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NORMAL BCI-ALGEBRAS
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Abstract. In this paper we generalize the following five notions from BCK-algebras
into BCI-algebras: stabilizer, left and right stabilizers, normal BCK-algebra and nor-
mal ideal, and investigate some basic properties of them.

§0. Introduction and preliminaries

In [6], by using stabilizers and left and right stabilizers in BCK-algebras, we introduced
and investigated normal BCK-algebras. In [5] we considered normal ideals in BCK-algebras
(early in 1991, Hoo in [4] had actually got involved in the consideration of them in BCI-
algebras). In this paper we will generalize each of these notions from BCK-algebras into
BCI-algebras, and investigate a number of basic properties of it.

Throughout this paper, for the symbols and terminologies concerned, we refer the reader
to [2], [7], [8] and [9], and we will use some familiar properties without explanation.

Recall that given a BCI-algebra X , the BCI-ordering ≤ on X is defined by which x ≤ y
if and only if x ∗ y = 0 for any x, y ∈ X . A positive element x of X means x ≥ 0 (i.e.,
0 ∗x = 0), and the set of all positive elements of X is just the BCK-part B of X ; a minimal
element x of X means that y ≤ x (i.e., y ∗ x = 0) implies x = y for any y ∈ X , and the
set of all minimal elements of X is just the p-semisimple part P of X . It is known that for
any x, y ∈ X , if x ≤ y, then y ∗ x is a positive element of X , and that for any x ∈ X there
is one and only one minimal element a of X , satisfying a ≤ x (refer to [9, §1.3]). An ideal
A of X is a subset of X such that (i) 0 ∈ A and (ii) x, y ∗ x ∈ A imply y ∈ A for any
x, y ∈ X . A subalgebra Y of X is a nonempty subset of X such that Y is closed under the
BCI-operation ∗ on X . If A is both an ideal and a subalgebra of X , we call it a closed ideal
of X . An ideal A of X is closed if and only if 0 ∗ x ∈ A for any x ∈ A. The BCK-part B
of X is a closed ideal of X and the p-semisimple part P of X is a subalgebra of X . The
generated ideal 〈S〉 of X by a subset S of X can be expressed as

〈S〉 = {0}
⋃{

x ∈ X

∣∣∣∣ (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0
for some a1, a2, . . . , an ∈ S

}
.

If S = {a}, we denote 〈a〉 for 〈{a}〉 in brevity. In the following let’s write down several
results: for any x, y, z ∈ X ,
(0.1) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y;
(0.2) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z;
(0.3) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y);
(0.4) x ∗ y = x ∗ (x ∗ (x ∗ y));
(0.5) 0 ∗ x is a minimal element of X ;
(0.6) 0 ∗ (0 ∗ x) = x whenever x is a minimal element of X ;
(0.7) x ∗ y ≤ x, i.e., (x ∗ y) ∗ x = 0, whenever y is a positive element of X .
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Every ideal A of X determines a congruence ≡ on X in the sense that x ≡ y (mod A) if
and only if x ∗ y ∈ A and y ∗ x ∈ A for any x, y ∈ X . The symbol X/A will be used instead
of the quotient algebra X/≡, which is still a BCI-algebra.

If A and I are ideals of X such that X = 〈A ∪ I〉 and A ∩ I = {0}, then X is called
the subdirect sum of A and I, denoted by X = A⊕ I. It is known that if A, I are closed
ideals of X and if X = A⊕ I, then for any x ∈ X , there are uniquely a ∈ A and b ∈ I such
that x ≡ a (mod I) and x ≡ b (mod A) (see [2, Theorem 2.1]). The element a is said the
component of x in A, and b of x in I.

Proposition 0.1. Let A, I be two closed ideals of a BCI-algebra X such that X = A⊕ I
and let a ∈ A and b ∈ I. Then a is the component of x in A and b of x in I if and only if
x ∗ a = b and x ∗ b = a.

Proof. The necessity is a special case of [2, Proposition 2.6], and we only need to show the
sufficiency. In fact, since I is closed, our supposition of sufficiency means that x ∗ a = b ∈ I
and a ∗ x = (x ∗ b) ∗ x = 0 ∗ b ∈ I, then x ≡ a (mod I), and so a is the component of x in
A. Similarly, b is the component of x in I.

Proposition 0.2. Let A, I be two ideals of a BCI-algebra X such that X = A⊕ I and let
x, x′ be any elements in X.

(1) If a and a′ are respectively the components of x and x′ in A, then a ∗ a′ is the
component of x ∗ x′ in A.

(2) If x and x′ have the same components in both A and I, then x = x′.

