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Abstract. The fuzzification of an implicative LI-ideal is considered and some of their
properties are investigated. Characterizations of a fuzzy implicative LI-ideal are estab-
lished. Conditions for a fuzzy LI-ideal to be a fuzzy implicative LI-ideal are provided.
Extension property of a fuzzy implicative LI-ideal is built.

1. Introduction

Non-classical logic has become a considerable formal tool for computer science and artifi-
cial intelligence to deal with fuzzy and/or uncertain information. In the field of many-valued
logic, lattice-valued logic plays an important role for two aspects: Firstly, it extends the
chain-type truth-value field of some well-known presented logic [1] (such as two-valued logic,
three-valued logics introduced by �Lukasiewicz, Bochvar, Kleene, Heyting, Finn, Hallden,
Segerberg, Slupecki and Sobociński, n-valued logics introduced by �Lukasiewicz, Post, Slu-
pecki, Sobociński and Gödel, as well as the �Lukasiewicz logic with truth value in the interval
[0, 1] or Zadeh’s infinite-valued logic, etc.) to some relatively general lattices. Secondly,
the incompletely comparable property of truth value characterized by general lattice can
more efficiently reflect the uncertainty of people’s thinking, judging and decision. Hence,
lattice-valued logic is becoming a research field which strongly influences the development of
Algebraic Logic, Computer Science and Artificial Intelligence Technology. In 1969, Goguen
proposed the first lattice-valued logic formal system based on complete-lattice-ordered semi-
groups [2], where the author did not provide a syntax associated with the given semantics.
However, the concept of enriched residuated lattice introduced by Goguen provided a new
idea and approach to study the lattice-valued logic. So, in 1979, Pavelka proposed a lattice-
valued propositional logic system based on enriched residuated lattices [15]. Although this
logic is based on relatively general lattice, its main results are limited to the interval [0, 1]
or the finite chain of truth value. In spite of such limitation, these results reflect some
fundamental characteristics of fuzzy logic. Pavelka’s work is concerned only with proposi-
tional fuzzy logic. In 1982, Novak extended it to first-order fuzzy logic based on the interval
[0, 1] or a finite chain [14], especially including some additional generalized quantifiers, and
proved the soundness theorem and completeness theorem of this formal system. In order
to establish a logic system with truth value in a relatively general lattice, in 1990, dur-
ing the study of the project “The Study of Abstract Fuzzy Logic” granted by National
Natural Science Foundation in China, Xu firstly established the lattice implication alge-
bra by combining lattice and implication algebra, and investigated many useful structures
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[11, 12, 16, 17, 18]. Lattice implication algebra provided the foundation to establish the
corresponding logic system from the algebraic viewpoint. For the general development of
lattice implication algebras, the ideal theory plays an important role as well as the filter
theory. Xu and Qin [18] introduced the notions of filter and implicative filter in a lattice
implication algebra, and investigated their properties. Jun (together with Xu, Qin, Kim
and Roh) studied several filters in lattice implication algebras [3, 4, 5, 8, 10]. In particular,
Jun [3] gave an equivalent condition of a filter, and provided some equivalent conditions
for a filter to be an implicative filter in a lattice implication algebra. In [6], Jun et al.
introduced the notion of LI-ideals in lattice implication algebras and investigated some of
its properties. Also, Jun et al. [7, 9] considered the fuzzification of LI-ideals. In [13], Liu,
Xu, Qin and Liu introduced the notion of ILI-ideals in lattice implication algebras. In this
paper, we discuss the fuzzification of implicative LI-ideals in lattice implication algebras.
We five characterizations of a fuzzy implicative LI-ideal. We provide conditions for a fuzzy
LI-ideal to be a fuzzy implicative LI-ideal. We build the extension property of a fuzzy
implicative LI-ideal.

2. Preliminaries

Definition 2.1. [16] A lattice implication algebra is defined to be a bounded lattice (L;
∨, ∧, 0, 1) with order-reversing involution “′” and a binary operation “→” satisfying the
following axioms:
(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) x → y = y′ → x′,
(I4) x → y = y → x = 1 ⇒ x = y,
(I5) (x → y) → y = (y → x) → x,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z),
for all x, y, z ∈ L.

