# CANONICAL DECOMPOSITION OF TUPLES OF OPERATORS CAUSED BY SYSTEMS OF OPERATOR INEQUALITIES 

Takateru Okayasu and Yasunori Ueta

Received August 13, 2003


#### Abstract

Let $\mathcal{B}(\mathcal{H})^{n}$ be the algebra of all $n$-tuples of bounded linear operators on a separable Hilbert space $\mathcal{H}$, and $\mathcal{G}$ a set of maps on $\mathcal{B}(\mathcal{H})^{n}$ belong to an appropriate class. Then any $n$-tuple $\boldsymbol{T}$ can be decomposed into the direct sum $\boldsymbol{T}_{0} \oplus \boldsymbol{T}^{\prime}$ of the maximum $\mathcal{G}$-definite (respectively, $\mathcal{G}$-semidefinite) part $\boldsymbol{T}_{0}$ and the completely non $\mathcal{G}$-definite (resp., non $\mathcal{G}$-semidefinite) part $\boldsymbol{T}^{\prime}$. It follows that any bounded operator $T$ has the maximum $k$-hyponormal part for any positive integer $k$, and so, it can be decomposed into the direct sum $T=T_{0} \oplus T_{1} \oplus T_{2} \oplus \cdots \oplus T_{s}$ of the completely non hyponormal part $T_{0}$, the $k$-hyponormal but non $(k+1)$-hyponormal part $T_{k}(1 \leq k<\infty)$ and the maximum subnormal part $T_{s}$.


1 Introduction Let $\mathcal{H}$ be a separable Hilbert space, and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on $\mathcal{H}$. It is known that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum subspace which reduces $T$ to a positive operator, and that for any pair of self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ there exists the maximum subspace $\mathcal{M}$ of $\mathcal{H}$ which reduces $A$ and $B$ and on which $A \leq B$ holds. These facts inspire the existence of maximum subspaces on which given operator inequalities hold. For a given family $\mathcal{G}$, however, of polynomials in two noncommuting variables, it is shown in [6] that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum $T$-reducing subspace $\mathcal{M}$ on which $T$ is $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite), i.e., $p\left(\left.T\right|_{\mathcal{M}},\left(\left.T\right|_{\mathcal{M}}\right)^{*}\right)=O$ (resp., $p\left(\left.T\right|_{\mathcal{M}},\left(\left.T\right|_{\mathcal{M}}\right)^{*}\right) \geq O$ ) holds for any $p \in \mathcal{G}$. We concerned in [8] with a larger family $\mathcal{G}$ than that of polynomials and made some considerations on the maximum subspaces on which given essentially $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite) tuples of operators are $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite). In this paper, we will consider the maximum subspaces on which given systems of operator inequalities are satisfied.

2 Maximum $\mathcal{G}$-definite, and $\mathcal{G}$-semidefinite parts Let $\mathcal{B}(\mathcal{H})^{n}$ be the algebra of all $n$-tuples of operators in $\mathcal{B}(\mathcal{H}), \mathcal{S}$ a subset of $\mathcal{B}(\mathcal{H})$, and $\mathcal{S}^{n}$ the set of all $n$-tuples whose terms are in $\mathcal{S}$. For tuples $\boldsymbol{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right), \boldsymbol{B}=\left(B_{1}, B_{2}, \ldots, B_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$, the $\operatorname{map} \lambda_{\boldsymbol{A}}, \boldsymbol{B}$ is defined by

$$
\tau_{j}\left(\lambda_{\boldsymbol{A}, \boldsymbol{B}}(\boldsymbol{T})\right)=A_{j} T_{j} B_{j} \quad(1 \leq j \leq n)
$$

where $\tau_{j}\left(T_{1}, T_{2}, \ldots, T_{n}\right)=T_{j}(1 \leq j \leq n)$, and for $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathcal{P}_{n}$, the set of all $n$-tuples of polynomials in $2 n$ noncommuting variables $z_{1}, z_{2}, \ldots, z_{n}, \bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{n}$, the map $\psi \boldsymbol{p}$ is defined by

$$
\tau_{j}\left(\psi_{\boldsymbol{p}}(\boldsymbol{T})\right)=p_{j}\left(T_{1}, T_{2}, \ldots, T_{n}, T_{1}^{*}, T_{2}^{*}, \ldots, T_{n}^{*}\right)
$$

