INTUITIONISTIC FUZZY α-IDEALS OF IS-ALGEBRAS

Zhan Jianming \& Tan Zhisong

Received July 1, 2003

Abstract

In this paper, we introduce the notion of intuitionistic fuzzy α-ideals of IS-algebras and investigate some of their properties.

1.Introduction and Preliminaries In 1996, Iseki introduced the notion of BCK/BCIalgebras. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Jun et al [3] introduced a new class of algebras related to BCIalgebras and semigroups, called a BCI-semigroup. In 1998, for the convenience of study, Jun et al [4] renamed the BCI-semigroups as the IS-algebra and studied further properties. In this paper, we consider the fuzzification of α-ideals of IS-algebras and study their properties.

By a BCI-algebra we mean $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$
(II) $(x *(x * y)) * y=0$
(III) $x * x=0$
(IV) $x * y=0$ and $y * x=0$ imply $x=y$ for all $x, y, z \in X$.

In any BCI-algebra X one can define a partial order \leq by putting $x \leq y$ if and only if $x * y=0$.

By an IS-algebra we mean a nonempty set X with two binary operation "*" and "." and constant 0 satisfying the axioms:
(I) $I(X)=(X ; *, 0)$ is a BCI-algebra
(II) $S(X)=(X ; \cdot)$ is a semigroup.
(III) The operation "." is distribute over the operation "*", that is, $x \cdot(y * z)=(y \cdot z) *(x \cdot z)$ and $(x * y) \cdot z=(x \cdot z) *(y \cdot z)$ for all $x, y, z \in X$. For the convience, we use $x y$ instead for $x \cdot y$.

A nonempty subset A of a semigroup $S(X)=(X ; \cdot)$ is said to be stable if $x a \in A$ whenever $x \in S(X)$ and $a \in A$.

We now review some fuzzy logical concepts. A fuzzy set in a set X is a function $\mu: X \rightarrow[0,1]$, and the complement of μ, denoted by the $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x)=1-\mu(x)$.

A fuzzy set μ in a semigroup $S(X)=(X, \cdot)$ is said to be fuzzy stable if $\mu(x y) \geq \mu(y)$ for all $x, y \in X$. For $t \in[0,1]$, the set $U(\mu ; t)=(x \in X \mid \mu(x) \geq t)$ is called an upper t-level cut μ, and the set $L(\mu ; t)=\{x \in X \mid \mu(x) \leq t\}$ is called a lower t-level cut of μ. We shall write $a \wedge b$ for $\min \{a, b\}$ and $a \vee b$ for $\max \{a, b\}$, where a and b are any real numbers.

An intuitionistic fuzzy set (briefly, IFSA) in a nonempty set X is an object having the form

$$
A=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}
$$

where the function $\alpha_{A}: X \rightarrow[0,1]$ and $\beta_{A}: X \rightarrow[0,1]$ denote the degree of membership and the degree of nonmembership respectively, and $0 \leq \alpha_{A}(x)+\beta_{A}(x) \leq 1, \forall x \in X$.

[^0]An intuitionistic fuzzy set $A=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$ in X can be identified to an ordered pair $\left(\alpha_{A}, \beta_{A}\right)$ in $I^{X} \times I^{X}$. For the sake of simplicity, we shall use the symbol symbol $A=\left(\alpha_{A}, \beta_{A}\right)$ for the IFSA $=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$.
Definition 1.1 ([8]) A nonempty subset I of a BCI-algebra X is called an α-ideal of X if it satisfies (I1) $0 \in I$, (I2) $(x * z) *(0 * y) \in I$ and $z \in I$ imply $y * x \in I$ for all $x, y, z \in X$.

Definition 1.2([7]) A fuzzy set μ of a BCI-algebra X is called a fuzzy α-ideal (briefly, F α-ideal) of X if it satisfies (F1) $\mu(0) \geq \mu(x)$, (F2) $\mu(y * x) \geq \mu((x * z) *(0 * y)) \wedge \mu(z)$ for all $x, y, z \in X$.

