L-UP AND MIRROR ALGEBRAS

P. J. Allen, J. Neggers and Hee Sik Kim*

Received April 16, 2003

Abstract

In this paper we consider several families of abstract algebras including the wellknown $B C K$-algebras and several larger classes including the class of d-algebras which is a generalization of $B C K$-algebras. For these algebras it is usually difficult and often impossible to obtain a complementation operation and the associated "de Morgan's laws". In this paper we construct a "mirror image" of a given algebra which when adjoined to the original algebra permit a natural complementation to take place. The class of $B C K$-algebras is not closed under this operation but the class of d-algebras is, thus explaining why it may be better to work with this class rather than the class of $B C K$-algebras. Other classes of interest in this setting are also discussed.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ([3, 4]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[1,2] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. The present authors ([7]) introduced the notion of d-algebras which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([5]) introduced a new notion, called an BH -algebra, which is a generalization of $B C H / B C I / B C K$-algebras, and defined the notions of ideals and boundedness in BH -algebras, and showed that there is a maximal ideal in bounded BH -algebras. Furthermore, they constructed the quotient $B H$-algebras via translation ideals and obtained the fundamental theorem of homomorphisms for $B H$-algebras as a consequence. The present authors ([8]) gave an analytic method for constructing proper examples of a great variety of non-associative algebras of the $B C K$-type and generalizations of these. In this paper we consider several families of abstract algebras including the well-known $B C K$-algebras and several larger classes including the class of d-algebras which is a generalization of $B C K$ algebras. For these algebras it is usually difficult and often impossible to obtain a complementation operation and the associated "de Morgan's laws". In this paper we construct a "mirror image" of a given algebra which when adjoined to the original algebra permit a natural complementation to take place. The class of $B C K$-algebras is not closed under this operation but the class of d-algebras is, thus explaining why it may be better to work with this class rather than the class of $B C K$-algebras. Other classes of interest in this setting are also discussed.

[^0]
2. Up algebras.

Suppose that $(X ; *, 0)$ is an algebra of type $(2,0)$ with T a subset of the following axioms:
(I) $x * x=0$,
(II) $0 * x=0$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$
(IV) $x * 0=x$,
(V) $(x * y) * z=(x * z) * y$,
(VI) $(x *(x * y)) * y=0$,
(VII) $((x * y) *(x * z)) *(z * y)=0$,
(VIII) $x * y=0 \Rightarrow x *(y * x)=x$,
for any x, y, z in X.
In such a case we shall refer to $(X ; *, 0)$ as a T-algebra. Using this device, we observe that we can deal simultaneously with statements concerning different classes of algebras. Indeed, note that included are:
(1) d-algebra, when $T_{1}=\{(\mathrm{I}),(\mathrm{II}),(\mathrm{III})\}$,
(2) $B H$-algebra, when $T_{2}=\{(\mathrm{I})$, (II), (IV) $\}$,
(3) $d-B H$-algebra, when $T_{3}=T_{1} \cup T_{2}$,
(4) $B C H$-algebra, when $T_{4}=\{(\mathrm{I})$, (III), (V) $\}$,
(5) $B C I$-algebra, when $T_{5}=\{(\mathrm{I})$, (III), (VI), (VII) $\}$,
(6) $B C K$-algebra, when $T_{6}=\{(\mathrm{I})$, (II), (III), (VI), (VII) $\}$.

The axioms for $B C K$-algebras are known to be independent ([6]). The following examples demonstrate further differences among classes of T_{i}-algebras for $i=1, \cdots, 6$.

Example 2.1. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

It is easy to verify that $(X ; *, 0)$ is a $d-B H$-algebra, but not a $B C H$-algebra, since $(2 * 3) * 2=1 \neq 0=(2 * 2) * 3$.

Example 2.2. Let $X=\{0,1,2,3\}$ be a set with the following tables:

$*_{1}$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

$*_{2}$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	3
3	2	3	1	0

Then $\left(X ; *_{1}, 0\right)$ is a $B H$-algebra, but not a d-algebra. At the same time, $\left(X ; *_{2}, 0\right)$ is a d-algebra, but not a $B H$-algebra.

