NORMAL BCI-ALGEBRAS

Yisheng Huang

Received May 23, 2003

Abstract

In this paper we generalize the following five notions from BCK-algebras into BCI-algebras: stabilizer, left and right stabilizers, normal BCK-algebra and normal ideal, and investigate some basic properties of them.

§0. Introduction and preliminaries

In [6], by using stabilizers and left and right stabilizers in BCK-algebras, we introduced and investigated normal BCK-algebras. In [5] we considered normal ideals in BCK-algebras (early in 1991, Hoo in [4] had actually got involved in the consideration of them in BCIalgebras). In this paper we will generalize each of these notions from BCK-algebras into BCI-algebras, and investigate a number of basic properties of it.

Throughout this paper, for the symbols and terminologies concerned, we refer the reader to [2], [7], [8] and [9], and we will use some familiar properties without explanation.

Recall that given a BCI-algebra X, the BCI-ordering \leq on X is defined by which $x \leq y$ if and only if $x * y=0$ for any $x, y \in X$. A positive element x of X means $x \geq 0$ (i.e., $0 * x=0$), and the set of all positive elements of X is just the BCK-part B of X; a minimal element x of X means that $y \leq x$ (i.e., $y * x=0$) implies $x=y$ for any $y \in X$, and the set of all minimal elements of X is just the p-semisimple part P of X. It is known that for any $x, y \in X$, if $x \leq y$, then $y * x$ is a positive element of X, and that for any $x \in X$ there is one and only one minimal element a of X, satisfying $a \leq x$ (refer to [9, §1.3]). An ideal A of X is a subset of X such that (i) $0 \in A$ and (ii) $x, y * x \in A$ imply $y \in A$ for any $x, y \in X$. A subalgebra Y of X is a nonempty subset of X such that Y is closed under the BCI-operation $*$ on X. If A is both an ideal and a subalgebra of X, we call it a closed ideal of X. An ideal A of X is closed if and only if $0 * x \in A$ for any $x \in A$. The BCK-part B of X is a closed ideal of X and the p-semisimple part P of X is a subalgebra of X. The generated ideal $\langle S\rangle$ of X by a subset S of X can be expressed as

$$
\langle S\rangle=\{0\} \bigcup\left\{\begin{array}{l|l}
x \in X & \begin{array}{c}
\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0 \\
\text { for some } a_{1}, a_{2}, \ldots, a_{n} \in S
\end{array}
\end{array}\right\}
$$

If $S=\{a\}$, we denote $\langle a\rangle$ for $\langle\{a\}\rangle$ in brevity. In the following let's write down several results: for any $x, y, z \in X$,
(0.1) $(x * y) *(x * z) \leq z * y$;
(0.2) $(x * y) *(z * y) \leq x * z$;
(0.3) $0 *(x * y)=(0 * x) *(0 * y)$;
(0.4) $x * y=x *(x *(x * y))$;
(0.5) $0 * x$ is a minimal element of X;
(0.6) $0 *(0 * x)=x$ whenever x is a minimal element of X;
(0.7) $x * y \leq x$, i.e., $(x * y) * x=0$, whenever y is a positive element of X.

2000 Mathematics Subject Classification. 06F35.
Key words and phrases. stabilizer, left and right stabilizers, normal BCI-algebra, normal ideal.

Every ideal A of X determines a congruence \equiv on X in the sense that $x \equiv y(\bmod A)$ if and only if $x * y \in A$ and $y * x \in A$ for any $x, y \in X$. The symbol X / A will be used instead of the quotient algebra X / \equiv, which is still a BCI-algebra.

If A and I are ideals of X such that $X=\langle A \cup I\rangle$ and $A \cap I=\{0\}$, then X is called the subdirect sum of A and I, denoted by $X=A \bar{\oplus} I$. It is known that if A, I are closed ideals of X and if $X=A \bar{\oplus} I$, then for any $x \in X$, there are uniquely $a \in A$ and $b \in I$ such that $x \equiv a(\bmod I)$ and $x \equiv b(\bmod A)($ see $[2$, Theorem 2.1]). The element a is said the component of x in A, and b of x in I.

Proposition 0.1. Let A, I be two closed ideals of a BCI-algebra X such that $X=A \bar{\oplus} I$ and let $a \in A$ and $b \in I$. Then a is the component of x in A and b of x in I if and only if $x * a=b$ and $x * b=a$.

Proof. The necessity is a special case of [2, Proposition 2.6], and we only need to show the sufficiency. In fact, since I is closed, our supposition of sufficiency means that $x * a=b \in I$ and $a * x=(x * b) * x=0 * b \in I$, then $x \equiv a(\bmod I)$, and so a is the component of x in A. Similarly, b is the component of x in I.

Proposition 0.2. Let A, I be two ideals of a BCI-algebra X such that $X=A \bar{\oplus} I$ and let x, x^{\prime} be any elements in X.
(1) If a and a^{\prime} are respectively the components of x and x^{\prime} in A, then $a * a^{\prime}$ is the component of $x * x^{\prime}$ in A.
(2) If x and x^{\prime} have the same components in both A and I, then $x=x^{\prime}$.

