GRAND FURUTA INEQUALITY OF THREE VARIABLES

MASATOSHI FUJII* AND EIZABURO KAMEI**

Received August 8, 2003

ABSTRACT. Uchiyama gave a generalization of the grand Furuta inequality and Furuta discussed it based on his previous result. Motivated by such discussions, we consider grand Furuta type operator inequalities of 3 variables, whose hidden key is the chaotic order, i.e., $\log A \geq \log B$ for positive invertible operators A and B. Among others, Uchiyama's theorem and Furuta's theorem are appeared as follows: For $A \geq B \geq C > 0$ and $0 \leq t \leq 1 \leq p$

$$B \ge C \ge (B^t \natural_{\frac{\beta-t}{p-t}} C^p)^{\frac{1}{\beta}} \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \natural_{\frac{1}{\beta}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p) \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \natural_{\frac{1-t+r}{\beta-t+r}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p)$$

and

$$B \ge C \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \, \sharp_{\frac{1}{p}} \, C^p \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \, \sharp_{\frac{1-t+r}{p-t+r}} \, C^p \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \, \sharp_{\frac{1-t+r}{\beta-t+r}} \, (B^t \, \natural_{\frac{\beta-t}{p-t}} \, C^p)$$

hold for $\beta \geq p$ and $r \geq t$.

As a complement to our preceding inequality, we give an inequality for $A \gg B \gg C$ and $t \ge 0, \ 0 \le p \le \beta \le 2p$,

$$C^{-t} \sharp_{\frac{p+t}{\beta+t}} B^{\beta} \ge B^{p} \ge (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p})^{\frac{p}{\beta}} \ge A^{-t} \sharp_{\frac{p+t}{\beta+t}} (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p}).$$

1. Introduction. Throughout this note, A and B are positive operators on a Hilbert space. For convenience, we denote $A \ge 0$ (resp. A > 0) if A is a positive (resp. invertible) operator. The α -power mean of A and B introduced by Kubo-Ando [19] is given by

$$A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} A^{\frac{1}{2}} \quad \text{for } 0 \le \alpha \le 1.$$

The Furuta inequality [7] can be written by the form of α -power mean as follows ([2],[3],[14],[15]).

Furuta inequality: If $A \ge B \ge 0$, then

(F)
$$A^u \not\equiv_{\frac{1-u}{p-u}} B^p \le A$$
 and $B \le B^u \not\equiv_{\frac{1-u}{p-u}} A^p$

holds for $u \leq 0$ and $1 \leq p$.

It is a marvelous extension of the Löwner-Heinz inequality:

(LH) If
$$A \ge B \ge 0$$
, then $A^{\alpha} \ge B^{\alpha}$ for $0 \le \alpha \le 1$.

As shown in [13](cf.[8]), we can arrange (F) in one line as a satellite theorem of the the Furuta inequality as follows:

²⁰⁰⁰ Mathematics Subject Classification. 47A63 and 47A64.

Key words and phrases. Positive operators, Operator mean, Löwner-Heinz inequality, Furuta inequality, grand Furuta inequality, Chaotic order.

If
$$A \ge B \ge 0$$
, then
(SF) $A^u \sharp_{\frac{1-u}{p-u}} B^p \le B \le A \le B^u \sharp_{\frac{1-u}{p-u}} A^p$

holds for all $u \leq 0$ and $p \geq 1$.

For A, B > 0, we denote by $A \gg B$ if $\log A \ge \log B$ and call it the chaotic order ([3],[17],[18]). The next characterization of the chaotic order we obtained in [3] is usefull and starting point of our following discussions about the chaotic order, so we call it chaotic Furuta inequality.

If
$$A \gg B$$
, then

$$(\mathrm{CF}) \qquad \qquad A^u \ \sharp_{\frac{-u}{p-u}} \ B^p \leq I \leq B^u \ \sharp_{\frac{-u}{p-u}} \ A^p$$

for any $p \ge 0$ and $u \le 0$.

