L-UP AND MIRROR ALGEBRAS

P. J. Allen, J. Neggers and Hee Sik Kim*

Received April 16, 2003

ABSTRACT. In this paper we consider several families of abstract algebras including the wellknown BCK-algebras and several larger classes including the class of d-algebras which is a generalization of BCK-algebras. For these algebras it is usually difficult and often impossible to obtain a complementation operation and the associated "de Morgan's laws". In this paper we construct a "mirror image" of a given algebra which when adjoined to the original algebra permit a natural complementation to take place. The class of BCK-algebras is not closed under this operation but the class of d-algebras is, thus explaining why it may be better to work with this class rather than the class of BCK-algebras. Other classes of interest in this setting are also discussed.

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. The present authors ([7]) introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim (5) introduced a new notion, called an *BH*-algebra, which is a generalization of BCH/BCI/BCK-algebras, and defined the notions of ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. Furthermore, they constructed the quotient BH-algebras via translation ideals and obtained the fundamental theorem of homomorphisms for BH-algebras as a consequence. The present authors ([8]) gave an analytic method for constructing proper examples of a great variety of non-associative algebras of the BCK-type and generalizations of these. In this paper we consider several families of abstract algebras including the well-known BCK-algebras and several larger classes including the class of d-algebras which is a generalization of BCKalgebras. For these algebras it is usually difficult and often impossible to obtain a complementation operation and the associated "de Morgan's laws". In this paper we construct a "mirror image" of a given algebra which when adjoined to the original algebra permit a natural complementation to take place. The class of BCK-algebras is not closed under this operation but the class of d-algebras is, thus explaining why it may be better to work with this class rather than the class of BCK-algebras. Other classes of interest in this setting are also discussed.

¹⁹⁹¹ Mathematics Subject Classification. 06F35.

Keywords and phrases. BCK/BCH/BH/d-algebras, Up-algebras, Mirror-algebras.

^{*} Supported by the research fund of Hanyang University (HY-2002)

Suppose that (X; *, 0) is an algebra of type (2,0) with T a subset of the following axioms:

(I) x * x = 0, (II) 0 * x = 0, (III) x * y = 0 and y * x = 0 imply x = y(IV) x * 0 = x, (V) (x * y) * z = (x * z) * y, (VI) (x * (x * y)) * y = 0, (VII) ((x * y) * (x * z)) * (z * y) = 0, (VIII) $x * y = 0 \Rightarrow x * (y * x) = x$,

```
for any x, y, z in X.
```

In such a case we shall refer to (X; *, 0) as a *T*-algebra. Using this device, we observe that we can deal simultaneously with statements concerning different classes of algebras. Indeed, note that included are:

- (1) *d*-algebra, when $T_1 = \{(I), (II), (III)\},\$
- (2) *BH*-algebra, when $T_2 = \{(I), (II), (IV)\},\$
- (3) d BH-algebra, when $T_3 = T_1 \cup T_2$,
- (4) *BCH*-algebra, when $T_4 = \{(I), (III), (V)\},\$
- (5) *BCI*-algebra, when $T_5 = \{(I), (III), (VI), (VII)\},\$
- (6) *BCK*-algebra, when $T_6 = \{(I), (II), (VI), (VI), (VII)\}$.

The axioms for *BCK*-algebras are known to be independent ([6]). The following examples demonstrate further differences among classes of T_i -algebras for $i = 1, \dots, 6$.

Example 2.1. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

It is easy to verify that (X; *, 0) is a d - BH-algebra, but not a *BCH*-algebra, since $(2*3)*2 = 1 \neq 0 = (2*2)*3$.

Example 2.2. Let $X = \{0, 1, 2, 3\}$ be a set with the following tables:

*1	0	1	2	3	*2	0	1	2	3
0	0	3	0	2	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0
2	2	2	0	3	2	2	2	0	3
3	3	3	1	0	3	2	3	1	0

Then $(X; *_1, 0)$ is a *BH*-algebra, but not a *d*-algebra. At the same time, $(X; *_2, 0)$ is a *d*-algebra, but not a *BH*-algebra.

