ON POSITIVE IMPLICATIVE HYPER BCK-IDEALS

R. A. BORZOOEI AND M. BAKHSHI

Received July 18, 2003

ABSTRACT. In this note first we define the notions of *positive implicative hyper* BCK-*ideals of types 1,2,...,8*. Then, giving some examples, we show that these notions are different. After that we state and prove some theorems which determine the relationship between these notions and (strong, weak) hyper BCK-ideals. Finally will be presented, a classification of hyper BCK-algebras of order 3.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki[5] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. The hyperstructure theory was introduced in 1934 by F. Marty [11]. In [8], Y.B. Jun, M.M. Zahedi, R.A. Borzooei et al. applied the hyperstructures to BCK-algebras, and introduced the notion of a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated some related properties. Now we follow [1,2,10] and obtain some results, as mentioned in the abstract.

2. Preliminaries

Definition 2.1 (8). By a *hyper BCK-algebra* we mean a nonempty set H endowed with a hyperoperation " \circ " and a constant 0 satisfies the following axioms:

(HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,

(HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,

(HK3) $x \circ H \ll \{x\},\$

(HK4) $x \ll y$ and $y \ll x$ imply x = y.

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such a case, we call " \ll " the *hyperorder* in H.

Example 2.2 (8). (i) Let $H = \{0, 1, 2\}$. Consider the following table:

0	0	1	2	3
0	{0}	{0}	$\{0\}$	$\{0\}$
1	{1}	$\{0\}$	$\{0\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{0\}$
3	{3}	$\{3\}$	$\{2\}$	$\{0, 2\}$

Then $(H, \circ, 0)$ is a hyper *BCK*-algebra.

Proposition 2.3 (8,9). In any hyper BCK-algebra H, the following hold:

(i) $0 \circ 0 = \{0\},\$

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. Hyper BCK-algebra, (weak, strong) hyper BCK-ideals, positive implicative hyper BCK-ideals of types 1,2,...,8.

(ii) $0 \ll x$, (iii) $x \ll x$, (iv) $A \ll A$, (v) $A \subseteq B$ implies $A \ll B$, (vi) $0 \circ x = \{0\}$, (vii) $0 \circ A = \{0\}$, (viii) $A \ll \{0\}$ implies $A = \{0\}$, (ix) $x \circ y \ll x$, (x) $x \circ 0 = \{x\}$, (xi) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$, (xii) $y \ll z$ implies $x \circ z \ll x \circ y$, (xiii) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$ and $x \circ z \ll y \circ z$. for all $x, y, z \in H$ and for all nonempty subsets A and B of H.

Definition 2.4 (8). Let H be a hyper BCK-algebra and let S be a subset of H containing 0. If S is a hyper BCK-algebra with respect to the hyperoperation " \circ " on H, we say that S is a hypersubalgebra of H.

Theorem 2.5 (8). Let S be a nonempty subset of a hyper BCK-algebra H. Then S is a hypersubalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Definition 2.6 (7,8). Let *I* be a nonempty subset of a hyper *BCK*-algebra *H* and $0 \in I$. Then *I* is said to be a *hyper BCK-ideal* of *H* if for all $x, y \in H$, $x \circ y \ll I$ and $y \in I$ imply $x \in I$, weak hyper *BCK-ideal* of *H* if for all $x, y \in H$, $x \circ y \subseteq I$ and $y \in I$ imply $x \in I$,strong hyper *BCK-ideal* of *H* if for all $x, y \in H$, $(x \circ y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$.

Theorem 2.7 (7,8). Let I be a nonempty subset of a hyper BCK-algebra H. Then the following statements are hold.

(i) Any strong hyper BCK-ideal of H is a hyper BCK-ideal.
(ii) Any hyper BCK-ideal of H is a weak hyper BCK-ideal.

Definition 2.8 (9). Let H be a hyper BCK-algebra. An element $a \in H$ is said to be *left* (resp. *right*) *scalar* if $|a \circ x| = 1$ (resp. $|x \circ a| = 1$) for all $x \in H$. If $a \in H$ is both left and right scalar, we say that a is a *scalar* element.

Theorem 2.9. There are 19 non-isomorphic hyper BCK-algebras of order 3.

Definition 2.10 (3). Let $H = \{0, 1, 2\}$ be a hyper *BCK*-algebra of order 3. Then we say that *H* satisfies the normal condition, if one of the conditions $1 \ll 2$ or $2 \ll 1$ holds. If none of them hold, then we say that *H* satisfies the simple condition.

Lemma 2.11 (3). Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra of order 3. Then,

- (a) If H satisfies the simple condition, then
- (i) $1 \circ 1 = \{0\}$ or $\{0, 1\}$ and $1 \circ 2 = \{1\}$,
- (ii) $2 \circ 1 = \{2\}$ and $2 \circ 2 = \{0\}$ or $\{0, 2\}$.
- (b) If H satisfies the normal condition, then
- (iii) $1 \circ 1 = \{0\}$ or $\{0, 1\}$,
- (iv) $1 \circ = \{0\}$ or $\{0, 1\}$,
- (vi) $2 \circ 2 = \{0\}, \{0, 1\}, \{0, 2\} \text{ or } \{0, 1, 2\}.$

Theorem 2.12 (3). Let H be a hyper BCK-algebra of order 3 which satisfies the normal condition. Then H has at most one proper hyper BCK-ideal which is $I = \{0, 1\}$.

304

3. Positive implicative hyper BCK-ideals

Note. From now on in this paper we let H denote a hyper BCK-algebra.