A satellite theorem (SF) of the Furuta inequality (F) illustrates the difference between the usual order $A \ge B$ and the chaotic order $A \gg B$. As a matter of fact, in [17] and [18] we have shown the following:

If
$$A \gg B$$
, then

$$(\text{SCF}) \qquad \qquad A^u \ \sharp_{\frac{1-u}{p-u}} \ B^p \leq B \ll A \leq B^u \ \sharp_{\frac{1-u}{p-u}} \ A^p$$

holds for any $p \ge 1$ and $u \le 0$.

Further generalizations of (CF) and (SCF) have been given as follows [17]:

Theorem A. For A, B > 0, if $A \gg B$, then the following (1) and (2) hold.

(1)
$$A^u \sharp_{\frac{\delta-u}{p-u}} B^p \le B^\delta$$
 and $A^\delta \le B^u \sharp_{\frac{\delta-u}{p-u}} A^p$ for $u \le 0$ and $0 \le \delta \le p$

(2)
$$A^u \sharp_{\frac{\alpha-u}{p-u}} B^p \le A^\alpha \text{ and } B^\alpha \le B^u \sharp_{\frac{\alpha-u}{p-u}} A^p \text{ for } u \le \alpha \le 0 \text{ and } 0 \le p.$$

These are main tools of our discussions below.

2. Grand Furuta inequality. As a generalization of the Furuta inequality, Furuta [9] had given an inequality which we called the grand Furuta inequality in [4],[5] and [16]. It interpolates the Furuta inequality and the Ando-Hiai inequality [1] which is equivalent to the main result of log majorization. We here cite it in terms of operator mean:

The grand Furuta inequality: If $A \ge B \ge 0$ and A is invertible, then for each $1 \le p$ and $0 \le t \le 1$,

(GF)
$$A^{-r+t} \not\parallel_{\frac{1-t+r}{(p-t)s+r}} (A^t \not\mid_s B^p) \le A \text{ and } B \le B^{-r+t} \not\parallel_{\frac{1-t+r}{(p-t)s+r}} (B^t \not\mid_s A^p)$$

holds for $t \leq r$ and $1 \leq s$.

The best possibility of the power $\frac{1-t+r}{(p-t)s+r}$ is shown in [20]. The notation \natural_s is defined by $A \natural_s B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^s A^{\frac{1}{2}}$ for $s \notin [0, 1]$. Replacing s in (GF) with $\frac{\beta-t}{p-t}$ for $1 \leq p \leq \beta$,

we can state this theorem by the satellite form as follows [16]:

If
$$A \ge B > 0$$
, then the following (*) holds for $0 \le t \le 1 \le p \le \beta$ and $u \le 0$.
(*)
 $A^u \ddagger_{\frac{\beta-u}{\beta-u}} (A^t \ddagger_{\frac{\beta-t}{p-t}} B^p) \le (A^t \ddagger_{\frac{\beta-t}{p-t}} B^p)^{\frac{1}{\beta}} \le B \le A \le (B^t \ddagger_{\frac{\beta-t}{p-t}} A^p)^{\frac{1}{\beta}} \le B^u \ddagger_{\frac{\beta-u}{\beta-u}} (B^t \ddagger_{\frac{\beta-t}{p-t}} A^p)$

The middle part in (*) had been obtained in [4], [5] and this is the most important improvement of (GF). Now we prepare a similar one which is needed below:

Theorem 1. Let $A \ge B > 0$ and $0 \le t \le 1 \le p$. Then

$$H(\beta) = (A^t \natural_{\frac{\beta-t}{p-t}} B^p)^{\frac{p}{\beta}}$$

is a decreasing function with $\beta \geq p$ and in particular $H(\beta) \leq B^p$ for $\beta \geq p$.

Proof. First of all, suppose that $1 \leq \frac{\beta-t}{p-t} \leq 2$. Then

$$A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p} = B^{p} \natural_{\frac{p-\beta}{p-t}} A^{t} = B^{p} (B^{-p} \natural_{\frac{\beta-p}{p-t}} A^{-t}) B^{p} \le B^{p} (B^{-p} \natural_{\frac{\beta-p}{p-t}} B^{-t}) B^{p} = B^{\beta}$$

By (LH), we have $(A^t \natural_{\frac{\beta-t}{p-t}} B^p)^{\frac{p}{\beta}} \leq B^p$.

