WEAKLY ALMOST PERIODICITY AND CHAOS *

LIDONG WANG , ZHENYAN CHU, GONGFU LIAO AND XIAODONG DUAN

Received June 6, 2002; revised June 24, 2003

ABSTRACT. In this paper , we consider a continuous map $f:X\to X$, where X is a compact metric space , and discuss the existence of chaotic set of f, specially (as $X{=}[0{,}1]$). We prove that f has a positively topological entropy if and only if it has an uncountably chaotic set in which each point is weakly almost periodic and is not almost periodic .

1. INTRODUCTION

Interference or false appearance often appears in the discussion of dynamical systems . As we all know , importantly dynamical properties of a system focus on its non-wandering set , a wandering set can be regarded as a kind of interference . This point of view can be interpreted reasonably from ergodic theory , since a wandering set is a set of absolute measure zero^[4] and the phenomenon which happens on it is unimportant or false , but the wandering set is not all the interference of the system . To obtain a subsystem which not only can get rid of all interference but also can make the importantly dynamical properties of original system invariant , Zhou^[4] introduced measure center . To decide the concept of measure center , he defined weakly almost periodic point too , showed that the closure of a set of weakly almost periodic points is a set of absolutely ergodic measure 1^[4] . These show that it is more significant to discuss problems on a set of weakly almost periodic points .

Throughout this paper , X will denote a compact metric space with metric d , I is the closed interval [0,1] .

For a continuous map $f: X \to X$, we denote the set of periodic points, almost periodic points, weakly almost periodic points, recurrent points, non-wandering points and chain recurrent points of f by P(f), A(f), W(f), R(f), $\Omega(f)$ and CR(f) respectively, denote the topological entropy of f by ent(f), whose definitions are as usual; f^n will denote the n-fold iterate of f.

In this paper , we first derive a sufficient condition for a map having an uncountably chaotic set in which each point is weakly almost periodic and is not almost periodic from Theorem A . As an application , we prove Theorem B .

The main result are stated as follows.

THEOREM A. Let $f: X \to X$ be continuous. If f has an almost shift invariant set, it has an uncountably chaotic set in which each point is weakly almost periodic and is not almost periodic.

THEOREM B. Let $f : I \to I$ be continuous, then $ent(f) > 0 \Leftrightarrow$ there exists an uncountably chaotic set of f in which each point is weakly almost periodic and is not almost periodic.

^{*}Project supported by the National Natural Science Foundation of China.

²⁰⁰⁰ Mathematics Subject Classification. 37B10, 37B40, 74H65.

Key words and phrases. weakly almost periodic point, chaos, shift.

2. Basic definitions and preparations

Let $S = \{0, 1\}$, $\Sigma = \{x = x_0 x_1 \cdots | x_i \in S, i = 0, 1, 2, \cdots\}$ and define $\rho : \Sigma \times \Sigma \to R$ as follows : for any $x, y \in \Sigma$, if $x = x_0 x_1 \cdots$ and $y = y_0 y_1 \cdots$ then

$$\rho(x,y) = \begin{cases} 0 & if \ x = y \\ \frac{1}{2^k} & if \ x \neq y, \ and \ k = \min\{n \mid x_n \neq y_n\} \end{cases}$$

It is not difficult to check that ρ is a metric on Σ . The space (Σ, ρ) is a compact metric space and called the one-sided symbolic space with two symbols.

Define $\sigma : \Sigma \to \Sigma$ by $\sigma(x_0 x_1 \cdots) = x_1 x_2 \cdots$ for any $x = x_0 x_1 \cdots \in \Sigma$, then σ is a continuous map on Σ and called the shift on the one-sided symbolic space Σ . Hence (Σ, σ) is a compact system.

DEFINITION 2.1. $D \subset X$ is said to be a chaotic set of f, if for any different points $x, y \in D$,

$$\liminf_{n\to\infty} d\left(f^n(x),f^n(y)\right) = 0 \quad \limsup_{n\to\infty} d\left(f^n(x),f^n(y)\right) > 0 \ .$$

f is said to be chaotic if it has a chaotic set which is uncountable .