[^0]Let $\mathcal{E}_{\mathcal{S}}$ be the pointwise norm closed subalgebra generated by the maps $\lambda_{\boldsymbol{A}}, \boldsymbol{B}, \boldsymbol{A}, \boldsymbol{B} \in$ $\mathcal{S}^{n}$ and $\psi \boldsymbol{p}, \boldsymbol{p} \in \mathcal{P}_{n}$. For a subset $\mathcal{G}$ of $\mathcal{E}_{\mathcal{S}}$, a tuple $\boldsymbol{T}$ is said to be $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite) if $\tau_{j}(\phi(\boldsymbol{T}))=O$ (resp., $\left.\tau_{j}(\phi(\boldsymbol{T})) \geq O\right)(1 \leq j \leq n)$ hold for any $\phi \in \mathcal{G}$.

If a subspace $\mathcal{M}$ of $\mathcal{H}$ reduces $\boldsymbol{T}$ (i.e., $\mathcal{M}$ reduces each term of $\boldsymbol{T}$ ), put

$$
\left.\boldsymbol{T}\right|_{\mathcal{M}}=\left(\left.T_{1}\right|_{\mathcal{M}},\left.T_{2}\right|_{\mathcal{M}}, \ldots,\left.T_{n}\right|_{\mathcal{M}}\right)
$$

If a subspace $\mathcal{M}$ reduces $\mathcal{S}$ (i.e., $\mathcal{M}$ reduces any operator in $\mathcal{S}$ ), then for any $\phi \in \mathcal{G}$, the $\operatorname{map} \phi_{\mathcal{M}}$ of $\mathcal{B}(\mathcal{M})^{n}$ into itself can be defined by the canonical way, and when $\mathcal{M}$ reduces $\boldsymbol{T}$, the concepts of $\mathcal{G}_{\mathcal{M}}$-definiteness and $\mathcal{G}_{\mathcal{M}}$-semidefiniteness for $\left.\boldsymbol{T}\right|_{\mathcal{M}}$ make sense, where $\mathcal{G}_{\mathcal{M}}=\left\{\phi_{\mathcal{M}}: \phi \in \mathcal{G}\right\}$.

We have the following:
Theorem 1. Let $\mathcal{G}$ be a subset of $\mathcal{E}_{\mathcal{S}}$. Then any tuple $\boldsymbol{T} \in \mathcal{B}(\mathcal{H})^{n}$ has the maximum subspace $\mathcal{M}$ of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$ such that $\left.\boldsymbol{T}\right|_{\mathcal{M}}$ is $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite), and the maximum subspace $\mathcal{N}$ of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$ such that $\left.\boldsymbol{T}\right|_{\mathcal{N}^{\prime}}$ is essentially $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite) on any subspace $\mathcal{N}^{\prime}$ of $\mathcal{N}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$, and on which the $C^{*}$-algebra generated by the terms of $\boldsymbol{T}$ and members of $\mathcal{S}$ is irreducible.

In the case, $\mathcal{M} \subseteq \mathcal{N}$ holds and the projection onto $\mathcal{M}$ is contained in the center of the von Neumann algebra generated by the terms of $\boldsymbol{T}$ and members of $\mathcal{S}$.