Proof. (1) It is got by the substitution property of congruences.
(2) Since $X=A \oplus I$, we have $A \cap I=\{0\}$. If x and x^{\prime} have the same components in A, by (1), 0 is the component of $x * x^{\prime}$ in A, then $x * x^{\prime} \in A$. Similarly, $x * x^{\prime} \in I$. Hence $x * x^{\prime} \in A \cap I=\{0\}$ and $x * x^{\prime}=0$. Likewise, $x^{\prime} * x=0$. Therefore $x=x^{\prime}$.

Assume that $X=A \bar{\oplus} I$. If for any $a \in A$ and $b \in I$, there exists $x \in X$ such that a is the component of x in A and b of x in I, we say X is the direct sum of A and I, denoted by $X=A \oplus I$.

Proposition 0.3. If the p-semisimple part P of a BCI-algebra X is an ideal of X, then $X=B \oplus P$ where B is the $B C K$-part of X.

Proof. For any $x \in X$, letting a be a minimal element of X, satisfying $a \leq x$, we have $a \in P$ and $x * a \in B$, then $x \in\langle B \cup P\rangle$, and so $X=\langle B \cup P\rangle$. It is obvious that $B \cap P=\{0\}$. Thus $X=B \bar{\oplus} P$. Also, for any $b \in B$ and $p \in P$, putting $x=b *(0 * p)$, by (0.5), we have

$$
\begin{aligned}
& x * b=(b *(0 * p)) * b=0 *(0 * p) \in P \\
& b * x=b *(b *(0 * p)) \leq 0 * p \in P
\end{aligned}
$$

Then $x \equiv b(\bmod P)$. On the other hand, by (0.3) and (0.4), we obtain

$$
0 * x=0 *(b *(0 * p))=(0 * b) *(0 *(0 * p))=0 *(0 *(0 * p))=0 * p
$$

Then (0.2) and (0.6) together give

$$
\begin{aligned}
& x * p=(b *(0 * p)) * p=(b * p) *(0 * p) \leq b \in B \\
& p * x=(0 *(0 * p)) * x=(0 * x) *(0 * p)=(0 * p) *(0 * p)=0 \in B
\end{aligned}
$$

So, $x \equiv p(\bmod B)$. Hence $X=B \oplus P$.

A BCK-algebra X is called normal if for any $a \in X$, the right stabilizer $\{a\}_{R}^{*}$, i.e., the set $\{x \in X \mid x * a=x\}$, is an ideal of X (see [6]).

Proposition 0.4. A BCK-algebra X is normal if and only if $x * y=x$ implies $y * x=y$ for any $x, y \in X$ (see [6, Theorem 2]).

An ideal A of a BCK-algebra X is called normal if $x *(x * y) \in A$ implies $y *(y * x) \in A$ for any $x, y \in X$ (see [5]).

Proposition 0.5. A BCK-algebra is normal if and only if the zero ideal $\{0\}$ of it is normal (see [5, Theorem 2.3]).

§1. Stabilizers

Definition 1.1. Given a nonempty subset S of a BCI-algebra X, the sets

$$
\begin{aligned}
& S_{L}^{*}=\{x \in X \mid a * x=a \text { for any } a \in S\} \\
& S_{R}^{*}=\{x \in X \mid x * a=x \text { for any } a \in S\}
\end{aligned}
$$

are called the left and right stabilizers of S, respectively. And the set

$$
S^{*}=\{x \in X \mid a * x=a \text { and } x * a=x \text { for any } a \in S\}
$$

i.e., $S^{*}=S_{L}^{*} \cap S_{R}^{*}$, is called the stabilizer of S.

These are the natural generalization of the corresponding notions in BCK-algebras, thus there are many similar properties, but their proofs need to be made suitable change. It is obvious that if S, T are nonempty subsets of X, then
(1.2) $\quad(S \cup T)_{L}^{*}=S_{L}^{*} \cap T_{L}^{*}, \quad(S \cup T)_{R}^{*}=S_{R}^{*} \cap T_{R}^{*} \quad$ and $\quad(S \cup T)^{*}=S^{*} \cap T^{*}$;
(1.3) if $S \subseteq T$, then $T_{L}^{*} \subseteq S_{L}^{*}, \quad T_{R}^{*} \subseteq S_{R}^{*} \quad$ and $\quad T^{*} \subseteq S^{*}$.

For convenience we call S a positive subset of a BCI-algebra X if S is a nonempty subset of X and every element in X is positive. Similarly, we have the notions of positive ideals and positive subalgebras of X.

Proposition 1.1. The left stabilizer S_{L}^{*} of any nonempty subset S of a BCI-algebra X is a positive ideal of X, thus it is a closed ideal of X.

Proof. Clearly, $0 \in S_{L}^{*}$, then $S_{L}^{*} \neq \emptyset$. For any $x \in S_{L}^{*}$ and any $a \in S$, since

$$
0 * x=(a * x) * a=a * a=0
$$

S_{L}^{*} is a positive subset of X. Also, if $x, y * x \in S_{L}^{*}$, then

$$
a=a *(y * x)=(a * x) *(y * x)
$$

So, (0.2) implies

$$
a *(a * y)=((a * x) *(y * x)) *(a * y) \leq(a * y) *(a * y)=0
$$

On the other hand, note that S_{L}^{*} is a positive subset of X, by (0.3), the following holds:

$$
(a * y) * a=0 * y=(0 * y) * 0=(0 * y) *(0 * x)=0 *(y * x)=0
$$

Hence $a * y=a$ and $y \in S_{L}^{*}$. Therefore S_{L}^{*} is a positive ideal of X. Finally, it is obvious from S_{L}^{*} being positive that S_{L}^{*} is a closed ideal of X.