Since $p \ge 1$, we have $B_1 = (A^t \natural_{\frac{\beta-t}{p-t}} B^p)^{\frac{1}{\beta}} \le B \le A$. Next if we take β_1 with $1 \le \frac{\beta_1-t}{\beta-t} \le 2$, then the preceding argument ensures that

$$A^t \natural_{\frac{\beta_1 - t}{p - t}} B^p = A^t \natural_{\frac{\beta_1 - t}{\beta - t}} (A^t \natural_{\frac{\beta - t}{p - t}} B^p) = A^t \natural_{\frac{\beta_1 - t}{\beta - t}} B_1^\beta \le B_1^{\beta_1},$$

that is, $A^t \natural_{\frac{\beta_1 - t}{p - t}} B^p \le (A^t \natural_{\frac{\beta - t}{p - t}} B^p)^{\frac{\beta_1}{\beta}}$. So

$$\left(A^t \natural_{\frac{\beta_1 - t}{p - t}} B^p\right)^{\frac{p}{\beta_1}} \le \left(A^t \natural_{\frac{\beta - t}{p - t}} B^p\right)^{\frac{p}{\beta}} \le B^p$$

follows from (LH), which shows the monotonicity of $H(\beta)$ and $H(\beta) \leq B^p$ for $\beta \geq p$.

3. Furuta's generalization of Uchiyama's theorem.

Recently, Uchiyama [21] has shown the following inequality as an extension of (GF).

(U)
If
$$A \ge B \ge C > 0$$
, then for each $0 \le t \le 1 \le p$
 $A^{1-t} \ge A^{-r} \sharp_{\frac{1-t+r}{(p-t)s+r}} (B^{-\frac{t}{2}}C^p B^{-\frac{t}{2}})^s$

holds for $r \geq t$ and $s \geq 1$.

Furuta [10] extended this result to the following two directions. For $A \ge B \ge C > 0$ and $0 \le t \le 1 \le p$, $t \le r$, $1 \le s$, the followings hold.

(1)
$$B^{1-t} \ge B^{-\frac{t}{2}}CB^{-\frac{t}{2}} \ge A^{-t} \sharp_{\frac{1}{(p-t)s+t}} (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{s} \ge A^{-r} \sharp_{\frac{1-t+r}{(p-t)s+r}} (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{s}$$

$$(2) \quad B^{1-t} \ge B^{-\frac{t}{2}}CB^{-\frac{t}{2}} \ge A^{-r} \ \sharp_{\frac{1-t+r}{p-t+r}} \ B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}} \ge A^{-r} \ \sharp_{\frac{1-t+r}{(p-t)s+r}} \ (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{s}$$

The proofs of these in [10] are depending on the results in [12] and a little complicated. So we prove them directly in our own methods. Our expressions of Furta's results (1) and (2) are given as follows by replacing s with $\frac{\beta-t}{p-t}$ for $\beta \ge p$ and we can obtain a little precise forms.

Theorm 2. If $A \ge B \ge C > 0$ and $0 \le t \le 1 \le p$, then (1) $B \ge C \ge (B^t \natural_{\frac{\beta-t}{p-t}} C^p)^{\frac{1}{\beta}} \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p) \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p)$ and

 $(2) \ B \ge C \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{p}} C^{p} \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} C^{p} \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}} (B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}) hold for \beta \ge p and r \ge t.$