Proof. First, we consider the $\mathcal{G}$-semidefinite case. $\boldsymbol{T}$ is $\mathcal{G}$-semidefinite on a subspace $\mathcal{M}$ of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$ if and only if

$$
\left(\tau_{j}(\phi(\boldsymbol{T}))-\left|\tau_{j}(\phi(\boldsymbol{T}))\right|\right) \xi=o \quad \text { for any } \xi \in \mathcal{M}, \phi \in \mathcal{G}, \text { and } 1 \leq j \leq n
$$

so, it suffices to show that the subspace

$$
\mathcal{M}=\bigcap\left\{\operatorname{Ker}\left(\left(\tau_{j}(\phi(\boldsymbol{T}))-\left|\tau_{j}(\phi(\boldsymbol{T}))\right|\right) A\right): \phi \in \mathcal{G}, A \in \mathcal{A}, 1 \leq j \leq n\right\}
$$

of $\mathcal{H}$, where $\mathcal{A}$ is the $C^{*}$-algebra generated by the terms of $\boldsymbol{T}$ and members of $\mathcal{S}$, is the maximum subspace which reduces $\boldsymbol{T}$ and $\mathcal{S}$, and on which $\boldsymbol{T}$ is $\mathcal{G}$-semidefinite. Since $I \in \mathcal{A}$, it is clear that $\left.\boldsymbol{T}\right|_{\mathcal{M}}$ is $\mathcal{G}_{\mathcal{M}}$-semidefinite. Let $\mathcal{M}^{\prime}$ be arbitrary subspace of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$, and on which $\boldsymbol{T}$ is $\mathcal{G}$-semidefinite. Then $\mathcal{M}^{\prime}$ reduces $\mathcal{A}$ and $\tau_{j}\left(\phi_{\mathcal{M}^{\prime}}(\boldsymbol{T})\right)$ for any $\phi \in \mathcal{G}$ and $1 \leq j \leq n$. Hence we have

$$
\left(\tau_{j}(\phi(\boldsymbol{T}))-\left|\tau_{j}(\phi(\boldsymbol{T}))\right|\right) A \xi=o \quad \text { for any } \xi \in \mathcal{M}^{\prime}, \phi \in \mathcal{G}, A \in \mathcal{A} \text { and } 1 \leq j \leq n
$$

Therefore we have $\mathcal{M}^{\prime} \subseteq \mathcal{M}$ and hence $\mathcal{M}$ is the maximum subspace. For $B \in \mathcal{A}^{\prime}, \xi \in \mathcal{M}$, $\phi \in \mathcal{G}, A \in \mathcal{A}$ and $1 \leq j \leq n$, we see that

$$
\left(\tau_{j}(\phi(\boldsymbol{T}))-\left|\tau_{j}(\phi(\boldsymbol{T}))\right|\right) A B \xi=B\left(\tau_{j}(\phi(\boldsymbol{T}))-\left|\tau_{j}(\phi(\boldsymbol{T}))\right|\right) A \xi=o
$$

and hence $B \xi \in \mathcal{M}$. Thus $\mathcal{M}$ reduces $B$. Consequently, the projection onto $\mathcal{M}$ is contained in the center of the von Neumann algebra generated by $\mathcal{A}$.

In the $\mathcal{G}$-definite case, it turns out by the same way that

$$
\mathcal{M}=\bigcap\left\{\operatorname{Ker} \tau_{j}(\phi(\boldsymbol{T})) A: \phi \in \mathcal{G}, A \in \mathcal{A}, 1 \leq j \leq n\right\}
$$

is nothing but the subspace of $\mathcal{H}$ stated in the theorem.
To prove the essentially $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite) case, decompose $\mathcal{A}$ to the direct $\operatorname{sum} \bigoplus \mathcal{A}_{k}$, where $\mathcal{H}=\bigoplus \mathcal{H}_{k}$, of irreducible algebras $\mathcal{A}_{k}$, and let $\mathcal{N}$ be the direct sum
$\bigoplus \mathcal{H}_{k^{\prime}}$ of $\mathcal{H}_{k^{\prime}}$ on which $\boldsymbol{T}$ is essentially $\mathcal{G}$-definite (resp., $\mathcal{G}$-semidefinite). Then $\mathcal{N}$ is the subspace stated in the theorem.