Definition 3.1. Let *I* be a nonempty subset of *H* and $0 \in I$. Then *I* is said to be a *positive implicative hyper* BCK-*ideal* of

- (i) type 1, if $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$ implies that $x \circ z \subseteq I$ for all $x, y, z \in H$,
- (ii) type 2, if $(x \circ y) \circ z \ll I$ and $y \circ z \subseteq I$ implies that $x \circ z \subseteq I$ for all $x, y, z \in H$,
- (iii) type 3, if $(x \circ y) \circ z \ll I$ and $y \circ z \ll I$ implies that $x \circ z \subseteq I$ for all $x, y, z \in H$,
- $(\mathrm{iv}) \ type \ 4, \, \mathrm{if} \ (x \circ y) \circ z \subseteq I \ \mathrm{and} \ y \circ z \ll I \ \mathrm{implies} \ \mathrm{that} \ x \circ z \subseteq I \ \mathrm{for} \ \mathrm{all} \ x, y, z \in H,$
- (v) type 5, if $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$ implies that $x \circ z \ll I$ for all $x, y, z \in H$,
- (vi) type 6, if $(x \circ y) \circ z \ll I$ and $y \circ z \ll I$ implies that $x \circ z \ll I$ for all $x, y, z \in H$,
- $(\text{vii}) \ type \ 7\text{, if } (x \circ y) \circ z \subseteq I \ \text{and} \ y \circ z \ll I \ \text{implies that} \ x \circ z \ll I \ \text{for all} \ x, y, z \in H,$
- (viii) type 8, if $(x \circ y) \circ z \ll I$ and $y \circ z \subseteq I$ implies that $x \circ z \ll I$ for all $x, y, z \in H$.

Theorem 3.2. Let I be a nonempty subset of H. Then,

- (i) If I is a positive implicative hyper BCK-ideal of type 3, then I is a positive implicative hyper BCK-ideal of types 2,4 and 6,
- (ii) If I is a positive implicative hyper BCK-ideal of type 2, then I is a positive implicative hyper BCK-ideal of types 1 and 8,
- (iii) If I is a positive implicative hyper BCK-ideal of type 4, then I is a positive implicative hyper BCK-ideal of types 1 and 7,
- (iv) If I is a positive implicative hyper BCK-ideal of type 6, then I is a positive implicative hyper BCK-ideal of types 7 and 8,
- (v) If I is a positive implicative hyper BCK-ideal of type 1 (type 7,8), then I is a positive implicative hyper BCK-ideal of type 5.

Proof. (i) Let I be a positive implicative hyper BCK-ideal of type 3 and $(x \circ y) \circ z \ll I$ and $y \circ z \subseteq I$, for $x, y, z \in H$. Then by Proposition 2.3(v), $y \circ z \ll I$ and so by hypothesis $x \circ z \subseteq I$. Therefore I is a positive implicative hyper BCK-ideal of type 2. The proofs of types 4 and 6 are similar. The proofs of other cases are similar to the above by suitable modifications.

In the following diagram, we can see the summary of the Theorem 3.2.

Example 3.3. (i) Let H be the hyper BCK-algebra which is defined as follows:

0	0	1	2
0	{0}	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$
2	$\{2\}$	$\{0, 2\}$	$\{0, 2\}$

Then $I = \{0, 1\}$ is a positive implicative hyper *BCK* ideal of type 1,4,6 and 8, but it is not of type 2 and 3.

(ii) Let $H = \{0, 1, 2, 3\}$	Consider t	the following	tables,
-------------------------------	------------	---------------	---------

\circ_1	0	1	2	3		\circ_2	0	1	2	3
0	{0}	{0}	{0}	{0}	-	0	{0}	{0}	{0}	$\{0\}$
1	{1}	{0}	$\{0\}$	$\{0\}$		1	{1}	{0}	$\{0\}$	$\{0\}$
2	{2}	{1}	{0}	{0}		2	$\{2\}$	{1}	{0}	{0}
3	$\{3\}$	$\{1\}$	$\{1\}$	$\{0,1\}$		3	$\{3\}$	$\{2\}$	$\{1\}$	$\{0, 1\}$

Then (H, \circ_1) and (H, \circ_2) are hyper *BCK*-algebras and $I = \{0, 2\}$ is a positive implicative hyper *BCK*-ideal of type 7 of (H, \circ_1) , not of type 4 and 6, but it is a positive implicative hyper *BCK*-ideal of type 5 of (H, \circ_2) , not of other types.

Note. Nonempty subset I of H is proper, if $\{0\} \neq I \neq H$.

Theorem 3.4. Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra of order 3 and I be a proper subset of H. Then,

(i) I is a positive implicative hyper BCK-ideal of type 1 if and only if I is a positive implicative hyper BCK-ideal of type 4.

(ii) I is a positive implicative hyper BCK-ideal of type 5 if and only if I is a positive implicative hyper BCK-ideal of type 6,7 or 8.

(iii) H has at least one proper positive implicative hyper BCK-ideal of type 5.

Proof. (i) By Theorem 3.2(iii), every positive implicative hyper BCK-ideal of type 4 is a positive implicative hyper BCK-ideal of type 1.

Conversely, let $I_1 = \{0, 1\}$ be a positive implicative hyper *BCK*-ideal of type 1. Let $(x \circ y) \circ z \subseteq I_1$ and $y \circ z \ll I_1$ but $x \circ z \not\subseteq I_1$. Then $2 \in x \circ z$ and so $x \neq 0$. Since if x = 0, then $2 \in x \circ z = 0 \circ z = \{0\}$, which is impossible. Now we consider the following two cases. Case 1. *H* satisfies the simple condition.

Then by Lemma 2.11(a), $x \neq 1$. Thus x = 2 and so

 $(2 \circ y) \circ z \subseteq I_1$ and $y \circ z \ll I_1$

Since $2 \in x \circ z = 2 \circ z$, then by Lemma 2.11(a), z = 1 or 2. If z = 1, then

$$(2 \circ y) \circ 1 \subseteq I_1$$
 and $y \circ 1 \ll I_1$

Now, if y = 0 then by Lemma 2.11(ii), $2 \in 2 \circ 1 = (2 \circ 0) \circ 1 \subseteq I_1$, which is impossible. If y = 1, then by Lemma 2.11(ii), $2 \in 2 \circ 1 \subseteq (2 \circ 1) \circ 1 \subseteq I_1$, which is a contradiction. If y = 2, then $2 \in 2 \circ 1 \ll I_1 = \{0, 1\}$. Hence $2 \ll 1$, which is impossible.

If z = 2, then $(2 \circ y) \circ 2 = (2 \circ y) \circ z \subseteq I_1$. Since $2 \in x \circ z = 2 \circ 2$, then by Lemma 2.11(ii), $2 \circ 2 = \{0, 2\}$. If y = 0, then $2 \in 2 \circ 2 \subseteq (2 \circ 0) \circ 2 \subseteq I_1$, which is impossible. If y = 1, then $2 \in 2 \circ 2 \subseteq (2 \circ 1) \circ 2 \subseteq I_1$, which is a contradiction. If y = 2 then $2 \in 2 \circ 2 \subseteq (2 \circ 2) \circ 2 \subseteq I_1$, which is impossible.

