GRAND FURUTA INEQUALITY OF THREE VARIABLES

Masatoshi Fujii* and Eizaburo Kamei**

Received August 8, 2003

> Abstract. Uchiyama gave a generalization of the grand Furuta inequality and Furuta discussed it based on his previous result. Motivated by such discussions, we consider grand Furuta type operator inequalities of 3 variables, whose hidden key is the chaotic order, i.e., $\log A \geq \log B$ for positive invertible operators A and B. Among others, Uchiyama's theorem and Furuta's theorem are appeared as follows: For $A \geq B \geq C>$ 0 and $0 \leq t \leq 1 \leq p$
> $B \geq C \geq\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{1}{\beta}} \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)$
> and
> $B \geq C \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{p}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)$
hold for $\beta \geq p$ and $r \geq t$.
As a complement to our preceding inequality, we give an inequality for $A \gg B \gg C$ and $t \geq 0,0 \leq p \leq \beta \leq 2 p$,

$$
C^{-t} \sharp_{\frac{p+t}{\beta+t}} B^{\beta} \geq B^{p} \geq\left(C^{-t} \mathfrak{\natural}_{\frac{\beta+t}{p+t}} B^{p}\right)^{\frac{p}{\beta}} \geq A^{-t} \sharp_{\frac{p+t}{\beta+t}}\left(C^{-t} \mathfrak{\natural}_{\frac{\beta+t}{p+t}} B^{p}\right) .
$$

1. Introduction. Throughout this note, A and B are positive operators on a Hilbert space. For convenience, we denote $A \geq 0$ (resp. $A>0$) if A is a positive (resp. invertible) operator. The α-power mean of A and B introduced by Kubo-Ando [19] is given by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for } \quad 0 \leq \alpha \leq 1 .
$$

The Furuta inequality [7] can be written by the form of α-power mean as follows ([2],[3],[13],[14],[15]).
Furuta inequality: If $A \geq B \geq 0$, then

$$
\begin{equation*}
A^{u} \sharp_{\frac{1-u}{p-u}} B^{p} \leq A \quad \text { and } \quad B \leq B^{u} \sharp_{\frac{1-u}{p-u}} A^{p} \tag{F}
\end{equation*}
$$

holds for $u \leq 0$ and $1 \leq p$.
It is a marvelous extension of the Löwner-Heinz inequality:

$$
\begin{equation*}
\text { If } A \geq B \geq 0, \text { then } A^{\alpha} \geq B^{\alpha} \text { for } 0 \leq \alpha \leq 1 \tag{LH}
\end{equation*}
$$

As shown in [13](cf.%5B8%5D), we can arrange (F) in one line as a satellite theorem of the the Furuta inequality as follows:

[^0]If $A \geq B \geq 0$, then

$$
\begin{equation*}
A^{u} \sharp_{\frac{1-u}{p-u}} B^{p} \leq B \leq A \leq B^{u} \sharp_{\frac{1-u}{p-u}} A^{p} \tag{SF}
\end{equation*}
$$

holds for all $u \leq 0$ and $p \geq 1$.
For $A, B>0$, we denote by $A \gg B$ if $\log A \geq \log B$ and call it the chaotic order $([3],[17],[18])$. The next characterization of the chaotic order we obtained in [3] is usefull and starting point of our following discussions about the chaotic order, so we call it chaotic Furuta inequality.

If $A \gg B$, then

$$
\begin{equation*}
A^{u} \forall_{\frac{-u}{p-u}} B^{p} \leq I \leq B^{u} \sharp_{-u}^{p-u} A^{p} \tag{CF}
\end{equation*}
$$

for any $p \geq 0$ and $u \leq 0$.
A satellite theorem (SF) of the Furuta inequality (F) illustrates the difference between the usual order $A \geq B$ and the chaotic order $A \gg B$. As a matter of fact, in [17] and [18] we have shown the following:

$$
\text { If } A \gg B \text {, then }
$$

$$
\begin{equation*}
A^{u} \sharp_{\frac{1-u}{p-u}} B^{p} \leq B \ll A \leq B^{u} \sharp_{\frac{1-u}{p-u}}^{p-u} A^{p} \tag{SCF}
\end{equation*}
$$

holds for any $p \geq 1$ and $u \leq 0$.
Further generalizations of (CF) and (SCF) have been given as follows [17]:
Theorem A. For $A, B>0$, if $A \gg B$, then the following (1) and (2) hold.