Theorem 1 has led us to the following:
Corollary 1. If $\phi, \psi$ are in $\mathcal{E}_{\mathcal{S}}$, then any $\boldsymbol{T} \in \mathcal{B}(\mathcal{H})^{n}$ has the maximum subspaces $\mathcal{M}$ of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$ such that $\tau_{j}(\phi(\boldsymbol{T})), \tau_{j}(\psi(\boldsymbol{T}))(1 \leq j \leq n)$ are self-adjoint and $\tau_{j}(\phi(\boldsymbol{T})) \geq \tau_{j}(\psi(\boldsymbol{T}))(1 \leq j \leq n)$ hold on $\mathcal{M}$, and the maximum subspace $\mathcal{N}$ of $\mathcal{H}$ which reduces $\boldsymbol{T}$ and $\mathcal{S}$ such that $\tau_{j}(\phi(\boldsymbol{T})), \tau_{j}(\psi(\boldsymbol{T}))(1 \leq j \leq n)$ are essentially self-adjoint and $\tau_{j}(\phi(\boldsymbol{T})) \geq \tau_{j}(\psi(\boldsymbol{T}))(1 \leq j \leq n)$ hold essentially on any $\boldsymbol{T}, \mathcal{S}$-reducing subspace of $\mathcal{N}$ on which the $C^{*}$-algebra generated by the terms of $\boldsymbol{T}$ and members of $\mathcal{S}$ is irreducible.

In the case, one has $\mathcal{M} \subseteq \mathcal{N}$.
Proof. Apply Theorem 1 to the set $\mathcal{G}=\{\phi-\psi\}$.

The preceding corollary is well illustrated by the following examples:
Example 1. It follows that, any pair of positive self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ has the maximum $A, B$-reducing subspace on which an indicated operator inequality, e.g., $e^{A} \leq e^{B}, \log A \leq \log B$, or $A^{p} \leq B^{p}(p>0)$, holds, and the maximum $A$, $B$-reducing subspace on which the operator inequality essentially holds on any $A, B$-reducing subspace on which the $C^{*}$-algebra generated by $A, B$ is irreducible. To see this, consider the 2 -tuple $\boldsymbol{T}=(A, B)$ and apply Corollary 1 to the set $\mathcal{G}$ of the maps suitably chosen. For the operator inequality stated above, we consider the sets $\mathcal{G}_{1}=\left\{\phi_{1}, \psi_{1}\right\}, \mathcal{G}_{2}=\left\{\phi_{2}, \psi_{2}\right\}, \mathcal{G}_{3}=\left\{\phi_{3}, \psi_{3}\right\}$, correspondingly, where

$$
\begin{array}{ll}
\phi_{1}\left(T_{1}, T_{2}\right)=e^{T_{1}}, & \psi_{1}\left(T_{1}, T_{2}\right)=e^{T_{2}} \\
\phi_{2}\left(T_{1}, T_{2}\right)=\log T_{1}, & \psi_{2}\left(T_{1}, T_{2}\right)=\log T_{2} \\
\phi_{3}\left(T_{1}, T_{2}\right)=T_{1}{ }^{p}, & \psi_{2}\left(T_{1}, T_{2}\right)=T_{2}{ }^{p}
\end{array}
$$

Example 2. It is known that an operator $S$ is subnormal if and only if

$$
\phi_{A_{1}, A_{2}}, \ldots, A_{n}(S)=\sum_{0 \leq j, k \leq n} A_{j}^{*} S^{* k} S^{j} A_{k} \geq O
$$

for any $A_{1}, A_{2}, \ldots, A_{n}(n \geq 1)$ in the $C^{*}$-algebra generated by $S$ and the identity operator (see [1]). Then, applying the Theorem 1 to the set $\mathcal{G}=\left\{\phi_{A_{1}, A_{2}, \ldots, A_{n}}\right\}$, we see that any operator $T$ has the maximum subnormal part $T_{s}$ and the completely non subnormal part $T^{\prime}$ such that $T=T_{s} \oplus T^{\prime}$. Moreover, $T$ has the maximum subspace $\mathcal{N}$ which reduces $T$ such that $T$ is essentially subnormal on any subspace of $\mathcal{N}$ which reduces $T$ and on which $T$ is irreducible.