We introduce the following notations:

$$(x \wedge y)_L = x * (x * y)$$

and

$$(x \wedge y)_R = y * (y * x)$$

noting that in many situations, e.g., in Boolean algebras, $(x \wedge y)_L = (x \wedge y)_R = x \wedge y$ when x * y = x - y is the difference of sets. However, the relation $(x \wedge y)_L = (x \wedge y)_R$ does not hold in general, as follows from the example below:

Example 2.3. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	1	0

Then (X; *, 0) is a *d*-algebra, and $(3 \wedge 2)_L = 3$, but $(3 \wedge 2)_R = 2$.

Given a *T*-algebra (X; *, 0), it is said to be a *left* (resp., *right*) *L*-up algebra if there is defined an operation $(x \lor y)_L$ such that $(x \land (x \lor y)_L)_L = x$ (resp., $((x \lor y)_L \land y)_L = y$) for any $x, y \in X$. An *L*-up algebra is both a left *L*-up algebra and a right *L*-up algebra. Similarly, (X; *, 0) is said to be a *left* (resp., *right*) *R*-up algebra if there is defined an operation $(x \lor y)_R$ such that $(x \land (x \lor y)_R)_R = x$ (resp., $((x \lor y)_R \land y)_R = y$) for any $x, y \in X$. An *R*-up algebra and a right *R*-up algebra. Similarly, (X; *, 0) is said to be a *left* (resp., *right*) *R*-up algebra if there is defined an operation $(x \lor y)_R$ such that $(x \land (x \lor y)_R)_R = x$ (resp., $((x \lor y)_R \land y)_R = y$) for any $x, y \in X$. An *R*-up algebra is both a left *R*-up algebra and a right *R*-up algebra. An algebra (X; *, 0) is a *dual L-up algebra* if $((x \lor y)_L \land x))_L = x$ and $(y \land (x \lor y)_L)_L = y$, for any $x, y \in X$. An algebra (X; *, 0) is said to be a *dual R-up algebra* if $((x \lor y)_R)_R = x$ and $(y \land (x \lor y)_R)_R = y$, for any $x, y \in X$. We observe several possibilities at work. First, note that $(x \land y)_L = x * (x * y) = (y \land x)_R$ in all cases. Now suppose that $(x \lor y)_L$ or $(x \lor y)_R$ have been obtained in some way. Then we define "conjugate symmetries" as follows:

$(x \stackrel{0}{\lor} y)_L := (x \lor y)_L,$	$(x \stackrel{0}{\lor} y)_R := (x \lor y)_R;$
$(x \stackrel{1}{\lor} y)_L := (y \lor x)_L,$	$(x \stackrel{1}{\lor} y)_R := (y \lor x)_R;$
$(x \stackrel{2}{\vee} y)_L := (x \vee y)_R,$	$(x \stackrel{2}{\lor} y)_R := (x \lor y)_L;$
$(x \stackrel{3}{\lor} y)_L := (y \lor x)_R,$	$(x \stackrel{3}{\lor} y)_R := (y \lor x)_L;$

•	$\stackrel{0}{\lor}$	$\stackrel{1}{\lor}$	$\stackrel{2}{\lor}$	$\overset{3}{\lor}$
$\stackrel{0}{\lor}$	$\stackrel{0}{\lor}$	$\stackrel{1}{\lor}$	$\stackrel{2}{\lor}$	$\stackrel{3}{\lor}$
$\stackrel{1}{\lor}$	$\stackrel{1}{\lor}$	$\stackrel{0}{\lor}$	$\overset{3}{\lor}$	$^2_{\vee}$
$\stackrel{2}{\lor}$	$\stackrel{2}{\lor}$	$\stackrel{3}{\lor}$	$\stackrel{0}{\lor}$	$\stackrel{1}{\lor}$
$\stackrel{3}{\lor}$	$\overset{3}{\lor}$	$\stackrel{2}{\lor}$	$\stackrel{1}{\lor}$	$\stackrel{0}{\lor}$

