LORENTZ MULTIPLIERS FOR HANKEL TRANSFORMS

Enji Sato

Received March 25, 2003; revised July 11, 2003

ABSTRACT. Let ϕ be a function on $(0, \infty)$ continuous except on a null set, and $\phi_{\epsilon}(\xi) = \phi(\epsilon\xi) \ (\epsilon > 0)$. Also \tilde{T}_{ϵ} be the operator on Jacobi series such that $(\tilde{T}_{\epsilon}f)^{\wedge}(n) = \phi_{\epsilon}(n)\hat{f}(n)$ $(n \in \mathbb{Z})$, where $\hat{f}(n)$ is the coefficient of Jacobi expansion of f, and $\mathcal{H}_{\alpha}(Tf)(\xi) = \phi(\xi)\mathcal{H}_{\alpha}f(\xi) \ (\xi \in (0,\infty))$, where $\mathcal{H}_{\alpha}f$ is the modified Hankel transform of f with order α . Then Igari [4] proved that if the operator norm of \tilde{T}_{ϵ} is uniformly bounded for all $\epsilon > 0, T$ is an operator on Hankel transforms(the details in §1,§2). After that, Connett-Schwartz[2] and Kanjin[5] proved the weak version and the maximal version by using [4], respectively. In this paper, we prove the analogy of Igari[4] in the Lorentz space, in the same way. Also in §3, as an application of this result, we show a result with respect to the partial sum operator of the Jacobi series.

1. Introduction

Let (X, ν) be a measure space, and for any $1 \le p < \infty, 1 \le q \le \infty, L^{p,q}(X)$ define the Lorentz space such that

$$L^{p,q}(X) = \{ f : f \text{ is measurable}, \parallel f \parallel_{p,q}^* < \infty \},\$$

where

$$\|f\|_{p,q}^{*} = \begin{cases} \{q \int_{0}^{\infty} (t\nu(\{|f| > t\})^{1/p})^{q} \frac{dt}{t} \}^{1/q} & (1 \le q < \infty) \\ \sup_{t>0} t\nu(\{|f| > t\})^{1/p} & (q = \infty). \end{cases}$$

In particular, $L^{p,q}(X) = L^p(X)$ for p = q.

Now let $P_n^{(\alpha,\beta)}(x)$ denote the Jacobi polynomial of degree *n* and order (α,β) , $\alpha,\beta > -1$ defined by

$$(1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x) = \frac{(-1)^{n}}{2^{n}n!}\frac{d^{n}}{dx^{n}}\{(1-x)^{n+\alpha}(1+x)^{n+\beta}\}.$$

The functions $\{P_n^{(\alpha,\beta)}(\cos\theta)\}_{n=0}^{\infty}$ are orthogonal on $(0,\pi)$ with respect to the measure $d\mu(\theta) = (\sin\frac{\theta}{2})^{2\alpha+1}(\cos\frac{\theta}{2})^{2\beta+1}d\theta$. For a function $f(\theta)$ integrable on $(0,\pi)$ with respect to $d\mu$, define

$$\hat{f}(n) = \int_0^\pi f(\theta) P_n^{(\alpha,\beta)}(\cos\theta)(\sin\frac{\theta}{2})^{2\alpha+1}(\cos\frac{\theta}{2})^{2\beta+1}d\theta.$$

Put

$$\frac{1}{h_n^{(\alpha,\beta)}} = \int_0^\pi [P_n^{(\alpha,\beta)}(\cos\theta)]^2 (\sin\frac{\theta}{2})^{2\alpha+1} (\cos\frac{\theta}{2})^{2\beta+1} d\theta.$$

Then $\{\sqrt{h_n^{(\alpha,\beta)}}P_n^{(\alpha,\beta)}(\cos\theta)\}_{n=0}^{\infty}$ is a complete orthonormal system in $L^2((0,\pi),\mu)$. For $(X,\nu) = ((0,\pi),\mu)$, we denote the Lorentz norm of $g \in L^{p,q}(0,\pi)$ by $|| g ||_{p,q}^J$. For any

²⁰⁰⁰ Mathematics Subject Classification. Primary 42C10; Secondary 42A45, 42C20.

Key words and phrases. Lorentz space, Jacobi series, Hankel transform.