A lattice implication algebra L is called a lattice H-implication algebra if it satisfies
x∨ y ∨ ((x ∧ y) → z) = 1 for all x, y, z ∈ L. We can define a partial ordering ≤ on a lattice
implication algebra L by x ≤ y if and only if x → y = 1. In a lattice implication algebra L,
the following hold (see [16]):
(p1) 0 → x = 1, 1 → x = x and x → 1 = 1.
(p2) x → y ≤ (y → z) → (x → z).
(p3) x ≤ y implies y → z ≤ x → z and z → x ≤ z → y.
(p4) x′ = x → 0.
(p5) x ∨ y = (x → y) → y.
(p6) ((y → x) → y′)′ = x ∧ y = ((x → y) → x′)′.
(p7) x ≤ (x → y) → y.
(p8) ((x → y) → y) → y = x → y.

In a lattice implication algebra L, the following are equivalent.
(q1) x → (x → y) = x → y.
(q2) x → (y → z) = (x → y) → (x → z).
(q3) x → (y → z) = (x ∧ y) → z.
(q4) (x → y) → x = x.
(q5) L is a lattice H-implication algebra.

Definition 2.2. [6] A subset A of a lattice implication algebra L is called an LI-ideal of L
if it satisfies
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(Id1) 0 ∈ A,
(Id2) ∀x, y ∈ L, (x → y)′ ∈ A, y ∈ A ⇒ x ∈ A.

Proposition 2.3. [6] Let A be an LI-ideal of a lattice implication algebra L and let x, y ∈ L.
If y ≤ x and x ∈ A, then y ∈ A.

Proposition 2.4. [13, Theorem 2.5] Let I be a nonempty subset of a lattice implication
algebra L. Then I is an LI-ideal of L if and only if it satisfies

∀x, y ∈ I, ∀z ∈ L, (z → x)′ ≤ y ⇒ z ∈ I.

Definition 2.5. [7] A fuzzy set Ā in a lattice implication algebra L is called a fuzzy LI-ideal
of L if it satisfies
(F1) Ā(0) ≥ Ā(x), ∀x ∈ L.
(F2) Ā(x) ≥ min{Ā((x → y)′), Ā(y)}, ∀x, y ∈ L.

Note that every fuzzy LI-ideal is order reversing (see [7, Proposition 3.4]). Let L and M
be lattice implication algebras. A mapping f : L → M is called an implication homomor-
phism if f(x → y) = f(x) → f(y) for all x, y ∈ L.

Let f be a mapping from a set L to a set M and let Ā and B̄ be fuzzy sets in L and M ,
respectively. Then f(Ā), the image of Ā under f, is a fuzzy set in M :

f(Ā)(y) :=

{
sup

x∈f−1(y)

Ā(x) if f−1(y) 
= ∅,
0 if f−1(y) = ∅,

for all y ∈ M. The preimage of B̄ under f, f−1(B̄), is a fuzzy set in L given by f−1(B̄)(x) =
B̄(f(x)) for all x ∈ L. A fuzzy set Ā in L has sup property if for every subset T of L there
exists x0 ∈ T such that Ā(x0) = sup

u∈T
Ā(u).

3. Fuzzy implicative LI-ideals

In what follows, let L denote a lattice implication algebra unless otherwise specified. We
first give a characterization of a fuzzy LI-ideal.

Theorem 3.1. A fuzzy set Ā in L is a fuzzy LI-ideal of L if and only if it satisfies

∀x, y, z ∈ L, (z → x)′ ≤ y ⇒ Ā(z) ≥ min{Ā(x), Ā(y)}.
Proof. Suppose that Ā is a fuzzy LI-ideal of L. Let x, y, z ∈ L be such that (z → x)′ ≤ y.
Since every fuzzy LI-ideal is order reversing, it follows that Ā((z → x)′) ≥ Ā(y) so from
(F2) that

Ā(z) ≥ min{Ā((z → x)′), Ā(x)} ≥ min{Ā(x), Ā(y)}.
Conversely, suppose that Ā satisfies the given condition. Since (0 → x)′ ≤ x for all x ∈ L,
we have Ā(0) ≥ Ā(x) for all x ∈ L, which is (F1). Note that (x → y)′ ≤ (x → y)′ for all
x, y ∈ L. Hence, by assumption, we get

Ā(x) ≥ min{Ā(y), Ā((x → y)′)}
which is (F2). Hence Ā is a fuzzy LI-ideal of L.