$$
\begin{align*}
& A^{u} \sharp_{\frac{\delta-u}{p-u}} B^{p} \leq B^{\delta} \text { and } A^{\delta} \leq B^{u} \sharp_{\frac{\delta-u}{p-u}} A^{p} \text { for } u \leq 0 \text { and } 0 \leq \delta \leq p \tag{1}\\
& A^{u} \sharp_{\frac{\alpha-u}{p-u}}^{p} B^{p} \leq A^{\alpha} \text { and } B^{\alpha} \leq B^{u} \sharp_{\frac{\alpha-u}{p-u}} A^{p} \text { for } u \leq \alpha \leq 0 \text { and } 0 \leq p . \tag{2}
\end{align*}
$$

These are main tools of our discussions below.
2. Grand Furuta inequality. As a generalization of the Furuta inequality, Furuta [9] had given an inequality which we called the grand Furuta inequality in [4],[5] and [16]. It interpolates the Furuta inequality and the Ando-Hiai inequality [1] which is equivalent to the main result of \log majorization. We here cite it in terms of operator mean:

The grand Furuta inequality: If $A \geq B \geq 0$ and A is invertible, then for each $1 \leq p$ and $0 \leq t \leq 1$,

$$
\begin{equation*}
A^{-r+t} \sharp \frac{1-t+r}{(p-t) s+r}\left(A^{t} \text { Łf }_{s} B^{p}\right) \leq A \text { and } B \leq B^{-r+t} \sharp \frac{1-t+r}{(p-t) s+r}\left(B^{t} \text { Ł }_{s} A^{p}\right) \tag{GF}
\end{equation*}
$$

holds for $t \leq r$ and $1 \leq s$.
The best possibility of the power $\frac{1-t+r}{(p-t) s+r}$ is shown in [20]. The notation \natural_{s} is defined by A मs $B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{s} A^{\frac{1}{2}}$ for $s \notin[0,1]$. Replacing s in (GF) with $\frac{\beta-t}{p-t}$ for $1 \leq p \leq \beta$,
we can state this theorem by the satellite form as follows [16]:

$$
\text { If } A \geq B>0 \text {, then the following }(*) \text { holds for } 0 \leq t \leq 1 \leq p \leq \beta \text { and } u \leq 0
$$

$$
\begin{equation*}
A^{u} \sharp_{\frac{1-u}{\beta-u}}\left(A^{t} \mathfrak{q}_{\frac{\beta-t}{p-t}} B^{p}\right) \leq\left(A_{\natural_{\frac{\beta-t}{p-t}}} B^{p}\right)^{\frac{1}{\beta}} \leq B \leq A \leq\left(B^{t} \natural_{\frac{\beta-t}{p-t}} A^{p}\right)^{\frac{1}{\beta}} \leq B^{u} \sharp_{\frac{1-u}{\beta-u}}\left(B^{t} \mathfrak{q}_{\frac{\beta-t}{p-t}} A^{p}\right) . \tag{*}
\end{equation*}
$$

The middle part in $(*)$ had been obtained in [4], [5] and this is the most important improvement of (GF). Now we prepare a similar one which is needed below:

Theorem 1. Let $A \geq B>0$ and $0 \leq t \leq 1 \leq p$. Then

$$
H(\beta)=\left(A^{t} \bigsqcup_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{p}{\beta}}
$$

is a decreasing function with $\beta \geq p$ and in particular $H(\beta) \leq B^{p}$ for $\beta \geq p$.
Proof. First of all, suppose that $1 \leq \frac{\beta-t}{p-t} \leq 2$. Then

$$
A^{t} \mathfrak{h}_{\frac{\beta-t}{p-t}} B^{p}=B^{p} \mathfrak{h}_{\frac{p-\beta}{p-t}} A^{t}=B^{p}\left(B^{-p} \sharp_{\frac{\beta-p}{p-t}} A^{-t}\right) B^{p} \leq B^{p}\left(B^{-p} \sharp_{\frac{\beta-p}{p-t}} B^{-t}\right) B^{p}=B^{\beta}
$$