Proof. (1) First of all, the assumption $B \ge C > 0$ ensures $(B^t \natural_{\frac{\beta-t}{p-t}} C^p)^{\frac{1}{\beta}} \le C$ by (*). Let $D = (B^{-\frac{t}{2}}C^pB^{-\frac{t}{2}})^{\frac{1}{p-t}}$, then

$$A^{-t} \sharp_{\frac{t}{\beta}} D^{\beta-t} \le B^{-t} \sharp_{\frac{t}{\beta}} D^{\beta-t} = B^{-\frac{t}{2}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p)^{\frac{t}{\beta}} B^{-\frac{t}{2}} \le B^{-\frac{t}{2}} C^t B^{-\frac{t}{2}} \le B^{-\frac{t}{2}} B^t B^{-\frac{t}{2}} = I,$$

that is,

(†)

$$(A^{\frac{t}{2}}D^{\beta-t}A^{\frac{t}{\beta}})^{\frac{t}{\beta}} \le A^t$$

and we have $(A^{\frac{t}{2}}D^{\beta-t}A^{\frac{t}{2}})^{\frac{1}{\beta}} \ll A$. Therefore by (SCF), $A^{-r+t} \sharp_{\frac{1-(t-r)}{\beta-(t-r)}} \{(A^{\frac{t}{2}}D^{\beta-t}A^{\frac{t}{\beta}})^{\frac{1}{\beta}}\}^{\beta} \leq (A^{\frac{t}{2}}D^{\beta-t}A^{\frac{t}{2}})^{\frac{1}{\beta}}$, namely, $A^{-r} \sharp_{\frac{1-t+r}{\beta-t+r}} D^{\beta-t} \leq A^{-t} \sharp_{\frac{1}{\beta}} D^{\beta-t}$.

Since $B^{\frac{t}{2}}D^{\beta-t}B^{\frac{t}{2}} = B^t \natural_{\frac{p-t}{p-t}}^{\beta-t} C^p$, we have

$$\begin{split} B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \not \parallel_{\frac{1-t+r}{\beta-t+r}} (B^t \mid_{\frac{\beta-t}{p-t}} C^p) &\leq B^{\frac{t}{2}}A^{-t}B^{\frac{t}{2}} \not \parallel_{\frac{1}{\beta}} (B^t \mid_{\frac{\beta-t}{p-t}} C^p) \\ &\leq B^{\frac{t}{2}}B^{-t}B^{\frac{t}{2}} \not \parallel_{\frac{1}{\beta}} (B^t \mid_{\frac{\beta-t}{p-t}} C^p) = (B^t \mid_{\frac{\beta-t}{p-t}} C^p)^{\frac{1}{\beta}} \leq C \leq B. \end{split}$$

(2) is also shown as follows: Since $A \gg (A^{\frac{t}{2}}D^{\beta-t}A^{\frac{t}{2}})^{\frac{1}{\beta}}$ as in above, Theorem A (1) implies that

$$A^{-r+t} \sharp_{\frac{p-t+r}{\beta-t+r}} A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}} \le (A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}})^{\frac{p}{\beta}}.$$

Multiplying $A^{-\frac{t}{2}}$ from the both sides of the above, we have

$$A^{-r} \sharp_{\frac{p+r-t}{\beta+r-t}} D^{\beta-t} \le A^{-t} \sharp_{\frac{p}{\beta}} D^{\beta-t} \le B^{-t} \sharp_{\frac{p}{\beta}} D^{\beta-t} = B^{-\frac{t}{2}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p)^{\frac{p}{\beta}} B^{-\frac{t}{2}} \le B^{-\frac{t}{2}} C^p B^{-\frac{t}{2}},$$

where the final inequality follows from Theorem 1. Again multiplying $B^{\frac{t}{2}}$ to each sides of this formula, we have

$$B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \sharp_{\frac{p-t+r}{\beta-t+r}} (B^t \natural_{\frac{\beta-t}{p-t}} C^p) \le C^p.$$

Hence it follows that

$$B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}} \left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p} \right)$$

$$= B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} \left\{ B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \sharp_{\frac{p-t+r}{\beta-t+r}} \left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p} \right) \right\}$$

$$\leq B^{\frac{t}{2}}A^{-r}B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} C^{p}.$$

The rest inequalities follow from (1) as the case $\beta = p$.

A key point of this theorem is to attain the condition (\dagger) . Several conditions are cosiderable to attain (†) but the condition $A \gg D = (B^{-\frac{t}{2}}C^pB^{-\frac{t}{2}})^{\frac{1}{p-t}}$ is playing an essential role in our proofs. So we reconstruct our discussions under this condition.