Proof. (1) It is got by the substitution property of congruences.
(2) Since X = A⊕ I, we have A ∩ I = {0}. If x and x′ have the same components in

A, by (1), 0 is the component of x ∗ x′ in A, then x ∗ x′ ∈ A. Similarly, x ∗ x′ ∈ I. Hence
x ∗ x′ ∈ A ∩ I = {0} and x ∗ x′ = 0. Likewise, x′ ∗ x = 0. Therefore x = x′.

Assume that X = A⊕ I. If for any a ∈ A and b ∈ I, there exists x ∈ X such that a is
the component of x in A and b of x in I, we say X is the direct sum of A and I, denoted
by X = A ⊕ I.

Proposition 0.3. If the p-semisimple part P of a BCI-algebra X is an ideal of X, then
X = B ⊕ P where B is the BCK-part of X.

Proof. For any x ∈ X , letting a be a minimal element of X , satisfying a ≤ x, we have a ∈ P
and x ∗ a ∈ B, then x ∈ 〈B ∪ P 〉, and so X = 〈B ∪ P 〉. It is obvious that B ∩ P = {0}.
Thus X = B ⊕P . Also, for any b ∈ B and p ∈ P , putting x = b ∗ (0 ∗ p), by (0.5), we have

x ∗ b = (b ∗ (0 ∗ p)) ∗ b = 0 ∗ (0 ∗ p) ∈ P,

b ∗ x = b ∗ (b ∗ (0 ∗ p)) ≤ 0 ∗ p ∈ P.

Then x ≡ b (mod P ). On the other hand, by (0.3) and (0.4), we obtain

0 ∗ x = 0 ∗ (b ∗ (0 ∗ p)) = (0 ∗ b) ∗ (0 ∗ (0 ∗ p)) = 0 ∗ (0 ∗ (0 ∗ p)) = 0 ∗ p.

Then (0.2) and (0.6) together give

x ∗ p = (b ∗ (0 ∗ p)) ∗ p = (b ∗ p) ∗ (0 ∗ p) ≤ b ∈ B,

p ∗ x = (0 ∗ (0 ∗ p)) ∗ x = (0 ∗ x) ∗ (0 ∗ p) = (0 ∗ p) ∗ (0 ∗ p) = 0 ∈ B.

So, x ≡ p (mod B). Hence X = B ⊕ P .
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A BCK-algebra X is called normal if for any a ∈ X , the right stabilizer {a}∗R, i.e., the
set {x ∈ X | x ∗ a = x}, is an ideal of X (see [6]).

Proposition 0.4. A BCK-algebra X is normal if and only if x ∗ y = x implies y ∗ x = y
for any x, y ∈ X (see [6, Theorem 2]).

An ideal A of a BCK-algebra X is called normal if x ∗ (x ∗ y) ∈ A implies y ∗ (y ∗ x) ∈ A
for any x, y ∈ X (see [5]).

Proposition 0.5. A BCK-algebra is normal if and only if the zero ideal {0} of it is normal
(see [5, Theorem 2.3]).

§1. Stabilizers

Definition 1.1. Given a nonempty subset S of a BCI-algebra X , the sets

S∗
L = {x ∈ X | a ∗ x = a for any a ∈ S},

S∗
R = {x ∈ X | x ∗ a = x for any a ∈ S}

are called the left and right stabilizers of S, respectively. And the set

S∗ = {x ∈ X | a ∗ x = a and x ∗ a = x for any a ∈ S},
i.e., S∗ = S∗

L ∩ S∗
R, is called the stabilizer of S.

These are the natural generalization of the corresponding notions in BCK-algebras, thus
there are many similar properties, but their proofs need to be made suitable change. It is
obvious that if S, T are nonempty subsets of X , then
(1.1) S∗

L =
⋂

a∈S{a}∗L, S∗
R =

⋂
a∈S{a}∗R and S∗ =

⋂
a∈S{a}∗;

(1.2) (S ∪ T )∗L = S∗
L ∩ T ∗

L, (S ∪ T )∗R = S∗
R ∩ T ∗

R and (S ∪ T )∗ = S∗ ∩ T ∗;
(1.3) if S ⊆ T , then T ∗

L ⊆ S∗
L, T ∗

R ⊆ S∗
R and T ∗ ⊆ S∗.

For convenience we call S a positive subset of a BCI-algebra X if S is a nonempty subset
of X and every element in X is positive. Similarly, we have the notions of positive ideals
and positive subalgebras of X .

Proposition 1.1. The left stabilizer S∗
L of any nonempty subset S of a BCI-algebra X is

a positive ideal of X, thus it is a closed ideal of X.

Proof. Clearly, 0 ∈ S∗
L, then S∗

L �= ∅. For any x ∈ S∗
L and any a ∈ S, since

0 ∗ x = (a ∗ x) ∗ a = a ∗ a = 0,

S∗
L is a positive subset of X . Also, if x, y ∗ x ∈ S∗

L, then

a = a ∗ (y ∗ x) = (a ∗ x) ∗ (y ∗ x).

