection onto \mathcal{M} is contained in the center of the von Neumann algebra generated by \mathcal{A} .

In the \mathcal{G} -definite case, it turns out by the same way that

$$\mathcal{M} = \bigcap \Big\{ \operatorname{Ker} \tau_j(\phi(\boldsymbol{T})) A : \phi \in \mathcal{G}, A \in \mathcal{A}, 1 \le j \le n \Big\}$$

is nothing but the subspace of \mathcal{H} stated in the theorem.

To prove the essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) case, decompose \mathcal{A} to the direct sum $\bigoplus \mathcal{A}_k$, where $\mathcal{H} = \bigoplus \mathcal{H}_k$, of irreducible algebras \mathcal{A}_k , and let \mathcal{N} be the direct sum

 $\bigoplus \mathcal{H}_{k'}$ of $\mathcal{H}_{k'}$ on which T is essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite). Then \mathcal{N} is the subspace stated in the theorem.

Theorem 1 has led us to the following:

Corollary 1. If ϕ , ψ are in $\mathcal{E}_{\mathcal{S}}$, then any $\mathbf{T} \in \mathcal{B}(\mathcal{H})^n$ has the maximum subspaces \mathcal{M} of \mathcal{H} which reduces \mathbf{T} and \mathcal{S} such that $\tau_j(\phi(\mathbf{T})), \tau_j(\psi(\mathbf{T}))$ $(1 \leq j \leq n)$ are self-adjoint and $\tau_j(\phi(\mathbf{T})) \geq \tau_j(\psi(\mathbf{T}))$ $(1 \leq j \leq n)$ hold on \mathcal{M} , and the maximum subspace \mathcal{N} of \mathcal{H} which reduces \mathbf{T} and \mathcal{S} such that $\tau_j(\phi(\mathbf{T})), \tau_j(\psi(\mathbf{T}))$ $(1 \leq j \leq n)$ are essentially self-adjoint and $\tau_j(\phi(\mathbf{T})) \geq \tau_j(\psi(\mathbf{T}))$ $(1 \leq j \leq n)$ hold essentially on any \mathbf{T} , \mathcal{S} -reducing subspace of \mathcal{N} on which the C^* -algebra generated by the terms of \mathbf{T} and members of \mathcal{S} is irreducible. In the case, one has $\mathcal{M} \subseteq \mathcal{N}$.

Proof. Apply Theorem 1 to the set $\mathcal{G} = \{\phi - \psi\}$.

The preceding corollary is well illustrated by the following examples:

Example 1. It follows that, any pair of positive self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ has the maximum A, B-reducing subspace on which an indicated operator inequality, e.g., $e^A \leq e^B$, $\log A \leq \log B$, or $A^p \leq B^p(p > 0)$, holds, and the maximum A, B-reducing subspace on which the operator inequality essentially holds on any A, B-reducing subspace on which the C^* -algebra generated by A, B is irreducible. To see this, consider the 2-tuple T = (A, B) and apply Corollary 1 to the set \mathcal{G} of the maps suitably chosen. For the operator inequality stated above, we consider the sets $\mathcal{G}_1 = \{\phi_1, \psi_1\}, \mathcal{G}_2 = \{\phi_2, \psi_2\}, \mathcal{G}_3 = \{\phi_3, \psi_3\},$ correspondingly, where

$$\begin{aligned} \phi_1(T_1, \ T_2) &= e^{T_1}, & \psi_1(T_1, \ T_2) &= e^{T_2}; \\ \phi_2(T_1, \ T_2) &= \log T_1, & \psi_2(T_1, \ T_2) &= \log T_2; \\ \phi_3(T_1, \ T_2) &= T_1^p, & \psi_2(T_1, \ T_2) &= T_2^p. \end{aligned}$$

Example 2. It is known that an operator S is subnormal if and only if

$$\phi_{A_1, A_2, \dots, A_n}(S) = \sum_{0 \le j,k \le n} A_j^* S^{*k} S^j A_k \ge O$$

for any A_1, A_2, \ldots, A_n $(n \ge 1)$ in the C^* -algebra generated by S and the identity operator (see [1]). Then, applying the Theorem 1 to the set $\mathcal{G} = \{\phi_{A_1,A_2,\ldots,A_n}\}$, we see that any operator T has the maximum subnormal part T_s and the completely non subnormal part T' such that $T = T_s \oplus T'$. Moreover, T has the maximum subspace \mathcal{N} which reduces Tsuch that T is essentially subnormal on any subspace of \mathcal{N} which reduces T and on which T is irreducible.

3 Applications to operator matrices In this section, we intend to apply Theorem 1 to operators which satisfy given inequalities of operator matrices.