Theorem 3. If A, B, C > 0 satisfy $A \gg D = (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{\frac{1}{p-t}}$ for some $0 \le t \le 1 \le p$, the the following (1) and (2) hold for $\beta > p$ and r > t.

(1)
$$B^{t} \not\equiv_{\frac{1-t}{p-t}} C^{p} \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \not\equiv_{\frac{1}{\beta}} (B^{t} \not\equiv_{\frac{\beta-t}{p-t}} C^{p}) \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \not\equiv_{\frac{1-t+r}{\beta-t+r}} (B^{t} \not\equiv_{\frac{\beta-t}{p-t}} C^{p})$$

 $\begin{array}{c} (2) \\ B^t \not\parallel_{\frac{1-t}{r-t}} C^p \ge B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \not\parallel_{\frac{1}{p}} C^p \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \not\parallel_{\frac{1-t+r}{p-t+r}} C^p \ge B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \not\parallel_{\frac{1-t+r}{\beta-t+r}} (B^t \not\mid_{\frac{\beta-t}{p-t}} C^p) \end{array}$

Proof. (1) follows from Theorem A.

$$\begin{split} A^{-r} & \sharp_{\frac{1-t+r}{\beta-t+r}} \ D^{\beta-t} = D^{\beta-t} \ \sharp_{\frac{\beta-1}{\beta-t+r}} \ A^{-r} = D^{\beta-t} \ \sharp_{\frac{\beta-1}{\beta}} \ (D^{\beta-t} \ \sharp_{\frac{\beta}{\beta-t+r}} \ A^{-r}) \\ & = \ D^{\beta-t} \ \sharp_{\frac{\beta-1}{\beta}} \ (A^{-r} \ \sharp_{\frac{-t+r}{\beta-t+r}} \ D^{\beta-t}) \le D^{\beta-t} \ \sharp_{\frac{\beta-1}{\beta}} \ A^{-t} = A^{-t} \ \sharp_{\frac{1}{\beta}} \ D^{\beta-t} \\ & = \ A^{-t} \ \sharp_{\frac{1-t+t}{\beta-t+t}} \ (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{\frac{\beta-t}{p-t}} \le (B^{-\frac{t}{2}}C^{p}B^{-\frac{t}{2}})^{\frac{1-t}{p-t}} \end{split}$$

The first inequality is assured by (2) of Theorem A and the second one by (1) of theorem A. Multiplying $B^{\frac{t}{2}}$ both sides of each term, we have the conclusion.

Most parts of (2) are obtained from (1) by putting $\beta = p$ in (1) except the final inequality, which is also owing to (2) of Theorem A as follows:

$$A^{-r} \sharp_{\frac{1-t+r}{\beta-t+r}} D^{\beta-t} = A^{-r} \sharp_{\frac{1-t+r}{p-t+r}} \{A^{-r} \sharp_{\frac{p-t+r}{\beta-t+r}} D^{\beta-t}\} \le A^{-r} \sharp_{\frac{1-t+r}{p-t+r}} D^{p-t}$$

Multiplying $B^{\frac{t}{2}}$ to each term from both sides, we have the conclusion.

4. A variant of Theorem 2 under the chaotic order.

Recently, we proposed in [5] the following inequality because (U) seems to be a skewed form of (SGF) from our view point.

Theorem B. If A, B, C > 0 satisfy $A \gg B$ and $B \ge C$, then for each $0 \le t \le 1$

$$B \ge C \ge (B^t \natural_s C^p)^{\frac{1}{(p-t)s+t}} \ge A^{-r+t} \sharp_{\frac{1+r-t}{(p-t)s+r}} (B^t \natural_s C^p)$$

holds for all p > 1, s > 1 and r > t.