<u>Case 2</u>. H satisfies the normal condition.

Since $2 \in x \circ z$, then by Lemma 2.11(b), x = 2 and so by (HK2)

$$2 \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z \subseteq I_1$$

If y = 0, then $2 \in 2 \circ 0 = 2 \circ y \subseteq I_1$, which is impossible. If y = 1, then $(2 \circ 1) \circ 0 = 2 \circ 1 = 2 \circ y \subseteq I_1$. Since I_1 is a positive implicative hyper BCK-ideal of type 1 and $1 \circ 0 = \{1\} \subseteq I_1$, then $\{2\} = 2 \circ 0 \subseteq I_1$, which is a contradiction. If y = 2, then $2 \circ 2 = 2 \circ y \subseteq I_1$ and so by Lemma 2.11(vi), $2 \circ 2 = \{0\}$ or $\{0, 1\}$. Since $2 \in x \circ z = 2 \circ z$, then $z \neq 2$. Thus z = 0 or 1. Moreover, $2 \circ z = y \circ z \ll I_1$. If z = 0, then $\{2\} = 2 \circ 0 \ll I_1 = \{0, 1\}$. Thus $2 \ll 1$ and so $0 \in 2 \circ 1$, which is a contradiction. If z = 1, then $2 \circ 1 = 2 \circ z \ll I_1 = \{0, 1\}$ and so by Lemma 2.11(v), $2 \circ 1 = \{1\}$. Thus $(2 \circ 1) \circ 0 = 2 \circ 1 = \{1\} \subseteq I_1$. Since I_1 is a positive implicative hyper BCK-ideal of type 1 and $1 \circ 0 = \{1\} \subseteq I_1$, then $\{2\} = 2 \circ 0 \subseteq I_1$ which is impossible. Therefore, we prove that $I_1 = \{0, 1\}$ is a positive implicative hyper BCK-ideal of type 4.

Now, let $I_2 = \{0, 2\}$ be a positive implicative hyper BCK-ideal of type 1, $(x \circ y) \circ z \subseteq I_2$ and $y \circ z \ll I_2$ but $x \circ z \not\subseteq I_2$. Then $1 \in x \circ z$ and so $x \neq 0$. Since if x = 0, then $1 \in x \circ z = 0 \circ z = \{0\}$ which is impossible. Now we considering two following cases. <u>Case 1</u>. H satisfies the simple condition.

Then by Lemma 2.11(a), x = 1 and so $1 \in x \circ z = 1 \circ z$. Now we consider the following cases for z.

<u>Case 1-1</u>. If z = 0, then

$$1 \circ y = (1 \circ y) \circ 0 = (x \circ y) \circ z \subseteq I_2 \text{ and } \{y\} = y \circ 0 \ll I_2$$

Thus by Lemma 2.11(a), y = 0 or 2. If y = 0, then $1 \in 1 \circ 0 = 1 \circ y \subseteq I_2$, which is impossible. If y = 2, then by Lemma 2.11(a), $\{1\} = 1 \circ 2 = 1 \circ y \subseteq I_2$, which is impossible. <u>Case 1-2</u>. If z = 1, then by (HK2) we get that

$$1 \circ y \subseteq (1 \circ 1) \circ y = (1 \circ y) \circ 1 = (x \circ y) \circ z \subseteq I_2$$

If y = 0, then $1 \in 1 \circ 0 = 1 \circ y \subseteq I_2$, which is impossible. If y = 1, then $1 \in x \circ z = 1 \circ 1 = 1 \circ y \subseteq I_2$, which is a contradiction. If y = 2, then by Lemma 2.11(a), $\{1\} = 1 \circ 2 = 1 \circ y \subseteq I_2$, which is impossible.

<u>Case 1-3.</u> If z = 2, then $y \circ 2 \ll I_2$ and so by Lemma 2.11(a), y = 0 or 2. Hence $y \circ 2 = \{0\}$ or $\{0, 2\}$ and this implies that $y \circ 2 \subseteq I_2$. Moreover, $(1 \circ y) \circ 2 = (x \circ y) \circ z \subseteq I_2$. Since I_2 is a positive implicative hyper *BCK*-ideal of type 1, then by Lemma 2.11(a) we get that $\{1\} = 1 \circ 2 \subseteq I_2$, which is a contradiction.

<u>Case 2</u>. Let H satisfy the normal condition.

Since $1 \in x \circ z$, then by (HK2) we get that

$$1 \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z \subseteq I_2$$

If y = 0, then $1 \in 1 \circ 0 \subseteq I_2$, which is impossible. If y = 2, then $(1 \circ 2) \circ 0 = 1 \circ 2 \subseteq I_2$. Since I_2 is a positive implicative hyper *BCK*-ideal of type 1 and $2 \circ 0 = \{2\} \subseteq I_2$, then $\{1\} = 1 \circ 0 \subseteq I_2$, which is a contradiction. If y = 1, then $1 \circ 1 = 1 \circ y \subseteq I_2$ and so by Lemma 2.11(iii), $1 \circ 1 = \{0\}$. Moreover, $1 \circ 2 = \{0\}$ or $\{0, 1\}$. If $1 \circ 2 = \{0, 1\}$, then by (HK1) we get that

$$\{0,1\} = (1 \circ 2) \circ (1 \circ 2) \ll 1 \circ 1 = \{0\}$$

which is impossible. If $1 \circ 2 = \{0\}$, then $(1 \circ 2) \circ 0 = \{0\} \subseteq I_2$ and $2 \circ 0 = \{2\} \subseteq I_2$. Since I_2 is a positive implicative hyper *BCK*-ideal of type 1, then $\{1\} = 1 \circ 0 \subseteq I_2$, which is a contradiction. Therefore, $I_2 = \{0, 2\}$ is a positive implicative hyper *BCK*-ideal of type 4. (ii) Let *I* be a positive implicative hyper *BCK*-ideal of type 5 and

$$(x \circ y) \circ z \ll I$$
 and $y \circ z \ll I$

but $x \circ z \not\ll I$. Then there exists $a \in x \circ z$ such that for all $s \in I$, $a \not\ll s$. If $I = \{0, 1\}$ then a = 2 and so by hypothesis, $2 \notin (x \circ y) \circ z$ and $2 \notin y \circ z$. But this implies that $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$. Since I is a positive implicative hyper *BCK*-ideal of type 5, then $x \circ z \ll I$ which is a contradiction. The proof of the case $I = \{0, 2\}$ is similar. Therefore, I is a

positive implicative hyper BCK-ideal of type 6 and so by Theorem 3.2(iv), I is a positive implicative hyper BCK-ideal of type 7 and 8.