 $\phi \in \ell^{\infty} (= \ell^{\infty} (\{0, 1, 2, \dots, \})),$ we define a transformation \tilde{T}_{ϕ} by

$$\tilde{T}_{\phi}g(\theta) = \sum_{n=0}^{\infty} \phi(n)\hat{g}(n)h_n^{(\alpha,\beta)}P_n^{(\alpha,\beta)}(\cos\theta),$$

and the opetator norm from $L^{p,r}(0,\pi)$ into $L^{p,q}(0,\pi)$ by

$$\| \tilde{T}_{\phi} \|_{M(p,r;p,q)}^{J} = \sup\{ \| \tilde{T}_{\phi}g \|_{p,q}^{J} : \| g \|_{p,r}^{J} \le 1, g \in C_{c}^{\infty}(0,\pi) \},\$$

and $M^J(p,r;p,q) = \{\tilde{T}_{\phi} : \| \tilde{T}_{\phi} \|_{M(p,r;p,q)}^J < \infty\}$. For $\alpha > -1$, $(X,\nu) = ((0,\infty), d\eta(x) = x^{2\alpha+1}dx)$, and a function f on $(0,\infty)$, we denote the Lorentz norm of $f \in L^{p,q}(0,\infty)$ by $\| f \|_{P,q}^{H}$. Also the modified Hankel transform of order α is defined by

$$\mathcal{H}_{\alpha}f(x) = \int_{0}^{\infty} f(y) \frac{J_{\alpha}(xy)}{(xy)^{\alpha}} d\eta(y)$$

where J_{α} is the Bessel function of the first kind. Also the multiplier transformation associated with $\phi \in L^{\infty}(0, \infty)$ is defined formally by

$$T_{\phi}f(x) = \int_0^\infty \phi(y) \mathcal{H}_{\alpha}f(y) \frac{J_{\alpha}(xy)}{(xy)^{\alpha}} d\eta(y),$$

the operator norm of T_{ϕ} from $L^{p,r}(0,\infty)$ into $L^{p,q}(0,\infty)$ by

$$|| T_{\phi} ||_{M(p,r;p,q)}^{H} = \sup\{|| T_{\phi}f ||_{p,q}^{H} : || f ||_{p,r}^{H} \le 1, f \in C_{c}^{\infty}(0,\infty)\},\$$

and $M^H(p,r;p,q) = \{T_\phi : || T_\phi ||_{M(p,r;p,q)}^H < \infty\}$. For $\epsilon > 0$ and $\phi \in L^\infty(0,\infty)$, let

$$T_{\epsilon}f(x) = \int_{0}^{\infty} \phi(\epsilon y) \mathcal{H}_{\alpha}f(y) \frac{J_{\alpha}(xy)}{(xy)^{\alpha}} d\eta(y),$$
$$T^{*}f(x) = \sup_{\epsilon > 0} |T_{\epsilon}f(x)|,$$
$$\tilde{T}_{\epsilon}g(\theta) = \sum_{n=0}^{\infty} \phi(\epsilon n)\hat{g}(n)h_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\theta),$$

and

$$\tilde{T^*}g = \sup_{\epsilon > 0} \mid \tilde{T}_{\epsilon}g(x) \mid,$$

where $f \in C_c^{\infty}(0,\infty)$ and $g \in C_c^{\infty}(0,\pi)$. Igari[4] showed the following:

Theorem A Let $1 \leq p < \infty$ and α , $\beta > -1$. Assume that ϕ is a function on $(0, \infty)$ continuous except on a null set and $\liminf_{\epsilon \to +0} \|\tilde{T}_{\epsilon}\|_{M(p,p;p,p)}^{J}$ is finite, then $\|T\|_{M(p,p;p,p)}^{H} \leq \liminf_{\epsilon \to +0} \|\tilde{T}_{\epsilon}\|_{M(p,p;p,p)}^{J}$.

After that, Connett-Schwartz[2] showed the analogy of weak type:

Theorem B Let $1 \leq p < \infty$ and α , $\beta > -1$. Assume that ϕ is a function on $(0, \infty)$ continuous except on a null set and $\liminf_{\epsilon \to +0}$

 $\| \tilde{T}_{\epsilon} \|_{M(p,p;p,\infty)}^{J} \text{ is finite, then } \| T \|_{M(p,p;p,\infty)}^{H} \leq \liminf_{\epsilon \to +0} \| \tilde{T}_{\epsilon} \|_{M(p,p;p,\infty)}^{J}.$

Also Kanjin[5] showed the analogy of maximal type:

Theorem C Let $1 and <math>\alpha$, $\beta > -1$. Assume that ϕ is a function on $(0, \infty)$ continuous except on a null set and $\| \tilde{T}^* \|_{M(p,p;p,p)}^J$ is finite, then $\| T^* \|_{M(p,p;p,p)}^H < \infty$.