Definition 3.2. [13] A nonempty subset A of L is called an implicative LI-ideal of L if it
satisfies (Id1) and
(Id3) ∀x, y, z ∈ L, (((x → y)′ → y)′ → z)′ ∈ A, z ∈ A ⇒ (x → y)′ ∈ A.

Proposition 3.3. [13, Theorems 3.8 and 3.12] Let I be an LI-ideal of L. Then the following
are equivalent.
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(i) I is an implicative LI-ideal of L.
(ii) ∀x, y ∈ L, (x → (y → x)′)′ ∈ I ⇒ x ∈ I.
(iii) ∀x, y ∈ L, ((x → y)′ → y)′ ∈ I ⇒ (x → y)′ ∈ I.

Definition 3.4. A fuzzy set Ā in L is called a fuzzy implicative LI-ideal of L if it satisfies
(F1) and
(F3) Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}, ∀x, y, z ∈ L.

Example 3.5. Let L = {0, a, b, 1} be a set with Cayley tables as follows:

x x′

0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Define ∨- and ∧-operations on L as follows:

x ∨ y := (x → y) → y, x ∧ y := ((x′ → y′) → y′)′

for all x, y ∈ L. Then (L,∨,∧,→,′ ) is a lattice implication algebra (see [13]). Let Ā be
a fuzzy set in L defined by Ā(0) = 0.7 and Ā(a) = Ā(b) = Ā(1) = 0.3. Then Ā is a
fuzzy implicative LI-ideal of L. Also a fuzzy set B̄ in L given by B̄(0) = B̄(a) = 0.6 and
B̄(b) = B̄(1) = 0.2 is a fuzzy implicative LI-ideal of L.

We give the relation between fuzzy LI-ideals and fuzzy implicative LI-ideals.

Theorem 3.6. Any fuzzy implicative LI-ideal of L is a fuzzy LI-ideal of L.

Proof. Let Ā be a fuzzy implicative LI-ideal of L. Taking y = 0 and z = y in (F3), we have

Ā(x) = Ā((x → 0)′)
≥ min{Ā((((x → 0)′ → 0)′ → y)′), Ā(y)}
= min{Ā((x → y)′), Ā(y)}.

Hence Ā is a fuzzy LI-ideal of L.

The converse of Theorem 3.6 may not be true as seen in the following example.

Example 3.7. Let L = {0, a, b, 1} be a set with Cayley tables as follows:

x x′

0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Define ∨- and ∧-operations on L as follows:

x ∨ y := (x → y) → y, x ∧ y := ((x′ → y′) → y′)′

for all x, y ∈ L. Then (L,∨,∧,→,′ ) is a lattice implication algebra (see [13]). Let Ā be a
fuzzy set in L defined by Ā(0) = 0.8 and Ā(a) = Ā(b) = Ā(1) = 0.08. Then Ā is a fuzzy
LI-ideal of L. But it is not a fuzzy implicative LI-ideal of L because

Ā((b → a)′) � min{Ā((((b → a)′ → a)′ → 0)′), Ā(0)}.
If we strengthen the condition(s) of L, then we have the following theorem.

Theorem 3.8. If L is a lattice H-implication algebra, then every fuzzy LI-ideal is a fuzzy
implicative LI-ideal.
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Proof. Let Ā be a fuzzy LI-ideal of a lattice H-implication algebra L. Using (I3), (q1), and
(F2), we have

Ā((x → y)′) = Ā((y′ → x′)′) = Ā((y′ → (y′ → x′))′)
= Ā((y′ → (x → y))′) = Ā(((x → y)′ → y)′)
≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}

for all x, y, z ∈ L, which proves (F3). Hence Ā is a fuzzy implicative LI-ideal of L.

Proposition 3.9. Let Ā be a fuzzy set in L satisfying (F1) and
(F4) Ā(((x → z)′ → (y → z)′)′) ≥ min{Ā((((x → y)′ → z)′ → u)′), Ā(u)}
for all x, y, z, u ∈ L. Then Ā is a fuzzy implicative LI-ideal of L.