2.Intuitionistic Fuzzy α-ideals

Definition 2.1([1]) A nonempty subset I of an IS-algebra X is called an α-ideal of X if it satisfies $(\alpha 1) x a \in I$ for any $x \in S(X)$ and $a \in I$;
$(\alpha 2)(x * z) *(0 * y) \in I$ and $z \in I$ imply $y * x \in I$ for all $x, y, z \in I(X)$.
Definition 2.2([1]) A fuzzy set μ in an IS-algebra X is called a fuzzy α-ideal of X if it setisfies
(F1) μ is a fuzzy stable set in $S(X)$.
(F2) $\mu(y * x) \geq \mu((x * z) *(0 * y)) \wedge \mu(z)$ for all $x, y, z \in I(X)$.
Definition 2.3 An $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in an IS-algebra X is called an intuitionistic fuzzy α-ideal (briefly, IF α-ideal) of X if it satisfies
(IF1) $\alpha_{A}(x y) \geq \alpha_{A}(y)$
(IF2) $\beta_{A}(x y) \leq \beta_{A}(y)$
(IF3) $\alpha_{A}(y * x) \geq \alpha_{A}((x * z) *(0 * y)) \wedge \alpha_{A}(z)$
(IF4) $\beta_{A}(y * x) \leq \beta_{A}((x * z) *(0 * y)) \vee \beta_{A}(z)$ for all $x, y, z \in X$.
Example 2.4 Consider an IS-algebra $X=\{0, a, b, c\}$ with Cayley table as follows

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	a	b	c
c	0	0	0	0

Define an IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ in X by $\alpha_{A}(0)=\alpha_{A}(a)=1, \alpha_{A}(b)=\alpha_{A}(c)=t, \beta_{A}(0)=\beta_{A}(a)=$ $0, \beta_{A}(b)=\beta_{A}(c)=s$, where $t, s \in[0,1]$ and $t+s \leq 1$. It's easy to check that $A=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X.

Theorem 2.5 An $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of an IS-algebra X if and only if for all $s, t \in[0,1]$, the nonempty sets $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are α-ideals of X.

Proof. Suppose that $A=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-idela of X. Let $x \in S(X)$ and $y \in U\left(\alpha_{A} ; t\right)$, then $\alpha_{A}(y) \geq t$, and that $\alpha_{A}(x y) \geq \alpha_{A}(y) \geq t$ since $A=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X, which implies that $x y \in U\left(\alpha_{A} ; t\right)$. Let $x, y, z \in I(X)$ be such that $(x * z) *(0 * y) \in$ $U\left(\alpha_{A} ; t\right)$ and $z \in U\left(\alpha_{A} ; t\right)$. Then $\alpha_{A}((x * z) *(0 * y)) \geq t$ and $\alpha_{A}(z) \geq t$. It follows that $\alpha_{A}(y * x) \geq \alpha_{A}((x * z) *(0 * y)) \wedge \alpha_{A}(z) \geq t$, and that $y * x \in U\left(\alpha_{A} ; t\right)$. Hence $U\left(\alpha_{A} ; t\right)$ is an α-ideal of X. Now, let $x \in S(X)$ and $y \in L\left(\beta_{A} ; s\right)$, then $\beta_{A}(y) \leq s$, and that $\beta_{A}(x y) \leq \beta_{A}(y) \leq s$, which implies that $x y \in L\left(\beta_{A} ; s\right)$. Let $x, y, z \in I(X)$ be such that $(x * z) *(0 * y) \in L\left(\beta_{A} ; s\right)$ and $z \in L\left(\beta_{A} ; s\right)$. Then $\beta_{A}((x * z) *(0 * y)) \leq s$ and $\beta_{A}(z) \leq s$. It follows that $\beta_{A}(y * x) \leq \beta_{A}((x * z) *(0 * y)) \vee \beta_{A}(z) \leq s$, which implies that $y * x \in L\left(\beta_{A} ; s\right)$. Hence $\left(\beta_{A} ; s\right)$ is an α-ideal of X.