DEFINITION 2.2. $x \in X$ is called a weakly almost periodic point of f, if for any $\varepsilon > 0$ there exists an integer $N_{\varepsilon} > 0$ such that for any n > 0,

$$# \left(\left\{ r \mid f^r(x) \in V(x,\varepsilon) , 0 \le r < nN_{\varepsilon} \right\} \right) \ge n ,$$

where $\#(\cdot)$ denotes the cardinal number of a set and $V(x,\varepsilon)$ the spherical neighborhood. Denote the set of weakly almost periodic points of f by W(f). It is easy to see that

$$P(f) \subset A(f) \subset W(f) \subset R(f) \subset \overline{P(f)} \subset \Omega(f) \subset CR(f) \ .$$

DEFINITION 2.3. A compact set $\Lambda \subset X$ is said to be almost shift invariant if :

 $(1) f(\Lambda) \subset \Lambda ,$

(2) There exists a continuous surjection $h : \Lambda \to \Sigma$ satisfying the following conditions : a) Set{ $y \in \Sigma | h^{-1}(y)$ contains at least two points} is countable.

b)
$$h \circ f|_{\Lambda} = \sigma \circ h$$
.

DEFINITION 2.4. Let $x \in \Sigma$ with $x = x_0 x_1 \cdots$. It is called a repeating sequence with recurring period of length m if $x_{m+t} = x_t$ for any $t \in \{0, 1, 2, \cdots\}$, we then write $x = (\dot{x}_0 \dot{x}_1 \cdots \dot{x}_{m-1})$.

DEFINITION 2.5. $Y \subset X$ is called a minimal set of f if for any $x \in Y$, $\omega(x, f) = Y$.

LEMMA 2.1. Let (Σ, ρ) be the one-sided symbolic space , and let σ be the shift on Σ . Then

(1) For any $s \in \Sigma$ and any m > 0, $\sigma^m(s) = s$ if and only if $s = (\dot{s}_0 \dot{s}_1 \cdots \dot{s}_{m-1})$ (*i.e.* s is a repeating sequence with recurring period of length m).

(2) There are exactly 2^n elements s in Σ such that $\sigma^n(s) = s$.

For a proof see [8].

LEMMA 2.2. Let $f: X \to X$, $g: Y \to Y$ be continuous, where X and Y are both compact metric spaces. If there exists a continuous surjection $h: X \to Y$ such that $g \circ h = h \circ f$, then

(1) h(W(f)) = W(g) ,

(2) h(A(f)) = A(g).

For a proof see [5].

LEMMA 2.3. $W(f^m) = W(f)$ and $A(f^m) = A(f)$ for any m > 0. For a proof see [2] and [4].

LEMMA 2.4. For any $x \in X$ and any N > 0, the following are equivalent :

(1) $x \in A(f)$.

(2) $x \in \omega(x, f)$ and $\omega(x, f)$ is a minimal set of f. For a proof see [10] and [11].

LEMMA 2.5. One-sided shift is Li-Yorke chaotic and there is a chaotic set \mathcal{T} satisfying $\mathcal{T} \subset W(\sigma) - A(\sigma)$.

PROOF: Let p_1 be an arrangement of the recurring periods of two repeating sequences of length 1 such that $\sigma(s) = s$, e.g. $p_1 = 01$.

Let p_2 be an arrangement of the recurring periods of the 2^2 repeating sequences of length 2 such that $\sigma^2(s) = s$, e.g. $p_2 = 00\,01\,10\,11$.

 p_n is an arrangement of the recurring periods of the 2^n repeating sequences of length n such that $\sigma^n(s) = s$, e.g. $p_n = 000 \cdots 0 \cdots 11 \cdots 1$.