The next theorem is the operator matrix version of Theorem 1:

Theorem 2. For $T \in \mathcal{B}(\mathcal{H})$ and a subset $\{\phi_{i,j} : 1 \leq i, j \leq N\}$ of $\mathcal{E}_{\mathcal{S}}$, there exists the maximum subspace \mathcal{M} which reduces T and \mathcal{S} such that $(\phi_{i,j}(T))|_{\mathcal{M}^N} \geq O$ holds on the direct sum \mathcal{M}^N of N copies of \mathcal{M} .

Proof. Put $M(T) = (\phi_{ij}(T))$ and $q_{ij}(T) = \sum_{k=1}^{N} \phi_{ki}(T)^* \phi_{kj}(T)$. Then $q_{ij} \in \mathcal{E}_{\mathcal{S}}$ and

 $M(T)^*M(T) = (q_{ij}(T)).$ Choose a sequence $\{p_n\}$ of polynomials in single variable such that $||p_n(M(T)^*M(T)) - |M(T)||| \to 0$ as $n \to \infty$. Put $p_n(M(T)^*M(T)) = (p_{nij}(T))$ and $|M(T)| = (\psi_{ij}(T)).$ Then $p_{nij} \in \mathcal{E}_{\mathcal{S}}$ and $||p_{nij}(T) - \psi_{ij}(T)|| \to 0$ as $n \to \infty$ for any $1 \leq i, j \leq N$. Therefore ψ_{ij} is the pointwise norm limit of $\{p_{nij}\}$. So we have $\psi_{ij} \in \mathcal{E}_{\mathcal{S}}.$ Now apply Theorem 1 to $\mathcal{G} = \{\phi_{ij} - \psi_{ij} : 1 \leq i, j \leq N\}$, then we have the maximum subspace \mathcal{M} which reduces T and \mathcal{S} , and on which T is \mathcal{G} -definite. Therefore \mathcal{M} is the maximum subspace such that $(\phi_{i,j}(T))|_{\mathcal{M}^N} \geq O$ holds.

The similar argument used in preceding proof together with the results on the essential \mathcal{G} -semidefiniteness showed in [8] leads us to the following:

Theorem 3. Let $\{\phi_{i,j} : 1 \leq i, j \leq N\}$ be a subset of $\mathcal{E}_{\mathcal{S}}$. If $T \in \mathcal{B}(\mathcal{H})$ satisfies that $\pi((\phi_{ij}(T))) \geq O, \pi$ is the Calkin map, then there exists an orthogonal family $\{\mathcal{H}_m : m \geq 0\}$ of subspaces of \mathcal{H} which reduce T and \mathcal{S} , and satisfies the following statements:

(i) $\mathcal{H} = \bigoplus_{m=0} \mathcal{H}_m$, and there is no nontrivial subspace of \mathcal{H}_m which reduces T and S if $m \ge 1$.

(ii) \mathcal{H}_0 is the maximum subspace which reduces T and S such that $(\phi_{ij}(T))|_{\mathcal{H}_0^N} \geq O$ holds.

Therefore, if $m \ge 1$, $(\phi_{ij}(T))|_{\mathcal{H}_m^N} \ge O$ holds on essentially, but there is no nontrivial subspace of \mathcal{H}_m which reduces T and \mathcal{S} , and on which $(\phi_{ij}(T)) \ge O$ holds.

Proof. Put $M(T) = (\phi_{ij}(T))$ and $|M(T)| = (\psi_{ij}(T)), \{\psi_{ij}\} \subset \mathcal{E}_{\mathcal{S}}$. Since $\pi((\phi_{ij}(T))) = (\pi(\phi_{ij}(T)))$ and $\pi(|T|) = |\pi(T)|$, it follows that $\pi((\phi_{ij}(T))) \ge O$ if and only if T is essentially \mathcal{G} -definite, where $\mathcal{G} = \{\phi_{ij} - \psi_{ij}\}$. So, apply Theorem 1 in [8] to \mathcal{G} , we obtain the family $\{\mathcal{H}_m\}$ of subspaces of \mathcal{H} stated in the theorem. \Box

Now we apply Theorem 2 and Theorem 3 to k-hyponormal operators:

Example 3. An operator $T \in \mathcal{B}(\mathcal{H})$ is called k-hyponormal $(1 \le k \le \infty)$ if the operator matrix

1	Ι	T^*	T^*2	• • •	$T^{*\kappa}$
	T	T^*T	$T^{*2}T$		$T^{*k}T$
	T^2	T^*T^2	$T^{*2}T^2$		$T^{*k}T^2$
	•	•	•	•	
	:	:,	:	••	÷ .]
	T^{κ}	T^*T^k	$T^{*2}T^k$	•••	$T^{*\kappa}T^{\kappa}$

is positive. The k-hyponormal operators are investigated by [2], [3], [4], [5], [7], and others. We apply the preceding theorems to this operator matrix, and conclude that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum k-hyponormal part, and any essentially k-hyponormal operator T can be decomposed into the direct sum $T = T_0 \oplus T_1 \oplus T_2 \oplus \cdots$ of the maxmum k-hyponormal part T_0 and the irreducible essentially k-hyponormal, but non k-hyponormal parts T_1, T_2, \ldots .