We introduce the following notations:

$$
(x \wedge y)_{L}=x *(x * y)
$$

and

$$
(x \wedge y)_{R}=y *(y * x)
$$

noting that in many situations, e.g., in Boolean algebras, $(x \wedge y)_{L}=(x \wedge y)_{R}=x \wedge y$ when $x * y=x-y$ is the difference of sets. However, the relation $(x \wedge y)_{L}=(x \wedge y)_{R}$ does not hold in general, as follows from the example below:
Example 2.3. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	1	0

Then $(X ; *, 0)$ is a d-algebra, and $(3 \wedge 2)_{L}=3$, but $(3 \wedge 2)_{R}=2$.
Given a T-algebra $(X ; *, 0)$, it is said to be a left (resp., right) L-up algebra if there is defined an operation $(x \vee y)_{L}$ such that $\left(x \wedge(x \vee y)_{L}\right)_{L}=x$ (resp., $\left.\left((x \vee y)_{L} \wedge y\right)_{L}=y\right)$ for any $x, y \in X$. An L-up algebra is both a left L-up algebra and a right L-up algebra. Similarly, $(X ; *, 0)$ is said to be a left (resp., right) R-up algebra if there is defined an operation $(x \vee y)_{R}$ such that $\left(x \wedge(x \vee y)_{R}\right)_{R}=x$ (resp., $\left.\left((x \vee y)_{R} \wedge y\right)_{R}=y\right)$ for any $x, y \in X$. An R-up algebra is both a left R-up algebra and a right R-up algebra. An algebra ($X ; *, 0$) is a dual L-up algebra if $\left.\left((x \vee y)_{L} \wedge x\right)\right)_{L}=x$ and $\left(y \wedge(x \vee y)_{L}\right)_{L}=y$, for any $x, y \in X$. An algebra $(X ; *, 0)$ is said to be a dual R-up algebra if $\left((x \vee y)_{R}\right)_{R}=x$ and $\left(y \wedge(x \vee y)_{R}\right)_{R}=y$, for any $x, y \in X$. We observe several possibilities at work. First, note that $(x \wedge y)_{L}=x *(x * y)=(y \wedge x)_{R}$ in all cases. Now suppose that $(x \vee y)_{L}$ or $(x \vee y)_{R}$ have been obtained in some way. Then we define "conjugate symmetries" as follows:

$$
\begin{array}{ll}
(x \stackrel{0}{\vee} y)_{L}:=(x \vee y)_{L}, & \left(x \vee^{\vee} y\right)_{R}:=(x \vee y)_{R} \\
\left(x \vee \vee^{\vee} y\right)_{L}:=(y \vee x)_{L}, & \left(x \vee \vee^{\vee} y\right)_{R}:=(y \vee x)_{R} \\
(x \stackrel{2}{\vee} y)_{L}:=(x \vee y)_{R}, & \left(x \vee^{\vee} y\right)_{R}:=(x \vee y)_{L} \\
(x \stackrel{3}{\vee} y)_{L}:=(y \vee x)_{R}, & \left(x \vee^{\vee} y\right)_{R}:=(y \vee x)_{L}
\end{array}
$$

We construct a table for computation of conjugate symmetries as $(x \stackrel{12}{\vee} y)_{L}=(y \stackrel{1}{\vee} x)_{L}=$ $(y \vee x)_{R}=(x \stackrel{2}{\vee} y)_{L}, \quad(x \stackrel{12}{\vee} y)_{R}=(y \stackrel{2}{\vee} x)_{R}=(y \vee x)_{L}=(x \stackrel{3}{\vee} y)_{R}$, i.e., $\stackrel{1}{\vee} \cdot \stackrel{2}{\vee}=\stackrel{12}{\vee}=\stackrel{3}{\vee}$ in this "multiplication" to obtain the Klein 4 -group as follows:

\cdot	0	$\stackrel{1}{\vee}$	$\stackrel{2}{\vee}$	$\stackrel{3}{\vee}$
0	0	1	2	3
\vee	\vee	\vee	\vee	
1	1	0	3	2
\vee	\vee	\vee	\vee	\vee
2	2	3	0	1
\vee	\vee	\vee	\vee	\vee
3	3	2	1	0
\vee	\vee	\vee	\vee	\vee