Conversely, assume that for each $s, t \in[0,1]$, the nonempty sets $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are α-ideals of X. If there exist $x_{0}, y_{0} \in S(X)$ be such that $\alpha_{A}\left(x_{0} y_{0}\right)<\alpha_{A}\left(y_{0}\right)$, then taking to $\left(\alpha_{A}\left(x_{0} y_{0}\right)+\alpha_{A}\left(y_{0}\right)\right) / 2$, we have $\alpha_{A}\left(x_{0} y_{0}\right)<t_{0}<\alpha_{A}\left(y_{0}\right)$. It follows that $y_{0} \in \notin$ $U\left(\alpha_{A} ; t_{0}\right)$ and $x_{0} y_{0} U\left(\alpha_{A} ; t_{0}\right)$. This is a contradiction. If there exist $x_{0}, y_{0} \in S(X)$ be such $\beta_{A}\left(x_{0} y_{0}\right)>\beta_{A}\left(y_{0}\right)$, then taking $s_{0}=\left(\beta_{A}\left(x_{0} y_{0}\right)+\beta_{A}\left(y_{0}\right)\right) / 2$, we have $\beta_{A}\left(y_{0}\right)<$ $s_{0}<\beta_{A}\left(x_{0} y_{0}\right)$, it follows that $y_{0} \in L\left(\beta_{A} ; s_{0}\right)$ and $x_{0} y_{0} \notin L\left(\beta_{A} ; s_{0}\right)$. This is impossible. Now, let $x_{0}, y_{0}, z_{0} \in X$, be such that $\alpha_{A}\left(y_{0} * x_{0}\right)<\alpha_{A}\left(\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right)\right) \wedge \alpha_{A}\left(z_{0}\right)$. Putting $t_{0}=\left(\alpha_{A}\left(y_{0} * x_{0}\right)+\alpha_{A}\left(\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right)\right) \wedge \alpha_{A}\left(z_{0}\right)\right) / 2$, we have $\alpha_{A}\left(y_{0} * x_{0}\right)<$ $t_{0}<\alpha_{A}\left(\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right)\right) \wedge \alpha_{A}\left(z_{0}\right)$. It follows that $\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right) \in U\left(\alpha_{A} ; t_{0}\right)$ and $z_{0} \in U\left(\alpha_{A} ; t_{0}\right)$, but $y_{0} * x_{0} \notin U\left(\alpha_{A} ; t_{0}\right)$. This is a contradiction. Finally, assume that $x_{0}, y_{0}, z_{0} \in X$ be such that $\beta_{A}\left(y_{0} * x_{0}\right)>\beta_{A}\left(\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right)\right) \vee \beta_{A}\left(z_{0}\right)$. Taking $s_{0}=\left(\beta_{A}\left(y_{0} * x_{0}\right)+\beta_{A}\left(\left(x_{0} * z_{0}\right)+\left(0 * y_{0}\right)\right) \vee \beta_{A}\left(z_{0}\right)\right) / 2$, it follows that $\left(x_{0} * z_{0}\right) *\left(0 * y_{0}\right) \in L\left(\beta_{A} ; s\right)$ and $z_{0} \in L\left(\beta_{A} ; s_{0}\right)$, but $y_{0} * x_{0} \notin L\left(\beta_{A} ; s_{0}\right)$, which is a contradiction. This completes the proof.

Theorem 2.6 Let A be an α-ideal of an IS-algebra X and let IFSA $=\left(\alpha_{A} ; \beta_{A}\right)$ in X defined by

$$
\alpha_{A}(x)=\left\{\begin{array}{ll}
t_{0} & \text { if } x \in A \\
t_{1} & \text { otherwise }
\end{array} \quad \beta_{A}(x)= \begin{cases}s_{0} & \text { if } x \in A \\
s_{1} & \text { otherwise }\end{cases}\right.
$$

where $t_{0}>t_{1}$ and $s_{0}<s_{1}$ in $[0,1]$. Then $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X and $U\left(\alpha_{A} ; t_{0}\right)=A=L\left(\beta_{A} ; s_{0}\right)$.

Proof. Note that

$$
U\left(\alpha_{A} ; t\right)=\left\{\begin{array}{lll}
\phi & \text { if } & t_{0}<t \\
A & \text { if } & t_{1}<t \leq t_{0} \\
X & \text { if } & t \leq t_{1}
\end{array} \quad L\left(\beta_{A} ; s\right)=\left\{\begin{array}{lll}
\phi & \text { if } & s<s_{0} \\
A & \text { if } & s_{0} \leq s<s_{1} \\
X & \text { if } & s_{1} \leq s
\end{array}\right.\right.
$$

It follows from Theorem 2.5 that $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X. Clearly, we have $U\left(\alpha_{A} ; t_{0}\right)=A=L\left(\beta_{A} ; s_{0}\right)$

Now, we consider the converse of Theorem 2.6.
Throrem 2.7 For a nonempty subset A an IS-algebra X, let IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ in X which is given in Theorem 2.6. If IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X, then A is an α-ideal of X.