So, (0.2) implies

a ∗ (a ∗ y) = ((a ∗ x) ∗ (y ∗ x)) ∗ (a ∗ y) ≤ (a ∗ y) ∗ (a ∗ y) = 0.

On the other hand, note that S∗
L is a positive subset of X , by (0.3), the following holds:

(a ∗ y) ∗ a = 0 ∗ y = (0 ∗ y) ∗ 0 = (0 ∗ y) ∗ (0 ∗ x) = 0 ∗ (y ∗ x) = 0.

Hence a ∗ y = a and y ∈ S∗
L. Therefore S∗

L is a positive ideal of X . Finally, it is obvious
from S∗

L being positive that S∗
L is a closed ideal of X .
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It is a pity that a right stabilizer or a stabilizer may be empty. But we have the following
results.

Proposition 1.2. Let S be a nonempty subset of a BCI-algebra X. Then

(1) S∗
R (or S∗) is not empty if and only if S is a positive subset of X;

(2) if S is a positive subset of X, then S∗
R is a subalgebra of X, containing the whole

minimal elements of X;
(3) if S is a positive subset of X, then S∗ is a positive subalgebra of X.

Proof. (1) If S∗
R or S∗ is not empty, putting x ∈ S∗

R (or x ∈ S∗), for any a ∈ S, we have

0 ∗ a = (x ∗ a) ∗ x = x ∗ x = 0,

that is, a is a positive element of X . Hence S is a positive subset of X .
Conversely, if S is positive, then 0 ∗ a = 0 for any a ∈ S. So, 0 ∈ S∗

R and S∗
R �= ∅. Also,

clearly 0 ∈ S∗
L, then 0 ∈ S∗

L ∩ S∗
R, that is, 0 ∈ S∗, and so S∗ �= ∅.

(2) If S is positive, by (1), S∗
R �= ∅. Putting x, y ∈ S∗

R, for any a ∈ S, we have

(x ∗ y) ∗ a = (x ∗ a) ∗ y = x ∗ y,

then x∗y ∈ S∗
R. Hence S∗

R is a subalgebra of X . Also, since S is positive, by (0.7), x∗a ≤ x
for all x ∈ X . Now, if x is minimal, then x ∗ a = x, and so x ∈ S∗

R. Hence S∗
R contains the

whole minimal elements of X .
(3) Since S∗ = S∗

L ∩ S∗
R, Proposition 1.1 together with (2) gives that S∗ is a positive

subalgebra of X .

However, even if S is a positive subset of X , S∗
R and S∗ are generally not ideals of X .

Example 1.1. Let X = {0, 1, 2, 3, a} and define a binary operation ∗ on X by

∗ 0 1 2 3 a

0
1
2
3
a

0 0 0 0 a

1 0 0 0 a

2 2 0 2 a

3 3 3 0 a

a a a a 0
Then (X ; ∗, 0) is a BCI-algebra (refer to [9, Theorem 5.1.1]). Obviously, {2}∗R = {0, 3, a}
and {2}∗ = {0, 3}. Since 3 ∈ {2}∗R and 1 ∗ 3 = 0 ∈ {2}∗R, but 1 /∈ {2}∗R, {2}∗R is not an
ideal of X . Similarly, {2}∗ is not either.

Proposition 1.3. Let S be a nonempty subset of a BCI-algebra X.

(1) If 0 ∈ S, then S ∩ S∗
L = {0}, otherwise, S ∩ SL = ∅.

(2) S ⊆ (S∗
L)∗R.

(3) S∗
L = ((S∗

L)∗R)∗L.

Proof. (1) If 0 ∈ S, since S∗
L is an ideal of X , we have S ∩ S∗

L �= ∅. For any x ∈ S ∩ S∗
L,

by x = x ∗ x = 0, we obtain S ∩ S∗
L = {0}.

Next, if it is false, then S ∩ S∗
L �= ∅. By the proof we just now give, S ∩ S∗

L = {0}, then
0 ∈ S, a contradiction with 0 /∈ S. Hence S ∩ S∗

L = ∅.
(2) By virtue of Proposition 1.1, S∗

L �= ∅. If a ∈ S, then a ∗ x = a for any x ∈ S∗
L, and

so a ∈ (S∗
L)∗R, and hence S ⊆ (S∗

L)∗R.
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(3) By (2), (S∗
L)∗R is non-vacuous, then ((S∗

L)∗R)∗L is well-defined. Using (2) and (1.3),
we obtain ((S∗

L)∗R)∗L ⊆ S∗
L. On the other hand, if a ∈ S∗

L, then a ∗ x = a for any x ∈ (S∗
L)∗R.