Let $a = p_1 p_2 \cdots p_n \cdots = 0100011011000 \cdots 001 \cdots = a_0 a_1 \cdots a_n \cdots$. It is essy to see that $\omega(a, \sigma) = \Sigma$. In fact, for any $x = x_0 x_1 x_2 \cdots \in \Sigma$, Let T_n be a periodic point of σ with period n and with recurring period $(\dot{x}_0 \dot{x}_1 \cdots \dot{x}_{n-1})$. Then $T_n \to x (n \to \infty)$. By the construction of a, for any $\varepsilon > 0$, there exists $N_i(\varepsilon)$ such that

$$|\sigma^{N_i}(a) - x| < \sum_{n=N_i}^{\infty} \frac{1}{2^n} < \varepsilon$$

So $\sigma^{N_i}(a) \to x \ (i \to \infty)$. This shows $x \in \omega(a, \sigma)$, *i.e.* $\Sigma \subset \omega(a, \sigma)$. On the other hand, $\omega(a, \sigma) \subset \Sigma$, hence $\Sigma = \omega(a, \sigma)$.

The following we will construct a set B_a .

We use $(x)_n$ to denote the first n+1 symbols of x for any $x \in \Sigma$, *i.e.* $(x)_n = (x_0x_1 \cdots x_n)$ for any $n \ge 0$. Let

$$B_a = \{b_a = (a)_0(b)_0(a)_1(b)_1 \cdots (a)_n(b)_n \cdots | \forall b = b_0b_1 \cdots \in \Sigma, a = a_0a_1 \cdots \},\$$

then B_a is an uncountable set .

(1) We will construct an uncountable set \mathcal{T} .

For any $e = e_0 e_1 \cdots e_n \cdots \in B_a$, let $Q_0 = (0)$, $Q_1 = (Q_0 Q_0 e_0)$, $Q_2 = (Q_1 Q_1 e_1), \cdots$, $Q_n = (Q_{n-1} Q_{n-1} e_{n-1}) \cdots$. We take $x(e) \in \Sigma$ satisfying

$$(x(e))_{2^{n+1}-2} = Q_n = (Q_{n-1}Q_{n-1}e_{n-1})$$
 for $n = 1, 2, \cdots$.

Let $\mathcal{T} = \{ x(e) | \forall e \in B_a \}$. Obviously \mathcal{T} is an uncountable set.

(2) We will prove that $\sigma|_{\mathcal{T}}$ is chaotic.

Firstly, we put $n_i = 2^{(i+1)^2+1} - 1 - (i+1)^2 + i(i+1)$ $(i = 1, 2, \dots)$, then for any $x \in \mathcal{T}$, x = x(e) and $e \in B_a$,

$$\sigma^{n_i}(x(e)) = \sigma^{i(i+1)}((e)_{(i+1)^2 - 1} \cdots) = ((a)_i \cdots) .$$

Moreover,

$$\rho(\sigma^{n_i}(x(e)), a) \le \sum_{n=i}^{+\infty} \frac{1}{2^n} = \frac{1}{2^{i-1}}$$

Hence,

$$\lim_{i \to +\infty} \rho(\sigma^{n_i}(x(e)), a) = 0 \quad (i.e. \ \lim_{i \to +\infty} \sigma^{n_i}(x(e)) = a)$$

Since $\omega(a, \sigma) = \Sigma$, by the arbitrariness of x, for any $x, y \in \mathcal{T}$, we obtain

$$\liminf_{n \to \infty} \rho(\sigma^n(x), \sigma^n(y)) = 0$$

Secondly , we put $q_i = 2^{(2i+1)^2+1} - 1 - (2i+1)^2 + (i+1)^2$ $(i = 1, 2, \cdots)$, then for any $x \in \mathcal{T}$, x = x(e) and $e \in B_a$,

$$\sigma^{q_i}(x) = \sigma^{q_i}(x(e)) = \sigma^{(i+1)^2}((e)_{(2i+1)^2-1}\cdots) = ((b)_i\cdots)$$

