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Abstract. This note extends the work of an earlier paper. In particular, we give
a necessary and sufficient condition for an apartness space to have the property that
convergence implies Cauchyness.

The constructive theory of apartness1 (point–set and set–set) has been developed in a
series of papers over the past three years [17, 5, 6, 14, 16, 9]. In this latest paper in the
series, we present a streamlined system of five axioms for a set–set apartness structure;
we regard this system, which consists of fewer, and in at least one case simpler, axioms
than the one we used in [7] as the definitive one for our apartness theory. We then derive
some fundamental properties of Cauchy nets (using a slightly weaker notion of Cauchyness
than in [7]). In particular, we show that every convergent net in an apartness space X is a
Cauchy net if and only if X has a certain weak separation property.

We work throughout within the Bishop–style constructive framework, in which ‘con-
structive’ means ‘developed using intuitionistic logic’ [1, 2, 4, 15].

Our starting point is a set X equipped with a (set–set) apartness relation ��, appli-
cable to subsets of X and satisfying the following axioms.

B1 X �� ∅.
B2 S �� T ⇒ S ∩ T = ∅.
B3 R �� (S ∪ T ) ⇔ R �� S ∧ R �� T.

B4 S �� T ⇒ T �� S.

B5 x �� S ⇒ ∃T (x �� T ∧ ∀y(y �� S ∨ y ∈ T )).

Note that for a point x of S we write x �� S as shorthand for {x} �� S. Also, we define an
inequality on X by

x �= y ⇔ {x} �� {y} .

This has the minimal properties that one would expect of an inequality relation: namely,

x �= y ⇒ ¬ (x = y) ,
x �= y ⇒ y �= x.

There are three notions of complement applicable to a subset S of the apartness space
X :

• the logical complement

¬S = {x ∈ X : x /∈ S} ,
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1The motivation for this theory lay in the classical theory of nearness and proximity; see [10, 12, 13].
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• the complement

∼ S = {x ∈ X : ∀s ∈ S (x �= s)} ,

• and the apartness complement

−S = {x ∈ X : x �� S} .

We have

−S ⊂∼ S ⊂ ¬S.

The canonical example of an apartness spaces is a uniform space (X,U) , for which, in
addition to the usual classical properties of the uniform structure U (see [3], Chapter 2),
we postulate one property that automatically holds under classical logic:

∀U ∈ U ∃V ∈ U (X = U∪ ∼V ) .

This property enables us to make membership decisions that are vital for many proofs in
uniform–space theory; see, for example, [14]. The apartness of subsets S, T of X is then
defined by

S �� T ⇔ ∃U ∈ U (S × T ⊂∼U) .

The apartness complements in X form a base for a topology, the apartness topology,
on X. The open sets in this topology are called nearly open sets.

We say that an apartness space X is Hausdorff if

x �= y ⇒ ∃U, V (x ∈ −U ∧ y ∈ −V ∧ U ⊂∼ V )

—that is, if the apartness topology is Hausdorff in a natural sense.
By a directed set we mean a nonempty set D with a preorder2 � such that for all

m, n ∈ D there exists p ∈ D with p� m and p� n. A net in a set X is a mapping n �→ xn

of D into X ; we denote such a net by (xn)n∈D . It is shown in [8] that an apartness space is
Hausdorff if and only if it has the strong unique limits property: If (xn)n∈D is a net
in X that converges to a limit x, and if x �= y ∈ X, then (xn)n∈D is eventually bounded
away from y.

A mapping f : X → Y between apartness spaces is said to be

• continuous if f(x) �� f(A) implies that x �� A;

• strongly continuous if f(A) �� f(B) implies that A �� B.

The strongly continuous maps are precisely the morphisms in the category of apartness
spaces, and are clearly continuous.

Proposition 1 Let f : X → Y be a continuous mapping between apartness spaces, and let
(xn)n∈D be a net in X that converges to a limit x ∈ X. Then the net (f(xn))n∈D converges
to f(x).