Hence a ∈ ((S∗
L)∗R)∗L and S∗

L ⊆ ((S∗
L)∗R)∗L. Therefore S∗

L = ((S∗
L)∗R)∗L.

Proposition 1.4. Let S be a positive subset of a BCI-algebra X.
(1) If 0 ∈ S, then S ∩ S∗

R = S ∩ S∗ = {0}, otherwise, S ∩ S∗
R = S ∩ S∗ = ∅.

(2) S ⊆ (S∗
R)∗L and S ⊆ S∗∗ where S∗∗ = (S∗)∗.

(3) S∗
R = ((S∗

R)∗L)∗R and S∗ = S∗∗∗.

The proof is similar to Proposition 1.3 and omitted.

Proposition 1.5. Let S be a positive subset of a BCI-algebra X. Then S∗
R = 〈S〉∗R and

S∗
R ∩ 〈S〉 = {0} where 〈S〉 is the generated ideal of X by S.

Proof. By (1.3), 〈S〉∗R ⊆ S∗
R. Letting x ∈ S∗

R, we have

(1.4) x ∗ a = x for any a ∈ S.

For all b ∈ 〈S〉, if b = 0, of course, x ∗ b = x; if b �= 0, there are a1, a2, . . . , an ∈ S such that

(1.5) (· · · ((b ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0.

Repeatedly applying (1.4), the following holds:

(1.6) x = (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an.

Putting (1.5) and (1.6) together, we obtain

x = (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an) ∗ (· · · ((b ∗ a1) ∗ a2) ∗ · · · ) ∗ an).

Now, using (0.2) step by step, it follows

x ≤ (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an−1) ∗ (· · · ((b ∗ a1) ∗ a2) ∗ · · · ) ∗ an−1) ≤ · · · ≤ x ∗ b,

that is, x ≤ x∗b. On the other hand, it is easily seen from (1.5) and (0.3) that b is a positive
element of X , then x ∗ b ≤ x by (0.7). So, x ∗ b = x. Thus x ∈ 〈S〉∗R. Hence S∗

R ⊆ 〈S〉∗R.
Therefore S∗

R = 〈S〉∗R. Also, by Proposition 1.4(1), S∗
R ∩ 〈S〉 = 〈S〉∗R ∩ 〈S〉 = {0}.

It is interesting that if S is a positive ideal of X , we have some unusual properties,
including that S∗ must be an ideal of X .

Theorem 1.6. Let A be a positive ideal of a BCI-algebra X. Then A∗ = A∗
L ⊆ A∗

R, thus
A∗ is a positive ideal of X. Moreover, if A∗

R is an ideal of X, then A∗ = A∗
L = A∗

R ∩ B
where B is the BCK-part of X.

Proof. For the first half part, if A∗
L ⊆ A∗

R, then A∗ = A∗
L ∩ A∗

R = A∗
L and A∗ is a positive

ideal of X by A∗
L being a positive ideal of X . It remains to show A∗

L ⊆ A∗
R. Put x ∈ A∗

L.
For any a ∈ A, by x ∗ (x ∗ a) ≤ a, we obtain x ∗ (x ∗ a) ∈ A, then

(x ∗ (x ∗ a)) ∗ x = x ∗ (x ∗ a).

As A and A∗
L are positive ideals of X , a and x are positive elements of X , then

(x ∗ (x ∗ a)) ∗ x = 0.

Comparison gives x ∗ (x ∗ a) = 0. Also, by (0.7), the equality (x ∗ a) ∗ x = 0 holds. Hence
x ∗ a = x and x ∈ A∗

R. Therefore A∗
L ⊆ A∗

R.
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For the second half part, because A∗
L is a positive ideal of X (i.e., A∗

L ⊆ B) and because
A∗ = A∗

L ⊆ A∗
R, it suffices to show A∗

R ∩ B ⊆ A∗
L. Put x ∈ A∗

R ∩ B. For any a ∈ A, since x
and a are positive elements of X , we obtain a ∗ (a ∗ x) ≤ a, then a ∗ (a ∗ x) ∈ A. As A∗

R is
an ideal of X and a ∗ (a ∗ x) ≤ x, we derive a ∗ (a ∗ x) ∈ A∗

R. So, a ∗ (a ∗ x) ∈ A∩A∗
R. Note

that A∩A∗
R = {0}. It follows a ∗ (a ∗ x) = 0. Obviously, (a ∗ x) ∗ a = 0. Thus a ∗ x = a and

x ∈ A∗
L. Hence A∗

R ∩ B ⊆ A∗
L.

