INTUITIONISTIC FUZZY α -IDEALS OF IS-ALGEBRAS

ZHAN JIANMING & TAN ZHISONG

Received July 1, 2003

ABSTRACT. In this paper, we introduce the notion of intuitionistic fuzzy α -ideals of IS-algebras and investigate some of their properties.

1.Introduction and Preliminaries In 1996, Iseki introduced the notion of BCK/BCIalgebras. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Jun et al [3] introduced a new class of algebras related to BCIalgebras and semigroups, called a BCI-semigroup. In 1998, for the convenience of study, Jun et al [4] renamed the BCI-semigroups as the IS-algebra and studied further properties. In this paper, we consider the fuzzification of α -ideals of IS-algebras and study their properties.

By a BCI-algebra we mean (X; *, 0) of type (2, 0) satisfying the following conditions:

(I)
$$((x * y) * (x * z)) * (z * y) = 0$$

(II) (x * (x * y)) * y = 0

(III)
$$x * x = 0$$

(IV) x * y = 0 and y * x = 0 imply x = y for all $x, y, z \in X$.

In any BCI-algebra X one can define a partial order \leq by putting $x \leq y$ if and only if x * y = 0.

By an IS-algebra we mean a nonempty set X with two binary operation "*" and " \cdot " and constant 0 satisfying the axioms:

(I) I(X) = (X; *, 0) is a BCI-algebra

(II) $S(X) = (X; \cdot)$ is a semigroup.

(III) The operation " \cdot " is distribute over the operation "*", that is, $x \cdot (y * z) = (y \cdot z) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$. For the convience, we use xy instead for $x \cdot y$.

A nonempty subset A of a semigroup $S(X) = (X; \cdot)$ is said to be stable if $xa \in A$ whenever $x \in S(X)$ and $a \in A$.

We now review some fuzzy logical concepts. A fuzzy set in a set X is a function $\mu: X \to [0, 1]$, and the complement of μ , denoted by the $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$.

A fuzzy set μ in a semigroup $S(X) = (X, \cdot)$ is said to be fuzzy stable if $\mu(xy) \ge \mu(y)$ for all $x, y \in X$. For $t \in [0, 1]$, the set $U(\mu; t) = (x \in X \mid \mu(x) \ge t)$ is called an upper t-level cut μ , and the set $L(\mu; t) = \{x \in X \mid \mu(x) \le t\}$ is called a lower t-level cut of μ . We shall write $a \land b$ for min $\{a, b\}$ and $a \lor b$ for max $\{a, b\}$, where a and b are any real numbers.

An intuitionistic fuzzy set (briefly, IFSA) in a nonempty set X is an object having the form

$$A = \{ (x, \alpha_A(x), \beta_A(x)) \mid x \in X \}$$

where the function $\alpha_A : X \to [0,1]$ and $\beta_A : X \to [0,1]$ denote the degree of membership and the degree of nonmembership respectively, and $0 \le \alpha_A(x) + \beta_A(x) \le 1, \forall x \in X$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. α -ideals, Fuzzy α -ideals, Intuitionistic fuzzy α -ideals, homomorphism, IS-algebra.

An intuitionistic fuzzy set $A = \{(x, \alpha_A(x), \beta_A(x)) \mid x \in X\}$ in X can be identified to an ordered pair (α_A, β_A) in $I^X \times I^X$. For the sake of simplicity, we shall use the symbol symbol $A = (\alpha_A, \beta_A)$ for the IFSA= $\{(x, \alpha_A(x), \beta_A(x)) \mid x \in X\}$.

Definition 1.1 ([8]) A nonempty subset I of a BCI-algebra X is called an α -ideal of X if it satisfies (I1) $0 \in I$, (I2) $(x * z) * (0 * y) \in I$ and $z \in I$ imply $y * x \in I$ for all $x, y, z \in X$.