By (LH), we have $\left(A^{t}{\natural_{\frac{\beta-t}{p-t}}} B^{p}\right)^{\frac{p}{\beta}} \leq B^{p}$.
Since $p \geq 1$, we have $B_{1}=\left(A^{t}{\eta_{\frac{\beta-t}{p-t}}}^{B^{p}}\right)^{\frac{1}{\beta}} \leq B \leq A$. Next if we take β_{1} with $1 \leq \frac{\beta_{1}-t}{\beta-t} \leq 2$, then the preceding argument ensures that

$$
A^{t} \mathfrak{\natural}_{\frac{\beta_{1}-t}{p-t}} B^{p}=A^{t} \mathfrak{\natural}_{\frac{\beta_{1}-t}{\beta-t}}\left(A^{t} \mathfrak{q}_{\frac{\beta-t}{p-t}} B^{p}\right)=A^{t} \mathfrak{\natural}_{\frac{\beta_{1}-t}{\beta-t}} B_{1}^{\beta} \leq B_{1}^{\beta_{1}},
$$

that is, $A^{t} \natural_{\frac{\beta_{1}-t}{p-t}} B^{p} \leq\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{\beta_{1}}{\beta}}$. So

$$
\left(A^{t}{\natural_{\frac{\beta_{1}-t}{}}^{p-t}} B^{p}\right)^{\frac{p}{\beta_{1}}} \leq\left(A^{t} \natural_{\frac{\beta-t}{p-t}} B^{p}\right)^{\frac{p}{\beta}} \leq B^{p}
$$

follows from (LH), which shows the monotonicity of $H(\beta)$ and $H(\beta) \leq B^{p}$ for $\beta \geq p$.

3. Furuta's generalization of Uchiyama's theorem.

Recently, Uchiyama [21] has shown the following inequality as an extension of (GF).

$$
\text { If } A \geq B \geq C>0, \text { then for each } 0 \leq t \leq 1 \leq p
$$

$$
\begin{equation*}
A^{1-t} \geq A^{-r} \sharp_{\frac{1-t+r}{(p-t) s+r}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s} \tag{U}
\end{equation*}
$$

holds for $r \geq t$ and $s \geq 1$.
Furuta [10] extended this result to the following two directions.
For $A \geq B \geq C>0$ and $0 \leq t \leq 1 \leq p, t \leq r, \quad 1 \leq s$, the followings hold.

$$
\begin{align*}
& B^{1-t} \geq B^{-\frac{t}{2}} C B^{-\frac{t}{2}} \geq A^{-t} \sharp_{\frac{1}{(p-t) s+t}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s} \geq A^{-r} \sharp_{\frac{1-t+r}{(p-t) s+r}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s} \tag{1}\\
& B^{1-t} \geq B^{-\frac{t}{2}} C B^{-\frac{t}{2}} \geq A^{-r} \sharp_{\frac{1-t+r}{p-t+r}} B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}} \geq A^{-r} \sharp_{\frac{1-t+r}{(p-t) s+r}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{s}
\end{align*}
$$

The proofs of these in [10] are depending on the results in [12] and a little complicated. So we prove them directly in our own methods. Our expressions of Furta's results (1) and (2) are given as follows by replacing s with $\frac{\beta-t}{p-t}$ for $\beta \geq p$ and we can obtain a little precise forms.

Theorm 2. If $A \geq B \geq C>0$ and $0 \leq t \leq 1 \leq p$, then
$B \geq C \geq\left(B^{t} \emptyset_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{1}{\beta}} \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}}\left(B^{t}{\natural_{\frac{\beta-t}{}}^{p-t}} C^{p}\right) \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \emptyset_{\frac{\beta-t}{p-t}} C^{p}\right)$ and
(2) $B \geq C \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{p}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \vdash_{\frac{\beta-t}{p-t}} C^{p}\right)$ hold for $\beta \geq p$ and $r \geq t$.