Suppose now that we start with an L-up algebra, i.e.,

$$
x=\left(x \wedge(x \vee y)_{L}\right)_{L}, \quad y=\left((x \vee y)_{L} \wedge y\right)_{L}
$$

for all $x, y \in X$. If we introduce $\stackrel{1}{\vee}$, then we obtain:

$$
x=\left(x \wedge(x \stackrel{1}{\vee} y)_{L}\right)_{L}, \quad y=\left((y \stackrel{1}{\vee} x)_{L} \wedge y\right)_{L}
$$

and interchanging the rules of x and y,

$$
x=\left((x \stackrel{1}{\vee} y)_{L} \wedge x\right)_{L}, \quad y=\left(y \wedge(x \stackrel{1}{\vee} y)_{L}\right)_{L},
$$

produces a dual L-up algebra. If we introduce $\stackrel{2}{\vee}$, then we obtain:

$$
x=\left(x \wedge(x \stackrel{2}{\vee} y)_{R}\right)_{L}, \quad y=\left((x \stackrel{2}{\vee} y)_{R} \wedge y\right)_{L}
$$

and thus

$$
x=\left((x \stackrel{2}{\vee} y)_{R} \wedge x\right)_{R}, \quad y=\left(y \wedge(x \stackrel{2}{\vee} y)_{R}\right)_{R}
$$

which yields a dual R-up algebra. Finally, via the introduction of $\stackrel{3}{\vee}$ we obtain:

$$
x=\left(x \wedge(x \stackrel{3}{\vee} y)_{R}\right)_{L}, \quad y=\left((x \stackrel{3}{\vee} y)_{R} \wedge y\right)_{L}
$$

i.e.,

$$
x=\left((y \stackrel{3}{\vee} x)_{R} \wedge x\right)_{R}, \quad y=\left(y \wedge(y \stackrel{3}{\vee} x)_{R}\right)_{R},
$$

and interchanging the roles of x and y we obtain:

$$
x=\left(x \wedge(x \stackrel{3}{\vee} y)_{R}\right)_{R}, \quad y=\left((x \stackrel{3}{\vee} y)_{R} \wedge y\right)_{R}
$$

which are precisely the conditions for an R-up algebra. Thus, we may construct a "symmetry diagram":

This does not mean that an L-up algebra is necessarily an R-up algebra or one of the other types of algebras. On the other hand, theorems and statements for L-up algebras have corresponding statements for R-up, dual L-up and dual R-up algebras via the scheme outlined above.

Proposition 2.4. Every bounded implicative BCK-algebra is an L-up algebra.
Proof. Since any bounded implicative $B C K$-algebra is a Boolean algebra (see [6, pp. 34]), $x \wedge y=\inf \{x, y\}$ and $x \vee y=\sup \{x, y\}$. Hence $x \wedge(x \vee y)=\inf \{x, \sup \{x, y\}\}=x$ and $(x \vee y) \wedge y=\inf \{\sup \{x, y\}, y\}=y$.

Example 2.5. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	0
3	3	3	1	0

Then $(X ; *, 0)$ is a $B C K$-algebra. If we define an \wedge_{L}-table and an \vee_{L}-table as follows:

\wedge_{L}	0	1	2	3
0	0	0	0	0
1	0	1	1	1
2	0	1	2	2
3	0	1	2	3

\vee_{L}	0	1	2	3
0	0	1	2	3
1	1	1	3	3
2	2	3	2	3
3	3	3	3	3

then it is an L-up algebra.
Example 2.6. Consider the following $B H$-algebra, which is not a $B C K / B C I$-algebra.

$*$	0	1	2	3
0	0	0	1	1
1	1	0	3	0
2	2	2	0	0
3	3	2	1	0

If we define an \wedge_{L}-table and an \vee_{L}-table as follows:

\wedge_{L}	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

\vee_{L}	0	1	2	3
0	0	1	2	3
1	1	1	3	3
2	2	3	2	3
3	3	3	3	3

then $(X ; *, 0)$ is an L-up algebra.