Suppose now that we start with an L-up algebra, i.e.,

$$x = (x \land (x \lor y)_L)_L, \qquad y = ((x \lor y)_L \land y)_L$$

for all $x, y \in X$. If we introduce \bigvee^{1} , then we obtain:

$$x = (x \land (x \lor y)_L)_L, \qquad y = ((y \lor x)_L \land y)_L$$

and interchanging the rules of x and y,

$$x = ((x \stackrel{1}{\lor} y)_L \land x)_L, \qquad y = (y \land (x \stackrel{1}{\lor} y)_L)_L,$$

produces a dual *L*-up algebra. If we introduce $\stackrel{2}{\lor}$, then we obtain:

$$x = (x \wedge (x \stackrel{2}{\lor} y)_R)_L, \qquad y = ((x \stackrel{2}{\lor} y)_R \wedge y)_L$$

and thus

$$x = ((x \stackrel{2}{\vee} y)_R \land x)_R, \qquad y = (y \land (x \stackrel{2}{\vee} y)_R)_R,$$

which yields a dual *R*-up algebra. Finally, via the introduction of $\stackrel{3}{\lor}$ we obtain:

$$x = (x \land (x \lor y)_R)_L, \qquad y = ((x \lor y)_R \land y)_L,$$

i.e.,

$$x = ((y \stackrel{3}{\vee} x)_R \land x)_R, \qquad y = (y \land (y \stackrel{3}{\vee} x)_R)_R,$$

and interchanging the roles of x and y we obtain:

$$x = (x \wedge (x \stackrel{3}{\vee} y)_R)_R, \qquad y = ((x \stackrel{3}{\vee} y)_R \wedge y)_R$$

which are precisely the conditions for an $R\mbox{-up}$ algebra. Thus, we may construct a "symmetry diagram":

This does not mean that an L-up algebra is necessarily an R-up algebra or one of the other types of algebras. On the other hand, theorems and statements for L-up algebras have corresponding statements for R-up, dual L-up and dual R-up algebras via the scheme outlined above.

384

Proposition 2.4. Every bounded implicative BCK-algebra is an L-up algebra.

Proof. Since any bounded implicative *BCK*-algebra is a Boolean algebra (see [6, pp. 34]), $x \wedge y = \inf\{x, y\}$ and $x \vee y = \sup\{x, y\}$. Hence $x \wedge (x \vee y) = \inf\{x, \sup\{x, y\}\} = x$ and $(x \vee y) \wedge y = \inf\{\sup\{x, y\}, y\} = y$. \Box

Example 2.5. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	0
3	3	3	1	0

Then (X; *, 0) is a *BCK*-algebra. If we define an \wedge_L -table and an \vee_L -table as follows:

\wedge_L	0	1	2	3	\vee_L	0	1	2	3
0	0	0	0	0	0	0	1	2	3
1	0	1	1	1	1	1	1	3	3
2	0	1	2	2	2	2	3	2	3
3	0	1	2	3	3	3	3	3	3

then it is an *L*-up algebra.

Example 2.6. Consider the following BH-algebra, which is not a BCK/BCI-algebra.

*	0	1	2	3
0	0	0	1	1
1	1	0	3	0
2	2	2	0	0
3	3	2	1	0

If we define an \wedge_L -table and an \vee_L -table as follows:

\wedge_L	0	1	2	3	\vee_L	0	1	2	3
0	0	0	0	0	0	0	1	2	3
1	0	1	0	1	1	1	1	3	3
2	0	0	2	2	2	2	3	2	3
3	0	1	2	3	3	3	3	3	3

then (X; *, 0) is an L-up algebra.