Theorem 1.7. Let X be a BCI-algebra, A a positive ideal of X, and I a closed ideal of X.
If A ∩ I = {0}, then I ⊆ A∗

R. Further, if X = A⊕ I, then I = A∗
R.

Proof. Assume that A ∩ I = {0}. Putting x ∈ I, for any a ∈ A, since A is an ideal of X ,
by x ∗ (x ∗ a) ≤ a, we obtain x ∗ (x ∗ a) ∈ A. Because A is positive, we have

(x ∗ (x ∗ a)) ∗ x = 0 ∗ (x ∗ a) = (0 ∗ x) ∗ (0 ∗ a) = 0 ∗ x.

Then the fact that I is a closed ideal of X implies x ∗ (x ∗ a) ∈ I. Hence

x ∗ (x ∗ a) ∈ A ∩ I = {0}.

Thus x ∗ (x ∗ a) = 0. Also, by (0.7), (x ∗ a) ∗ x = 0. Therefore x ∗ a = x and x ∈ A∗
R. We

have shown that I ⊆ A∗
R.

Further, if X = A⊕ I, then A ∩ I = {0}. By the above proof, I ⊆ A∗
R. Also, for any

x ∈ A∗
R, letting a be the component of x in A, we have a ∈ A and x ∗ a ∈ I. Note that

x ∗ a = x. It follows x = x ∗ a ∈ I. Hence A∗
R ⊆ I. Therefore I = A∗

R.

§2. Normal BCI-algebras

Definition 2.1. A BCI-algebra X is called normal if for any positive element a of X , the
right stabilizer {a}∗R is an ideal of X .

It is evident that any normal BCK-algebra is a normal BCI-algebra.

Example 2.1. Let X = {0, 1, a, b} and define two binary operations ∗ and ∗′ on X by

∗ 0 1 a b

0
1
a

b

0 0 a a

1 0 b a

a a 0 0
b a 1 0

∗′ 0 1 a b

0
1
a

b

0 0 a a

1 0 a a

a a 0 0
b a 1 0

Then (X ; ∗, 0) and (X ; ∗′, 0) are BCI-algebras (see [9, page 276]). It is easy to verify that
the former is normal, but the latter is not.

Using (1.1) we directly have the next result.

Proposition 2.1. A BCI-algebra X is normal if and only if the right stabilizer S∗
R of any

positive subset S of X is an ideal of X.

Note that 〈S∗
R〉 is the least ideal of X , containing S∗

R, the following holds.

Corollary 2.2. A BCI-algebra X is normal if and only if S∗
R = 〈S∗

R〉 for all positive subset
S of X.

If X is a p-semisimple BCI-algebra, then 0 is the only positive element of X . It is evident
that {0}∗R = X and X is an ideal of itself. We have then had the next assertion.
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Proposition 2.3. Every p-semisimple BCI-algebra is normal.

A nonzero BCI-algebra X is called J-semisimple if X contains at least a maximal ideal
and the intersection of the whole maximal ideals of X is equal to {0}. If X = {0}, we
provide that it is J-semisimple (see [10]). It has been known that if X is J-semisimple, the
right stabilizer of any positive element of X is a closed ideal of X (see [10, Theorem 13]).
Thus this assertion can be rewritten as follows.

Theorem 2.4. Every J-semisimple BCI-algebra is normal.

Proposition 2.5. A BCI-algebra X is normal if and only if every subalgebra Y of X is
normal.

Proof. Since X is a subalgebra of itself, the sufficiency is naturally true, and we only need
to show the necessity. For any positive element a in the subalgebra Y of X , we denote
({a}∗R)Y for the right stabilizer in Y and ({a}∗R)X for that in X , namely,

({a}∗R)Y = {x ∈ Y | x ∗ a = x} and ({a}∗R)X = {x ∈ X | x ∗ a = x}.
Obviously, a is also a positive element of X . By the normality of X , ({a}∗R)X is an ideal of
X . Then ({a}∗R)X ∩ Y is an ideal of Y . It is obvious that ({a}∗R)Y = ({a}∗R)X ∩ Y . Hence
({a}∗R)Y is an ideal of Y , proving Y is normal.

Theorem 2.6. If X is a normal BCI-algebra, then the p-semisimple part P of X is an
ideal of X and X = B ⊕ P where B is the BCK-part of X.

Proof. Put x, y ∈ X with x, y ∗ x ∈ P and let a ∈ P be the minimal element satisfying
a ≤ y. Since P is a subalgebra of X , we have (y ∗x) ∗ a ∈ P , i.e., (y ∗ a) ∗ x ∈ P. Also, since
y ∗ a is a positive element of X , Proposition 1.2(2) gives P ⊆ {y ∗ a}∗R. Then x ∈ {y ∗ a}∗R
and (y ∗ a) ∗ x ∈ {y ∗ a}∗R. Moreover, by the normality of X , {y ∗ a}∗R is an ideal of X .
Hence y ∗ a ∈ {y ∗ a}∗R. ¿From this we have

y ∗ a = (y ∗ a) ∗ (y ∗ a) = 0.

