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��������� In this paper we consider several families of abstract algebras including the well-
known BCK-algebras and several larger classes including the class of d-algebras which is a
generalization of BCK-algebras. For these algebras it is usually difficult and often impossible
to obtain a complementation operation and the associated “de Morgan’s laws”. In this paper
we construct a “mirror image” of a given algebra which when adjoined to the original algebra
permit a natural complementation to take place. The class of BCK-algebras is not closed
under this operation but the class of d-algebras is, thus explaining why it may be better to
work with this class rather than the class of BCK-algebras. Other classes of interest in this
setting are also discussed.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of
abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a
proper subclass of the class of BCH-algebras. The present authors ([7]) introduced the
notion of d-algebras which is another useful generalization of BCK-algebras, and then they
investigated several relations between d-algebras and BCK-algebras as well as some other
interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H.
Roh and H. S. Kim ([5]) introduced a new notion, called an BH-algebra, which is a general-
ization of BCH/BCI/BCK-algebras, and defined the notions of ideals and boundedness in
BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. Further-
more, they constructed the quotient BH-algebras via translation ideals and obtained the
fundamental theorem of homomorphisms for BH-algebras as a consequence. The present
authors ([8]) gave an analytic method for constructing proper examples of a great variety
of non-associative algebras of the BCK-type and generalizations of these. In this paper we
consider several families of abstract algebras including the well-known BCK-algebras and
several larger classes including the class of d-algebras which is a generalization of BCK-
algebras. For these algebras it is usually difficult and often impossible to obtain a comple-
mentation operation and the associated “de Morgan’s laws”. In this paper we construct
a “mirror image” of a given algebra which when adjoined to the original algebra permit a
natural complementation to take place. The class of BCK-algebras is not closed under this
operation but the class of d-algebras is, thus explaining why it may be better to work with
this class rather than the class of BCK-algebras. Other classes of interest in this setting
are also discussed.
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2. Up algebras.

Suppose that (X ; ∗, 0) is an algebra of type (2,0) with T a subset of the following axioms:
(I) x ∗ x = 0,

(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

(IV) x ∗ 0 = x,
(V) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(VI) (x ∗ (x ∗ y)) ∗ y = 0,
(VII) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(VIII) x ∗ y = 0 ⇒ x ∗ (y ∗ x) = x,
for any x, y, z in X .

In such a case we shall refer to (X ; ∗, 0) as a T -algebra. Using this device, we observe
that we can deal simultaneously with statements concerning different classes of algebras.
Indeed, note that included are:

(1) d-algebra, when T1 = {(I), (II), (III)},
(2) BH-algebra, when T2 = {(I), (II), (IV)},
(3) d − BH-algebra, when T3 = T1 ∪ T2,
(4) BCH-algebra, when T4 = {(I), (III), (V)},
(5) BCI-algebra, when T5 = {(I), (III), (VI), (VII)},
(6) BCK-algebra, when T6 = {(I), (II), (III), (VI), (VII)}.

The axioms for BCK-algebras are known to be independent ([6]). The following examples
demonstrate further differences among classes of Ti-algebras for i = 1, · · · , 6.

Example 2.1. Let X := {0, 1, 2, 3} be a set with the following table:

∗
0

1

2

3

0 1 2 3

0 0 0 0

1 0 0 0

2 2 0 3

3 3 1 0

It is easy to verify that (X ; ∗, 0) is a d − BH-algebra, but not a BCH-algebra, since
(2 ∗ 3) ∗ 2 = 1 �= 0 = (2 ∗ 2) ∗ 3.

Example 2.2. Let X = {0, 1, 2, 3} be a set with the following tables:

∗1

0

1

2

3

0 1 2 3

0 3 0 2

1 0 0 0

2 2 0 3

3 3 1 0

∗2

0

1

2

3

0 1 2 3

0 0 0 0

1 0 0 0

2 2 0 3

2 3 1 0

Then (X ; ∗1, 0) is a BH-algebra, but not a d-algebra. At the same time, (X ; ∗2, 0) is a
d-algebra, but not a BH-algebra.
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We introduce the following notations:

(x ∧ y)L = x ∗ (x ∗ y)

and
(x ∧ y)R = y ∗ (y ∗ x)

noting that in many situations, e.g., in Boolean algebras, (x∧ y)L = (x∧ y)R = x∧ y when
x ∗ y = x − y is the difference of sets. However, the relation (x ∧ y)L = (x ∧ y)R does not
hold in general, as follows from the example below:

Example 2.3. Let X := {0, 1, 2, 3} be a set with the following table:

∗
0

1

2

3

0 1 2 3

0 0 0 0

1 0 0 1

2 2 0 0

3 3 1 0

Then (X ; ∗, 0) is a d-algebra, and (3 ∧ 2)L = 3, but (3 ∧ 2)R = 2.