Proof. (1) First of all, the assumption $B \geq C>0$ ensures $\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{1}{\beta}} \leq C$ by (*). Let $D=\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{\frac{1}{p-t}}$, then
$A^{-t} \sharp_{\frac{t}{\beta}} D^{\beta-t} \leq B^{-t} \sharp_{\frac{t}{\beta}} D^{\beta-t}=B^{-\frac{t}{2}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{t}{\beta}} B^{-\frac{t}{2}} \leq B^{-\frac{t}{2}} C^{t} B^{-\frac{t}{2}} \leq B^{-\frac{t}{2}} B^{t} B^{-\frac{t}{2}}=I$, that is,

$$
\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{\beta}}\right)^{\frac{t}{\beta}} \leq A^{t}
$$

and we have $\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}}\right)^{\frac{1}{\beta}} \ll A$.
Therefore by (SCF), $A^{-r+t} \sharp_{\frac{1-(t-r)}{\beta-(t-r)}}\left\{\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{\beta}}\right)^{\frac{1}{\beta}}\right\}^{\beta} \leq\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}}\right)^{\frac{1}{\beta}}$, namely,

$$
A^{-r} \sharp_{\frac{1-t+r}{\beta-t+r}} D^{\beta-t} \leq A^{-t} \sharp_{\frac{1}{\beta}} D^{\beta-t} .
$$

Since $B^{\frac{t}{2}} D^{\beta-t} B^{\frac{t}{2}}=B^{t} \mathfrak{h}_{\frac{\beta-t}{p-t}} C^{p}$, we have

$$
\begin{aligned}
& B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \mathfrak{\natural}_{\frac{\beta-t}{p-t}} C^{p}\right) \leq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \\
\leq & B^{\frac{t}{2}} B^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)=\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{1}{\beta}} \leq C \leq B .
\end{aligned}
$$

(2) is also shown as follows: Since $A \gg\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}}\right)^{\frac{1}{\beta}}$ as in above, Theorem A (1) implies that

$$
A^{-r+t} \sharp_{\frac{p-t+r}{\beta-t+r}} A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}} \leq\left(A^{\frac{t}{2}} D^{\beta-t} A^{\frac{t}{2}}\right)^{\frac{p}{\beta}} .
$$

Multiplying $A^{-\frac{t}{2}}$ from the both sides of the above, we have
$A^{-r} \sharp_{\frac{p+r-t}{\beta+r-t}} D^{\beta-t} \leq A^{-t} \sharp_{\frac{p}{\beta}} D^{\beta-t} \leq B^{-t} \sharp_{\frac{p}{\beta}} D^{\beta-t}=B^{-\frac{t}{2}}\left(B^{t} \bigsqcup_{\frac{\beta-t}{p-t}} C^{p}\right)^{\frac{p}{\beta}} B^{-\frac{t}{2}} \leq B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}$,
where the final inequality follows from Theorem 1. Again multiplying $B^{\frac{t}{2}}$ to each sides of this formula, we have

$$
B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{p-t+r}{\beta-t+r}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \leq C^{p} .
$$

Hence it follows that

$$
\begin{aligned}
& B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \mathfrak{h}_{\frac{\beta-t}{p-t}} C^{p}\right) \\
&= B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{}}^{p-t+r} \\
& \leq\left.B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{p-t+r}{\beta-t+r}}\left(B^{t} \vdash_{\frac{\beta-t}{p-t}} C^{p}\right)\right\} \\
& \sharp_{\frac{1-t+r}{p-t+r}} C^{p} .
\end{aligned}
$$

The rest inequalities follow from (1) as the case $\beta=p$.
A key point of this theorem is to attain the condition (\dagger). Several conditions are cosiderable to attain (\dagger) but the condition $A \gg D=\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{\frac{1}{p-t}}$ is playing an essential role in our proofs. So we reconstruct our discussions under this condition.