Proof. For any x, y, z ∈ L, we have

Ā((x → y)′) = Ā((1 → (x → y))′) by (p1)
= Ā((0′ → (x → y))′) by (I2) and (p4)
= Ā(((x → y)′ → 0)′) by (I3)
= Ā(((x → y)′ → 1′)′) by (p1) and (p4)
= Ā(((x → y)′ → (y → y)′)′) by (I2)
≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)} by (F4)

which proves (F3). Hence Ā is a fuzzy implicative LI-ideal of L.

Proposition 3.10. Let Ā be a fuzzy LI-ideal of L satisfying
(F5) Ā(((x → z)′ → (y → z)′)′) ≥ Ā(((x → y)′ → z)′)
for all x, y, z ∈ L. Then Ā is a fuzzy implicative LI-ideal of L.

Proof. Let x, y, z, u ∈ L. Using (F5) and (F2), we have

Ā(((x → z)′ → (y → z)′)′) ≥ Ā(((x → y)′ → z)′)
≥ min{Ā((((x → y)′ → z)′ → u)′), Ā(u)}.

It follows from Proposition 3.9 that Ā is a fuzzy implicative LI-ideal of L.

Proposition 3.11. Let Ā be a fuzzy LI-ideal of L satisfying
(F6) Ā((x → y)′) ≥ Ā(((x → y)′ → y)′)
for all x, y ∈ L. Then Ā is a fuzzy implicative LI-ideal of L.

Proof. For any x, y, z ∈ L, we get

Ā((x → y)′) ≥ Ā(((x → y)′ → y)′)
≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}, by (F2)

and so Ā is a fuzzy implicative LI-ideal of L.

Proposition 3.12. Every fuzzy implicative LI-ideal Ā of L satisfies the inequality (F6).

Proof. For any x, y ∈ L, we obtain

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → 0)′), Ā(0)}
= Ā((((x → y)′ → y)′ → 0)′)
= Ā((0′ → ((x → y)′ → y))′)
= Ā(((x → y)′ → y)′),

completing the proof.
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Combining Propositions above, we give a characterization of a fuzzy implicative LI-ideal.

Theorem 3.13. Let Ā be a fuzzy LI-ideal of L. Then the following statements are equiv-
alent.

(i) Ā is a fuzzy implicative LI-ideal of L.
(ii) Ā satisfies (F4).

(iii) Ā satisfies (F5).
(iv) Ā satisfies (F6).

Theorem 3.14. Let Ā be a fuzzy LI-ideal of L. Then the following are equivalent.

(i) Ā is a fuzzy implicative LI-ideal of L.
(ii) Ā(x) ≥ Ā((x → (y → x)′)′), ∀x, y ∈ L.
(iii) Ā(x) ≥ min{Ā(((x → (y → x)′)′ → z)′), Ā(z)}, ∀x, y, z ∈ L.

Proof. (i) ⇒ (ii). Suppose that Ā is a fuzzy implicative LI-ideal of L and let x, y, z ∈ L.
Note that

((y → (y → x)′)′ → (y → x)′)′ → (x → (y → x)′)′

= (x → (y → x)′) → ((y → (y → x)′)′ → (y → x)′) by (I3)
≥ (y → (y → x)′)′ → x by (p2)
= x′ → (y → (y → x)′) by (I3)
= x′ → ((y → x) → y′) by (I3)
= (y → x) → (x′ → y′) by (I1)
= (y → x) → (y → x) = 1. by (I3) and (I2)

Since x ≤ 1 for all x ∈ L, it follows from (I4) that

((y → (y → x)′)′ → (y → x)′)′ → (x → (y → x)′)′ = 1,

i.e., ((y → (y → x)′)′ → (y → x)′)′ ≤ (x → (y → x)′)′. Since every fuzzy LI-ideal is order
reversing, we have

Ā((x → (y → x)′)′) ≤ Ā(((y → (y → x)′)′ → (y → x)′)′)
≤ Ā((y → (y → x)′)′). by Proposition 3.12

Note that

(x → (y → (y → x)′)′)′ = (x → ((y → x) → y′)′)′ by (I3)
= (x → ((x′ → y′) → y′)′)′ by (I3)
= (((x′ → y′) → y′) → x′)′ by (I3)
= (((y′ → x′) → x′) → x′)′ by (I5)
= (y′ → x′)′ by (p8)
= (x → y)′ by (I3)
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and