Given a T -algebra (X ; ∗, 0), it is said to be a left (resp., right) L-up algebra if there is
defined an operation (x∨y)L such that (x∧(x∨y)L)L = x (resp., ((x∨y)L∧y)L = y) for any
x, y ∈ X . An L-up algebra is both a left L-up algebra and a right L-up algebra. Similarly,
(X ; ∗, 0) is said to be a left (resp., right) R-up algebra if there is defined an operation (x∨y)R

such that (x∧ (x∨y)R)R = x (resp., ((x∨y)R ∧y)R = y) for any x, y ∈ X . An R-up algebra
is both a left R-up algebra and a right R-up algebra. An algebra (X ; ∗, 0) is a dual L-up
algebra if ((x∨y)L∧x))L = x and (y∧(x∨y)L)L = y, for any x, y ∈ X . An algebra (X ; ∗, 0)
is said to be a dual R-up algebra if ((x∨y)R)R = x and (y∧(x∨y)R)R = y, for any x, y ∈ X .
We observe several possibilities at work. First, note that (x ∧ y)L = x ∗ (x ∗ y) = (y ∧ x)R

in all cases. Now suppose that (x ∨ y)L or (x∨ y)R have been obtained in some way. Then
we define “conjugate symmetries” as follows:

(x
0∨ y)L := (x ∨ y)L, (x

0∨ y)R := (x ∨ y)R;

(x
1∨ y)L := (y ∨ x)L, (x

1∨ y)R := (y ∨ x)R;

(x
2∨ y)L := (x ∨ y)R, (x

2∨ y)R := (x ∨ y)L;

(x
3∨ y)L := (y ∨ x)R, (x

3∨ y)R := (y ∨ x)L;

We construct a table for computation of conjugate symmetries as (x
12∨ y)L = (y

1∨ x)L =

(y ∨ x)R = (x
2∨ y)L, (x

12∨ y)R = (y
2∨ x)R = (y ∨ x)L = (x

3∨ y)R, i.e.,
1∨ · 2∨ =

12∨ =
3∨ in this

“multiplication” to obtain the Klein 4-group as follows:

·
0∨
1∨
2∨
3∨

0∨ 1∨ 2∨ 3∨
0∨ 1∨ 2∨ 3∨
1∨ 0∨ 3∨ 2∨
2∨ 3∨ 0∨ 1∨
3∨ 2∨ 1∨ 0∨
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Suppose now that we start with an L-up algebra, i.e.,

x = (x ∧ (x ∨ y)L)L, y = ((x ∨ y)L ∧ y)L

for all x, y ∈ X . If we introduce
1∨, then we obtain:

x = (x ∧ (x
1∨ y)L)L, y = ((y

1∨ x)L ∧ y)L

and interchanging the rules of x and y,

x = ((x
1∨ y)L ∧ x)L, y = (y ∧ (x

1∨ y)L)L,

produces a dual L-up algebra. If we introduce
2∨, then we obtain:

x = (x ∧ (x
2∨ y)R)L, y = ((x

2∨ y)R ∧ y)L

and thus
x = ((x

2∨ y)R ∧ x)R, y = (y ∧ (x
2∨ y)R)R,

which yields a dual R-up algebra. Finally, via the introduction of
3∨ we obtain:

x = (x ∧ (x
3∨ y)R)L, y = ((x

3∨ y)R ∧ y)L,

i.e.,

x = ((y
3∨ x)R ∧ x)R, y = (y ∧ (y

3∨ x)R)R,

and interchanging the roles of x and y we obtain:

x = (x ∧ (x
3∨ y)R)R, y = ((x

3∨ y)R ∧ y)R,

which are precisely the conditions for an R-up algebra. Thus, we may construct a “symmetry
diagram”:

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........................................................................................................................................................................................................................................

L − up

R − up

dualL − up

dualR − up

.................

..............

...........
......
........
......

............................... ................. ..............

.................

..............

...........
......
........
......

............................... ................. ..............

...............
....

..............

....................
...............................................

.................... ...........
...

3∨

1∨

1∨

2∨3∨

This does not mean that an L-up algebra is necessarily an R-up algebra or one of the
other types of algebras. On the other hand, theorems and statements for L-up algebras
have corresponding statements for R-up, dual L-up and dual R-up algebras via the scheme
outlined above.
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Proposition 2.4. Every bounded implicative BCK-algebra is an L-up algebra.