Thus y = a ∈ P by a being a minimal element of X . Therefore P is an ideal of X . Finally,
by Proposition 0.3, X = B ⊕ P .

Corollary 2.7. If X is a J-semisimple BCI-algebra, then the p-semisimple part P of X is
an ideal of X and X = B ⊕ P in which B is the BCK-part of X.

Theorem 2.8. Suppose that A1 and A2 are two closed ideals of a BCI-algebra X such that
X = A1 ⊕A2. Then X is normal if and only if A1 and A2 are normal subalgebras of X.

Proof. As any closed ideal of X is a subalgebra of X , by Proposition 2.5, the necessity
holds.

Conversely, assume that A1 and A2 are two normal subalgebras of X . For any positive
element a ∈ X , let a1 be the component of a in A1 and a2 of a in A2. By Proposition
0.2(1), 0 ∗ a1 is the component of 0 ∗ a in A1. Since 0 ∗ a = 0 and the component of 0 in
A1 is 0 itself, by the uniqueness of components, we have 0 ∗ a1 = 0. Thus a1 is a positive
element of X and of A1. Similarly, a2 is a positive element of X and of A2. Denote

I1 = {x ∈ A1 | x ∗ a1 = x} and I2 = {x ∈ A2 | x ∗ a2 = x}.
Obviously, I1 is the right stabilizer of {a1} in A1, and I2 of {a2} in A2. Since A1 is normal,
I1 is an ideal of A1. By the transitivity of ideals, it is also an ideal of X . Likewise, I2 is an
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ideal of A2 and of X . Denote I for the generated ideal 〈I1 ∪ I2〉 of X . It is easy to verify
from Proposition 1.2(2) that I is a closed ideal of X , thus it is a subalgebra of X . Note
that

I1 ∩ I2 ⊆ A1 ∩ A2 = {0}.
We have the representation:

(2.1) I = I1 ⊕ I2.

Now, in order to show the right stabilizer {a}∗R of {a} in X is an ideal of X , we turn to
prove {a}∗R = I. For any x ∈ {a}∗R, if x1 is the component of x in A1 and x2 of x in A2, by
Proposition 0.1, we have x ∗ x1 = x2. Also, by Proposition 0.2(1), the component of x ∗ a
in A1 is x1 ∗ a1. Since x ∗ a = x, the uniqueness of components implies x1 ∗ a1 = x1, then
x1 ∈ I1. Similary, x2 ∈ I2. Note that x ∗ x1 = x2. It yields x ∈ 〈I1 ∪ I2〉, that is, x ∈ I, in
other words, {a}∗R ⊆ I. On the other hand, for any x ∈ I, by (2.1), we are able to assume
that x1 is the component of x in I1 and x2 of x in I2, then x ∗ x1 = x2 and x ∗ x2 = x1 by
Proposition 0.1. It is obvious that x1 ∈ A1 and x2 ∈ A2. Applying Proposition 0.1 to the
representation X = A1 ⊕A2, we see that x1 is just the component of x in A1 and x2 of x
in A2. Hence the component of x ∗ a in A1 is x1 ∗ a1. Since x1 ∈ I1, we have x1 ∗ a1 = x1.
Therefore x ∗ a and x have the same components in A1. Likewise, their components in A2

are the same. By Proposition 0.2(2), x∗a = x, that is, x ∈ {a}∗R, in other words, I ⊆ {a}∗R.
We have then shown that {a}∗R = I. Now, it is evident that {a}∗R is an ideal of X . Therefore
X is normal.

Putting Proposition 2.3, Theorems 2.6 and 2.8 together, we obtain the next corollary.

Corollary 2.9. A BCI-algebra X is normal if and only if the BCK-part B of X is a normal
BCK-algebra and the p-semisimple part P of X is an ideal of X.

Using Proposition 0.4, the last corollary can be rewritten as follows.

Corollary 2.10. A BCI-algebra X is normal if and only if it satisfies the following:
(1) x ∗ y = x implies y ∗ x = y for any positive elements x and y of X;
(2) the p-semisimple part P of X is an ideal of X.

Before concluding this section let’s consider the normality of weakly implicative BCI-
algebras. A BCI-algebra X is called weakly implicative if

(x ∗ (y ∗ x)) ∗ (0 ∗ (y ∗ x)) = x

for all x, y ∈ X (see [1]).

Theorem 2.11. Every weakly implicative BCI-algebra X is normal.