(iii) We show that $I_2 = \{0, 2\}$ is a positive implicative hyper *BCK*-ideal of type 5, in any hyper *BCK*-algebra of order 3. Let $(x \circ y) \circ z \subseteq I_2$ and $y \circ z \subseteq I_2$, but $x \circ z \not\ll I_2$, for $x, y, z \in H$. Thus $1 \in x \circ z$ and $1 \not\ll 2$. Now we consider two following cases. Case 1. Let *H* satisfy the simple condition.

Since $1 \in x \circ z$, then by (HK2) we get that

$$1 \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z \subseteq I_2$$

If y = 0, then $\{1\} = 1 \circ 0 = 1 \circ y \subseteq I_2$, which is impossible. If y = 2, then by Lemma 2.11(i), $\{1\} = 1 \circ 2 = 1 \circ y \subseteq I_2$, which is a contradiction. If y = 1, then $1 \circ 1 = 1 \circ y \subseteq I_2$ and so by Lemma 2.11(i), $1 \circ 1 = \{0\}$. Moreover, by hypothesis we know that

 $(x \circ 1) \circ z \subseteq I_2$ and $1 \circ z \subseteq I_2$

Since $1 \in x \circ z$, then by Lemma 2.11(a), x = 1 and z = 0 or x = z = 1 or x = 1 and z = 2. If x = 1 and z = 0, then $\{1\} = 1 \circ 0 = 1 \circ z \subseteq I_2$, which is a contradiction. If x = z = 1, then $1 \in x \circ z = 1 \circ 1 = \{0\}$, which is impossible.

If x = 1 and z = 2, then by Lemma 2.11(i), $\{1\} = 1 \circ 2 = 1 \circ z \subseteq I_2$, which is a contradiction. Case 2. *H* satisfies the normal condition.

Since $1 \ll 2$, then $2 \ll 1$ and so $0 \in 2 \circ 1$. But by Lemma 2.11(v), $2 \circ 1 = \{1\}, \{2\}$ or $\{1, 2\}$, which is impossible. Therefore, $I_2 = \{0, 2\}$ is a positive implicative hyper *BCK*-ideal of type 5 in any hyper *BCK*-algebra of order 3.

Definition 3.5. We say that subset I of H satisfies the *closed* condition, if $x \ll y$ and $y \in I$ implies $x \in I$, for all $x, y \in H$.

Lemma 3.6. Let I and A be nonempty subsets of H and I satisfy the closed condition. If $A \ll I$, then $A \subseteq I$.

Proof. The proof is easy.

Theorem 3.7. Let I be a nonempty subset of H and satisfies the closed condition. If I is a positive implicative hyper BCK-ideal of type i, then I is a positive implicative hyper BCK-ideal of type j, for all $1 \le i, j \le 8$.

Proof. By considering the Lemma 3.6 the proofs are similar to the proof of Theorem 3.2, by some modification. \Box

Lemma 3.8. Let I be a hyper BCK-ideal and A be a nonempty subset of H. Then,

(i) If $A \ll I$, then $A \subseteq I$.

(ii) I satisfies the closed condition.

Proof. (i) Lemma 3.6[9]

(ii) The proof follows by (i).

Theorem 3.9. Let I be a nonempty subset of H. Then the following statements are held. (i) If I is a positive implicative hyper BCK-ideal of type 2(3), then I is a hyper BCK-ideal of H.

(ii) Let I be a hyper BCK-ideal of H. If I is a positive implicative hyper BCK-ideal of type i, then I is a positive implicative hyper BCK-ideal of type j, for $1 \le i, j \le 8$.

(iii) I is a positive implicative hyper BCK-ideal of type 3 if and only if I is a positive implicative hyper BCK-ideal of type 2.

(iv) If I is a positive implicative hyper BCK-ideal of type 1(4), then I is a weak hyper BCK-ideal of H.

Proof. (i) Let I be a positive implicative hyper BCK-ideal of type 2, $x \circ y \ll I$ and $y \in I$, for $x, y \in H$. Then $(x \circ y) \circ 0 = x \circ y \ll I$ and $y \circ 0 = \{y\} \subseteq I$. Hence by hypothesis $\{x\} = x \circ 0 \subseteq I$. Therefore, I is a hyper BCK-ideal of H. The proof of type 3 is similar. (ii) By considering the Lemma 3.8(ii), the proof follows by Theorem 3.7.

(iii) (\Rightarrow) The proof follows by Theorem 3.2(i).

(\Leftarrow) Let *I* be a positive implicative hyper *BCK*-ideal of type 2. Then by (i), *I* is a hyper *BCK*-ideal of *H* and so by (ii) *I* is a positive implicative hyper *BCK*-ideal of type 3. (iv) The proof is similar to the proof of (i), by some modifications.

Example 3.10. In example 2.2(ii), $I = \{0, 1\}$ is a hyper *BCK*-ideal (and so is a weak hyper *BCK*-ideal) of *H* but it is not a positive implicative hyper *BCK*-ideal of type 1, 3, ..., 8.

Example 3.11. Let $H = \{0, 1, 2, 3\}$ be a hyper *BCK*-algebra which is defined as follows:

0	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	{0}
1	$\{1\}$	$\{0\}$	$\{0\}$	$\{0\}$
2	$\{2\}$	$\{1\}$	$\{0, 1\}$	$\{0, 1\}$
3	$\{3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{0, 2, 3\}$

Then $I = \{0, 2\}$ is a positive implicative hyper *BCK*-ideal of type 5,6,7,8 but it is not a weak hyper *BCK*-ideal(and so is not a hyper *BCK*-ideal) of *H*, since $1 \circ 2 = \{0\} \subseteq I$ and $2 \in I$ but $1 \notin I$.