Proof. Since any bounded implicative BCK-algebra is a Boolean algebra (see [6, pp. 34]),
x ∧ y = inf{x, y} and x ∨ y = sup{x, y}. Hence x ∧ (x ∨ y) = inf{x, sup{x, y}} = x and
(x ∨ y) ∧ y = inf{sup{x, y}, y} = y. �

Example 2.5. Let X := {0, 1, 2, 3} be a set with the following table:

∗
0

1

2

3

0 1 2 3

0 0 0 0

1 0 0 1

2 1 0 0

3 3 1 0

Then (X ; ∗, 0) is a BCK-algebra. If we define an ∧L-table and an ∨L-table as follows:
∧L

0

1

2

3

0 1 2 3

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 3

∨L

0

1

2

3

0 1 2 3

0 1 2 3

1 1 3 3

2 3 2 3

3 3 3 3

then it is an L-up algebra.

Example 2.6. Consider the following BH-algebra, which is not a BCK/BCI-algebra.

∗
0

1

2

3

0 1 2 3

0 0 1 1

1 0 3 0

2 2 0 0

3 2 1 0

If we define an ∧L-table and an ∨L-table as follows:
∧L

0

1

2

3

0 1 2 3

0 0 0 0

0 1 0 1

0 0 2 2

0 1 2 3

∨L

0

1

2

3

0 1 2 3

0 1 2 3

1 1 3 3

2 3 2 3

3 3 3 3

then (X ; ∗, 0) is an L-up algebra.

3. Mirror Algebras

Suppose (X ; ∗, 0) is a T -algebra. Let M(X) := X ×{0, 1} and define a binary operation
“ ∗ ” on M(X) as follows:
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(m1). (x, 0) ∗ (y, 0) := (x ∗ y, 0),
(m2). (x, 1) ∗ (y, 1) := (y ∗ x, 0),
(m3). (x, 0) ∗ (y, 1) := ((x ∧ y)L, 0) = (x ∗ (x ∗ y), 0),

(m4). (x, 1) ∗ (y, 0) :=
{

(y, 1) when x ∗ y = 0,

(x, 1) when x ∗ y �= 0.
Then we say that M(X) := (M(X); ∗, (0, 0))L is a left mirror algebra of the T -algebra X .
Similarly, if we define

(x, 0) ∗ (y, 1) := ((x ∧ y)R, 0) = (y ∗ (y ∗ x), 0)

then M(X) := (M(X); ∗, (0, 0))R is a right mirror algebra of the T -algebra X .

Example 3.1. Let X := {0, 1, 2} be a set with the following table:

∗
0

1

2

0 1 2

0 0 0

1 0 1

2 2 0

Then we construct the mirror algebra M(X) of X as follows:

∗
0

a

b

c

d

e

0 a b c d e

0 0 0 0 0 0

a 0 c b e d

b 0 0 b b 0

c 0 c 0 c d

d 0 d 0 0 d

e 0 e b e 0

where 0 := (0, 0), a := (0, 1), b := (1, 0), c := (1, 1), d := (2, 0) and e := (2, 1).

Proposition 3.2. If (X ; ∗, 0) is a d-algebra then its mirror algebra M(X) is also a d-
algebra.

Proof. Since (x, 1)∗(y, 0) ∈ {(x, 1), (y, 1)}, (x, 1)∗(y, 0) = (0, 0) = (y, 0)∗(x, 1) is impossible.
Hence (x, i) ∗ (y, j) = (y, j) ∗ (x, i) = (0, 0) means i = j and thus x ∗ y = y ∗ x = 0 so that
x = y as well. Hence, the condition (III) for d-algebras holds. Other conditions are easy to
be checked, and omit the proof. It follows that (M(X); ∗, (0, 0))L is a d-algebra. �

Similar argument can be used to demonstrate that (M(X); ∗, (0, 0))R is also a d-algebra.
We can easily prove the following proposition.

Proposition 3.3. If (X ; ∗, 0) is a d − BH-algebra then its mirror algebra M(X) is also a
d − BH-algebra.