It is a pity that a right stabilizer or a stabilizer may be empty. But we have the following results.

Proposition 1.2. Let S be a nonempty subset of a BCI-algebra X. Then
(1) $S_{R}^{*}\left(\right.$ or $\left.S^{*}\right)$ is not empty if and only if S is a positive subset of X;
(2) if S is a positive subset of X, then S_{R}^{*} is a subalgebra of X, containing the whole minimal elements of X;
(3) if S is a positive subset of X, then S^{*} is a positive subalgebra of X.

Proof. (1) If S_{R}^{*} or S^{*} is not empty, putting $x \in S_{R}^{*}$ (or $x \in S^{*}$), for any $a \in S$, we have

$$
0 * a=(x * a) * x=x * x=0
$$

that is, a is a positive element of X. Hence S is a positive subset of X.
Conversely, if S is positive, then $0 * a=0$ for any $a \in S$. So, $0 \in S_{R}^{*}$ and $S_{R}^{*} \neq \emptyset$. Also, clearly $0 \in S_{L}^{*}$, then $0 \in S_{L}^{*} \cap S_{R}^{*}$, that is, $0 \in S^{*}$, and so $S^{*} \neq \emptyset$.
(2) If S is positive, by (1), $S_{R}^{*} \neq \emptyset$. Putting $x, y \in S_{R}^{*}$, for any $a \in S$, we have

$$
(x * y) * a=(x * a) * y=x * y
$$

then $x * y \in S_{R}^{*}$. Hence S_{R}^{*} is a subalgebra of X. Also, since S is positive, by (0.7), $x * a \leq x$ for all $x \in X$. Now, if x is minimal, then $x * a=x$, and so $x \in S_{R}^{*}$. Hence S_{R}^{*} contains the whole minimal elements of X.
(3) Since $S^{*}=S_{L}^{*} \cap S_{R}^{*}$, Proposition 1.1 together with (2) gives that S^{*} is a positive subalgebra of X.

However, even if S is a positive subset of X, S_{R}^{*} and S^{*} are generally not ideals of X.
Example 1.1. Let $X=\{0,1,2,3, a\}$ and define a binary operation $*$ on X by

$*$	0	1	2	3	a
0	0	0	0	0	a
1	1	0	0	0	a
2	2	2	0	2	a
3	3	3	3	0	a
a	a	a	a	a	0

Then $(X ; *, 0)$ is a BCI-algebra (refer to [9, Theorem 5.1.1]). Obviously, $\{2\}_{R}^{*}=\{0,3, a\}$ and $\{2\}^{*}=\{0,3\}$. Since $3 \in\{2\}_{R}^{*}$ and $1 * 3=0 \in\{2\}_{R}^{*}$, but $1 \notin\{2\}_{R}^{*}, \quad\{2\}_{R}^{*}$ is not an ideal of X. Similarly, $\{2\}^{*}$ is not either.

Proposition 1.3. Let S be a nonempty subset of a BCI-algebra X.
(1) If $0 \in S$, then $S \cap S_{L}^{*}=\{0\}$, otherwise, $S \cap S_{L}=\emptyset$.
(2) $S \subseteq\left(S_{L}^{*}\right)_{R}^{*}$.
(3) $S_{L}^{*}=\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*}$.

Proof. (1) If $0 \in S$, since S_{L}^{*} is an ideal of X, we have $S \cap S_{L}^{*} \neq \emptyset$. For any $x \in S \cap S_{L}^{*}$, by $x=x * x=0$, we obtain $S \cap S_{L}^{*}=\{0\}$.

Next, if it is false, then $S \cap S_{L}^{*} \neq \emptyset$. By the proof we just now give, $S \cap S_{L}^{*}=\{0\}$, then $0 \in S$, a contradiction with $0 \notin S$. Hence $S \cap S_{L}^{*}=\emptyset$.
(2) By virtue of Proposition 1.1, $S_{L}^{*} \neq \emptyset$. If $a \in S$, then $a * x=a$ for any $x \in S_{L}^{*}$, and so $a \in\left(S_{L}^{*}\right)_{R}^{*}$, and hence $S \subseteq\left(S_{L}^{*}\right)_{R}^{*}$.
(3) By (2), $\left(S_{L}^{*}\right)_{R}^{*}$ is non-vacuous, then $\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*}$ is well-defined. Using (2) and (1.3), we obtain $\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*} \subseteq S_{L}^{*}$. On the other hand, if $a \in S_{L}^{*}$, then $a * x=a$ for any $x \in\left(S_{L}^{*}\right)_{R}^{*}$. Hence $a \in\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*}$ and $S_{L}^{*} \subseteq\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*}$. Therefore $S_{L}^{*}=\left(\left(S_{L}^{*}\right)_{R}^{*}\right)_{L}^{*}$.