Lemma 3.12. Let A, B and I are nonempty subsets of H. Then,

(i) If I is a weak hyper BCK-ideal of H, then $A \circ B \subseteq I$ and $B \subseteq I$ imply $A \subseteq I$.

(ii) If I is a hyper BCK-ideal of H, then $A \circ B \ll I$ and $B \subseteq I$ imply $A \subseteq I$.

Proof. (i) The proof is easy.

(ii) The proof follows by (i) and Lemma 3.8(i).

Theorem 3.13. Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra of order 3 and I be a nonempty subset of H. Then,

(i) I is a positive implicative hyper BCK-ideal of type 3 if and only if I is a hyper BCK-ideal.

(ii) I is a positive implicative hyper BCK-ideal of type 1 if and only if I is a weak hyper BCK-ideal of H.

Proof. (i) By Theorem 3.9(i), any positive implicative hyper BCK-ideal of type 3 is a hyper BCK-ideal of H.

Conversely, let I be a hyper BCK-ideal of H. We consider the following two cases. <u>Case 1</u>. H satisfies the normal condition.

By Theorem 2.12, H has at most one proper hyper BCK-ideal which is $I = \{0, 1\}$. Now, let $I = \{0, 1\}$ be a hyper BCK-ideal of H. Then $2 \circ 1 \ll I$. Since $1 \in I$, if $2 \circ 1 \ll I$, then $2 \in I$, which is impossible. Hence $2 \in 2 \circ 1$ and so by Lemma 2.11(v), $2 \circ 1 = \{2\}$ or $\{1, 2\}$.

Now, let $(x \circ y) \circ z \ll I$ and $y \circ z \ll I$, but $x \circ z \not\subseteq I$. Then $2 \in x \circ z$. By Lemma 2.11(iii) and (iv), $x \neq 1$. Moreover, $x \neq 0$. Since if x = 0, then $2 \in x \circ z = 0 \circ z = \{0\}$, which is impossible. Thus x = 2. Since I is a hyper *BCK*-ideal of H, then by Lemma 3.8(i),

$$(x \circ y) \circ z \subseteq I$$
 and $y \circ z \subseteq I$

Now, we consider the following cases.

<u>Case 1-1</u>. If z = 0, since $\{y\} = y \circ 0 = y \circ z \subseteq I$, then y = 0 or 1. If y = 0, then $\{2\} = (2 \circ 0) \circ 0 = (x \circ y) \circ z \subseteq I$, which is a contradiction. If y = 1, then $2 \in 2 \circ 1 = 1$

 $(2 \circ 1) \circ 0 = (x \circ y) \circ z \subseteq I$, which is impossible.

<u>Case 1-2</u>. If z = 1, then $y \circ 1 = y \circ z \subseteq I$. Since I is a hyper *BCK*-ideal of H and $1 \in I$, then $y \in I$ and so y = 0 or 1. If y = 0, then by (HK2)

$$2 \in 2 \circ 1 = (2 \circ 1) \circ 0 = (2 \circ 0) \circ 1 = (x \circ y) \circ z \subseteq I$$

which is a contradiction. If y = 1, then

$$2 \in 2 \circ 1 \subseteq (2 \circ 1) \circ 1 = (x \circ y) \circ z \subseteq I$$

which is impossible.

<u>Case 1-3</u>. If z = 2, since $2 \in x \circ z$ and x = z = 2, then $2 \in 2 \circ 2$. Hence, by Lemma 2.11(vi), $2 \circ 2 = \{0, 2\}$ or $\{0, 1, 2\}$. If y = 0, then

$$2 \in 2 \circ 2 = (2 \circ 0) \circ 2 = (x \circ y) \circ z \subseteq I$$

which is a contradiction. If y = 1, then by (HK2)

$$2 \in 2 \circ 1 \subseteq (2 \circ 2) \circ 1 = (2 \circ 1) \circ 2 = (x \circ y) \circ z \subseteq I$$

which is impossible. If y = 2, then

$$2 \in 2 \circ 2 \subseteq (2 \circ 2) \circ 2 = (x \circ y) \circ z \subseteq I$$

which is impossible. Therefore, $x \circ z \subseteq I$ and so I is a positive implicative hyper *BCK*-ideal of type 3.

<u>Case 2</u>. H satisfies the simple condition.

By Theorem 3.1[3], there are only three following hyper BCK-algebras of order 3 which satisfy the simple condition.

\circ_1	0	1	2		\circ_2	0	1	2		\circ_3	0	1	2
0	{0}	{0}	{0}	_	0	{0}	{0}	{0}	-	0	{0}	$\{0\}$	{0}
1	{1}	$\{0\}$	$\{1\}$		1	$\{1\}$	$\{0\}$	$\{1\}$		1	$\{1\}$	$\{0, 1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$		2	$\{2\}$	$\{2\}$	$\{0, 2\}$		2	$\{2\}$	$\{2\}$	$\{0, 2\}$

Clearly, we can show that the $I_1 = \{0, 1\}$ and $I_2 = \{0, 2\}$ are hyper *BCK*-ideals and positive implicative hyper *BCK*-ideal of type 3 in the above hyper *BCK*-algebras.

(ii) By Theorem 3.9(iv), any positive implicative hyper BCK-ideal of type 1 is a weak hyper BCK-ideal of H.

Conversely, let $I_1 = \{0, 1\}$ be a weak hyper *BCK*-ideal of *H*.

Let $(x \circ y) \circ z \subseteq I_1$ and $y \circ z \subseteq I_1$ but $x \circ z \not\subseteq I_1$ for $x, y, z \in H$. Then $2 \in x \circ z$. Now we consider the following cases.

<u>Case 1</u>. H satisfies the normal condition.

By similar way in the proof of (i), we get that x = 2. Now, we consider the following two cases.

<u>Case 1-1</u>. If z = 0, since $\{y\} = y \circ 0 \subseteq I_1$, then y = 0 or 1. If y = 0, then $\{2\} = (2 \circ 0) \circ 0 \subseteq I_1$ which is impossible. If y = 1, then $2 \circ 1 = (2 \circ 1) \circ 0 \subseteq I_1$. Since I_1 is a weak hyper *BCK*-ideal and $1 \in I_1$, then $2 \in I_1$ which is a contradiction.