Let $H_k(1 \le k \le \infty)$ be the set of all k-hyponormal operators, then it is clear that $H_{k+1} \subseteq H_k(1 \le k \le \infty)$, while it is known that $\bigcap H_k$ coincides with the set of all subnormal operators. It follows that any $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into

$$T = T_0 \oplus T_1 \oplus T_2 \oplus \cdots \oplus T_s$$
 on $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_s$,

where T_0 is completely non hyponormal, T_k $(1 \le k < \infty)$ is k-hyponormal but non (k+1)hyponormal and T_s is subnormal. To show this, first we decompose $T = T_s \oplus T'$ where T_s is the maximum subnormal part (acting on the subspace \mathcal{H}_s) and T' is the completely non subnormal part (acting on \mathcal{H}'). Next, decompose $T' = T_0 \oplus T'_1$ where T_0 is the completely non hyponormal part (acting on \mathcal{H}_0) and T'_1 is the maximum hyponormal part (acting on \mathcal{H}'_1) of T'. Further, we decompose $T'_1 = T_1 \oplus T'_2$ where T_1 is the completely non 2-hyponormal but hyponormal part and T'_2 is the maximum 2-hyponormal part (acting on \mathcal{H}'_2) of T'_1 . Recursively, if T'_k is the maximum k-hyponormal part (acting on \mathcal{H}'_k) of T'_{k-1} , then T'_k is decomposed into the direct sum $T'_k = T_k \oplus T'_{k+1}$ of k-hyponormal but non (k+1)-hyponormal operator T_k and the maximum (k+1)-hyponormal part T'_{k+1} (acting on \mathcal{H}'_{k+1}) of T'_k . Then, it is clear that $\mathcal{H}'_1 \supseteq \mathcal{H}'_2 \supseteq \mathcal{H}'_2 \supseteq \cdots$ and $\bigcap_{k=1}^{\infty} \mathcal{H}'_k$ is a subspace of $\mathcal{H}'(=\mathcal{H}^{\perp}_s)$ which reduces T, and on which T is subnormal. Thus, by the maximality of \mathcal{H}_s , we have that $\bigcap_{k=1}^{\infty} \mathcal{H}'_k = \{o\}$ and hence, putting $\mathcal{H}_k = \mathcal{H}'_k \ominus \mathcal{H}_{k+1}'(k=1, 2, \ldots)$, we have $\mathcal{H}'_1 = \bigoplus_{k=1}^{\infty} \mathcal{H}_k$ and thus $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}'_1 \oplus \mathcal{H}_s = \left(\bigoplus_{k=0}^{\infty} \mathcal{H}_k\right) \oplus \mathcal{H}_s$ and $T = T_0 \oplus \left(\bigoplus_{k=0}^{\infty} T_k\right) \oplus T_s$.

This is the aimed decomposition.

References

- J. Bunce and J. A. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc., 63 (1977), 107–110.
- R. E. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Applications (Durham, NH, 1988) (W. B. Arveson and R. G. Douglas, eds.) Proc. Symposia Pure. Math., vol 51 (1977), part II, Amer. Math. Soc., Providence, 69–91.
- [3] R. E. Curto, I. B. Jung and S. S. Park, A characterization of k-hyponormality via weak subnormality, J. Math. Anal. Appl., 279 (2003), No.2, 556–568.
- [4] R. E. Curto and W. Y. Lee, Towards a model theory for 2-hyponormal operators, Integr. Equ. Oper. Theory, 44 (2002), No.3, 290–315.
- R. E. Curto, S. H. Lee and W. Y. Lee, Subnormality and 2-hyponormality for Toeplitz operators, Integr. Equ. Oper. Theory, 44 (2002), No.2, 138–148.
- M. Fujii, M. Kajiwara, Y. Kato and F. Kubo, Decompositions of operators in Hilbert spaces, Math. Japon., 21 (1976), 117–120.
- [7] I. B. Jung and C. Li, A formula for k-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc., 129 (2001), 2343–2351.
- [8] T. Okayasu and Y. Ueta, On essentially definite, and semidefinite tuples of operators, Sci. Math. Japon., 56 (2002), 107-113.

Department of Mathematical Sciences Faculity of Science Yamagata University Yamagata 990-8560, Japan