(x → y)′ → (x → (y → x)′)′

= (x → (y → x)′) → (x → y) by (I3)
≥ (y → x)′ → y by (I1) and (p2)
= y′ → (y → x) by (I3)
= (y → 0) → (y → x) by (p4)
≥ 0 → x = 1. by (I1), (p2) and (p1)

Hence (x → y)′ → (x → (y → x)′)′ = 1, i.e., (x → y)′ ≤ (x → (y → x)′)′, and so

Ā((x → (y → x)′)′) ≤ Ā((x → y)′) = Ā((x → (y → (y → x)′)′)′).

It follows from (F2) that

Ā(x) ≥ min{Ā((x → (y → (y → x)′)′)′), Ā((y → (y → x)′)′)}
≥ Ā((x → (y → x)′)′),

which proves (ii).
(ii) ⇒ (iii). It is straightforward by (F2).
(iii) ⇒ (i). Assume that Ā satisfies the condition (iii) and let x, y ∈ L. Taking z = 0 in

(iii) and using (F1) and (p4), we get

Ā(x) ≥ min{Ā(((x → (y → x)′)′ → 0)′), Ā(0)}
= Ā(((x → (y → x)′)′ → 0)′)
= Ā((((x → (y → x)′)′)′)′)
= Ā((x → (y → x)′)′).

(1)

Note that

((x → y)′ → (x → (x → y)′)′)′

= ((x → (x → y)′) → (x → y))′ by (I3)
= (((x → y) → x′) → (y′ → x′))′ by (I3)
= (y′ → (((x → y) → x′) → x′))′ by (I1)
= (y′ → ((x′ → (x → y)) → (x → y)))′ by (I5)
= (y′ → ((x′ → (y′ → x′)) → (y′ → x′)))′ by (I3)
= ((x′ → (y′ → x′)) → (y′ → (y′ → x′)))′ by (I1)
= ((y′ → (x′ → x′)) → (y′ → (y′ → x′)))′ by (I1)
= ((y′ → 1) → (y′ → (y′ → x′)))′ by (I2)
= (y′ → (y′ → x′))′ by (p1)
= ((x → y)′ → y)′. by (I3)

Using (1), we have

Ā((x → y)′) ≥ Ā(((x → y)′ → (x → (x → y)′)′)′) = Ā(((x → y)′ → y)′),

and so Ā is a fuzzy implicative LI-ideal of L by Proposition 3.11. This completes the
proof.

For any fuzzy set Ā in L, let us denote U(Ā; t), t ∈ [0, 1], the level set of Ā, that is,
U(Ā; t) := {x ∈ L | Ā(x) ≥ t}.
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Lemma 3.15. [7, Proposition 3.10] A fuzzy set Ā in L is a fuzzy LI-ideal of L if and only
if the nonempty level set U(Ā; t) of Ā is an LI-ideal of L, where t ∈ [0, 1].

Theorem 3.16. A fuzzy set Ā in L is a fuzzy implicative LI-ideal of L if and only if the
nonempty level set U(Ā; t) of Ā is an implicative LI-ideal of L, where t ∈ [0, 1].

Proof. If Ā is a fuzzy implicative LI-ideal of L, then it is a fuzzy LI-ideal of L (see Theorem
3.6). Hence U(Ā; t) (
= ∅), t ∈ [0, 1], is an LI-ideal of L by Lemma 3.15. Let x, y ∈ L be such
that (x → (y → x)′)′ ∈ U(Ā; t). Then, by Theorem 3.14(ii), we have Ā(x) ≥ Ā((x → (y →
x)′)′) ≥ t, and so x ∈ U(Ā; t). Hence U(Ā; t) is an implicative LI-ideal of L by Proposition
3.3. Conversely, suppose that U(Ā; t), t ∈ [0, 1], is a nonempty implicative LI-ideal of L.
Then U(Ā; t) is a nonempty LI-ideal, and so Ā is a fuzzy LI-ideal of L by Lemma 3.15.
Now, assume that there exists x0, y0 ∈ L such that Ā(x0) � Ā((x0 → (y0 → x0)′)′). Taking

t0 :=
1
2

(Ā(x0) + Ā((x0 → (y0 → x0)′)′)),

we get Ā(x0) < t0 < Ā((x0 → (y0 → x0)′)′). Hence (x0 → (y0 → x0)′)′ ∈ U(Ā; t0) and
x0 /∈ U(Ā; t0). This is a contradiction. Therefore Ā(x) ≥ Ā((x → (y → x)′)′) for all
x, y ∈ L. Using Theorem 3.14, we know that Ā is a fuzzy implicative LI-ideal of L.