3. MIRROR ALGEBRAS

Suppose (X; *, 0) is a *T*-algebra. Let $M(X) := X \times \{0, 1\}$ and define a binary operation "*" on M(X) as follows:

 $(m_1). (x,0) * (y,0) := (x * y,0),$ $(m_2). (x,1) * (y,1) := (y * x,0),$ $(m_3). (x,0) * (y,1) := ((x \land y)_L, 0) = (x * (x * y), 0),$ $(m_4). (x,1) * (y,0) := \begin{cases} (y,1) & \text{when } x * y = 0, \\ (x,1) & \text{when } x * y \neq 0. \end{cases}$

Then we say that $M(X) := (M(X); *, (0,0))_L$ is a left mirror algebra of the T-algebra X. Similarly, if we define

$$(x,0) * (y,1) := ((x \land y)_R, 0) = (y * (y * x), 0)$$

then $M(X) := (M(X); *, (0, 0))_R$ is a right mirror algebra of the T-algebra X.

Example 3.1. Let $X := \{0, 1, 2\}$ be a set with the following table:

*	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Then we construct the mirror algebra M(X) of X as follows:

*	0	a	b	с	d	e
0	0	0	0	0	0	0
a	a	0	c	b	e	d
b	b	0	0	b	b	0
c	c	0	c	0	c	d
d	d	0	d	0	0	d
e	e	0	e	b	e	0

where 0 := (0, 0), a := (0, 1), b := (1, 0), c := (1, 1), d := (2, 0) and e := (2, 1).

Proposition 3.2. If (X; *, 0) is a d-algebra then its mirror algebra M(X) is also a d-algebra.

Proof. Since $(x,1)*(y,0) \in \{(x,1), (y,1)\}, (x,1)*(y,0) = (0,0) = (y,0)*(x,1)$ is impossible. Hence (x,i)*(y,j) = (y,j)*(x,i) = (0,0) means i = j and thus x * y = y * x = 0 so that x = y as well. Hence, the condition (III) for d-algebras holds. Other conditions are easy to be checked, and omit the proof. It follows that $(M(X); *, (0,0))_L$ is a d-algebra. \Box

Similar argument can be used to demonstrate that $(M(X); *, (0, 0))_R$ is also a *d*-algebra. We can easily prove the following proposition.

Proposition 3.3. If (X; *, 0) is a d - BH-algebra then its mirror algebra M(X) is also a d - BH-algebra.

Remark. The mirror algebra M(X) of a *BCK*-algebra (X; *, 0) need not be a *BCK*-algebra. Consider a *BCK*-algebra with the following table:

386

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	2
3	3	3	3	0

Since $[(3,1) * ((3,1) * (2,1))] * (2,1) = (2 * 3,0) = (2,0) \neq (0,0)$, M(X) is not a *BCK*-algebra. Moreover, the mirror algebra M(X) of a *BCH*-algebra (X;*,0) need not be a *BCH*-algebra also. Consider a *BCH*-algebra (X;*,0) which is not a *BCK/BCI*-algebra as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Since $((1,0) * (3,0)) * (2,1) = (3,0) \neq (0,0) = ((1,0) * (2,1)) * (3,0)$, its mirror algebra M(X) is not a *BCH*-algebra.

Theorem 3.4. Let (X; *, 0) be an algebra satisfying at least the conditions (I), (II), (IV), (V) and (VIII). Then its mirror algebra M(X) is a left L-up algebra.

Proof. Given elements $(x, i), (y, j) \in M(X)$, it is enough to show that $((x, i) \land ((x, i) \lor (y, j))_L)_L = (x, i)$, where $i, j \in \{0, 1\}$. We consider 4 cases. Case(1). i = j = 0. We assume that the conditions (I) and (IV) hold. If x * (y * x) = 0 then $((x, 0) \land ((x, 0) \lor (y, 0)_L)_L = ((x, 0) \land (y * x, 0))_L = (x, 0) * ((x, 0) \ast (y * x, 0)) = (x, 0) * (x * (y * x), 0) = (x, 0) * (0, 0) = (x, 0)$. If $x * (y * x) \neq 0$, then $((x, 0) \land ((x, 0) \lor (y, 0)_L)_L = ((x, 0) \land (x, 0))_L = (x, 0) * ((x, 0) \lor (y, 0))_L)_L = ((x, 0) \land (x, 0))_L = (x, 0) * ((x, 0) \lor (x, 0)) = (x, 0) * (x * x, 0) = (x, 0) * (0, 0) = (x, 0)$. Case(2). i = j = 1. We assume the conditions (I), (II), (IV) and (V) hold. Then, by routine computation,