Remark. The mirror algebra M(X) of a BCK-algebra (X ; ∗, 0) need not be a BCK-algebra.
Consider a BCK-algebra with the following table:
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∗
0

1

2

3

0 1 2 3

0 0 0 0

1 0 0 1

2 2 0 2

3 3 3 0

Since [(3, 1) ∗ ((3, 1) ∗ (2, 1))] ∗ (2, 1) = (2 ∗ 3, 0) = (2, 0) �= (0, 0), M(X) is not a BCK-
algebra. Moreover, the mirror algebra M(X) of a BCH-algebra (X ; ∗, 0) need not be a
BCH-algebra also. Consider a BCH-algebra (X ; ∗, 0) which is not a BCK/BCI-algebra
as follows:

∗
0

1

2

3

0 1 2 3

0 0 0 0

1 0 3 3

2 0 0 2

3 0 0 0

Since ((1, 0) ∗ (3, 0)) ∗ (2, 1) = (3, 0) �= (0, 0) = ((1, 0) ∗ (2, 1)) ∗ (3, 0), its mirror algebra
M(X) is not a BCH-algebra.

Theorem 3.4. Let (X ; ∗, 0) be an algebra satisfying at least the conditions (I), (II), (IV),
(V) and (VIII). Then its mirror algebra M(X) is a left L-up algebra.

Proof. Given elements (x, i), (y, j) ∈ M(X), it is enough to show that ((x, i) ∧ ((x, i) ∨
(y, j))L)L = (x, i), where i, j ∈ {0, 1}. We consider 4 cases. Case(1). i = j = 0. We assume
that the conditions (I) and (IV) hold. If x ∗ (y ∗ x) = 0 then ((x, 0) ∧ ((x, 0) ∨ (y, 0)L)L =
((x, 0)∧(y∗x, 0))L = (x, 0)∗((x, 0)∗(y∗x, 0)) = (x, 0)∗(x∗(y∗x), 0) = (x, 0)∗(0, 0) = (x, 0).
If x∗(y∗x) �= 0, then ((x, 0)∧((x, 0)∨(y, 0))L)L=((x, 0)∧(x, 0))L = (x, 0)∗((x, 0)∗(x, 0)) =
(x, 0) ∗ (x ∗x, 0) = (x, 0) ∗ (0, 0) = (x, 0). Case(2). i = j = 1. We assume the conditions (I),
(II), (IV) and (V) hold. Then, by routine computation,

((x, 1) ∧ ((x, 1) ∨ (y, 1))L)L = {
((x ∗ (x ∗ y)) ∗ x, 1) if x ∗ [(x ∗ (x ∗ y)) ∗ x] = 0,

(x, 1) otherwise.

We know that

x ∗ [(x ∗ (x ∗ y)) ∗ x] = x ∗ [(x ∗ x) ∗ (x ∗ y)] [by (V)]
= x ∗ (0 ∗ (x ∗ y)) [by (I)]
= x ∗ 0 [by (II)]
= x. [by (IV)]

Hence ((x, 1) ∧ ((x, 1) ∨ (y, 1)L)L = (x, 1) in any cases. Case (3). i = 1 and j = 0. Assume
the conditions (I), (II) and (V) hold. Then

x ∗ [(x ∧ y)L ∗ x] = x ∗ [(x ∗ (x ∗ y)) ∗ x

= x ∗ ((x ∗ x) ∗ (x ∗ y))
= x ∗ (0 ∗ (x ∗ y))
= x.
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Hence

((x, 1) ∧ ((x, 1) ∨ (y, 0))L)L = (x, 1) ∗ ((x ∧ y)L ∗ x, 0)

=
{

((x ∧ y)L ∗ x, 1) if x ∗ [(x ∧ y)L ∗ x] = 0,
(x, 1) otherwise

=
{

((0 ∧ y)L ∗ 0, 1) if x = 0,
(x, 1) otherwise

= (x, 1).

Case (4). i = 0 and j = 1. Assume the conditions (I), (IV) and (VIII) hold. If x ∗ y = 0,
then by (VIII) x = x ∗ (y ∗ x), and hence x ∗ [x ∗ (x ∗ (y ∗ x))] = x ∗ (x ∗ x) = x ∗ 0 = x. It
follows that

((x, 0) ∧ ((x, 0) ∨ (y, 1))L)L =
{

((x, 0) ∧ (y ∗ x, 0) if x ∗ y = 0,
(x, 1) ∧ (0, 1) otherwise

=
{

(x ∗ [x ∗ (x ∗ (y ∗ x))], 0) if x ∗ y = 0,
(x ∗ (x ∗ (x ∗ 0)), 0) otherwise

= (x, 0),

proving the theorem. �

Since every implicative BCK-algebra satisfies all conditions described in Theorem 3.4,
we give the following corollary:

Corollary 3.5. If (X ; ∗, 0) is an implicative BCK-algebra, then its mirror algebra M(X)
is a left L-up algebra.
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