Proposition 1.4. Let S be a positive subset of a BCI-algebra X.
(1) If $0 \in S$, then $S \cap S_{R}^{*}=S \cap S^{*}=\{0\}$, otherwise, $S \cap S_{R}^{*}=S \cap S^{*}=\emptyset$.
(2) $S \subseteq\left(S_{R}^{*}\right)_{L}^{*}$ and $S \subseteq S^{* *}$ where $S^{* *}=\left(S^{*}\right)^{*}$.
(3) $S_{R}^{*}=\left(\left(S_{R}^{*}\right)_{L}^{*}\right)_{R}^{*}$ and $S^{*}=S^{* * *}$.

The proof is similar to Proposition 1.3 and omitted.
Proposition 1.5. Let S be a positive subset of a BCI-algebra X. Then $S_{R}^{*}=\langle S\rangle_{R}^{*}$ and $S_{R}^{*} \cap\langle S\rangle=\{0\}$ where $\langle S\rangle$ is the generated ideal of X by S.

Proof. By (1.3), $\langle S\rangle_{R}^{*} \subseteq S_{R}^{*}$. Letting $x \in S_{R}^{*}$, we have

$$
\begin{equation*}
x * a=x \quad \text { for any } a \in S \tag{1.4}
\end{equation*}
$$

For all $b \in\langle S\rangle$, if $b=0$, of course, $x * b=x$; if $b \neq 0$, there are $a_{1}, a_{2}, \ldots, a_{n} \in S$ such that

$$
\begin{equation*}
\left(\cdots\left(\left(b * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0 \tag{1.5}
\end{equation*}
$$

Repeatedly applying (1.4), the following holds:

$$
\begin{equation*}
x=\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n} . \tag{1.6}
\end{equation*}
$$

Putting (1.5) and (1.6) together, we obtain

$$
\left.\left.x=\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}\right) *\left(\cdots\left(\left(b * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}\right)
$$

Now, using (0.2) step by step, it follows

$$
\left.\left.x \leq\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n-1}\right) *\left(\cdots\left(\left(b * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n-1}\right) \leq \cdots \leq x * b
$$

that is, $x \leq x * b$. On the other hand, it is easily seen from (1.5) and (0.3) that b is a positive element of X, then $x * b \leq x$ by (0.7). So, $x * b=x$. Thus $x \in\langle S\rangle_{R}^{*}$. Hence $S_{R}^{*} \subseteq\langle S\rangle_{R}^{*}$. Therefore $S_{R}^{*}=\langle S\rangle_{R}^{*}$. Also, by Proposition 1.4(1), $S_{R}^{*} \cap\langle S\rangle=\langle S\rangle_{R}^{*} \cap\langle S\rangle=\{0\}$.

It is interesting that if S is a positive ideal of X, we have some unusual properties, including that S^{*} must be an ideal of X.

Theorem 1.6. Let A be a positive ideal of a BCI-algebra X. Then $A^{*}=A_{L}^{*} \subseteq A_{R}^{*}$, thus A^{*} is a positive ideal of X. Moreover, if A_{R}^{*} is an ideal of X, then $A^{*}=A_{L}^{*}=A_{R}^{*} \cap B$ where B is the BCK-part of X.

Proof. For the first half part, if $A_{L}^{*} \subseteq A_{R}^{*}$, then $A^{*}=A_{L}^{*} \cap A_{R}^{*}=A_{L}^{*}$ and A^{*} is a positive ideal of X by A_{L}^{*} being a positive ideal of X. It remains to show $A_{L}^{*} \subseteq A_{R}^{*}$. Put $x \in A_{L}^{*}$. For any $a \in A$, by $x *(x * a) \leq a$, we obtain $x *(x * a) \in A$, then

$$
(x *(x * a)) * x=x *(x * a)
$$

As A and A_{L}^{*} are positive ideals of X, a and x are positive elements of X, then

$$
(x *(x * a)) * x=0
$$

Comparison gives $x *(x * a)=0$. Also, by (0.7), the equality $(x * a) * x=0$ holds. Hence $x * a=x$ and $x \in A_{R}^{*}$. Therefore $A_{L}^{*} \subseteq A_{R}^{*}$.

For the second half part, because A_{L}^{*} is a positive ideal of X (i.e., $A_{L}^{*} \subseteq B$) and because $A^{*}=A_{L}^{*} \subseteq A_{R}^{*}$, it suffices to show $A_{R}^{*} \cap B \subseteq A_{L}^{*}$. Put $x \in A_{R}^{*} \cap B$. For any $a \in A$, since x and a are positive elements of X, we obtain $a *(a * x) \leq a$, then $a *(a * x) \in A$. As A_{R}^{*} is an ideal of X and $a *(a * x) \leq x$, we derive $a *(a * x) \in A_{R}^{*}$. So, $a *(a * x) \in A \cap A_{R}^{*}$. Note that $A \cap A_{R}^{*}=\{0\}$. It follows $a *(a * x)=0$. Obviously, $(a * x) * a=0$. Thus $a * x=a$ and $x \in A_{L}^{*}$. Hence $A_{R}^{*} \cap B \subseteq A_{L}^{*}$.

Theorem 1.7. Let X be a BCI-algebra, A a positive ideal of X, and I a closed ideal of X. If $A \cap I=\{0\}$, then $I \subseteq A_{R}^{*}$. Further, if $X=A \bar{\oplus} I$, then $I=A_{R}^{*}$.