Theorem 3. If $A, B, C>0$ satisfy $A \gg D=\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{\frac{1}{p-t}}$ for some $0 \leq t \leq 1 \leq p$, the the following (1) and (2) hold for $\beta \geq p$ and $r \geq t$.

$$
\begin{equation*}
B^{t} \sharp_{\frac{1-t}{p-t}} C^{p} \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{\beta}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
B^{t} \sharp_{\frac{1-t}{p-t}} C^{p} \geq B^{\frac{t}{2}} A^{-t} B^{\frac{t}{2}} \sharp_{\frac{1}{p}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{p-t+r}} C^{p} \geq B^{\frac{t}{2}} A^{-r} B^{\frac{t}{2}} \sharp_{\frac{1-t+r}{\beta-t+r}}\left(B^{t} \natural_{\frac{\beta-t}{p-t}} C^{p}\right) \tag{2}
\end{equation*}
$$

Proof. (1) follows from Theorem A.

$$
\begin{aligned}
& A^{-r} \sharp_{\frac{1-t+r}{\beta-t+r}} D^{\beta-t}=D^{\beta-t} \sharp_{\frac{\beta-1}{\beta-t+r}} A^{-r}=D^{\beta-t} \sharp_{\frac{\beta-1}{\beta}}\left(D^{\beta-t} \sharp_{\frac{\beta}{\beta-t+r}} A^{-r}\right) \\
= & D^{\beta-t} \sharp_{\frac{\beta-1}{\beta}}\left(A^{-r} \sharp_{\frac{-t+r}{\beta-t+r}} D^{\beta-t}\right) \leq D^{\beta-t} \sharp_{\frac{\beta-1}{\beta}} A^{-t}=A^{-t} \sharp_{\frac{1}{\beta}} D^{\beta-t} \\
= & A^{-t} \sharp_{\frac{1-t+t}{\beta-t+t}}\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{\frac{\beta-t}{p-t}} \leq\left(B^{-\frac{t}{2}} C^{p} B^{-\frac{t}{2}}\right)^{\frac{1-t}{p-t}}
\end{aligned}
$$

The first inequality is assured by (2) of Theorem A and the second one by (1) of theorem A. Multiplying $B^{\frac{t}{2}}$ both sides of each term, we have the conclusion.

Most parts of (2) are obtained from (1) by putting $\beta=p$ in (1) except the final inequality, which is also owing to (2) of Theorem A as follows:

$$
A^{-r} \sharp_{\frac{1-t+r}{\beta-t+r}} D^{\beta-t}=A^{-r} \sharp_{\frac{1-t+r}{p-t+r}}\left\{A^{-r} \sharp_{\frac{p-t+r}{\beta-t+r}} D^{\beta-t}\right\} \leq A^{-r} \sharp_{\frac{1-t+r}{p-t+r}} D^{p-t}
$$

Multiplying $B^{\frac{t}{2}}$ to each term from both sides, we have the conclusion.

4. A variant of Theorem 2 under the chaotic order.

Recently, we proposed in [5] the following inequality because (U) seems to be a skewed form of (SGF) from our view point.

Theorem B. If $A, B, C>0$ satisfy $A \gg B$ and $B \geq C$, then for each $0 \leq t \leq 1$

$$
B \geq C \geq\left(B^{t} \text { ฉ }_{s} C^{p}\right)^{\frac{1}{(p-t) s+t}} \geq A^{-r+t} \sharp_{\frac{1+r-t}{(p-t) s+r}}\left(B^{t} \text { ฉ }_{s} C^{p}\right)
$$

holds for all $p \geq 1, s \geq 1$ and $r \geq t$.
In this inequality, if $A \geq B=C$, then we have (F) and if $A=B \geq C$, then (GF) is obtained. But the assumption $A \gg B \geq C$ is unbalanced, so we study its variant under $A \gg B \gg C$.