Proof. Assume that B and P are the BCK-part and p-semisimple part of X . By the weakly
implicativity of X , we have x ∗ (y ∗ x) = x for any x, y ∈ B, then B is an implicative BCK-
algebra, thus it is a commutative BCK-algebra. Applying the commutativity of B, we
obtain that x ∗ y = x implies y ∗ x = y for any x, y ∈ B.

Next, it is clear that 0 ∈ P . If x, y ∗ x ∈ P , letting a ∈ P such that a ≤ y, since P is a
subalgebra of X , we have (y ∗ x) ∗ a ∈ P , i.e., (y ∗ a) ∗ x ∈ P . Obviously, 0 ≤ y ∗ a. Denote
u = y ∗ a, then 0 ≤ u and u ∗ x ∈ P . By 0 ≤ u, we obtain 0 ∗ x ≤ u ∗ x and x ∗ u ≤ x, then
0 ∗ x = u ∗ x and x ∗ u = x by u ∗ x, x ∈ P (i.e., u ∗ x and x are minimal elements of X).
Now, by the weakly implicativity of X , we derive

y ∗ a = u = (u ∗ (x ∗ u)) ∗ (0 ∗ (x ∗ u)) = (u ∗ x) ∗ (0 ∗ x) = (0 ∗ x) ∗ (0 ∗ x) = 0.
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Hence y = a by a being a minimal element of X . Therefore y ∈ P , proving P is an ideal of
X . Now, by Corollary 2.10, X is normal.

Corollary 2.12. If X is a weakly implicative BCI-algebra, then the p-semisimple part P
of X is an ideal of X and X can be expressed as the direct sum X = B ⊕ P in which B is
the BCK-part of X.

We remark that Corollary 2.12 was actually obtained by S.M. Wei and J. Meng who
considered it from the way of KL-products (for detail, see [9, §4.2]).

Corollary 2.13. A normal BCI-algebra is weakly implicative if and only if the BCK-part
of it is an implicative BCK-algebra.

§3. Normal ideals

Normal ideals were considered by C.S. Hoo in [4] who calls them commutative ideals.

Definition 3.1. An ideal A of a BCI-algebra X is called normal if x ∗ (x ∗ y) ∈ A implies
y ∗ (y ∗ x) ∈ A for any x, y ∈ X .

Every BCI-algebra X contains at least a normal ideal, e.g., X itself is just one.

Example 3.1. Let X be the first algebra in Example 2.1, then there are altogether four
ideals of it, which are X , {0, a}, {0, 1} and {0}. Routine verification gives that the first
two ideals are normal, but the others are not.

It is worth attending that if X is a proper BCI-algebra, a positive ideal of X is never
normal.

Proposition 3.1. Let A be a normal ideal of a BCI-algebra X. Then A is positive if and
only if X is a BCK-algebra.

Proof. The sufficiency is evident and we only need to show the necessity. Assume that A
is a positive ideal of X , then 0 is the only minimal element of X , contained in A. For any
x ∈ X , since x ∗ (x ∗ 0) = 0 ∈ A, by the normality of A, we have 0 ∗ (0 ∗ x) ∈ A. Note that
0 ∗ (0 ∗ x) is a minimal element of X , it follows 0 ∗ (0 ∗ x) = 0. Hence (0.4) implies

0 ∗ x = 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ 0 = 0.

Therefore X is a BCK-algebra.

For convenience we denote x ∗ yn = (· · · ((x ∗ y) ∗ y) ∗ · · · ) ∗ y in which y occurs n times.

Lemma 3.2. If A is an ideal of a BCI-algebra X, then x∗(x∗y) ∈ A implies x∗(x∗yn) ∈ A
for any x, y ∈ X and any natural number n (refer to [5, Lemma 2.1]).

Proposition 3.3. Suppose that M is a maximal ideal of a BCI-algebra X. If M contains
the whole minimal elements of X, then M is a normal ideal of X.

Proof. Assume that x ∗ (x ∗ y) ∈ M . If y ∈ M , since 0 ∗ (y ∗ x) is a minimal element of
X and (y ∗ (y ∗ x)) ∗ y = 0 ∗ (y ∗ x), our hypotheses imply y ∗ (y ∗ x) ∈ M . If y /∈ M , by
the maximality of M , there is a natural number n such that x ∗ yn ∈ M . Also, by Lemma
3.2, x ∗ (x ∗ yn) ∈ M . Hence x ∈ M . Note that y ∗ (y ∗ x) ≤ x, it yields y ∗ (y ∗ x) ∈ M .
Therefore M is normal.

Proposition 3.4. Let A be an ideal of a BCI-algebra X. Then A is normal if and only if
x ∗ (x ∗ y) ∈ A implies y ∗ (y ∗ xn) ∈ A for any x, y ∈ X and any natural number n.
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Proof. Assume that A is normal and x, y ∈ X . If x ∗ (x ∗ y) ∈ A, then y ∗ (y ∗ x) ∈ A. By
Lemma 3.2, y ∗ (y ∗ xn) ∈ A for any natural number n.