Proof. Assume that $A \cap I=\{0\}$. Putting $x \in I$, for any $a \in A$, since A is an ideal of X, by $x *(x * a) \leq a$, we obtain $x *(x * a) \in A$. Because A is positive, we have

$$
(x *(x * a)) * x=0 *(x * a)=(0 * x) *(0 * a)=0 * x
$$

Then the fact that I is a closed ideal of X implies $x *(x * a) \in I$. Hence

$$
x *(x * a) \in A \cap I=\{0\}
$$

Thus $x *(x * a)=0$. Also, by (0.7), $(x * a) * x=0$. Therefore $x * a=x$ and $x \in A_{R}^{*}$. We have shown that $I \subseteq A_{R}^{*}$.

Further, if $X=A \bar{\oplus} I$, then $A \cap I=\{0\}$. By the above proof, $I \subseteq A_{R}^{*}$. Also, for any $x \in A_{R}^{*}$, letting a be the component of x in A, we have $a \in A$ and $x * a \in I$. Note that $x * a=x$. It follows $x=x * a \in I$. Hence $A_{R}^{*} \subseteq I$. Therefore $I=A_{R}^{*}$.

§2. Normal BCI-algebras

Definition 2.1. A BCI-algebra X is called normal if for any positive element a of X, the right stabilizer $\{a\}_{R}^{*}$ is an ideal of X.

It is evident that any normal BCK-algebra is a normal BCI-algebra.
Example 2.1. Let $X=\{0,1, a, b\}$ and define two binary operations $*$ and $*^{\prime}$ on X by

$*$	0	1	a	b
0	0	0	a	a
1	1	0	b	a
a	a	a	0	0
b	b	a	1	0

$*^{\prime}$	0	1	a	b
0	0	0	a	a
1	1	0	a	a
a	a	a	0	0
b	b	a	1	0

Then $(X ; *, 0)$ and $\left(X ; *^{\prime}, 0\right)$ are BCI-algebras (see [9, page 276]). It is easy to verify that the former is normal, but the latter is not.

Using (1.1) we directly have the next result.
Proposition 2.1. A BCI-algebra X is normal if and only if the right stabilizer S_{R}^{*} of any positive subset S of X is an ideal of X.

Note that $\left\langle S_{R}^{*}\right\rangle$ is the least ideal of X, containing S_{R}^{*}, the following holds.
Corollary 2.2. A BCI-algebra X is normal if and only if $S_{R}^{*}=\left\langle S_{R}^{*}\right\rangle$ for all positive subset S of X.

If X is a p-semisimple BCI-algebra, then 0 is the only positive element of X. It is evident that $\{0\}_{R}^{*}=X$ and X is an ideal of itself. We have then had the next assertion.

Proposition 2.3. Every p-semisimple BCI-algebra is normal.
A nonzero BCI-algebra X is called J-semisimple if X contains at least a maximal ideal and the intersection of the whole maximal ideals of X is equal to $\{0\}$. If $X=\{0\}$, we provide that it is J-semisimple (see [10]). It has been known that if X is J-semisimple, the right stabilizer of any positive element of X is a closed ideal of X (see [10, Theorem 13]). Thus this assertion can be rewritten as follows.

Theorem 2.4. Every J-semisimple BCI-algebra is normal.
Proposition 2.5. A BCI-algebra X is normal if and only if every subalgebra Y of X is normal.

Proof. Since X is a subalgebra of itself, the sufficiency is naturally true, and we only need to show the necessity. For any positive element a in the subalgebra Y of X, we denote $\left(\{a\}_{R}^{*}\right)_{Y}$ for the right stabilizer in Y and $\left(\{a\}_{R}^{*}\right)_{X}$ for that in X, namely,

$$
\left(\{a\}_{R}^{*}\right)_{Y}=\{x \in Y \mid x * a=x\} \quad \text { and } \quad\left(\{a\}_{R}^{*}\right)_{X}=\{x \in X \mid x * a=x\}
$$

Obviously, a is also a positive element of X. By the normality of $X,\left(\{a\}_{R}^{*}\right)_{X}$ is an ideal of X. Then $\left(\{a\}_{R}^{*}\right)_{X} \cap Y$ is an ideal of Y. It is obvious that $\left(\{a\}_{R}^{*}\right)_{Y}=\left(\{a\}_{R}^{*}\right)_{X} \cap Y$. Hence $\left(\{a\}_{R}^{*}\right)_{Y}$ is an ideal of Y, proving Y is normal.
Theorem 2.6. If X is a normal BCI-algebra, then the p-semisimple part P of X is an ideal of X and $X=B \oplus P$ where B is the BCK-part of X.
Proof. Put $x, y \in X$ with $x, y * x \in P$ and let $a \in P$ be the minimal element satisfying $a \leq y$. Since P is a subalgebra of X, we have $(y * x) * a \in P$, i.e., $(y * a) * x \in P$. Also, since $y * a$ is a positive element of X, Proposition 1.2(2) gives $P \subseteq\{y * a\}_{R}^{*}$. Then $x \in\{y * a\}_{R}^{*}$ and $(y * a) * x \in\{y * a\}_{R}^{*}$. Moreover, by the normality of $X,\{y * a\}_{R}^{*}$ is an ideal of X. Hence $y * a \in\{y * a\}_{R}^{*}$. ¿From this we have

$$
y * a=(y * a) *(y * a)=0
$$

Thus $y=a \in P$ by a being a minimal element of X. Therefore P is an ideal of X. Finally, by Proposition 0.3, $X=B \oplus P$.