Definition 1.2([7]) A fuzzy set μ of a BCI-algebra X is called a fuzzy α -ideal (briefly, F α -ideal) of X if it satisfies (F1) $\mu(0) \ge \mu(x)$, (F2) $\mu(y * x) \ge \mu((x * z) * (0 * y)) \land \mu(z)$ for all $x, y, z \in X$.

2. Intuitionistic Fuzzy α -ideals

Definition 2.1([1]) A nonempty subset I of an IS-algebra X is called an α -ideal of X if it satisfies $(\alpha 1)xa \in I$ for any $x \in S(X)$ and $a \in I$;

 $(\alpha 2)(x * z) * (0 * y) \in I$ and $z \in I$ imply $y * x \in I$ for all $x, y, z \in I(X)$.

Definition 2.2([1]) A fuzzy set μ in an IS-algebra X is called a fuzzy α -ideal of X if it setisfies

(F1) μ is a fuzzy stable set in S(X).

(F2) $\mu(y * x) \ge \mu((x * z) * (0 * y)) \land \mu(z)$ for all $x, y, z \in I(X)$.

Definition 2.3 An IFSA= (α_A, β_A) in an IS-algebra X is called an intuitionistic fuzzy α -ideal (briefly, IF α -ideal) of X if it satisfies

(IF1) $\alpha_A(xy) \ge \alpha_A(y)$

(IF2) $\beta_A(xy) \le \beta_A(y)$

(IF3) $\alpha_A(y * x) \ge \alpha_A((x * z) * (0 * y)) \land \alpha_A(z)$

(IF4) $\beta_A(y * x) \leq \beta_A((x * z) * (0 * y)) \lor \beta_A(z)$ for all $x, y, z \in X$.

Example 2.4 Consider an IS-algebra $X = \{0, a, b, c\}$ with Cayley table as follows

*					•	0	a	b	c
0	0	a	b	c			0		
	a				a	0	a	b	c
b	b	c	0	a	b	0	a	b	c
c	c	b	a	0	c	0	0	0	0

Define an IFSA= (α_A, β_A) in X by $\alpha_A(0) = \alpha_A(a) = 1, \alpha_A(b) = \alpha_A(c) = t, \beta_A(0) = \beta_A(a) = 0, \beta_A(b) = \beta_A(c) = s$, where $t, s \in [0, 1]$ and $t + s \leq 1$. It's easy to check that $A = (\alpha_A, \beta_A)$ is an IF α -ideal of X.

Theorem 2.5 An IFSA= (α_A, β_A) is an IF α -ideal of an IS-algebra X if and only if for all $s, t \in [0, 1]$, the nonempty sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are α -ideals of X.