In §2, we show Theorem 1 that is the analogy of Theorem A and Theorem B on the Lorentz space. Also we prove Theorem 2 that is a generalization of Theorem C by the application of [6]. Also in §3, we show an application of Theorem 1 with respect to the partial sum operator S_N on $L^{p,q}(0,\pi)$:

for $\alpha > -\frac{1}{2}$, $1 < r < \infty$ and the partial sum operators $S_N(N = 1, 2, ...)$, $S_N : L^{\frac{4\alpha+4}{2\alpha+3}, r}(0, \pi) \longrightarrow L^{\frac{4\alpha+4}{2\alpha+3}, \infty}(0, \pi)$

are unbounded.

Throughout this paper, for s > 0, we denote s' the conjugate exponent of s i.e. 1/s + 1/s' = 1, and the letter C a positive constant that may vary from line to line.

2. Results

First we show the following:

Theorem 1 Let $1 , <math>1 \le q \le \infty$, $1 \le r < \infty$ and α , $\beta > -1$. Assume that ϕ is a function on $(0,\infty)$, continuous except on a null set and $\sup_{\epsilon>0} \| \tilde{T}_{\epsilon} \|_{M(p,r;p,q)}^{J}$ is finite, then $T \in M^{H}(p,r;p,q)$.

Proof. Let M > 0, $f \in C_c^{\infty}(0, \infty)$ and $f_{\epsilon}(\theta) = f(\theta/\epsilon)$. Also let ϵ be a positive number such that $\pi/\epsilon > M$ and N a positive integer. We define

$$\begin{split} G(\tau, 1/\epsilon) &= \sum_{n=0}^{\infty} \phi(\epsilon n) \hat{f}_{\epsilon}(n) h_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \epsilon \tau) \ (=\tilde{T}_{\epsilon} f_{\epsilon}), \\ G^{N}(\tau, 1/\epsilon) &= \sum_{n=0}^{N[1/\epsilon]} \phi(\epsilon n) \hat{f}_{\epsilon}(n) h_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \epsilon \tau), \\ H^{N}(\tau, 1/\epsilon) &= G(\tau, 1/\epsilon) - G^{N}(\tau, 1/\epsilon), \end{split}$$

and

$$G(\tau) = \int_0^\infty \phi(y) \mathcal{H}_\alpha f(y) \frac{J_\alpha(\tau y)}{(\tau y)^\alpha} d\eta(y) \ (= Tf(\tau)).$$

Also let K > 0 and $h \in C_c^{\infty}(0, K)$ be fixed. Then we obtain

$$\int G^N(\tau, 1/\epsilon)h(\tau)d\eta(\tau) = \int G(\tau, 1/\epsilon)h(\tau)d\eta(\tau) - \int H^N(\tau, 1/\epsilon)h(\tau)d\eta(\tau),$$

and

$$\begin{split} & | \int G^{N}(\tau, 1/\epsilon) h(\tau) d\eta(\tau) | \\ \leq C \parallel \chi_{(0,K)} G(\tau, 1/\epsilon) \parallel_{p,q}^{H} \parallel h \parallel_{p',q'}^{H} + \parallel \chi_{(0,K)} H^{N}(\tau, 1/\epsilon) \parallel_{L^{2}(\eta)} \parallel f \parallel_{L^{2}(\eta)}, \end{split}$$

where $\chi_{(0,K)}$ is the characteristic function on (0, K). Here, we estimate $\|\chi_{(0,K)}G(\tau, 1/\epsilon)\|_{p,q}^H$. Let $0 < \delta < 1$ be fixed. Then for there exists $\epsilon_0 > 0$ with $\pi/\epsilon_0 > K$ such that for any $0 < \epsilon < \epsilon_0$ we have

$$\| \chi_{(0,K)} G(\tau, 1/\epsilon) \|_{p,q}^{H} \leq \epsilon^{-(2\alpha+2)/p} 2^{(2\alpha+1)/p} (1+\delta)^{1/p} \| G(\theta/\epsilon, 1/\epsilon) \|_{p,q}^{J}$$

by the change of variables and the definition of the Lorentz space, and we obtain that for $0 < \epsilon < \epsilon_0$