Corollary 2.7. If X is a J-semisimple BCI-algebra, then the p-semisimple part P of X is an ideal of X and $X=B \oplus P$ in which B is the BCK-part of X.

Theorem 2.8. Suppose that A_{1} and A_{2} are two closed ideals of a BCI-algebra X such that $X=A_{1} \bar{\oplus} A_{2}$. Then X is normal if and only if A_{1} and A_{2} are normal subalgebras of X.

Proof. As any closed ideal of X is a subalgebra of X, by Proposition 2.5, the necessity holds.

Conversely, assume that A_{1} and A_{2} are two normal subalgebras of X. For any positive element $a \in X$, let a_{1} be the component of a in A_{1} and a_{2} of a in A_{2}. By Proposition $0.2(1), 0 * a_{1}$ is the component of $0 * a$ in A_{1}. Since $0 * a=0$ and the component of 0 in A_{1} is 0 itself, by the uniqueness of components, we have $0 * a_{1}=0$. Thus a_{1} is a positive element of X and of A_{1}. Similarly, a_{2} is a positive element of X and of A_{2}. Denote

$$
I_{1}=\left\{x \in A_{1} \mid x * a_{1}=x\right\} \text { and } I_{2}=\left\{x \in A_{2} \mid x * a_{2}=x\right\}
$$

Obviously, I_{1} is the right stabilizer of $\left\{a_{1}\right\}$ in A_{1}, and I_{2} of $\left\{a_{2}\right\}$ in A_{2}. Since A_{1} is normal, I_{1} is an ideal of A_{1}. By the transitivity of ideals, it is also an ideal of X. Likewise, I_{2} is an
ideal of A_{2} and of X. Denote I for the generated ideal $\left\langle I_{1} \cup I_{2}\right\rangle$ of X. It is easy to verify from Proposition $1.2(2)$ that I is a closed ideal of X, thus it is a subalgebra of X. Note that

$$
I_{1} \cap I_{2} \subseteq A_{1} \cap A_{2}=\{0\}
$$

We have the representation:

$$
\begin{equation*}
I=I_{1} \bar{\oplus} I_{2} \tag{2.1}
\end{equation*}
$$

Now, in order to show the right stabilizer $\{a\}_{R}^{*}$ of $\{a\}$ in X is an ideal of X, we turn to prove $\{a\}_{R}^{*}=I$. For any $x \in\{a\}_{R}^{*}$, if x_{1} is the component of x in A_{1} and x_{2} of x in A_{2}, by Proposition 0.1, we have $x * x_{1}=x_{2}$. Also, by Proposition 0.2(1), the component of $x * a$ in A_{1} is $x_{1} * a_{1}$. Since $x * a=x$, the uniqueness of components implies $x_{1} * a_{1}=x_{1}$, then $x_{1} \in I_{1}$. Similary, $x_{2} \in I_{2}$. Note that $x * x_{1}=x_{2}$. It yields $x \in\left\langle I_{1} \cup I_{2}\right\rangle$, that is, $x \in I$, in other words, $\{a\}_{R}^{*} \subseteq I$. On the other hand, for any $x \in I$, by (2.1), we are able to assume that x_{1} is the component of x in I_{1} and x_{2} of x in I_{2}, then $x * x_{1}=x_{2}$ and $x * x_{2}=x_{1}$ by Proposition 0.1. It is obvious that $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$. Applying Proposition 0.1 to the representation $X=A_{1} \bar{\oplus} A_{2}$, we see that x_{1} is just the component of x in A_{1} and x_{2} of x in A_{2}. Hence the component of $x * a$ in A_{1} is $x_{1} * a_{1}$. Since $x_{1} \in I_{1}$, we have $x_{1} * a_{1}=x_{1}$. Therefore $x * a$ and x have the same components in A_{1}. Likewise, their components in A_{2} are the same. By Proposition $0.2(2), x * a=x$, that is, $x \in\{a\}_{R}^{*}$, in other words, $I \subseteq\{a\}_{R}^{*}$. We have then shown that $\{a\}_{R}^{*}=I$. Now, it is evident that $\{a\}_{R}^{*}$ is an ideal of X. Therefore X is normal.

Putting Proposition 2.3, Theorems 2.6 and 2.8 together, we obtain the next corollary.
Corollary 2.9. A BCI-algebra X is normal if and only if the BCK-part B of X is a normal $B C K$-algebra and the p-semisimple part P of X is an ideal of X.

Using Proposition 0.4 , the last corollary can be rewritten as follows.
Corollary 2.10. A BCI-algebra X is normal if and only if it satisfies the following:
(1) $x * y=x$ implies $y * x=y$ for any positive elements x and y of X;
(2) the p-semisimple part P of X is an ideal of X.

Before concluding this section let's consider the normality of weakly implicative BCIalgebras. A BCI-algebra X is called weakly implicative if

$$
(x *(y * x)) *(0 *(y * x))=x
$$

for all $x, y \in X$ (see [1]).
Theorem 2.11. Every weakly implicative BCI-algebra X is normal.
Proof. Assume that B and P are the BCK-part and p-semisimple part of X. By the weakly implicativity of X, we have $x *(y * x)=x$ for any $x, y \in B$, then B is an implicative BCKalgebra, thus it is a commutative BCK-algebra. Applying the commutativity of B, we obtain that $x * y=x$ implies $y * x=y$ for any $x, y \in B$.