3. Mirror Algebras

Suppose $(X ; *, 0)$ is a T-algebra. Let $M(X):=X \times\{0,1\}$ and define a binary operation "*" on $M(X)$ as follows:

$$
\begin{array}{ll}
\left(m_{1}\right) . & (x, 0) *(y, 0):=(x * y, 0), \\
\left(m_{2}\right) . & (x, 1) *(y, 1):=(y * x, 0), \\
\left(m_{3}\right) . & \left.(x, 0) *(y, 1):=((x \wedge y))_{L}, 0\right)=(x *(x * y), 0), \\
\left(m_{4}\right) . & (x, 1) *(y, 0):= \begin{cases}(y, 1) & \text { when } x * y=0, \\
(x, 1) & \text { when } x * y \neq 0 .\end{cases}
\end{array}
$$

Then we say that $M(X):=(M(X) ; *,(0,0))_{L}$ is a left mirror algebra of the T-algebra X.
Similarly, if we define

$$
(x, 0) *(y, 1):=\left((x \wedge y)_{R}, 0\right)=(y *(y * x), 0)
$$

then $M(X):=(M(X) ; *,(0,0))_{R}$ is a right mirror algebra of the T-algebra X.
Example 3.1. Let $X:=\{0,1,2\}$ be a set with the following table:

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Then we construct the mirror algebra $M(X)$ of X as follows:

$*$	0	a	b	c	d	e
0	0	0	0	0	0	0
a	a	0	c	b	e	d
b	b	0	0	b	b	0
c	c	0	c	0	c	d
d	d	0	d	0	0	d
e	e	0	e	b	e	0

where $0:=(0,0), a:=(0,1), b:=(1,0), c:=(1,1), d:=(2,0)$ and $e:=(2,1)$.
Proposition 3.2. If $(X ; *, 0)$ is a d-algebra then its mirror algebra $M(X)$ is also a dalgebra.

Proof. Since $(x, 1) *(y, 0) \in\{(x, 1),(y, 1)\},(x, 1) *(y, 0)=(0,0)=(y, 0) *(x, 1)$ is impossible. Hence $(x, i) *(y, j)=(y, j) *(x, i)=(0,0)$ means $i=j$ and thus $x * y=y * x=0$ so that $x=y$ as well. Hence, the condition (III) for d-algebras holds. Other conditions are easy to be checked, and omit the proof. It follows that $(M(X) ; *,(0,0))_{L}$ is a d-algebra.

Similar argument can be used to demonstrate that $(M(X) ; *,(0,0))_{R}$ is also a d-algebra. We can easily prove the following proposition.

Proposition 3.3. If $(X ; *, 0)$ is a $d-B H$-algebra then its mirror algebra $M(X)$ is also a $d-B H$-algebra.

Remark. The mirror algebra $M(X)$ of a $B C K$-algebra $(X ; *, 0)$ need not be a $B C K$-algebra. Consider a $B C K$-algebra with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	2
3	3	3	3	0

Since $[(3,1) *((3,1) *(2,1))] *(2,1)=(2 * 3,0)=(2,0) \neq(0,0), M(X)$ is not a BCKalgebra. Moreover, the mirror algebra $M(X)$ of a $B C H$-algebra $(X ; *, 0)$ need not be a $B C H$-algebra also. Consider a $B C H$-algebra $(X ; *, 0)$ which is not a $B C K / B C I$-algebra as follows:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Since $((1,0) *(3,0)) *(2,1)=(3,0) \neq(0,0)=((1,0) *(2,1)) *(3,0)$, its mirror algebra $M(X)$ is not a $B C H$-algebra.

Theorem 3.4. Let $(X ; *, 0)$ be an algebra satisfying at least the conditions (I), (II), (IV), (V) and (VIII). Then its mirror algebra $M(X)$ is a left L-up algebra.

Proof. Given elements $(x, i),(y, j) \in M(X)$, it is enough to show that $((x, i) \wedge((x, i) \vee$ $\left.(y, j))_{L}\right)_{L}=(x, i)$, where $i, j \in\{0,1\}$. We consider 4 cases. Case(1). $i=j=0$. We assume that the conditions (I) and (IV) hold. If $x *(y * x)=0$ then $\left((x, 0) \wedge\left((x, 0) \vee(y, 0)_{L}\right)_{L}=\right.$ $((x, 0) \wedge(y * x, 0))_{L}=(x, 0) *((x, 0) *(y * x, 0))=(x, 0) *(x *(y * x), 0)=(x, 0) *(0,0)=(x, 0)$. If $x *(y * x) \neq 0$, then $\left((x, 0) \wedge((x, 0) \vee(y, 0))_{L}\right) L_{=}((x, 0) \wedge(x, 0))_{L}=(x, 0) *((x, 0) *(x, 0))=$ $(x, 0) *(x * x, 0)=(x, 0) *(0,0)=(x, 0)$. Case(2). $i=j=1$. We assume the conditions (I), (II), (IV) and (V) hold. Then, by routine computation,