3 Applications to operator matrices In this section, we intend to apply Theorem 1 to operators which satisfy given inequalities of operator matrices.

The next theorem is the operator matrix version of Theorem 1:
Theorem 2. For $T \in \mathcal{B}(\mathcal{H})$ and a subset $\left\{\phi_{i, j}: 1 \leq i, j \leq N\right\}$ of $\mathcal{E}_{\mathcal{S}}$, there exists the maximum subspace $\mathcal{M}$ which reduces $T$ and $\mathcal{S}$ such that $\left.\left(\phi_{i, j}(T)\right)\right|_{\mathcal{M}^{N}} \geq O$ holds on the direct sum $\mathcal{M}^{N}$ of $N$ copies of $\mathcal{M}$.

Proof. Put $M(T)=\left(\phi_{i j}(T)\right)$ and $q_{i j}(T)=\sum_{k=1}^{N} \phi_{k i}(T)^{*} \phi_{k j}(T)$. Then $q_{i j} \in \mathcal{E}_{\mathcal{S}}$ and $M(T)^{*} M(T)=\left(q_{i j}(T)\right)$. Choose a sequence $\left\{p_{n}\right\}$ of polynomials in single variable such that $\left\|p_{n}\left(M(T)^{*} M(T)\right)-\left|M(T)\|\mid\| 0\right.\right.$ as $n \rightarrow \infty$. Put $p_{n}\left(M(T)^{*} M(T)\right)=\left(p_{n i j}(T)\right)$ and $|M(T)|=\left(\psi_{i j}(T)\right)$. Then $p_{n i j} \in \mathcal{E}_{\mathcal{S}}$ and $\left\|p_{n i j}(T)-\psi_{i j}(T)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for any $1 \leq i, j \leq N$. Therefore $\psi_{i j}$ is the pointwise norm limit of $\left\{p_{n i j}\right\}$. So we have $\psi_{i j} \in \mathcal{E}_{\mathcal{S}}$. Now apply Theorem 1 to $\mathcal{G}=\left\{\phi_{i j}-\psi_{i j}: 1 \leq i, j \leq N\right\}$, then we have the maximum subspace $\mathcal{M}$ which reduces $T$ and $\mathcal{S}$, and on which $T$ is $\mathcal{G}$-definite. Therefore $\mathcal{M}$ is the maximum subspace such that $\left.\left(\phi_{i, j}(T)\right)\right|_{\mathcal{M}^{N}} \geq O$ holds.

The similar argument used in preceding proof together with the results on the essential $\mathcal{G}$-semidefiniteness showed in [8] leads us to the following:

Theorem 3. Let $\left\{\phi_{i, j}: 1 \leq i, j \leq N\right\}$ be a subset of $\mathcal{E}_{\mathcal{S}}$. If $T \in \mathcal{B}(\mathcal{H})$ satisfies that $\pi\left(\left(\phi_{i j}(T)\right)\right) \geq O, \pi$ is the Calkin map, then there exists an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of $\mathcal{H}$ which reduce $T$ and $\mathcal{S}$, and satisfies the following statements:
(i) $\mathcal{H}=\bigoplus_{m=0}^{\infty} \mathcal{H}_{m}$, and there is no nontrivial subspace of $\mathcal{H}_{m}$ which reduces $T$ and $\mathcal{S}$ if $m \geq 1$.
(ii) $\mathcal{H}_{0}$ is the maximum subspace which reduces $T$ and $\mathcal{S}$ such that $\left.\left(\phi_{i j}(T)\right)\right|_{\mathcal{H}_{0}^{N}} \geq O$ holds.