Proof. Assume that IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of X and let $x \in S(X)$ and $y \in A$. Then $\alpha_{A}(x y) \geq \alpha_{A}(y)=t_{0}$ and so $x y \in U\left(\alpha_{A} ; t_{0}\right)=A ; \beta_{A}(x y) \leq \beta_{A}(y)=s_{0}$ and so $x y \in L\left(\beta_{A} ; s_{0}\right)=A$. Let $x, y, z \in I(X)$ be such that $(x * z) *(0 * y) \in A$ and $z \in A$. It follows that $\alpha_{A}(y * x) \geq \alpha_{A}((x * z) *(0 * y)) \wedge \alpha_{A}(z)=t_{0}$ and $\beta_{A}(y * x) \leq \beta_{A}((x * z) *(0 * y)) \vee \beta_{A}(z)=s_{0}$. Hence $y * z \in U\left(\alpha_{A} ; t_{0}\right)=A$ and $y * x \in L\left(\beta_{A} ; s_{0}\right)=A$. This completes the proof.

For a subset A of X, we call

$$
\chi_{A}(x)= \begin{cases}1 & \text { if } \quad x \in A \\ 0 & \text { otherwise }\end{cases}
$$

the characterization function of A .
Theorem 2.8 Let A be a subset of an IS-algebra X and let $\operatorname{IFSA}=\left(\alpha_{A}, \alpha_{A}\right)$ in X. Then $\chi_{A}(x)$ is an IF α-ideal of X if and only if A is an α-ideal of X.

The proof is straightforward by using Theorem 2.6 and Theorem 2.7.

3. On homomorphism of IS-algebras

Definition 3.1 ([2]) A mapping $f: X \rightarrow Y$ of IS-algebras is called a homomorphism if
(i) $f(x * y)=f(x) * f(y)$ for all $x, y \in I(X)$
(ii) $f(x y)=f(x) f(y)$ for all $x, y \in S(X)$.

For any $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ in Y, we define a new $\operatorname{IFSA}^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X by $\alpha_{A}^{f}(x)=$ $\alpha_{A}(f(x)), \beta_{A}^{f}(x)=\beta_{A}(f(x)), \forall x \in X$.
Theorem 3.2 Let $f: X \rightarrow Y$ be a homomorphism of IS-algebras. If $\operatorname{IFSA}=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of Y, then IFSA ${ }^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X ia an IF α-ideal of X.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that $f(a)=x$ and $f(b)=y$. Then $\alpha_{A}(x y)=\alpha_{A}(f(a) f(b))=\alpha_{A}(f(a b))=\alpha_{A}^{f}(a b) \geq \alpha_{A}^{f}(b)=\alpha_{A}(f(b))=\alpha_{A}(y), \beta_{A}(x y)=$ $\beta(f(a) f(b))=\beta_{A}(f(a b))=\beta_{A}^{f}(a b) \leq \beta_{A}^{f}(b)=\beta_{A}(f(b))=\beta_{A}(y)$. Suppose that $\operatorname{IFAS}\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of Y, then $\alpha_{A}^{f}(x y)=\alpha_{A}(f(x y))=\alpha_{A}(f(x) f(y)) \geq \alpha_{A}(f(y))=\alpha_{A}^{f}(y)$ and $\beta_{A}^{f}(x y)=\beta_{A}(f(x y))=\beta_{A}(f(x) f(y)) \leq \beta_{A}(f(y))=\beta_{A}^{f}(y)$. Now, let $x, y, z \in X$, then $\alpha_{A}^{f}(y * x)=\alpha_{A}(f(y * x))=\alpha_{A}(f(y) * f(x)) \geq \alpha_{A}((f(x) * f(z)) *(f(0) * f(y))) \wedge$ $\alpha_{A}(f(z))=\alpha_{A}(f((x * z) *(0 * y))) \wedge \alpha_{A}(f(z))=\alpha_{A}^{f}((x * z) *(0 * y)) \wedge \alpha_{A}^{f}(z)$ and $\beta_{A}^{f}(y * x)=\beta_{A}(f(y * x))=\beta_{A}(f(y) * f(x)) \leq \beta_{A}((f(x) * f(z)) *(f(0) * f(y))) \vee \beta_{A}(f(z))=$ $\beta_{A}(f((x * z) *(0 * y))) \vee \beta_{A}(f(z))=\beta_{A}^{f}((x * z) *(0 * y)) \vee \beta_{A}^{f}(z)$. This completes the proof.