$$((x,1) \land ((x,1) \lor (y,1))_L)_L =$$

$$\left\{ \begin{array}{ll} ((x\ast(x\ast y))\ast x,1) & \text{ if } x\ast[(x\ast(x\ast y))\ast x]=0,\\ (x,1) & \text{ otherwise.} \end{array} \right.$$

We know that

$$x * [(x * (x * y)) * x] = x * [(x * x) * (x * y)]$$
 [by (V)]

$$= x * (0 * (x * y))$$
 [by (I)]

 $= x * 0 \qquad \qquad [by (II)]$

$$= x.$$
 [by (IV)]

Hence $((x, 1) \land ((x, 1) \lor (y, 1)_L)_L = (x, 1)$ in any cases. Case (3). i = 1 and j = 0. Assume the conditions (I), (II) and (V) hold. Then

$$\begin{aligned} x * [(x \land y)_L * x] &= x * [(x * (x * y)) * x \\ &= x * ((x * x) * (x * y)) \\ &= x * (0 * (x * y)) \\ &= x. \end{aligned}$$

Hence

$$\begin{aligned} ((x,1) \wedge ((x,1) \vee (y,0))_L)_L &= (x,1) * ((x \wedge y)_L * x,0) \\ &= \begin{cases} ((x \wedge y)_L * x,1) & \text{if } x * [(x \wedge y)_L * x] = 0, \\ (x,1) & \text{otherwise} \end{cases} \\ &= \begin{cases} ((0 \wedge y)_L * 0,1) & \text{if } x = 0, \\ (x,1) & \text{otherwise} \end{cases} \\ &= (x,1). \end{aligned}$$

Case (4). i = 0 and j = 1. Assume the conditions (I), (IV) and (VIII) hold. If x * y = 0, then by (VIII) x = x * (y * x), and hence x * [x * (x * (y * x))] = x * (x * x) = x * 0 = x. It follows that

$$\begin{aligned} ((x,0) \wedge ((x,0) \vee (y,1))_L)_L &= \begin{cases} ((x,0) \wedge (y*x,0) & \text{if } x*y=0, \\ (x,1) \wedge (0,1) & \text{otherwise} \end{cases} \\ &= \begin{cases} (x*[x*(x*(y*x))],0) & \text{if } x*y=0, \\ (x*(x*(x*0)),0) & \text{otherwise} \end{cases} \\ &= (x,0), \end{aligned}$$

proving the theorem. \Box

Since every implicative BCK-algebra satisfies all conditions described in Theorem 3.4, we give the following corollary:

Corollary 3.5. If (X; *, 0) is an implicative BCK-algebra, then its mirror algebra M(X) is a left L-up algebra.

References

1. Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.

- 2. Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica **30** (1985), 659-661.
- 3. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- 4. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 5. Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematicae 1 (1998), 347-354.

6. J. Meng and Y. B. Jun, $BCK\mbox{-algebras},$ Kyung Moon Sa Co., Seoul (1994).

- 7. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- 8. J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japonica 53 (2001), 25-31.

P. J. Allen and J. Neggers
Department of Mathematics
University of Alabama
Tuscaloosa, AL 35487-0350
U. S. A.
{pjallen}{jneggers}@gp.as.ua.edu

Hee Sik Kim Department of Mathematics Hanyang University Seoul 133-791, Korea heekim@hanyang.ac.kr