Therefore, if $m \geq 1,\left.\left(\phi_{i j}(T)\right)\right|_{\mathcal{H}_{m}^{N}} \geq O$ holds on essentially, but there is no nontrivial subspace of $\mathcal{H}_{m}$ which reduces $T$ and $\mathcal{S}$, and on which $\left(\phi_{i j}(T)\right) \geq O$ holds.

Proof. Put $M(T)=\left(\phi_{i j}(T)\right)$ and $|M(T)|=\left(\psi_{i j}(T)\right),\left\{\psi_{i j}\right\} \subset \mathcal{E}_{\mathcal{S}}$. Since $\pi\left(\left(\phi_{i j}(T)\right)\right)=$ $\left(\pi\left(\phi_{i j}(T)\right)\right.$ ) and $\pi(|T|)=|\pi(T)|$, it follows that $\pi\left(\left(\phi_{i j}(T)\right)\right) \geq O$ if and only if $T$ is essentially $\mathcal{G}$-definite, where $\mathcal{G}=\left\{\phi_{i j}-\psi_{i j}\right\}$. So, apply Theorem 1 in [8] to $\mathcal{G}$, we obtain the family $\left\{\mathcal{H}_{m}\right\}$ of subspaces of $\mathcal{H}$ stated in the theorem.

Now we apply Theorem 2 and Theorem 3 to $k$-hyponormal operators:
Example 3. An operator $T \in \mathcal{B}(\mathcal{H})$ is called $k$-hyponormal $(1 \leq k \leq \infty)$ if the operator matrix

$$
\left(\begin{array}{ccccc}
I & T^{*} & T^{*} 2 & \cdots & T^{* k} \\
T & T^{*} T & T^{* 2} T & \cdots & T^{* k} T \\
T^{2} & T^{*} T^{2} & T^{* 2} T^{2} & \cdots & T^{* k} T^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & T^{* 2} T^{k} & \cdots & T^{* k} T^{k}
\end{array}\right)
$$

is positive. The $k$-hyponormal operators are investigated by [2], [3], [4], [5], [7], and others. We apply the preceding theorems to this operator matrix, and conclude that any $T \in \mathcal{B}(\mathcal{H})$ has the maximum $k$-hyponormal part, and any essentially $k$-hyponormal operator $T$ can be decomposed into the direct sum $T=T_{0} \oplus T_{1} \oplus T_{2} \oplus \cdots$ of the maxmum $k$-hyponormal part $T_{0}$ and the irreducible essentially $k$-hyponormal, but non $k$-hyponormal parts $T_{1}, T_{2}, \ldots$.

Let $\boldsymbol{H}_{k}(1 \leq k \leq \infty)$ be the set of all $k$-hyponormal operators, then it is clear that $\boldsymbol{H}_{k+1} \subseteq \boldsymbol{H}_{k}(1 \leq k \leq \infty)$, while it is known that $\bigcap \boldsymbol{H}_{k}$ coincides with the set of all subnormal operators. It follows that any $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into

$$
T=T_{0} \oplus T_{1} \oplus T_{2} \oplus \cdots \oplus T_{s} \quad \text { on } \quad \mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{H}_{s}
$$