$$\| \chi_{(0,K)} G(\tau, 1/\epsilon) \|_{p,q}^{H}$$

 $\leq \epsilon^{-(2\alpha+2)/p} 2^{(2\alpha+1)/p} (1+\delta)^{1/p} (\sup_{\epsilon>0} \| \tilde{T}_{\epsilon} \|_{M(p,r;p,q)}^{J}) \| f_{\epsilon} \|_{p,r}^{J}$

by the assumption and $G(\theta/\epsilon, 1/\epsilon) = \tilde{T}_{\epsilon}f_{\epsilon}(\theta)$. By the change of variables, we can show that in the case of $r < \infty$

$$\begin{aligned} \epsilon^{-(2\alpha+2)/p} 2^{(2\alpha+1)/p} \parallel f_{\epsilon} \parallel_{p,r}^{J} \\ &= \epsilon^{-(2\alpha+2)/p} 2^{(2\alpha+1)/p} \times \\ (r \int_{0}^{\infty} (t\mu(\{\theta \le \pi : | f(\theta/\epsilon) | > t\})^{1/p})^{r} \frac{dt}{t})^{1/r} \\ &= (r \int_{0}^{\infty} (t(\int_{\{0 \le \tau \le M : |g(\tau)| > t\}} (\frac{\sin(\epsilon\tau/2)}{\epsilon\tau/2})^{2\alpha+1} \cos(\epsilon\tau/2)^{2\beta+1} d\eta(\tau))^{1/p})^{r} \frac{dt}{t})^{1/r}, \end{aligned}$$

and there exists $\epsilon_1 > 0$ with $\epsilon_1 < \epsilon_0$ such that

$$\epsilon^{-(2\alpha+2)/p} 2^{(2\alpha+1)/p} \parallel f_{\epsilon} \parallel_{p,r}^{J} \leq C \parallel f \parallel_{p,r}^{J} @(0 < \epsilon < \epsilon_{1})$$

for some C > 0 by the dominated convergence theorem with $|| f ||_{\infty} < \infty$. In the case of $r = \infty$, we can show, similarly. Therefore, for any $\epsilon_1 > \epsilon > 0$, we have

$$\mid \int_0^K G^N(\tau,1/\epsilon) h(\tau) d\eta(\tau) \mid$$

$$\leq C(1+\delta)^{2/p} \| f \|_{p,r}^{H} (\sup_{\epsilon>0} \| \tilde{T}_{\epsilon} \|_{M(p,r;p,q)}^{J}) \| h \|_{p',q'}^{H} + \| \chi_{(0,K)} H^{N}(\tau, 1/\epsilon) \|_{L^{2}(\eta)} \| h \|_{L^{2}(\eta)} .$$

Here, we remark $| G^N(\tau, 1/\epsilon) | \leq C@(\epsilon > 0)$ by the estimates of $G^N(\tau, 1/\epsilon)$ (cf.[4;p.205]). Then, $G^N(\tau, 1/\epsilon) \longrightarrow G^N(\tau)$ ($\epsilon \to 0$) weakly and pointwisely for some $G^N(\tau)$ by [4]. After all, we get

$$| \int_0^K G^N(\tau) h(\tau) d\eta(\tau) |$$

 $\leq C(1+\delta)^{2/p} || f ||_{p,r}^H (\sup_{\epsilon>0} || \tilde{T}_{\epsilon} ||_{M(p,r;p,q)}^J) || h ||_{p',q'}^H + \frac{B}{N^2} || h ||_{L^2(\eta)}$

where B is a constant independent on ϵ and N. Since it is shown that $\| G^N - G \|_{L^2((0,K),\eta)} \longrightarrow 0$ as $N \to \infty$ by [4], we obtain that

$$\left| \int G(\tau)h(\tau)d\eta(\tau) \right|$$

$$\leq C(1+\delta)^{1/p} \parallel f \parallel_{p,r}^{H} (\sup_{\epsilon>0} \parallel \tilde{T}_{\epsilon} \parallel_{M(p,r;p,q)}^{J}) \parallel h \parallel_{p',q'}^{H}.$$

Therefore, we have that

$$\parallel Tf \parallel^{H}_{p,q} \leq C(\sup_{\epsilon > 0} \parallel \tilde{T}_{\epsilon} \parallel^{J}_{M(p,r;p,q)}) \parallel f \parallel^{H}_{p,r}$$

and

$$\| T \|_{M(p,r;p,q)}^{H} \leq C \sup_{\epsilon > 0} \| \tilde{T}_{\epsilon} \|_{M(p,r;p,q)}^{J}.$$

q.e.d.