<u>Case 1-2</u>. If z = 1, then $(2 \circ y) \circ 1 \subseteq I_1$ and $y \circ 1 \subseteq I_1$. Since I_1 is a weak hyper *BCK*-ideal and $1 \in I_1$, then $2 \circ y \subseteq I_1$ and $y \in I_1$. Moreover, since I_1 is a weak hyper *BCK*-ideal, then $2 \in I_1$, which is impossible.

<u>Case 1-3</u>. If z = 2 since $2 \in x \circ z = 2 \circ 2$, then

$$2 \circ y \subseteq (2 \circ 2) \circ y = (2 \circ y) \circ 2 \subseteq I_1$$

If y = 0 then $2 \in 2 \circ 0 \subseteq I_1$ which is a contradiction. If y = 1, then $2 \circ 1 \subseteq I_1$. Since I_1 is a weak hyper *BCK*-ideal and $1 \in I_1$, then $2 \in I_1$ which is impossible. If y = 2, then $2 \in 2 \circ 2 = y \circ z \subseteq I_1$ which is impossible.

<u>Case 2</u>. H satisfies the simple condition.

Since $2 \in x \circ z$, then by Lemma 2.11(a), x = 2. Therefore,

$$(2 \circ y) \circ z \subseteq I_1$$
 and $y \circ z \subseteq I_1$

Now, we consider the following cases.

<u>Case 2-1</u>. If z = 0, then $\{y\} = y \circ 0 \subseteq I_1$ and $2 \circ y = (2 \circ y) \circ 0 \subseteq I_1$. Since I_1 is a weak hyper *BCK*-ideal and $y \in I_1$, then $2 \in I_1$ which is impossible.

<u>Case 2-2</u>. If z = 1, then $(2 \circ y) \circ 1 \subseteq I_1$ and $y \circ 1 \subseteq I_1$. Since I_1 is a weak hyper *BCK*-ideal and $1 \in I_1$, then $2 \circ y \subseteq I_1$ and $y \in I_1$ and thus $2 \in I_1$, which is a contradiction.

<u>Case 2-3</u>. If z = 2, then $2 \in x \circ z = 2 \circ 2$. Moreover, by Lemma 2.11(a), $2 \circ 1 = \{2\}$. Thus

$$2 \circ y \subseteq (2 \circ 2) \circ y = (2 \circ y) \circ 2 \subseteq I_1$$

If y = 0, then $2 \in 2 \circ 0 \subseteq I_1$, which is impossible. If y = 1, then $\{2\} = 2 \circ 1 \subseteq I_1$, which is a contradiction. If y = 2, then $2 \in 2 \circ 2 = 2 \circ y \subseteq I_1$, which is impossible. Therefore, I_1 is a positive implicative hyper *BCK*-ideal of type 1 of *H*.

Now, let $I_2 = \{0, 2\}$ be a weak hyper *BCK*-ideal of *H* and $(x \circ y) \circ z \subseteq I_2$ and $y \circ z \subseteq I_2$ but $x \circ z \not\subseteq I_2$. Then $1 \in x \circ z$ and so $x \neq 0$. Since if x = 0, then $1 \in x \circ z = 0 \circ z = \{0\}$ which is impossible. Now, we considering the following two cases.

<u>Case 1</u>. H satisfies the simple condition.

By Lemma 2.11(a), x = 1 and so $(1 \circ y) \circ z \subseteq I_2$ and $y \circ z \subseteq I_2$. Now we consider the following cases for z.

<u>Case 1-1</u>. If z = 0, then $1 \circ y = (1 \circ y) \circ 0 \subseteq I_2$ and $\{y\} = y \circ 0 \subseteq I_2$. Since I_2 is a weak hyper *BCK*-ideal of *H* and $y \in I_2$, then $1 \in I_2$ which is impossible.

<u>Case 1-2</u>. If z = 1, since $1 \in x \circ z = 1 \circ 1$, then by Lemma 2.11(a), $1 \circ 1 = \{0, 1\}$ and $1 \circ 2 = \{1\}$. If y = 0, then $1 \in 1 \circ 1 = (1 \circ 0) \circ 1 = (x \circ y) \circ z \subseteq I_2$, which is impossible. If y = 1, then $1 \in 1 \circ 1 \subseteq (1 \circ 1) \circ 1 = (x \circ y) \circ z \subseteq I_2$, which is a contradiction. If y = 2, then $1 \in 1 \circ 2 \subseteq (1 \circ 1) \circ 2 = (1 \circ 2) \circ 1 = (x \circ y) \circ z \subseteq I_2$, which is impossible. <u>Case 1-3</u>. If z = 2, then

$$(1 \circ y) \circ 2 \subseteq I_2$$
 and $y \circ 2 \subseteq I_2$

Since I_2 is a weak hyper *BCK*-ideal of *H* and $2 \in I_2$, then $1 \circ y \subseteq I_2$ and $y \in I_2$. Hence $1 \in I_2$, which is a contradiction.

<u>Case 2</u>. H satisfies the normal condition.

Since $1 \in x \circ z$, then by (HK2),

$$1 \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z \subseteq I_2$$

If y = 0, then $1 \in 1 \circ 0 \subseteq I_2$, which is impossible. If y = 2, then $1 \circ 2 \subseteq I_2$. Since I_2 is a weak hyper *BCK*-ideal of *H* and $2 \in I_2$, then $1 \in I_2$ which is a contradiction. If y = 1, then $1 \circ 1 \subseteq I_2$ and so by Lemma 2.11(b), $1 \circ 1 = \{0\}$ and $1 \circ 2 = \{0\}$ or $\{0, 1\}$. If $1 \circ 2 = \{0, 1\}$ then by (HK1),

$$\{0,1\} = (1 \circ 2) \circ (1 \circ 2) \ll 1 \circ 1 = \{0\}$$

which is impossible. If $1 \circ 2 = \{0\}$, then $1 \circ 2 \subseteq I_2$. Since I_2 is a weak hyper *BCK*-ideal of H and $2 \in I_2$, then $1 \in I_2$ which is impossible. Therefore, I_2 is a positive implicative hyper *BCK*-ideal of type 1.