Lemma 3.17. [13, Theorem 3.9] Let I and J be LI-ideals of L such that I ⊆ J . If I is an
implicative LI-ideal of L, then so is J .

Theorem 3.18. (Extension property for fuzzy implicative LI-ideals) Let Ā and B̄ be fuzzy
LI-ideals of L such that Ā ⊆ B̄, that is, Ā(x) ≤ B̄(x) for all x ∈ L. If Ā is a fuzzy
implicative LI-ideal of L, then so is B̄.

Proof. Note that the inclusion Ā ⊆ B̄ implies that U(Ā; t) ⊆ U(B̄; t) for every t ∈ [0, 1]. If
Ā is a fuzzy implicative LI-ideal of L, then U(Ā; t) (
= ∅) is an implicative LI-ideal of L for
t ∈ [0, 1]. Using Lemma 3.17, U(B̄; t) (
= ∅) is an implicative LI-ideal of L for t ∈ [0, 1]. It
follows from Theorem 3.16 that B̄ is a fuzzy implicative LI-ideal of L.

Theorem 3.19. Let I be a subset of L. For a fixed element e ∈ L, let Āe be a fuzzy set in
L given by

Āe(x) :=
{

t1 if (x → e)′ ∈ I,
t2 otherwise,

for all x ∈ L, where t1 > t2 in [0, 1]. If I is an implicative LI-ideal of L, then Āe is a fuzzy
LI-ideal of L.

Proof. Assume that I is an implicative LI-ideal of L. Since (0 → e)′ = 1′ = 0 ∈ I, we get
Āe(0) = t1 ≥ Āe(x) for all x ∈ L. Let x, y ∈ L. If ((x → y)′ → e)′ /∈ I or (y → e)′ /∈ I, then
Āe((x → y)′) = t2 or Āe(y) = t2. Hence

Āe(x) ≥ t2 = min{Āe((x → y)′), Āe(y)}.
Assume that ((x → y)′ → e)′ ∈ I and (y → e)′ ∈ I. Note that

((x → e)′ → e)′ → ((x → y)′ → e)′

= ((x → y)′ → e) → ((x → e)′ → e) by (I3)
≥ (x → e)′ → (x → y)′ by (p2)
= (x → y) → (x → e) by (I3)
≥ y → e by (I1) and (p2)
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so that (((x → e)′ → e)′ → ((x → y)′ → e)′)′ ≤ (y → e)′. It follows from Proposition 2.4
that ((x → e)′ → e)′ ∈ I, and so (x → e)′ ∈ I by Proposition 3.3. Therefore Āe(x) = t1 =
min{Āe((x → y)′), Āe(y)}. Consequently, Āe is a fuzzy LI-ideal of L.

Theorem 3.20. For every LI-ideal I of L and every element e of L, if the fuzzy set Āe

which is given in Theorem 3.19 is a fuzzy LI-ideal of L, then I is an implicative LI-ideal
of L.

Proof. Suppose that for each e ∈ L, Āe is a fuzzy LI-ideal of L. Assume that ((x → y)′ →
y)′ ∈ I for all x, y ∈ L. Then Āy((x → y)′) = t1. Since (y → y)′ = 1′ = 0 ∈ I, we get
Āy(y) = t1. Using (F2), we have

Āy(x) ≥ min{Āy((x → y)′), Āy(y)} = t1,

and so Āy(x) = t1 which shows that (x → y)′ ∈ I. Therefore I is an implicative LI-ideal of
L by Proposition 3.3.

Theorem 3.21. Let f : L → M be an onto implication homomorphism of lattice implication
algebras such that f(0) = 0.

(i) If Ā is a fuzzy implicative LI-ideal of L with sup property, then f(Ā) is a fuzzy im-
plicative LI-ideal of M .