$$
\left((x, 1) \wedge((x, 1) \vee(y, 1))_{L}\right)_{L}=\quad \begin{cases}((x *(x * y)) * x, 1) & \text { if } x *[(x *(x * y)) * x]=0 \\ (x, 1) & \text { otherwise }\end{cases}
$$

We know that

$$
\begin{array}{rlr}
x *[(x *(x * y)) * x] & =x *[(x * x) *(x * y)] & {[\mathrm{by}(\mathrm{~V})]} \\
& =x *(0 *(x * y)) & {[\mathrm{by}(\mathrm{I})]} \\
& =x * 0 & {[\mathrm{by}(\mathrm{II})]} \\
& =x . & {[\mathrm{by}(\mathrm{IV})]}
\end{array}
$$

Hence $\left((x, 1) \wedge\left((x, 1) \vee(y, 1)_{L}\right)_{L}=(x, 1)\right.$ in any cases. Case (3). $i=1$ and $j=0$. Assume the conditions (I), (II) and (V) hold. Then

$$
\begin{aligned}
x *\left[(x \wedge y)_{L} * x\right] & =x *[(x *(x * y)) * x \\
& =x *((x * x) *(x * y)) \\
& =x *(0 *(x * y)) \\
& =x
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left((x, 1) \wedge((x, 1) \vee(y, 0))_{L}\right)_{L} & =(x, 1) *\left((x \wedge y)_{L} * x, 0\right) \\
& = \begin{cases}\left((x \wedge y)_{L} * x, 1\right) & \text { if } x *\left[(x \wedge y)_{L} * x\right]=0 \\
(x, 1) & \text { otherwise }\end{cases} \\
& = \begin{cases}\left((0 \wedge y)_{L} * 0,1\right) & \text { if } x=0 \\
(x, 1) & \text { otherwise }\end{cases} \\
& =(x, 1)
\end{aligned}
$$

Case (4). $i=0$ and $j=1$. Assume the conditions (I), (IV) and (VIII) hold. If $x * y=0$, then by (VIII) $x=x *(y * x)$, and hence $x *[x *(x *(y * x))]=x *(x * x)=x * 0=x$. It follows that

$$
\begin{aligned}
\left((x, 0) \wedge((x, 0) \vee(y, 1))_{L}\right)_{L} & = \begin{cases}((x, 0) \wedge(y * x, 0) & \text { if } x * y=0, \\
(x, 1) \wedge(0,1) & \text { otherwise }\end{cases} \\
& = \begin{cases}(x *[x *(x *(y * x))], 0) & \text { if } x * y=0, \\
(x *(x *(x * 0)), 0) & \text { otherwise }\end{cases} \\
& =(x, 0),
\end{aligned}
$$

proving the theorem.
Since every implicative BCK-algebra satisfies all conditions described in Theorem 3.4, we give the following corollary:
Corollary 3.5. If $(X ; *, 0)$ is an implicative BCK-algebra, then its mirror algebra $M(X)$ is a left L-up algebra.

References

1. Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
2. Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
3. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
4. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
5. Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematicae 1 (1998), 347-354.
6. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
7. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
8. J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japonica 53 (2001), 25-31.

P. J. Allen and J. Neggers

Department of Mathematics
University of Alabama
Tuscaloosa, AL 35487-0350
U. S. A.
\{pjallen\}\{jneggers\}@gp.as.ua.edu
Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
heekim@hanyang.ac.kr

[^0]: 1991 Mathematics Subject Classification. 06F35.
 Keywords and phrases. $B C K / B C H / B H / d$-algebras, Up-algebras, Mirror-algebras.

 * Supported by the research fund of Hanyang University (HY-2002)