Theorem 3.14 (3). There are 16 non-isomorphic hyper BCK-algebras of order 3 such that each of them has at least one proper hyper BCK-ideal.

Theorem 3.15. There are 16 non-isomorphic hyper BCK-algebras of order 3 such that each of them has at least one proper positive implicative hyper BCK-ideal of type 3.

Proof. The proof follows by Theorems 3.13(i) and 3.14.

Definition 3.16 (6). A nonempty subset *I* of *H* is said to be *reflexive* if $x \circ x \subseteq I$, for all $x \in H$.

Lemma 3.17 (7). If I is a reflexive hyper BCK-ideal of H, then

 $(x \circ y) \cap I \neq \emptyset$ implies $x \circ y \subseteq I$

for all $x, y \in H$.

Theorem 3.18. Let I be a nonempty subset of H and for any $a \in H$, I_a is defined as follows,

$$I_a = \{ x \in H : x \circ a \subseteq I \}$$

Then the following statements are held:

(i) If I is a positive implicative hyper BCK-ideal of type 1 (3,4), then I_a is a weak hyper BCK-ideal of H, for all $a \in H$,

(ii) Let I be a reflexive positive implicative hyper BCK-ideal of type 3, then I_a is a hyper BCK-ideal of H, for all $a \in H$,

(iii) If for all $a \in H$, I_a is a weak hyper BCK-ideal of H, then I is a positive implicative hyper BCK-ideal of type 1 and 5,

(iv) Let I be reflexive and satisfies the closed condition. Then I is a positive implicative hyper BCK-ideal of type 1(3,...,8) if and only if, I_a is a hyper BCK-ideal of H, for all $a \in H$.

Proof. (i) Let I be a positive implicative hyper BCK-ideal of type 1, $x \circ y \subseteq I_a$ and $y \in I_a$, for $x, y, a \in H$. Then for all $t \in x \circ y, t \circ a \subseteq I$ and $y \circ a \subseteq I$. Thus, $(x \circ y) \circ a = \bigcup_{t \in x \circ y} t \circ a \subseteq I$

and $y \circ a \subseteq I$. Since I is a positive implicative hyper BCK-ideal of type 1, then $x \circ a \subseteq I$ and this implies that $x \in I_a$. Therefore I_a is a weak hyper BCK-ideal of H. The proof of types 3 and 4 is similar.

(ii) Let I be a reflexive positive implicative hyper BCK-ideal of type 3. Then by Theorem 3.9(i), I is a hyper BCK-ideal of H. Let $x \circ y \ll I_a$ and $y \in I_a$, for $x, y, a \in H$. Then for all $t \in x \circ y$ there is $s \in I_a$ such that $t \ll s$ i.e $0 \in t \circ s$ and so $(t \circ s) \cap I \neq \emptyset$. Since I is a reflexive hyper BCK-ideal of H, then by (HK1) and Lemma 3.17, $(t \circ a) \circ (s \circ a) \ll t \circ s \subseteq I$ and so $(t \circ a) \circ (s \circ a) \ll I$. Since $s \circ a \subseteq I$ and I is a hyper BCK-ideal of H, then by (HK1) and Lemma 3.17, $(t \circ a) \circ (s \circ a) \ll t \circ s \subseteq I$ and so $(t \circ a) \circ (s \circ a) \ll I$. Since $s \circ a \subseteq I$ and I is a hyper BCK-ideal of H, then by Lemma 3.12(ii), $t \circ a \subseteq I$. Hence $t \in I_a$ and so $x \circ y \subseteq I_a$. Now, since $y \in I_a$ and by (i), I_a is a weak hyper BCK-ideal of H, then $x \in I_a$. Therefore, I_a is a hyper BCK-ideal of H. (iii) Let $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$ for $x, y, z \in H$. Then $x \circ y \subseteq I_z$ and $y \in I_z$. Since I_z is a hyper BCK-ideal of H, then $x \in I_z$ and this implies that $x \circ z \subseteq I$. Therefore I is a positive implicative hyper BCK-ideal of type 1 and so by Theorem 3.2(v) is of type 5. (iv) The proof of this case follows by (ii), (iii) and Theorem 3.7.

Theorem 3.19. Let I be a nonempty subset of H and for all $a \in I$, I_a^{\ll} is defined as follows:

$$I_a^{\ll} = \{ x \in H : x \circ a \ll I \}$$

Then,

(i) If I and I_a^{\ll} are hyper BCK-ideals of H, for all $a \in H$, then I is a positive implicative hyper BCK-ideal of type 3,

(ii) If I is a reflexive positive implicative hyper BCK-ideal of type 3, then I_a^{\ll} is a hyper BCK-ideal of H, for all $a \in H$.

Proof. (i) Let for all $a \in H$, I_a^{\ll} be a hyper *BCK*-ideal of *H*, $(x \circ y) \circ z \ll I$ and $y \circ z \ll I$ for $x, y, z \in H$. Then for all $t \in x \circ y$, $t \circ z \ll I$ and so $t \in I_z^{\ll}$. Thus $x \circ y \subseteq I_z^{\ll}$ and this implies that $x \circ y \ll I_z^{\ll}$. Since $y \in I_z^{\ll}$ and I_z^{\ll} is a hyper *BCK*-ideal of *H*, then $x \in I_z^{\ll}$.

and so $x \circ z \ll I$. Hence by Lemma 3.8(i), $x \circ z \subseteq I$. Therefore I is a positive implicative hyper *BCK*-ideal of type 3.

(ii) The proof is similar to the proof of Theorem 3.18(ii) by considering Lemma 3.8(i).

Example 3.20. Let $H = \{0, 1, 2, 3\}$. Consider the following table:

0	0	1	2	3
0	{0}	{0}	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{0\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{0,3\}$	$\{0, 3\}$

Then $(H, \circ, 0)$ is a hyper *BCK*-algebra. $I = \{0, 1\}$ is a positive implicative hyper *BCK*ideal of type 3(which is not reflexive). But $I_2 = I_2^{\ll} = \{x \in H : x \circ 2 \subseteq I\} = \{0, 1, 2\}$ are not hyper *BCK*-ideals of *H*, because $3 \circ 1 = \{3\} \ll \{0, 1, 2\} = I_2$ and $1 \in I_2$, but $3 \notin I_2$. Therefore, the reflexivity condition in the Theorems 3.18(ii) and 3.19(ii) is necessary.