(ii) If B̄ is a fuzzy implicative LI-ideal of M , then f−1(B̄) is a fuzzy implicative LI-ideal
of L.

Proof. (i) Note that f(Ā)(0) = sup
z∈ f−1(0)

Ā(z) = Ā(0) ≥ Ā(x) for all x ∈ L. Moreover, we

have f(Ā)(a) = sup
x∈ f−1(a)

Ā(x) for all a ∈ M . Thus f(Ā)(0) ≥ sup
x∈ f−1(a)

Ā(x) = f(Ā)(a) for

all a ∈ M. For any a, b, c ∈ M, let x0 ∈ f−1(a), y0 ∈ f−1(b), and z0 ∈ f−1(c) be such that
Ā((x0 → y0)′) = sup

u∈ f−1((a→b)′)
Ā(u), Ā(z0) = sup

v∈ f−1(c)

Ā(v), and

Ā((((x0 → y0)′ → y0)′ → z0)′) = sup
w∈ f−1((((a→b)′→b)′→c)′)

Ā(w).

Then

f(Ā)((a → b)′) = sup
u∈ f−1((a→b)′)

Ā(u) = Ā((x0 → y0)′)

≥ min{Ā((((x0 → y0)′ → y0)′ → z0)′), Ā(z0)}
= min{ sup

w∈f−1((((a→b)′→b)′→c)′)
Ā(w), sup

v∈f−1(c)

Ā(v)}

= min{f(Ā)((((a → b)′ → b)′ → c)′), f(Ā)(c)}.

Hence f(Ā) is a fuzzy implicative LI-ideal of L.
(ii) Note that f−1(B̄)(0) = B̄(f(0)) = B̄(0) ≥ B̄(x) for all x ∈ M. Since f is onto, there

exists ux ∈ L such that f(ux) = x. Hence

f−1(B̄)(0) ≥ B̄(x) = B̄(f(ux)) = f−1(B̄)(ux).
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Since x is arbitrary, we know that f−1(B̄)(0) ≥ f−1(B̄)(y) for all y ∈ L. Now for any x, y ∈ L,
we have

min{f−1(B̄)((x → y)′), f−1(B̄)(y)}
= min{B̄(f((x → y)′)), B̄(f(y))}
= min{B̄(f((x → y) → 0)), B̄(f(y))}
= min{B̄(f(x → y) → f(0)), B̄(f(y))}
= min{B̄((f(x) → f(y)) → 0), B̄(f(y))}
= min{B̄((f(x) → f(y))′), B̄(f(y))}
≤ B̄(f(x)) = f−1(B̄)(x),

and

f−1(B̄)((x → y)′) = B̄(f((x → y)′)) = B̄((f(x) → f(y))′)
≥ B̄(((f(x) → f(y))′ → f(y))′) = B̄(((f(x → y))′ → f(y))′)
= B̄((f((x → y)′) → f(y))′) = B̄((f((x → y)′ → y))′)
= B̄(f(((x → y)′ → y)′)) = f−1(B̄)(((x → y)′ → y)′).

Hence f−1(B̄) is a fuzzy implicative LI-ideal of L.

Theorem 3.22. Let Ā be a fuzzy implicative LI-ideal of L with Im(Ā) = {ti | i ∈ Λ},
where ∅ 
= Λ ⊂ [0, 1]. Let Ω := {U (Ā; t) | t ∈ Im(Ā)}. Then Ω contains all level implicative
LI-ideals of Ā if and only if Ā attains its infimum on all implicative LI-ideals of L.

Proof. Suppose that Ω contains all level implicative LI-ideals of Ā. Let I be an implicative
LI-ideal of L. If Ā is constant on I, then we are done. Assume that Ā is not constant on
I. If I = L, we let β := inf Im(Ā). Then β ≤ t for all t ∈ Im(Ā), and so U(Ā; t) ⊆ U(Ā; β).
But U(Ā; 0) = L ∈ Ω because Ω contains all level implicative LI-ideals of Ā. Hence there
exists α ∈ Im(Ā) such that U(Ā; α) = L. It follows that L = U(Ā; α) ⊆ U(Ā; β) so that
U(Ā; β) = U(Ā; α) = L. Now it is sufficient to show that α = β. If β < α, then there exists
γ ∈ Im(Ā) such that β ≤ γ < α. Thus U(Ā; γ) � U(Ā; α) = L, a contradiction. Therefore
α = β. If I � L, then we consider the fuzzy set ĀI in L defined by

ĀI(x) :=
{

δ ∈ (0, 1] for x ∈ I,
0 otherwise.