For any $x, y \in \mathcal{T}$, $x \neq y$, where $x = x(\overline{\beta})$, $y = y(\overline{\gamma})$, $\overline{\beta} \in B_a$, $\overline{\gamma} \in B_a$, $\overline{\beta} = (a)_0(\beta)_0(a)_1(\beta)_1 \cdots , \overline{\gamma} = (a)_0(\gamma)_0(a)_1(\gamma)_1 \cdots$. By the construction of \mathcal{T} , we know that

$$\beta = \beta_0 \beta_1 \beta_2 \cdots \neq \gamma = \gamma_0 \gamma_1 \gamma_2 \cdots ,$$

 \mathbf{SO}

$$\lim_{i \to +\infty} \rho(\sigma^{q_i}(x), \sigma^{q_i}(y)) = \rho(\beta, \gamma) > 0 ,$$

moreover,

$$\limsup_{n \to \infty} \rho(\sigma^n(x), \sigma^n(y)) > 0$$

Summing up, \mathcal{T} is a chaotic set, *i.e.* $\sigma|_{\mathcal{T}}$ is chaotic.

(3) We will prove that $\mathcal{T} \subset W(\sigma) - A(\sigma)$.

For any $x(e) \in \mathcal{T}$ where $e \in B_a$, $e = e_0 e_1 \cdots e_n \cdots \in \Sigma$, and for any given $\varepsilon > 0$, there exists $m \in Z^+$ such that $0 < \frac{1}{2^m} < \varepsilon$, let $N_{\varepsilon} = 2^{m+2}$, since for any n > 0 with $n \in Z^+$, there exists a nonnegative p such that $2^p \le n < 2^{p+1}$, we have

$$2^p N_{\varepsilon} \le n N_{\varepsilon} < 2^{p+1} N_{\varepsilon} \quad (i.e. \ 2^{m+p+2} \le n N_{\varepsilon} < 2^{m+p+3}) \ .$$

Since there are at least two Q_m in $Q_{m+1} = (Q_m Q_m e_m)$, generally, we have that there are at least $2^n \quad Q_m$ in Q_{m+n} for $n = 1, 2, \cdots$, and since $2^{m+p+2} \leq nN_{\varepsilon}$, we obtain that the first $nN_{\varepsilon} + 1$ symbols of (x(e)), $(x(e))_{nN_{\varepsilon}+1} = (x_0x_1\cdots x_{nN_{\varepsilon}})$, contain Q_{m+p+1} , so

$$\#(\{r \,|\, \sigma^r(x(e)) \in V(x(e),\varepsilon), \, 0 \le r < nN_{\varepsilon}\}) > 2^{p+1} > n \;.$$

Hence, by the definition of $W(\sigma)$, we know that $x(e) \in W(\sigma)$, and by (2) we know that

$$\lim_{i \to +\infty} \sigma^{n_i}(x(e)) = a \quad and \quad \omega(a, \sigma) = \Sigma$$

then we have $\omega(x(e), \sigma) = \Sigma$. Since Σ is not a minimal set of σ , by Lemma 2.4 $x(e) \notin A(\sigma)$, furthermore $x(e) \in W(\sigma) - A(\sigma)$. By the arbitrariness of x, we can obtain $\mathcal{T} \subset W(\sigma) - A(\sigma)$.

3. Proofs of the main theorem

PROOF OF THEOREM A : By the hypothesis of the theorem , f has an almost shift invariant set Λ , thus there is a continuous surjection $h : \Lambda \to \Sigma$ such that for any $x \in \Lambda$,

$$\sigma \circ h(x) = h \circ f|_{\Lambda}(x) \; .$$

By Lemma 2.5, there is an uncountably chaotic set $\mathcal{T} \subset W(\sigma) - A(\sigma)$, for simplicity, let $g = f|_{\Lambda}$. By Lemma 2.2, for each $y \in \mathcal{T}$, we take an $x \in W(g) - A(g)$ such that h(x) = y. All of these points form an uncountable subset of Λ , which we will denote it by D . To complete the proof of the theorem , it suffices to show that D is a chaotic set of f.

For any $x_1, x_2 \in D$, there exists $y_1, y_2 \in \mathcal{T}$ such that $h(x_i) = y_i$ for i = 1, 2.