Theorem 3.21. Let I be a nonempty subset of H and $a \in H$. Then,

(i) If I is a hyper BCK-ideal of H and $a \in I$, then $I_a = I = I_a^{\ll}$.

(ii) If $H = \{0, 1, 2\}$ is a hyper BCK-algebra of order 3 and I is a positive implicative hyper BCK-ideal of type 3 of H, then I_a and I_a^{\ll} are hyper BCK-ideals of H for all $a \in H$.

Proof. (i) Let I be a hyper *BCK*-ideal of H and $a \in I$. Let $x \in I_a$. Thus $x \circ a \subseteq I$ and so $x \circ a \ll I$. Since $a \in I$, then $x \in I$. Therefore, $I_a \subseteq I$.

Now, let $x \in I$. By (HK3), for all $a \in H$ we get that $x \circ a \ll x \in I$ and so $x \circ a \ll I$. Since I is a hyper *BCK*-ideal of H, then by Lemma 3.8(i), $x \circ a \subseteq I$ which implies $x \in I_a$. Hence $I \subseteq I_a$. Therefore $I = I_a$. The proof of the case I_a^{\ll} is similar.

(ii) Let $I = \{0, 1\}$ be a positive implicative hyper *BCK*-ideal of type 3. Then by Theorem 3.13(i), I is a hyper *BCK*-ideal of H. If a = 0 or 1 then by (i), $I_a = I$. Thus I_a is a hyper *BCK*-ideal of H. Now, let a = 2. We consider the following cases.

<u>Case 1</u>. H satisfies the simple condition.

Let $x \circ y \ll I_2$ and $y \in I_2$ but $x \notin I_2$ where $I_2 = \{x \in H : x \circ 2 \subseteq I\}$. Thus $x \circ 2 \not\subseteq I$ and so $2 \in x \circ 2$. Hence by Lemma 2.11(a), x = 2 and $2 \notin I_2$. Thus $2 \circ y \ll I_2$ and $y \in I_2$.

If y = 0, then $\{2\} = 2 \circ 0 \ll I_2$. Then there is $a \in I_2$ such that $2 \ll a$. It is clear that $a \neq 0$. Moreover, since H satisfies the simple condition, then $a \neq 1$. Hence a = 2 and so $2 = a \in I_2$, which is a contradiction.

If y = 1, then by Lemma 2.11(ii), $\{2\} = 2 \circ 1 \ll I_2$. Similar to the proof of case y = 0, we get a contradiction.

If y = 2, since $y \in I_2$, then $2 \circ 2 = y \circ 2 \subseteq I$ and this implies that $2 \in I_2$, which is impossible. <u>Case 2</u>. *H* satisfies the normal condition.

Let $x \circ y \ll I_2$ and $y \in I_2$ but $x \notin I_2$. By Lemma 2.11(b) and by similar way in the proof of Case 1, we get that x = 2 and $2 \notin I_2$. Thus $2 \circ y \ll I_2$ and $y \in I_2$.

If y = 0, then $\{2\} = 2 \circ 0 \ll I_2$. Then there is $a \in I_2$ such that $2 \ll a$. Clear that $a \neq 0$ and by Lemma 2.11(v) $a \neq 1$. Thus a = 2 and so $2 \in I_2$, which is a contradiction.

If y = 1, then by Lemma 2.11(b), $x \circ y = 2 \circ 1 = \{1\}, \{1, 2\}$ or $\{2\}$. If $2 \circ 1 = \{2\}$ or $\{1, 2\}$, then $2 \in 2 \circ 1 \ll I_2$, which is impossible. If $2 \circ 1 = \{1\}$, since $1 = y \in I_2$ then $1 \circ 2 \subseteq I$ and $2 \circ 1 = \{1\} \subseteq I_2$. Thus $(2 \circ 1) \circ 2 \subseteq I$ and since I is a positive implicative hyper *BCK*-ideal of type 3 and $1 \circ 2 \subseteq I$, then $2 \circ 2 \subseteq I$. This implies that $2 \in I_2$, which is a contradiction.

If y = 2, since $y \in I_2$, then $2 \circ 2 = y \circ 2 \subseteq I$ and this implies that $2 \in I_2$, which is impossible. The proof of the case I_a^{\ll} is similar.

Now let $I = \{0, 2\}$ be a positive implicative hyper *BCK*-ideal of type 3. Then by considering the Lemma 2.11, the proof is similar to the proof of case $I = \{0, 1\}$ by some modifications.

References

- R. A. Borzooei, P. Corsini, M. M. Zahedi, Some kinds of positive Implicative hyper K-ideals, Journal of Discrete Mathematical Sciences and Cryptography, Delhi, (2001), to appear.
- R. A. Borzooei, M. M. Zahedi, Positive Implicative hyper K-ideals, Scientiae Mathematicae Japonicae, Vol. 53, No. 3 (2001), 525-533.
- [3] R. A. Borzooei, M. M. Zahedi, H. Rezaei, Classification of Hyper BCK-algebras of Order 3, Italian Journal of Pure and Applied Mathematics, No. 12 (2002), 175-184.
- [4] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, (1993).
- [5] Y. Imai, K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42 (1966), 19-22.
- [6] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematicae Japonicae, 23 (1978), 1-26.
- [7] Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japon, Vol. 51, No. 3 (2000), 493-498.
- [8] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, No. 10 (2000), 127-136.
- Y. B. Jun, X. L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematica, No 2, Vol. 3(1999),303-309.
- [10] Y. B. Jun, X. L. Xin, Positive implicative hyper BCK-algebras, Scientiae Mathematicae Japonicae, Vol. 55, No. 3, (2002) 97-106.
- [11] F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockhholm, (1934), 45-49.
- [12] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moonsa, Seoul, Korea, (1994).

R. A. Borzooei, M. Bakhshi

DEPARTMENT OF MATHEMATICS, SISTAN AND BALUCHESTAN UNIVERSITY ZAHEDAN, IRAN.

e-mail: borzooei@hamoon.usb.ac.ir