Next, it is clear that $0 \in P$. If $x, y * x \in P$, letting $a \in P$ such that $a \leq y$, since P is a subalgebra of X, we have $(y * x) * a \in P$, i.e., $(y * a) * x \in P$. Obviously, $0 \leq y * a$. Denote $u=y * a$, then $0 \leq u$ and $u * x \in P$. By $0 \leq u$, we obtain $0 * x \leq u * x$ and $x * u \leq x$, then $0 * x=u * x$ and $x * u=x$ by $u * x, x \in P$ (i.e., $u * x$ and x are minimal elements of X). Now, by the weakly implicativity of X, we derive

$$
y * a=u=(u *(x * u)) *(0 *(x * u))=(u * x) *(0 * x)=(0 * x) *(0 * x)=0 .
$$

Hence $y=a$ by a being a minimal element of X. Therefore $y \in P$, proving P is an ideal of X. Now, by Corollary 2.10, X is normal.

Corollary 2.12. If X is a weakly implicative BCI-algebra, then the p-semisimple part P of X is an ideal of X and X can be expressed as the direct sum $X=B \oplus P$ in which B is the BCK-part of X.

We remark that Corollary 2.12 was actually obtained by S.M. Wei and J. Meng who considered it from the way of KL-products (for detail, see [9, §4.2]).

Corollary 2.13. A normal BCI-algebra is weakly implicative if and only if the BCK-part of it is an implicative BCK-algebra.

§3. Normal ideals

Normal ideals were considered by C.S. Hoo in [4] who calls them commutative ideals.
Definition 3.1. An ideal A of a BCI-algebra X is called normal if $x *(x * y) \in A$ implies $y *(y * x) \in A$ for any $x, y \in X$.

Every BCI-algebra X contains at least a normal ideal, e.g., X itself is just one.
Example 3.1. Let X be the first algebra in Example 2.1, then there are altogether four ideals of it, which are $X,\{0, a\},\{0,1\}$ and $\{0\}$. Routine verification gives that the first two ideals are normal, but the others are not.

It is worth attending that if X is a proper BCI-algebra, a positive ideal of X is never normal.

Proposition 3.1. Let A be a normal ideal of a BCI-algebra X. Then A is positive if and only if X is a BCK-algebra.

Proof. The sufficiency is evident and we only need to show the necessity. Assume that A is a positive ideal of X, then 0 is the only minimal element of X, contained in A. For any $x \in X$, since $x *(x * 0)=0 \in A$, by the normality of A, we have $0 *(0 * x) \in A$. Note that $0 *(0 * x)$ is a minimal element of X, it follows $0 *(0 * x)=0$. Hence (0.4) implies

$$
0 * x=0 *(0 *(0 * x))=0 * 0=0
$$

Therefore X is a BCK-algebra.
For convenience we denote $x * y^{n}=(\cdots((x * y) * y) * \cdots) * y$ in which y occurs n times.
Lemma 3.2. If A is an ideal of a BCI-algebra X, then $x *(x * y) \in A$ implies $x *\left(x * y^{n}\right) \in A$ for any $x, y \in X$ and any natural number n (refer to [5, Lemma 2.1]).

Proposition 3.3. Suppose that M is a maximal ideal of a BCI-algebra X. If M contains the whole minimal elements of X, then M is a normal ideal of X.

Proof. Assume that $x *(x * y) \in M$. If $y \in M$, since $0 *(y * x)$ is a minimal element of X and $(y *(y * x)) * y=0 *(y * x)$, our hypotheses imply $y *(y * x) \in M$. If $y \notin M$, by the maximality of M, there is a natural number n such that $x * y^{n} \in M$. Also, by Lemma $3.2, x *\left(x * y^{n}\right) \in M$. Hence $x \in M$. Note that $y *(y * x) \leq x$, it yields $y *(y * x) \in M$. Therefore M is normal.

Proposition 3.4. Let A be an ideal of a BCI-algebra X. Then A is normal if and only if $x *(x * y) \in A$ implies $y *\left(y * x^{n}\right) \in A$ for any $x, y \in X$ and any natural number n.

YISHENG HUANG

Proof. Assume that A is normal and $x, y \in X$. If $x *(x * y) \in A$, then $y *(y * x) \in A$. By Lemma 3.2, $y *\left(y * x^{n}\right) \in A$ for any natural number n.

Conversely, putting $n=1$, our assumption of sufficiency gives that $x *(x * y) \in A$ implies $y *(y * x) \in A$ for any $x, y \in X$. Hence A is normal.

Proposition 3.5. Let A be a normal ideal of a BCI-algebra X. Then A is closed, containing the entire minimal elements of X (see [4, Proposition 2.16]).

Corollary 3.6. If X is a p-semisimple BCI-algebra, then the normal ideal of X can only be X itself.

Theorem 3.7. An ideal A of a BCI-algebra X is normal if and only if the quotient algebra X / A is a normal BCK-algebra (see [4, Theorem 2.17]).