Next we show a generalization of Theorem C.

Theorem 2 Let $1 , <math>1 < q \le \infty$, $1 \le r < \infty$ and α , $\beta > -1$. Assume that ϕ is a bounded continuous function on $(0,\infty)$ and $\|\tilde{T}^*\|_{M(p,r;p,q)}^J$ is finite, then

$$\parallel T^* \parallel^H_{M(p,r;p,q)} < \infty.$$

To prove this statement, we show the following Lemma:

Lemma(cf.[6])

(1) We have $\| \tilde{T}^* \|_{M(p,r;p,q)}^J < \infty$, if and only if, there exists a constant C such that for any positive integer N,

$$\|\sum_{j=1}^{N} \tilde{T}_{\epsilon_{j}} g_{j} \|_{p',r'}^{J} \leq C \|\sum_{j=1}^{N} |g_{j}| \|_{p',q'}^{J}$$

for all $\epsilon_j > 0$ and $g_j \in C_c^{\infty}(0, \pi)$ (j = 1, 2, ..., N).

(2) We have $|| T^* ||_{M(p,r;p,q)}^H < \infty$, if and only if, there exists a constant C such that for any positive integer N,

$$\|\sum_{j=1}^{N} T_{\epsilon_{j}} f_{j} \|_{p',r'}^{H} \leq C \|\sum_{j=1}^{N} |f_{j}|\|_{p',q'}^{H}$$

for all $\epsilon_j > 0$ and $f_j \in C_c^{\infty}(0, \infty)@(j = 1, 2, ..., N).$

Proof. (1)By Hunt[3], for any $g_j \in C_c^{\infty}(0,\pi)$ (j = 1, ..., N), we may assume that

$$\|\sum_{j=1}^N \tilde{T}_{\epsilon_j} g_j \|_{p',r'}^J$$

$$= \sup\{ \left| \int \sum_{j=1}^{N} \tilde{T}_{\epsilon_{j}} g_{j} h d\mu \right| : \parallel h \parallel_{p,r}^{J} \le 1, \ h \in C_{c}^{\infty}(0,\pi) \}.$$

Then we have that for any $h \in C_c^{\infty}(0,\pi)$

$$\int \sum_{j} \tilde{T}_{\epsilon_j} g_j h d\mu = \int \sum_{j} \tilde{T}_{\epsilon_j} h g_j d\mu,$$

and

$$|\int \sum_{j} \tilde{T}_{\epsilon_{j}} g_{j} h d\mu | \leq \int \sum_{j} (\tilde{T}^{*} h) (\sum_{j} |g_{j}|) d\mu$$

By the assumption, we obtain

$$\|\sum_{j=1}^{N} \tilde{T}_{\epsilon_{j}} g_{j} \|_{p',r'}^{J} \leq C \|\tilde{T}^{*}\|_{M(p,r;p,q)}^{J}\| \sum_{j} |g_{j}|\|_{p',r'}^{J}$$

Next we show the inverse. For any $g \in C_c^{\infty}(0,\pi)$, we can show

$$\tilde{T}^*g = \sup_{\epsilon > 0} |\tilde{T}_{\epsilon}g| = \sup_{\epsilon_j > 0} |\tilde{T}_{\epsilon_j}g|$$

for some $\{\epsilon_j\}_{j=1}^{\infty}$. In fact, by the definition of $\tilde{T}_{\epsilon}f$, the estimates of $h_n^{(\alpha,\beta)}$ and $\|P_n^{(\alpha,\beta)}\|_{\infty}$ (cf.[7]), and the assumption of ϕ , $F(\epsilon,\theta) = \tilde{T}_{\epsilon}g(\theta)$ is continuous on $(0,\infty) \times (0,\pi)$. On the other hand, for any $\epsilon_0 > 0$, by the duality[3], we may assume

$$\| \max_{1 \le j \le N} | \tilde{T}_{\epsilon_j} g | \|_{p,q}^J - \epsilon_0 \le \int \max_{1 \le j \le N} | \tilde{T}_{\epsilon_j} g | h d\mu$$

for some $h \ge 0$ with $||h||_{p',r'}^{J} \le 1$. Also let $0 < \epsilon < \epsilon_0$ be fixed and $1 \le j \le N$. We define $E_j(\epsilon) = \{\max_{1\le k\le N} | \tilde{T}_{\epsilon_k}g| - \epsilon < | \tilde{T}_{\epsilon_j}g| \}$, $F_j(\epsilon) = E_j(\epsilon) - \bigcup_{k=1}^{j-1} E_k(\epsilon)$, $E_0 = \phi$, and $h_j = \chi_{F_j(\epsilon)}h \ sgn(\tilde{T}_{\epsilon_j}g)$. Then we obtain