In this inequality, if $A \ge B = C$, then we have (F) and if $A = B \ge C$, then (GF) is obtained. But the assumption $A \gg B \ge C$ is unbalanced, so we study its variant under $A \gg B \gg C.$

Theorem 4. If A, B, C > 0 satisfy $A \gg B \gg C$, then for t > 0 and 0

$$C^{-t} \sharp_{\frac{p+t}{\beta+t}} B^{\beta} \ge B^{p} \ge (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p})^{\frac{p}{\beta}} \ge A^{-t} \sharp_{\frac{p+t}{\beta+t}} (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p}).$$

Proof. Since the first inequality is obtained by Theorem A (1), we show the rest inequalities.

$$C^{-t} \downarrow_{\frac{\beta+t}{p+t}} B^{p} = B^{p} \downarrow_{\frac{p-\beta}{p+t}} C^{-t} = B^{p} (B^{-p} \not \downarrow_{\frac{\beta-p}{p+t}} C^{t}) B^{p}$$
$$= B^{p} (C^{-t} \not \downarrow_{\frac{2p-\beta+t}{p+t}} B^{p})^{-1} B^{p} \le B^{p} B^{-2p+\beta} B^{p} = B^{\beta}$$

We have $(C^{-t} \natural_{\frac{\beta+t}{p+t}} B^p)^{\frac{p}{\beta}} \leq B^p$ by (LH) and $(C^{-t} \natural_{\frac{\beta+t}{p+t}} B^p)^{\frac{1}{\beta}} \ll B$, see [6;Theorem 1](cf.[18;Lemma 4]). So $A \gg (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^p)^{\frac{1}{\beta}}$ is obtained and by Theorem A (1) we have

$$A^{-t} \sharp_{\frac{p+t}{\beta+t}} (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^p) \le (C^{-t} \natural_{\frac{\beta+t}{p+t}} B^p)^{\frac{p}{\beta}}.$$

Remark. If we put B = C in Thorem 4, then $A^{-t} \sharp_{\frac{p+t}{\beta+t}} B^p$ is obtained. That is, Theorem 4 is a generalization of Theorem A (1).

References

- T.Ando and F.Hiai, Log majorization and complementary Golden-Thompson type inequality, Linear Alg. and Its Appl., 197(1994), 113-131.
- [2] M.Fujii, Furuta's inequality and its mean theoretic approach, J.Operator Theory, 23(1990), 67-72.
- [3] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 149(1991), 91-96.
- M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 2751-2756.
- [5] M.Fujii and E.Kamei, On an extension of grand Furuta inequality, Sci. Math. Japon., 56 (2002), 501-504.
- [6] M.Fujii and Y.O.Kim, A characterization of chaotic order by Furuta type operator inequalities via operator convexity, J. Nonlinear and Convex Analysis, 4(2003). 215-222.
- [7] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
- [8] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
- [9] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and Its Appl., 219(1995), 139-155.
- [10] T.Furuta, Order preserving inequalities and related operator functions, preprint.
- [11] T.Furuta, A proof of an order preserving inequality, Proc. Japan Acad., Ser.A, 78(2002), 26.
- [12] T.Furuta, T.Yamazaki and M.Yanagida, Operator functions implying generalized Furuta inequality, Math. Inequal. Appl., 1(1998), 123-130.
- [13] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.
- [14] E.Kamei, Parametrization of the Furuta inequality, Math. Japon., 49(1999), 65-71.
- [15] E.Kamei, Parametrization of the Furuta inequality, II, Math. Japon., 50(1999), 179-182.
- [16] E.Kamei, Parametrized grand Furuta inequality, Math. Japon., 50(1999), 79-83.
- [17] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon., 53(2001), 221-225.
- [18] E.Kamei and M.Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Japon., 53(2001), 535-539.
- [19] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

- [20] K.Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 128(2000), 511-519.
- [21] M.Uchiyama, Criteria for operator means, J. Math. Soc. Japan, 55(2003), 197-207.

(*)Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka, 582-8582, Japan e-mail: mfujii@cc.osaka-kyoiku.ac.jp

(**)Maebashi Institute of Technology, Kamisadori, Maebashi, Gunma, 371-0816, Japan e-mail: kamei@maebashi-it.ac.jp