Theorem 3.8. A BCI-algebra X is normal if and only if the p-semisimple part P of X is a normal ideal of X.

Proof. Assume that X is normal. By Theorem 2.6, P is an ideal of X and $X=B \oplus P$ in which B is the BCK-part of X. Then B is a normal BCK-algebra by Proposition 2.5. For any $x, x^{\prime} \in X$, letting b, b^{\prime} be respectively the components of x and x^{\prime} in B, by Proposition $0.2(1), b *\left(b * b^{\prime}\right)$ is the component of $x *\left(x * x^{\prime}\right)$ in B. Now, if $x *\left(x * x^{\prime}\right) \in P$, it is easily seen from Proposition 0.1 that 0 is the component of $x *\left(x * x^{\prime}\right)$ in B. By the uniqueness of components, we obtain $b *\left(b * b^{\prime}\right)=0$. So, Proposition 0.5 gives $b^{\prime} *\left(b^{\prime} * b\right)=0$. Thus the component of $x^{\prime} *\left(x^{\prime} * x\right)$ in B is 0 . Hence $x^{\prime} *\left(x^{\prime} * x\right) \in P$. Therefore P is normal.

Conversely, since P is an ideal of X, by Proposition $0.3, X=B \oplus P$. Using the uniqueness of components, we can define the mapping f from X to B sending x to the component of x in B. Obviously, f is a surjection. By the substitution property of congruences, f is a homomorphism. It is easy to verify that the kernel of f is P. So, the first isomorphic theorem (see [3, Theorem 3.2]) gives that X / P is isomorphic to B. Also, since P is a normal ideal of X, by Theorem 3.7, X / P is a normal BCK-algebra. Thus B is a normal BCK-algebra too. Now, by Corollary 2.9, X is normal.

Because the p-semisimple part of a BCK-algebra is $\{0\}$, Proposition 0.5 becomes a direct corollary of Theorem 3.8.

Corollary 3.9. A BCK-algebra X is normal if and only if the zero ideal $\{0\}$ of X is normal, or if and only if $x *(x * y)=0$ implies $y *(y * x)=0$ for any $x, y \in X$.

Note that every normal ideal of X contains all minimal elements of X, we obtain
Corollary 3.10. A BCI-algebra X is normal if and only if the intersection of all normal ideals of X is exactly the p-semisimple part P of X.

Combining Corollaries 2.9 with 3.9 , we also obtain
Corollary 3.11. A BCI-algebra X is normal if and only if the zero ideal $\{0\}$ of X is a normal ideal of the $B C K$-part B of X and the p-semisimple part P of X is an ideal of X.

Finally, we remark that the following assertion is not true: if X is a BCI-algebra which is not p-semisimple and if A is a nonzero normal ideal of X, then $A \cap B \neq\{0\}$ where B is the BCK-part of X (refer to [4, Proposition 2.28]). For instance, the algebra X in Example 3.1 is not p-semisimple and $\{0, a\}$ is a nonzero normal ideal of it, but $\{0, a\} \cap B=\{0\}$ where $B=\{0,1\}$. Following the ideas of this assertion, we give the next assertion.

Proposition 3.12. A BCI-algebra X is not normal if and only if $A \cap B \neq\{0\}$ where A is
an arbitrary normal ideal of X and B is the $B C K$-part of X.
Proof. Assume that X is not a normal BCI-algebra and A is a normal ideal of X. By Theorem 3.8, $A \neq P$ where P is the p-semisimple part of X, then P is properly contained in A by Proposition 3.5. Putting $x \in A-P$ and letting a be a minimal element of X such that $a \leq x$, we have $x * a \neq 0$ and $x * a \in B$. Also, since A is a closed ideal of X and $a \in P \subset A$, we obtain $x * a \in A$. Hence $0 \neq x * a \in A \cap B$ and $A \cap B \neq\{0\}$.

Conversely, if it is false, then X is normal. By Theorem 3.8, P is a normal ideal of X. However, $P \cap B=\{0\}$, a contradiction with our assumption of sufficiency.

References

[1] M.A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japonica 35 (1990), 141-151.
[2] Z.M. Chen, Direct product theory of well BCI-algebras, J. of Fujian Teachers Univ. 3 (2) (1987), 17-28.
[3] Z.M. Chen and H.X. Wang, Closed ideals and congruences on BCI-algebras, Kobe J. Math. 8 (1991), 1-9.
[4] C.S. Hoo, Filters and ideals in BCI-algebras, Math. Japonica, 36 (1991), 987-997.
[5] Y.S. Huang, On ideals in BCK-algebras (II), Scientiae Math. Japonicae, 55 (2002), 505-513.
[6] Y.S. Huang and Z.M. Chen, Normal BCK-algebras, Math. Japonica, 45 (1997), 541-546.
[7] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125-130.
[8] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonicae, 21 (1976), 351-366.
[9] J. Meng and Y.L. Liu, An introduction to BCI-algebras, Shaanxi Scientific and Technological Press, Xian, China, (2001).
[10] E.H. Roh and Y.S. Huang, J-semisimple BCI-algebras, Math. Japonica, 49 (1999), 213-216.

Department of Mathematics, Sanming College, Sanming, Fujian 365004, P.R. China
Supported by Fujian Province Education Department Science Foundation JA02257