2The classical theory of nets requires a partial order. If we used a partial order in our constructive theory,
we would run into difficulties which the classical theory avoids by applications of the axiom of choice, which
entails the law of excluded middle [11].
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Proof. Let T be a subset of Y such that f(x) ∈ −T. By axiom B5, there exists B ⊂ Y
such that f(x) ∈ −B and Y = −T ∪ B. By continuity, x ∈ −f−1(B). Choose n0 such
that xn ∈ −f−1(B) for all n � n0. For such n it is clear that f(xn) /∈ B and hence that
f(xn) ∈ −T. q.e.d

A net s = (xn)n∈D in an apartness space X is a Cauchy net if for all subsets A,B of
D with s (A) �� s (B) , there exists n0 such that if n ∈ A for some n � n0, then

B ⊂¬{n : n � n0} .

Minor modifications of the proof given in [7] enable us to show that in a metric space X, a
sequence is Cauchy in this sense if and only if it satisfies the usual metric Cauchy property.
It is simple to prove that if f : X → Y is a strongly continuous map between apartness
spaces and (xn)n∈D is a Cauchy net in X, then (f(xn))n∈D is a Cauchy net in Y.

A consequence of the strong axiom system we used in [7] was that every convergent net
in an apartness space is a Cauchy net. Our new, streamlined axiom system leads to a much
more informative result.

Theorem 2 The following are equivalent conditions on an apartness space (X, ��) .

(i) Every convergent net in X is a Cauchy net.

(ii) X is weakly symmetrically separated,3 in the sense that

S �� T ⇒ ∀x ∈ X∃U ⊂ X (x �� U ∧ ¬ (S − U �= ∅ ∧ T − U �= ∅)) .

Proof. Assuming (i), let S �� T and x ∈ X. Let

D = {(ξ, U) : x ∈ −U ∧ ξ ∈ −U} ,

with equality defined by

(ξ, U) = (ξ′, U ′) ⇔ (ξ = ξ′ ∧−U = −U ′) ,

and for each n = (ξ, U) in D define xn = ξ. It is easy to see that D is a directed set under
the reverse inclusion preorder defined by

(ξ, U) � (ξ′, U ′) ⇔ −U ⊂ −U ′,

so that Nx = (xn)n∈D is a net.4 Now define

A = {n ∈ D : s(n) ∈ S} ,

B = {n ∈ D : s(n) ∈ T } .

Since s(A) ⊂ S and s(B) ⊂ T, we have s(A) �� s(B). It follows from (i) that there exists
n0 = (y0, U0) ∈ D such that

∃n ∈ A (n � n0) ⇒ B ⊂ ¬{n ∈ D : n � n0} .(1)

Using axiom B5, choose V0 ⊂ X such that x ∈ −V0 and X = −U0 ∪ V0; in turn, choose
W0 ⊂ X such that x ∈ −W0 and X = −V0 ∪W0. Now suppose that there exist y ∈ S −W0

3Classically, an apartness space is always weakly symmetrically separated.
4By using the reverse inclusion preorder in this way, we are able to avoid the full axiom of choice.
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and z ∈ T − W0. Then (y, W0) ∈ D and s(y, W0) = y ∈ S, so (y, W0) ∈ A; since also
−W0 ⊂ −V0 ⊂ −U0, we see that (y, W0) � (y0, U0) = n0. Thus the antecedent of (1) holds
with n = (y, W0) ; whence

B ⊂ ¬{n ∈ D : n � n0} .

On the other hand, either z ∈ −U0 or z ∈ V0. In the former case, s(z, U0) = z ∈ T,
so (z, U0) ∈ B; whence ¬ ((z, U0) � n0 = (y0, U0)) , which is absurd. Thus z ∈ V0. But
z ∈ −W0 ⊂ −V0, so we have a contradiction. We conclude that

¬ (S − W0 �= ∅ ∧ T − W0 �= ∅) .

Thus (ii) holds.
Now assume (ii), let s = (xn)n∈D be a net converging to an element x in X, and let

A,B be subsets of D such that s(A) �� s(B). By (ii), there exists U ⊂ X such that

x ∈ −U ∧ ¬ (s(A) − U �= ∅ ∧ s(B) − U �= ∅) .