$$\sum_{j} \tilde{T}_{\epsilon_{j}} gh_{j} = \sum_{j} |\tilde{T}_{\epsilon_{j}} g| \chi_{F_{j}(\epsilon)} h$$
$$\geq \sum_{j} (\max_{1 \le j \le N} |\tilde{T}_{\epsilon_{j}} g| - \epsilon) h \chi_{F_{j}(\epsilon)}$$
$$= (\max_{1 \le j \le N} |\tilde{T}_{\epsilon_{j}} g| - \epsilon) h \sum_{j} \chi_{F_{j}(\epsilon)},$$

and

$$|\int \sum_{j} \tilde{T}_{\epsilon_{j}} gh_{j} d\mu| \geq \int (\max_{1 \leq j \leq N} |\tilde{T}_{\epsilon_{j}} h| - \epsilon_{0}) h d\mu$$

Then we may assume $h_j \in C_c^{\infty}(0,\pi)$ (j = 1, ..., N), since $C_c^{\infty}(0,\pi)$ is dense in $L^{p',q'}((0,\pi), d\mu)$. Therefore, we get that

$$\int \max_{1 \le j \le N} |\tilde{T}_{\epsilon_j}g| h d\mu \le C ||g||_{p,r}^J ||h||_{p',q'}^J$$
$$\le C ||\sum_j \tilde{T}_{\epsilon_j}h_j||_{p',r'}^J ||g||_{p,r}^J,$$

and

$$\int \max_{1 \le j \le N} |\tilde{T}_{\epsilon_j}g| hd\mu \le C \parallel g \parallel_{p,r}^J \parallel \sum |h_j| \parallel_{p',q'}^J + \epsilon_0 |\int hd\mu|.$$

Hence, it is shown that

$$\int \max_{1 \le j \le N} \| \tilde{T}_{\epsilon_j} g \| h d\mu \le C \| g \|_{p,q}^J \| h \|_{p',q'}^J$$

338

by $\sum_{j} |h_j| \leq |h|$, and

$$\| \max_{1 \le j \le N} | \tilde{T}_{\epsilon_j} g | \|_{p,q}^J \le C \| g \|_{p,r}^J.$$

So by the usual method, we get

$$\|\tilde{T}^*g\|_{p,q}^J \leq C \|g\|_{p,r}^J.$$

(2): By the duality, we may assume

$$\|\sum_{j=1}^{N} T_{\epsilon_{j}} f_{j} \|_{p',q'}^{H}$$

= sup{| $\int \sum_{j=1}^{N} (T_{\epsilon_{j}} f_{j}) h d\eta |: \|h\|_{p,r}^{H} \le 1, h \in C_{c}^{\infty}(0,\infty)$ }.

Here, we have

$$\int \sum_{j=1}^{N} (T_{\epsilon_j} f_j) h d\eta = \int \sum_{j=1}^{N} (T_{\epsilon_j} h) f_j d\eta$$

by $\mathcal{H}_{\alpha}f_j$, $\mathcal{H}_{\alpha}h \in L^1(\eta)$ and the definition of T_{ϵ_j} . Then we get that by the assumption

$$|\int \sum_{j} (T_{\epsilon_{j}}f_{j})d\eta| \leq \int (\sup |T_{\epsilon_{j}}h|) \sum |f_{j}| d\eta$$
$$\leq C ||T^{*}h||_{p,q}^{H} ||\sum |f_{j}|||_{p',q'}^{H},$$

and

$$\|\sum_{j=1}^{N} T_{\epsilon_{j}} f_{j} \|_{p',q'}^{H} \leq C \| T^{*}h \|_{p,q}^{H} \| \sum |f_{j}| \|_{p',q'}^{H}.$$

In the inverse case, as we remember $\phi \in C(0,\infty) \cap L^{\infty}(0,\infty)$ and $f \in C_c^{\infty}(0,\infty)$, we can show the result as same as the proof of (1). We omit the details. q.e.d.

The proof of Theorem 2.