Conversely, putting n = 1, our assumption of sufficiency gives that x∗ (x∗ y) ∈ A implies
y ∗ (y ∗ x) ∈ A for any x, y ∈ X . Hence A is normal.

Proposition 3.5. Let A be a normal ideal of a BCI-algebra X. Then A is closed, contain-
ing the entire minimal elements of X (see [4, Proposition 2.16]).

Corollary 3.6. If X is a p-semisimple BCI-algebra, then the normal ideal of X can only
be X itself.

Theorem 3.7. An ideal A of a BCI-algebra X is normal if and only if the quotient algebra
X/A is a normal BCK-algebra (see [4, Theorem 2.17]).

Theorem 3.8. A BCI-algebra X is normal if and only if the p-semisimple part P of X is
a normal ideal of X.

Proof. Assume that X is normal. By Theorem 2.6, P is an ideal of X and X = B ⊕ P in
which B is the BCK-part of X . Then B is a normal BCK-algebra by Proposition 2.5. For
any x, x′ ∈ X , letting b, b′ be respectively the components of x and x′ in B, by Proposition
0.2(1), b ∗ (b ∗ b′) is the component of x ∗ (x ∗ x′) in B. Now, if x ∗ (x ∗ x′) ∈ P , it is easily
seen from Proposition 0.1 that 0 is the component of x ∗ (x ∗ x′) in B. By the uniqueness
of components, we obtain b ∗ (b ∗ b′) = 0. So, Proposition 0.5 gives b′ ∗ (b′ ∗ b) = 0. Thus
the component of x′ ∗ (x′ ∗ x) in B is 0. Hence x′ ∗ (x′ ∗ x) ∈ P . Therefore P is normal.

Conversely, since P is an ideal of X , by Proposition 0.3, X = B⊕P . Using the uniqueness
of components, we can define the mapping f from X to B sending x to the component of
x in B. Obviously, f is a surjection. By the substitution property of congruences, f is
a homomorphism. It is easy to verify that the kernel of f is P . So, the first isomorphic
theorem (see [3, Theorem 3.2]) gives that X/P is isomorphic to B. Also, since P is a
normal ideal of X , by Theorem 3.7, X/P is a normal BCK-algebra. Thus B is a normal
BCK-algebra too. Now, by Corollary 2.9, X is normal.

Because the p-semisimple part of a BCK-algebra is {0}, Proposition 0.5 becomes a direct
corollary of Theorem 3.8.

Corollary 3.9. A BCK-algebra X is normal if and only if the zero ideal {0} of X is
normal, or if and only if x ∗ (x ∗ y) = 0 implies y ∗ (y ∗ x) = 0 for any x, y ∈ X.

Note that every normal ideal of X contains all minimal elements of X , we obtain

Corollary 3.10. A BCI-algebra X is normal if and only if the intersection of all normal
ideals of X is exactly the p-semisimple part P of X.

Combining Corollaries 2.9 with 3.9, we also obtain

Corollary 3.11. A BCI-algebra X is normal if and only if the zero ideal {0} of X is a
normal ideal of the BCK-part B of X and the p-semisimple part P of X is an ideal of X.

Finally, we remark that the following assertion is not true: if X is a BCI-algebra which is
not p-semisimple and if A is a nonzero normal ideal of X , then A∩B �= {0} where B is the
BCK-part of X (refer to [4, Proposition 2.28]). For instance, the algebra X in Example 3.1
is not p-semisimple and {0, a} is a nonzero normal ideal of it, but {0, a} ∩ B = {0} where
B = {0, 1}. Following the ideas of this assertion, we give the next assertion.

Proposition 3.12. A BCI-algebra X is not normal if and only if A∩B �= {0} where A is
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an arbitrary normal ideal of X and B is the BCK-part of X.

Proof. Assume that X is not a normal BCI-algebra and A is a normal ideal of X . By
Theorem 3.8, A �= P where P is the p-semisimple part of X , then P is properly contained
in A by Proposition 3.5. Putting x ∈ A − P and letting a be a minimal element of X such
that a ≤ x, we have x ∗ a �= 0 and x ∗ a ∈ B. Also, since A is a closed ideal of X and
a ∈ P ⊂ A, we obtain x ∗ a ∈ A. Hence 0 �= x ∗ a ∈ A ∩ B and A ∩ B �= {0}.

Conversely, if it is false, then X is normal. By Theorem 3.8, P is a normal ideal of X .
However, P ∩ B = {0}, a contradiction with our assumption of sufficiency.
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