If we strengthen the condition f, then the converse of Theorem 3.2 is obtained as follows. Theorem 3.3 Let $f: X \rightarrow Y$ be an epimorphism of IS-algebras and let IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ be in Y. If $\operatorname{IFSA}^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an IF α-ideal of X, then IFSA $=\left(\alpha_{A}, \beta_{A}\right)$ is an IF α-ideal of Y.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that $f(a)=x$ and $f(b)=y$. Then $\alpha_{A}(x y)=\alpha_{A}(x y)=\alpha_{A}(f(a) f(b))=\alpha_{A}(f(a b))=\alpha_{A}^{f}(a b) \geq \alpha_{A}^{f}(b)=\alpha_{A}(f(b))=$ $\alpha_{A}(y), \beta_{A}(x y)=\beta_{A}(f(a) f(b))=\beta_{A}(f(a b))=\beta_{A}^{f}(a b) \leq \beta_{A}^{f}(b)=\beta_{A}(f(b))=\beta_{A}(y)$. Now, let $x, y, z \in Y$, then $f(a)=x, f(b)=y$ and $f(c)=z$ for some $a, b, c \in$ X.Hence $_{A}(y * x)=$ $\alpha_{A}(f(b) * f(a))=\alpha_{A}^{f}(b * a) \geq \alpha_{A}^{f}((a * c) *(0 * b)) \wedge \alpha_{A}^{f}(c)=\alpha_{A}(f((a * c) *(0 * b))) \wedge$ $\alpha_{A}(f(c))=\alpha_{A}((f(a) * f(c)) *(f(0) * f(b))) \wedge \alpha_{A}(f(c))=\alpha_{A}((x * z) *(0 * y)) \wedge \alpha_{A}(z)$ and $\beta_{A}(y * x)=\beta_{A}(f(b) * f(a))=\beta_{A}^{f}(b * c) \leq \beta_{A}^{f}((a * c) *(0 * b)) \vee \beta_{A}(f(c))=\beta_{A}((f(a) * f(c)) *$ $(f(0) * f(b))) \vee \beta_{A}(f(c))=\beta_{A}((x * z) *(0 * y)) \vee \beta_{A}(z)$. This completes the proof.

References

[1] Zhan Jianming \& Tan Zhisong, Fuzzy α-ideals of IS-algebras, Sci. Math. Japon online 8(2003),25-27.
[2] Zhan Jianming \& Tan Zhisong, Intuitionistic fuzzy K-ideals of IS-algebras, Sci.Math.Japon,57(2003),419-422.
[3] Y.B.Jun, S.M.Hong \& E.H.Roh, BCI-semigroups, Honam Math. J. 15(1993),59-64.
[4] Y.B.Jun, X.L.Xin \& E.H.Roh, A class of algebras related to BCI-algebras and semigroups. Soochow J. Math. 24(1998), 309-321.
[5] Y.B.Jun \& K.H.Kim, Intuitionistic fuzzy ideals of BCK-algebras, Int. J.Math. \& Math. Sci,24(12)(2000),839-849.
[6] E.H.Roh, Y.B,Jun \& W.H.Shim, Fuzzy associative φ-ideals of IS-algebras, Int.J.Math. \& Math.Sci.24(11)(2000),729-735.
[7] Liu Yonglin \& Zhang Xiaohong, Fuzzy α-ideals of BCI-algebras, adv.in Math.31(2002),65-73(in Chinese).
[8] Liu Yonglin, Meng Jie etc, q-ideals and α-ideals in BCI-algebras, SEA Bull Math 24(2000),243253.
[9] Xi Ougen, Fuzzy BCI-algebras, Math. Japon 36(1991),935-942.
[10] L.A.Zadeh, Fuzzy sets, Inform \& Control, 8(1965), 338-353.
Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000,P.R.China
E-mail: zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. α-ideals, Fuzzy α-ideals, Intuitionistic fuzzy α-ideals, homomorphism, ISalgebra.