where $T_{0}$ is completely non hyponormal, $T_{k}(1 \leq k<\infty)$ is $k$-hyponormal but non $(k+1)$ hyponormal and $T_{s}$ is subnormal. To show this, first we decompose $T=T_{s} \oplus T^{\prime}$ where $T_{s}$ is the maximum subnormal part (acting on the subspace $\mathcal{H}_{s}$ ) and $T^{\prime}$ is the completely non subnormal part (acting on $\mathcal{H}^{\prime}$ ). Next, decompose $T^{\prime}=T_{0} \oplus T_{1}^{\prime}$ where $T_{0}$ is the completely non hyponormal part (acting on $\mathcal{H}_{0}$ ) and $T_{1}^{\prime}$ is the maximum hyponormal part (acting on $\mathcal{H}_{1}^{\prime}$ ) of $T^{\prime}$. Further, we decompose $T_{1}^{\prime}=T_{1} \oplus T_{2}^{\prime}$ where $T_{1}$ is the completely non 2-hyponormal but hyponormal part and $T_{2}^{\prime}$ is the maximum 2-hyponormal part (acting on $\mathcal{H}_{2}^{\prime}$ ) of $T_{1}^{\prime}$. Recursively, if $T_{k}^{\prime}$ is the maximum $k$-hyponormal part (acting on $\mathcal{H}_{k}^{\prime}$ ) of $T_{k-1}^{\prime}$, then $T_{k}^{\prime}$ is decomposed into the direct sum $T_{k}^{\prime}=T_{k} \oplus T_{k+1}^{\prime}$ of $k$-hyponormal but non ( $k+1$ )-hyponormal operator $T_{k}$ and the maximum $(k+1)$-hyponormal part $T_{k+1}^{\prime}$ (acting on $\mathcal{H}_{k+1}^{\prime}$ ) of $T_{k}^{\prime}$. Then, it is clear that $\mathcal{H}_{1}^{\prime} \supseteq \mathcal{H}_{2}^{\prime} \supseteq \mathcal{H}_{2}^{\prime} \supseteq \cdots$ and $\bigcap_{k=1}^{\infty} \mathcal{H}_{k}^{\prime}$ is a subspace of $\mathcal{H}^{\prime}\left(=\mathcal{H}_{s}^{\perp}\right)$ which reduces $T$, and on which $T$ is subnormal. Thus, by the maximality of $\mathcal{H}_{s}$, we have that $\bigcap_{k=1}^{\infty} \mathcal{H}_{k}^{\prime}=\{o\}$ and hence, putting $\mathcal{H}_{k}=\mathcal{H}_{k}^{\prime} \ominus \mathcal{H}_{k+1}^{\prime}(k=1,2, \ldots)$, we have $\mathcal{H}_{1}^{\prime}=\bigoplus_{k=1}^{\infty} \mathcal{H}_{k}$ and thus

$$
\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}^{\prime} \oplus \mathcal{H}_{s}=\left(\bigoplus_{k=0}^{\infty} \mathcal{H}_{k}\right) \oplus \mathcal{H}_{s} \quad \text { and } \quad T=T_{0} \oplus\left(\bigoplus_{k=0}^{\infty} T_{k}\right) \oplus T_{s}
$$

This is the aimed decomposition.

## References

[1] J. Bunce and J. A. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc., 63 (1977), 107-110.
[2] R. E. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Applications (Durham, NH, 1988) (W. B. Arveson and R. G. Douglas, eds.) Proc. Symposia Pure. Math., vol 51 (1977), part II, Amer. Math. Soc., Providence, 69-91.
[3] R. E. Curto, I. B. Jung and S. S. Park, A characterization of $k$-hyponormality via weak subnormality, J. Math. Anal. Appl., 279 (2003), No.2, 556-568.
[4] R. E. Curto and W. Y. Lee, Towards a model theory for 2-hyponormal operators, Integr. Equ. Oper. Theory, 44 (2002), No.3, 290-315.
[5] R. E. Curto, S. H. Lee and W. Y. Lee, Subnormality and 2-hyponormality for Toeplitz operators, Integr. Equ. Oper. Theory, 44 (2002), No.2, 138-148.
[6] M. Fujii, M. Kajiwara, Y. Kato and F. Kubo, Decompositions of operators in Hilbert spaces, Math. Japon., 21 (1976), 117-120.
[7] I. B. Jung and C. Li, A formula for $k$-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc., 129 (2001), 2343-2351.
[8] T. Okayasu and Y. Ueta, On essentially definite, and semidefinite tuples of operators, Sci. Math. Japon., 56 (2002), 107-113.

Department of Mathematical Sciences
Faculity of Science
Yamagata University
Yamagata 990-8560, Japan


[^0]:    2000 Mathematics Subject Classification. Primary 47A63; Secondary 47A13, 47A56.
    Key words and phrases. Operator inequalities, definite tuples, essentially definite tuples, $k$-hyponormal operators.