Proof. Suppose that $A = (\alpha_A, \beta_A)$ is an IF α -idela of X. Let $x \in S(X)$ and $y \in U(\alpha_A; t)$, then $\alpha_A(y) \geq t$, and that $\alpha_A(xy) \geq \alpha_A(y) \geq t$ since $A = (\alpha_A, \beta_A)$ is an IF α -ideal of X, which implies that $xy \in U(\alpha_A; t)$. Let $x, y, z \in I(X)$ be such that $(x * z) * (0 * y) \in U(\alpha_A; t)$ and $z \in U(\alpha_A; t)$. Then $\alpha_A((x * z) * (0 * y)) \geq t$ and $\alpha_A(z) \geq t$. It follows that $\alpha_A(y * x) \geq \alpha_A((x * z) * (0 * y)) \wedge \alpha_A(z) \geq t$, and that $y * x \in U(\alpha_A; t)$. Hence $U(\alpha_A; t)$ is an α -ideal of X. Now, let $x \in S(X)$ and $y \in L(\beta_A; s)$, then $\beta_A(y) \leq s$, and that $\beta_A(xy) \leq \beta_A(y) \leq s$, which implies that $xy \in L(\beta_A; s)$. Let $x, y, z \in I(X)$ be such that $(x * z) * (0 * y) \in L(\beta_A; s)$ and $z \in L(\beta_A; s)$. Then $\beta_A((x * z) * (0 * y)) \leq s$ and $\beta_A(z) \leq s$. It follows that $\beta_A(y * x) \leq \beta_A((x * z) * (0 * y)) \vee \beta_A(z) \leq s$, which implies that $y * x \in L(\beta_A; s)$. Hence $(\beta_A; s)$ is an α -ideal of X. Conversely, assume that for each $s, t \in [0, 1]$, the nonempty sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are α -ideals of X. If there exist $x_0, y_0 \in S(X)$ be such that $\alpha_A(x_0y_0) < \alpha_A(y_0)$, then taking to $(\alpha_A(x_0y_0) + \alpha_A(y_0))/2$, we have $\alpha_A(x_0y_0) < t_0 < \alpha_A(y_0)$. It follows that $y_0 \in \notin U(\alpha_A; t_0)$ and $x_0y_0U(\alpha_A; t_0)$. This is a contradiction. If there exist $x_0, y_0 \in S(X)$ be such $\beta_A(x_0y_0) > \beta_A(y_0)$, then taking $s_0 = (\beta_A(x_0y_0) + \beta_A(y_0))/2$, we have $\beta_A(y_0) < s_0 < \beta_A(x_0y_0)$, it follows that $y_0 \in L(\beta_A; s_0)$ and $x_0y_0 \notin L(\beta_A; s_0)$. This is impossible. Now, let $x_0, y_0, z_0 \in X$, be such that $\alpha_A(y_0 * x_0) < \alpha_A((x_0 * z_0) * (0 * y_0)) \land \alpha_A(z_0)$. Putting $t_0 = (\alpha_A(y_0 * x_0) + \alpha_A((x_0 * z_0) * (0 * y_0)) \land \alpha_A(z_0))/2$, we have $\alpha_A(y_0 * x_0) < t_0 < \alpha_A((x_0 * z_0) * (0 * y_0)) \land \alpha_A(z_0)$. It follows that $(x_0 * z_0) * (0 * y_0) \in U(\alpha_A; t_0)$ and $z_0 \in U(\alpha_A; t_0)$, but $y_0 * x_0 \notin U(\alpha_A; t_0)$. This is a contradiction. Finally, assume that $x_0, y_0, z_0 \in X$ be such that $\beta_A(y_0 * x_0) > \beta_A((x_0 * z_0) * (0 * y_0)) \lor \beta_A(z_0)$. Taking $s_0 = (\beta_A(y_0 * x_0) + \beta_A((x_0 * z_0) + (0 * y_0)) \lor \beta_A(z_0))/2$, it follows that $(x_0 * z_0) * (0 * y_0) \in L(\beta_A; s)$ and $z_0 \in L(\beta_A; s_0)$, but $y_0 * x_0 \notin L(\beta_A; s_0)$, which is a contradiction. This completes the proof.

Theorem 2.6 Let A be an α -ideal of an IS-algebra X and let IFSA= $(\alpha_A; \beta_A)$ in X defined by

$$\alpha_A(x) = \begin{cases} t_0 & \text{if } x \in A \\ t_1 & \text{otherwise} \end{cases} \qquad \beta_A(x) = \begin{cases} s_0 & \text{if } x \in A \\ s_1 & \text{otherwise} \end{cases}$$

where $t_0 > t_1$ and $s_0 < s_1$ in [0,1]. Then IFSA= (α_A, β_A) is an IF α -ideal of X and $U(\alpha_A; t_0) = A = L(\beta_A; s_0)$.