It is routine to check that ĀI is a fuzzy implicative LI-ideal of L. Let

Γ := {i ∈ Λ | Ā(y) = ti for some y ∈ I}
and ΩI := {U (ĀI ; ti) | i ∈ Γ}. Noticing that ΩI contains all level implicative LI-ideals,
then there exists x0 ∈ I such that Ā(x0) = inf{ĀI(x) | x ∈ I}, which implies that Ā(x0) =
inf{Ā(x) | x ∈ I}. This proves that Ā attains its infimum on all implicative LI-ideals of L.
To prove the converse, let U(Ā; α) be a level implicative LI-ideal of Ā. If α = t for some
t ∈ Im(Ā), then clearly U(Ā; α) ∈ Ω. If α 
= t for all t ∈ Im(Ā), then there does not exist
x ∈ L such that Ā(x) = α. Let I = {x ∈ L | Ā(x) > α}. Obviously 0 ∈ I. Let x, y, z ∈ L be
such that (((x → y)′ → y)′ → z)′ ∈ I and z ∈ I. Then Ā((((x → y)′ → y)′ → z)′) > α and
Ā(z) > α. It follows from (F3) that

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)} > α

so that (x → y)′ ∈ I. Hence I is an implicative LI-ideal of L. By hypothesis, there exists
y ∈ I such that Ā(y) = inf{Ā(x) | x ∈ I}. But Ā(y) ∈ Im(Ā) implies Ā(y) = s for some
s ∈ Im(Ā). Hence

inf{Ā(x) | x ∈ I} = Ā(y) = s > α.
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Note that there does not exist z ∈ L such that α ≤ Ā(z) < s, which gives U(Ā; α) =
U(Ā; s) ∈ Ω. Therefore Ω contains all level implicative LI-ideals of Ā. This completes the
proof.

Theorem 3.23. Let Ā be a fuzzy set in L with Im(Ā) = {t0, t1, · · · , tn}, where ti < tj
whenever i > j. Let {Ik | k = 0, 1, · · · , n} be a family of implicative LI-ideals of L such
that

(i) I0 ⊂ I1 ⊂ · · · ⊂ In = L,
(ii) Ā(I∗k ) = tk, where I∗k = Ik \ Ik−1, I−1 = ∅ for k = 0, 1, · · · , n.

Then Ā is a fuzzy implicative LI-ideal of L.

Proof. Since 0 ∈ I0, we have Ā(0) = t0 ≥ Ā(x) for all x ∈ L. Let x, y, z ∈ L. If (((x →
y)′ → y)′ → z)′ ∈ I∗k and z ∈ I∗k , then (x → y)′ ∈ Ik. Hence

Ā((x → y)′) ≥ tk = min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}.
If (((x → y)′ → y)′ → z)′ /∈ I∗k and z /∈ I∗k , then the following four cases arise:

• (((x → y)′ → y)′ → z)′ ∈ L \ Ik and z ∈ L \ Ik.
• (((x → y)′ → y)′ → z)′ ∈ Ik−1 and z ∈ Ik−1.
• (((x → y)′ → y)′ → z)′ ∈ L \ Ik and z ∈ Ik−1.
• (((x → y)′ → y)′ → z)′ ∈ Ik−1 and z ∈ L \ Ik.

But, in either case, we know that

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}.
If (((x → y)′ → y)′ → z)′ ∈ I∗k and z /∈ I∗k , then either z ∈ Ik−1 or z ∈ Ir for some r > k.
It follows that either (x → y)′ ∈ Ik or (x → y)′ ∈ Ir . Hence

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}.
If (((x → y)′ → y)′ → z)′ /∈ I∗k and z ∈ I∗k , then by similar process we have

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}.
Summarizing the above results, we obtain

Ā((x → y)′) ≥ min{Ā((((x → y)′ → y)′ → z)′), Ā(z)}
for all x, y, z ∈ L. Hence Ā is a fuzzy implicative LI-ideal of L.
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