Theorem 4. If $A, B, C>0$ satisfy $A \gg B \gg C$, then for $t \geq 0$ and $0 \leq p \leq \beta \leq 2 p$

$$
C^{-t} \sharp_{\frac{p+t}{\beta+t}} B^{\beta} \geq B^{p} \geq\left(C^{-t} \mathfrak{\natural}_{\frac{\beta+t}{p+t}} B^{p}\right)^{\frac{p}{\beta}} \geq A^{-t} \sharp_{\frac{p+t}{\beta+t}}\left(C^{-t} \mathfrak{\natural}_{\frac{\beta+t}{p+t}} B^{p}\right) .
$$

Proof. Since the first inequality is obtained by Theorem A (1), we show the rest inequalities.

$$
\begin{aligned}
& C^{-t} \mathfrak{\natural}_{\frac{\beta+t}{p+t}} B^{p}=B^{p} \natural_{\frac{p-\beta}{p+t}} C^{-t}=B^{p}\left(B^{-p} \sharp_{\frac{\beta-p}{p+t}} C^{t}\right) B^{p} \\
= & B^{p}\left(C^{-t} \sharp_{\frac{p p-\beta+t}{p+t}} B^{p}\right)^{-1} B^{p} \leq B^{p} B^{-2 p+\beta} B^{p}=B^{\beta}
\end{aligned}
$$

We have $\left(C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p}\right)^{\frac{p}{\beta}} \leq B^{p}$ by (LH) and $\left(C^{-t} \natural_{\frac{\beta+t}{p+t}} B^{p}\right)^{\frac{1}{\beta}} \ll B$,
 A (1) we have

$$
A^{-t} \sharp_{\frac{p+t}{\beta+t}}\left(C^{-t} \bigsqcup_{\frac{\beta+t}{p+t}} B^{p}\right) \leq\left(C^{-t} \bigsqcup_{\frac{\beta+t}{p+t}} B^{p}\right)^{\frac{p}{\beta}} .
$$

Remark. If we put $B=C$ in Thorem 4 , then $A^{-t} \sharp_{\sharp_{\beta+t}}^{\beta+t} B^{p}$ is obtained. That is, Theorem 4 is a generalization of Theorem A (1).

References

[1] T.Ando and F.Hiai, Log majorization and complementary Golden-Thompson type inequality, Linear Alg. and Its Appl., 197(1994), 113-131.
[2] M.Fujii, Furuta's inequality and its mean theoretic approach, J.Operator Theory, 23(1990), 67-72.
[3] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 149(1991), 91-96.
[4] M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124(1996), 2751-2756.
[5] M.Fujii and E.Kamei, On an extension of grand Furuta inequality, Sci. Math. Japon., 56 (2002), 501-504.
[6] M.Fujii and Y.O.Kim, A characterization of chaotic order by Furuta type operator inequalities via operator convexity, J. Nonlinear and Convex Analysis, 4(2003). 215-222.
[7] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq$ $p+2 r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
[8] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
[9] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and Its Appl., 219(1995), 139-155.
[10] T.Furuta, Order preserving inequalities and related operator functions, preprint.
[11] T.Furuta, A proof of an order preserving inequality, Proc. Japan Acad., Ser.A, 78(2002), 26.
[12] T.Furuta, T.Yamazaki and M.Yanagida, Operator functions implying generalized Furuta inequality, Math. Inequal. Appl., 1(1998), 123-130.
[13] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.
[14] E.Kamei, Parametrization of the Furuta inequality, Math. Japon., 49(1999), 65-71.
[15] E.Kamei, Parametrization of the Furuta inequality, II, Math. Japon., 50(1999), 179-182.
[16] E.Kamei, Parametrized grand Furuta inequality, Math. Japon., 50(1999), 79-83.
[17] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon., 53(2001), 221-225.
[18] E.Kamei and M.Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Japon., 53(2001), 535-539.
[19] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[20] K.Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 128(2000), 511-519.
[21] M.Uchiyama, Criteria for operator means, J. Math. Soc. Japan, 55(2003), 197-207.
(*)Osaka Kyoiku University,
Asahigaoka, Kashiwara,
Osaka, 582-8582, Japan
e-mail: mfujii@cc.osaka-kyoiku.ac.jp
${ }^{(* *)}$ Maebashi Institute of Technology,
Kamisadori, Maebashi,
Gunma, 371-0816, Japan
e-mail: kamei@maebashi-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A63 and 47A64.
 Key words and phrases. Positive operators, Operator mean, Löwner-Heinz inequality, Furuta inequality, grand Furuta inequality, Chaotic order.