Proof. Note that

$$U(\alpha_A; t) = \begin{cases} \phi & \text{if} \quad t_0 < t \\ A & \text{if} \quad t_1 < t \le t_0 \\ X & \text{if} \quad t \le t_1 \end{cases} \qquad L(\beta_A; s) = \begin{cases} \phi & \text{if} \quad s < s_0 \\ A & \text{if} \quad s_0 \le s < s_1 \\ X & \text{if} \quad s_1 \le s \end{cases}$$

It follows from Theorem 2.5 that IFSA= (α_A, β_A) is an IF α -ideal of X. Clearly, we have $U(\alpha_A; t_0) = A = L(\beta_A; s_0)$

Now, we consider the converse of Theorem 2.6.

Throrem 2.7 For a nonempty subset A an IS-algebra X, let IFSA= (α_A, β_A) in X which is given in Theorem 2.6. If IFSA= (α_A, β_A) is an IF α -ideal of X, then A is an α -ideal of X.

Proof. Assume that IFSA= (α_A, β_A) is an IF α -ideal of X and let $x \in S(X)$ and $y \in A$. Then $\alpha_A(xy) \geq \alpha_A(y) = t_0$ and so $xy \in U(\alpha_A; t_0) = A; \beta_A(xy) \leq \beta_A(y) = s_0$ and so $xy \in L(\beta_A; s_0) = A$. Let $x, y, z \in I(X)$ be such that $(x*z)*(0*y) \in A$ and $z \in A$. It follows that $\alpha_A(y*x) \geq \alpha_A((x*z)*(0*y)) \land \alpha_A(z) = t_0$ and $\beta_A(y*x) \leq \beta_A((x*z)*(0*y)) \lor \beta_A(z) = s_0$. Hence $y*z \in U(\alpha_A; t_0) = A$ and $y*x \in L(\beta_A; s_0) = A$. This completes the proof.

For a subset A of X, we call

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

the characterization function of A.

Theorem 2.8 Let A be a subset of an IS-algebra X and let IFSA= (α_A, α_A) in X. Then $\chi_A(x)$ is an IF α -ideal of X if and only if A is an α -ideal of X.

The proof is straightforward by using Theorem 2.6 and Theorem 2.7.

3. On homomorphism of IS-algebras

Definition 3.1 ([2]) A mapping $f : X \to Y$ of IS-algebras is called a homomorphism if (i) f(x * y) = f(x) * f(y) for all $x, y \in I(X)$

(ii) f(xy) = f(x)f(y) for all $x, y \in S(X)$.

For any IFSA= (α_A, β_A) in Y, we define a new IFSA^f = (α_A^f, β_A^f) in X by $\alpha_A^f(x) = \alpha_A(f(x)), \beta_A^f(x) = \beta_A(f(x)), \forall x \in X.$

Theorem 3.2 Let $f: X \to Y$ be a homomorphism of IS-algebras. If IFSA= (α_A, β_A) is an IF α -ideal of Y, then IFSA^f = (α_A^f, β_A^f) in X is an IF α -ideal of X.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that f(a) = x and f(b) = y. Then $\alpha_A(xy) = \alpha_A(f(a)f(b)) = \alpha_A(f(ab)) = \alpha_A^f(ab) \ge \alpha_A^f(b) = \alpha_A(f(b)) = \alpha_A(y), \beta_A(xy) =$ $\beta(f(a)f(b)) = \beta_A(f(ab)) = \beta_A^f(ab) \le \beta_A^f(b) = \beta_A(f(b)) = \beta_A(y)$. Suppose that IFAS(α_A, β_A) is an IF α -ideal of Y, then $\alpha_A^f(xy) = \alpha_A(f(xy)) = \alpha_A(f(x)f(y)) \ge \alpha_A(f(y)) = \alpha_A^f(y)$ and $\beta_A^f(xy) = \beta_A(f(xy)) = \beta_A(f(x)f(y)) \le \beta_A(f(y)) = \beta_A^f(y)$. Now, let $x, y, z \in X$, then $\alpha_A^f(y * x) = \alpha_A(f(y * x)) = \alpha_A(f(y) * f(x)) \ge \alpha_A((f(x) * f(z)) * (f(0) * f(y))) \land$ $\alpha_A(f(z)) = \alpha_A(f((x * z) * (0 * y))) \land \alpha_A(f(z)) = \alpha_A^f((x * z) * (0 * y)) \land \alpha_A^f(z)$ and $\beta_A^f(y * x) = \beta_A(f(y * x)) = \beta_A(f(y) * f(x)) \le \beta_A((f(x) * f(z)) * (f(0) * f(y))) \lor \beta_A(f(z)) =$ $\beta_A(f((x * z) * (0 * y))) \lor \beta_A(f(z)) = \beta_A^f((x * z) * (0 * y)) \lor \beta_A^f(z)$. This completes the proof.