Let L be any positive integer, $\{f_j\}_{j=1}^L \subset C_c^{\infty}(0,\infty)$ with $supp \ f_j \subset (0,M)$ for some M > 0, and $f_{j,\epsilon}(\theta) = f_j(\theta/\epsilon)$ for $\epsilon > 0$. Also let ϵ_0 be a positive number such that $\pi/\epsilon_0 > M$. For $0 < \epsilon < \epsilon_0$ and a positive integer N, we define

$$\begin{split} G_{j}(\tau,1/\epsilon) &= \sum_{n=0}^{\infty} \phi(\epsilon_{j}\epsilon n) \hat{f}_{j,\epsilon}(n) h_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos\epsilon\tau), \\ G_{j}^{N}(\tau,1/\epsilon) &\sum_{n=0}^{N[1/\epsilon]} \phi(\epsilon_{j}\epsilon n) \hat{f}_{j,\epsilon}(n) h_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos\epsilon\tau), \end{split}$$

and

$$H_j^N(\tau, 1/\epsilon) = G_j(\tau, 1/\epsilon) - G_j^N(\tau, 1/\epsilon) \ (j = 1, ..., L),$$

where $\{\epsilon_j\}_{j=1}^{\infty}$ is dense in $(0, \infty)$. By the application of Lemma, we shall show $|| T^* ||_{M(p,r;p,q)}^H < \infty$ in the same manner of the proof of Theorem 1. Let $0 < K < \pi/\epsilon_0$ be fixed, and $h \in C_c^{\infty}(0, \infty)$ with supp $h \subset (0, K)$. By the definition of $G_j^N(\tau, 1/\epsilon)$, we have

$$\begin{split} &\int \sum G_j^N(\tau,1/\epsilon)h(\tau)d\eta(\tau) \\ &= \sum \int G_j(\tau,1/\epsilon)h(\tau)d\eta(\tau) - \sum \int H_j^N(\tau,1/\epsilon)h(\tau)d\eta(\tau), \\ & \epsilon^K \end{split}$$

and

$$|\sum_{j} \int_{0}^{T} G_{j}^{N}(\tau, 1/\epsilon) h(\tau) d\eta(\tau) |$$

$$\leq C || \chi_{(0,K)} \sum_{j} G_{j}(\tau, 1/\epsilon) ||_{p',r'}^{H} || h ||_{p,r}^{H} + || \sum_{j} H_{j}^{N}(\tau, 1/\epsilon) ||_{L^{2}((0,K),\eta)} || h ||_{L^{2}(\eta)}$$

Then in the similar way to Theorem 1, we get that for any $0<\delta<1$ and sufficiently small $\epsilon>0$

$$\| \chi_{(0,K)} \sum_{j} G_{j}(\tau, 1/\epsilon) \|_{p',r'}^{H} \leq (1+\delta)^{1/p'} \| \sum \tilde{T}_{\epsilon_{j}\epsilon} f_{j,\epsilon} \|_{p',r'}^{J},$$

and by Lemma (1) and the definition of \tilde{T}^*

$$\| \chi_{(0,K)} \sum_{j} G_{j}(\tau, 1/\epsilon) \|_{p',q'}^{H}$$

$$\leq C(1+\delta)^{1/p'} 2^{(2\alpha+1)/p'} \epsilon^{-(2\alpha+2)/p'} \| \tilde{T}^{*} \|_{M(p,r;p,q)}^{J} \| \sum_{j} f_{j,\epsilon} \|_{p',q'}^{J}$$

for sufficiently small $\epsilon > 0$. After all, we have in the same way of the proof of Theorem 1 that for sufficiently small $\epsilon > 0$,

$$\begin{split} &|\int_{0}^{K} \sum_{j} G_{j}(\tau, 1/\epsilon) h(\tau) d\eta(\tau) |\\ &\leq C(1+\delta)^{1/p'} \| \sum_{j} |f_{j}| \|_{p',q'}^{H} \| \tilde{T}^{*} \|_{M(p,r;p,q)}^{J} \| h \|_{p,r}^{H} \\ &+ \| \sum_{j} H_{j}^{N}(\tau, 1/\epsilon) \|_{L^{2}((0,K),\eta)} \| h \|_{L^{2}(\eta)}, \end{split}$$

and

$$\left|\int \sum_{j=1}^{N} G_{j}(\tau) h(\tau) d\eta(\tau)\right| \leq C(1+\delta)^{2/p'} \|\tilde{T}^{*}\|_{M(p,r;p,q)}^{J}\| \sum_{j=1}^{L} |f_{j}|\|_{p',q'}^{H}$$

by Igari[4], and we get

$$\|\sum_{j=1}^{L} T_{\epsilon_{j}\epsilon} f_{j} \|_{p',r'}^{H} \le C \| \tilde{T}^{*} \|_{M(p,r;p,q)}^{J} \| \sum_{j=1}^{L} |f_{j}| \|_{p',q'}^{H}$$

Hence, by Lemma (2), we obtain the desired result:

$$|| T^* ||_{M(p,r;p,q)}^H \leq C || \tilde{T}^* ||_{M(p,r;p,q)}^J.$$

q.e.d.