Firstly, it is easily seen that

$$\limsup_{n \to \infty} \rho(\sigma^n(y_1), \sigma^n(y_2)) > 0 \quad (i.e. \limsup_{n \to \infty} \rho(hg^n(x_1), hg^n(x_2)) > 0) ,$$

implies

$$\limsup_{n \to \infty} d(g^n(x_1), g^n(x_2)) > 0$$

Secondly, since Λ is an almost shift invariant set of q and \mathcal{T} is uncountable, it follows that there exists $y_0 \in \Sigma$ such that $h^{-1}(y_0)$ contains only one point x_0 . By the chaotic property and construction of \mathcal{T} , there exists $m_i \to +\infty$ such that

$$\lim_{i \to +\infty} \sigma^{m_i}(y_1) = \lim_{i \to +\infty} \sigma^{m_i}(y_2) = y_0$$

which implies

$$\lim_{i \to +\infty} g^{m_i}(x_1) = \lim_{i \to +\infty} g^{m_i}(x_2) = x_0$$

Thus,

$$\liminf_{n \to \infty} d(g^n(x_1), g^n(x_2)) = 0 .$$

Since $g = f|_{\Lambda}$, we can see that D is a chaotic set of f.

PROOF OF THEOREM B : Since ent(f) > 0, by [1], form some N > 0, f^N has an almost shift invariant set (cf. the proof prop. 15 of chap.II in [1]). It follows from Theorem A that f^N has an uncountably chaotic set , say D , in which each point is weakly almost periodic and is not almost periodic under f^N . Obviously D is also a chaotic set of f. And by Lemma 2.3, $D \subset W(f) - A(f)$. Hence the result follows.

By [9], $ent(f) > 0 \Leftrightarrow R(f)$ contains an uncountably chaotic set of f, and $W(f) \subset R(f)$, sufficient condition is proved.

References

- [1] L.S.Block and W.A.Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
- [2] G.F.Liao and L.Y.Wang, Almost Periodicity, Chain Recurrence and Chaos, Israel. J. Math. 93 (1996), 145-156.
- [3] H.J.Jiang, A Note on Weakly Almost Periodic Point, J. of Math. (PRC), 19 (1999) , 56-60(in Chinese).
- [4] Z.L.Zhou, Weakly Almost Points and Measure Center, Science of China (A), 22(6) (1992), 572-581(in Chinese).
- [5] Z.L.Zhou and W.H.He, Administrative Levels of Orbit Structure and Topological Semi-conjugate, Science of China (A), **25(5)** (1995), 457-464(in Chinese).
- [6] Z.L.Zhou, Chaos and Topological Entropy, Acta Math. Sinica, 31 (1998), 83-87(in Chinese).
- [7] Z.L.Zhou, G.F.Liao and L.Y.Wang, The Positively Topological Entropy is not Equivalent to Chaos-a Class of Subshift, Science of China (A), **37** (1994), 653-660(in Chinese).

- [8] R.L.Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, Redwood City, CA, 1989.
- [9] B. S. Du, Every Chaotic Interval Map has a Scrambled Set in the Recurrent Set, Bull. Austral. Math. Soc. 39 (1989), 259-264.
- [10] P.Erdős and A.H.Stone, Some Remarks on Almost Periodic Transformations, Bull. Amer. Math. Soc. 51 (1945), 126-130.
- [11] W.H.Gottschalk, Orbit-closure Decompositions and Almost Periodic Properties, Bull. Amer. Math. Soc. 50 (1944), 915-919.

Institute of Nolinear information technology Dalian Nationalities University Dalian 116600, P.R.China E-mail:wldwyylfx@hotmail.com Institute of Nolinear information technology Dalian Nationalities University Dalian 116600, P.R.China E-mail:chuzhenyan8@sohu.com Institute of Mathematics Jilin University Changchun 130023, P.R. China E-mail:liaogf@email.jlu.edu.cn and Institute of Nolinear information technology Dalian Nationalities University

Dalian 116600, P.R.China