Choose n0 in D such that xn ∈ −U for all n � n0. Suppose that for some n � n0 we have
n ∈ A. Then xn ∈ s (A) − U, so s(B) − U = ∅; whence B ⊂ ¬{n : n � n0} . q.e.d

An apartness space X is said to have the nested neighbourhoods property if

x ∈ −U ⇒ ∃V (x ∈ −V ∧ ¬V �� U) .

In that case, X is Hausdorff. For if x �= y in X then x �� {y} , so there exists U ⊂ X with
x ∈ −U and ¬U �� {y}. By B4, y �� ¬U ; applying the nested neighbourhoods property
again, we obtain V ⊂ X such that y ∈ −V and ¬V �� ¬U. Then

−U ⊂ ¬U ⊂ −¬V ⊂∼¬V ⊂∼ −V.

A (perforce directed) subset E of a directed set D is said to be cofinal if for each n ∈ D
there exists m ∈ E with m � n. By a subnet of a net s = (xn)n∈D we mean a net (xn)n∈E

where E is a cofinal subset of D.

Theorem 3 Let s = (xn)n∈D be a Cauchy net that contains a subnet converging to a limit
x in an apartness space X with the nested neighbourhoods property. Then s converges to x.

Proof. Let (xi)i∈I be a subnet of s converging to x in X, and let x ∈ −U. Since X has
the nested neighbourhoods property, there exists V ⊂ X such that x ∈ −V and ¬V �� U ;
again using the nested neighbourhoods property, we can find W ⊂ X such that x ∈ −W
and ¬W �� V. Let

A = {n ∈ D : xn ∈ −W} ,

B = {n ∈ D : xn ∈ V } .

Since −W �� V, we have s (A) �� s (B) ; whence there exists n0 ∈ D such that if n � n0 for
some n ∈ A, then

B ⊂ ¬{n : n � n0} .(2)

But there exists i0 ∈ I such that xi ∈ −W for all i ∈ I with i � i0. Choose i1 ∈ I such that
i1 � n0. Since I is directed, there exists i ∈ I such that i � i0 and i � i1; whence xi ∈ −W
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—so i ∈ A —and i � n0. Thus (2) holds. It follows that if n � n0, then xn /∈ V and so
xn ∈ −U. Thus s converges to x. q.e.d

We end with a natural description of the closure operation in the apartness topology.
Note that, by definition, the closure of a subset A of X consists of those points x ∈ X of
which every neighbourhood in the apartness topology intersects A; equivalently, this is the
set of all x ∈ X such that for each U ⊂ X, if x ∈ −U, then −U intersects A.

Theorem 4 The closure of a subset A in the apartness topology on an apartness space X
consists of all points of X that are limits of nets in A.

Proof. If (xn)n∈D is a net in A converging to an element x of X, then for each U with
x ∈ −U there exists n ∈ D such that xn ∈ −U. Hence x ∈ A.

Conversely, if x ∈ A, then A − U is nonempty for each U ⊂ X with x ∈ −U . Let

D = {(y, U) : x ∈ −U ∧ y ∈ A − U} .

Then D is directed by the reverse inclusion preorder � defined in the proof of Theorem 2.
Let (yn)n∈D be the net in A defined by the mapping (y, U) �→ y, and let U ⊂ X be such
that x ∈ −U . Since x ∈ A, there exists y ∈ A−U ; let n0 = (y, U). For each n = (z, V ) � n0

we have x ∈ −V ⊂ −U and z ∈ A − V ; whence yn ∈ −V ⊂ −U. Thus (yn)n∈D converges
to x. q.e.d
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[5] Douglas Bridges and Luminiţa Vı̂ţă, ‘Apartness spaces as a foundation for constructive topol-
ogy’, Ann. Pure Appl. Logic. 119(1–3), 61–83, 2003.
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a constructive view’, in: Computability and Complexity in Analysis (Proc. Dagstuhl Seminar
01461, 11–16 November 2001), Math. Log. Quart. 48, Suppl. 1, 16–28, 2002.
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