3. An application.

Colzani^[1] showed the following:

Theorem D Let $\alpha > -1/2$ and $1 < r \leq \infty$. The partial sum operators $\{S_R\}$ are not bounded from $L^{(4\alpha+4)/(2\alpha+3),r}(\eta)$ into $L^{(4\alpha+4)/(2\alpha+3),\infty}(\eta)$, where

$$S_R f(x) = \int_0^R \frac{J_\alpha(xy)}{(xy)^\alpha} \mathcal{H}_\alpha f(y) d\eta(y) \ (f \in C_c^\infty(0,\infty)).$$

By the application of Theorem D, we can show the following result:

Theorem 3 Let $\alpha, \beta > -1/2$ and $1 < r \leq \infty$. The partial sum operators $\{S_N\}$ are not bounded from $L^{(4\alpha+4)/(2\alpha+3),r}((0,\pi),\mu)$ into $L^{(4\alpha+4)/(2\alpha+3),\infty}((0,\pi),\mu)$, where

$$S_N g(\theta) = \sum_{n=0}^N \hat{g}(n) h_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos \theta) \ (g \in C_c^\infty(0,\pi)).$$

Proof. We may assume $r < \infty$ by the property of the Lorentz norm. Also we assume that $\{S_N\}$ are bounded from $L^{(4\alpha+4)/(2\alpha+3),r}((0,\pi),\mu)$ into $L^{(4\alpha+4)/(2\alpha+3),\infty}((0,\pi),\mu)$. Then we define that for $\epsilon, R > 0$

$$\phi_R(\xi) = \chi_{(0,R)}(\xi),$$

and

$$(\tilde{T}_{\epsilon}g)^{\wedge}(n) = \phi_R(\epsilon n)\hat{g}(n) \ (g \in C_c^{\infty}(0,\pi)).$$

Here, by the assumption of $\{S_N\}$ and $\phi_R(\epsilon n) = \chi_{(0,R/\epsilon)}(n)$, we obtain

$$\sup_{\epsilon>0} \| \tilde{T}_{\epsilon} \|_{M(\frac{4\alpha+4}{2\alpha+3},r;\frac{4\alpha+4}{2\alpha+3},\infty)}^{J} < \infty$$

On the other hand, by Theorem 1, for $\alpha > -\frac{1}{2}$ there exists a positive constant C > 0 such that

$$\| T_{\phi_R} \|_{M(\frac{4\alpha+4}{2\alpha+3},r;\frac{4\alpha+4}{2\alpha+3},\infty)}^{H} \leq C \sup_{\epsilon>0} \| \tilde{T}_{\epsilon} \|_{M(\frac{4\alpha+4}{2\alpha+3},r;\frac{4\alpha+4}{2\alpha+3},\infty)}^{J} .$$

Therefore, we get that $\{S_R\}$ are bounded from $L^{(4\alpha+4)/(2\alpha+3),r}((0,\infty),\eta)$ into $L^{(4\alpha+4)/(2\alpha+3),\infty}((0,\pi),\eta)$. This is a contradiction to Theorem D. Hence, we get the desired result. q.e.d.

References

- [1] L.Colzani, Hankel transform on Lorentz spaces, Collq. Math. vol. LX/LXI(1990), 70-76.
- [2] W.C.Connett and A.L.Schwartz, Weak type multipliers for Hankel transforms, Pacific J. of Math. 63(1976), 125-129.
- [3] R.Hunt, On L(p,q) spaces, Enseign. Math. 12(1966), 249-276.
- [4] S.Igari, On the multipliers of Hankel transform, Tôhoku Math. J. 24(1972), 201-206.
- [5] Y.Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc. 103(1988), 1063-1069.

- [6] M.Kenig and P.A.Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68(1970), 79-83.
- [7] G.Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium, 1959.

DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA 990-8560, JAPAN

 $Email \ address: \ esato@sci.kj.yamagata-u.ac.jp$