If we strengthen the condition f, then the converse of Theorem 3.2 is obtained as follows. **Theorem 3.3** Let $f : X \to Y$ be an epimorphism of IS-algebras and let IFSA= (α_A, β_A) be in Y. If IFSA^f = (α_A^f, β_A^f) is an IF α -ideal of X, then IFSA= (α_A, β_A) is an IF α -ideal of Y.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that f(a) = x and f(b) = y. Then $\alpha_A(xy) = \alpha_A(xy) = \alpha_A(f(a)f(b)) = \alpha_A(f(ab)) = \alpha_A^f(ab) \ge \alpha_A^f(b) = \alpha_A(f(b)) = \alpha_A(y), \beta_A(xy) = \beta_A(f(a)f(b)) = \beta_A(f(ab)) = \beta_A^f(ab) \le \beta_A^f(b) = \beta_A(f(b)) = \beta_A(y)$. Now, let $x, y, z \in Y$, then f(a) = x, f(b) = y and f(c) = z for some $a, b, c \in X$. Hence $\alpha_A(y * x) = \alpha_A(f(b) * f(a)) = \alpha_A^f(b * a) \ge \alpha_A^f((a * c) * (0 * b)) \land \alpha_A^f(c) = \alpha_A(f((a * c) * (0 * b))) \land \alpha_A(f(c)) = \alpha_A((f(a) * f(c))) * (f(0) * f(b))) \land \alpha_A(f(c)) = \alpha_A((x * z) * (0 * y)) \land \alpha_A(z)$ and $\beta_A(y * x) = \beta_A(f(b) * f(a)) = \beta_A^f(b * c) \le \beta_A^f((a * c) * (0 * b)) \lor \beta_A(f(c)) = \beta_A((f(a) * f(c)) * (f(0) * f(b))) \lor \beta_A(f(c)) = \beta_A((f(a) * f(c))) * (f(0) * f(b))) \lor \beta_A(z)$. This completes the proof.

References

- [1] Zhan Jianming & Tan Zhisong, Fuzzy $\alpha\text{-ideals}$ of IS-algebras, Sci. Math. Japon online 8(2003), 25-27.
- [2] Zhan Jianming & Tan Zhisong, Intuitionistic fuzzy K-ideals of IS-algebras, Sci.Math.Japon,57(2003),419-422.
- [3] Y.B.Jun, S.M.Hong & E.H.Roh, BCI-semigroups, Honam Math. J. 15(1993),59-64.
- Y.B.Jun, X.L.Xin & E.H.Roh, A class of algebras related to BCI-algebras and semigroups. Soochow J. Math. 24(1998), 309-321.
- [5] Y.B.Jun & K.H.Kim, Intuitionistic fuzzy ideals of BCK-algebras, Int. J.Math. & Math. Sci,24(12)(2000),839-849.
- [6] E.H.Roh, Y.B.Jun & W.H.Shim, Fuzzy associative φ -ideals of IS-algebras, Int.J.Math. & Math.Sci.24(11)(2000),729-735.
- [7] Liu Yonglin & Zhang Xiaohong, Fuzzy α -ideals of BCI-algebras, adv.in Math.31(2002),65-73(in Chinese).

- [8] Liu Yonglin, Meng Jie etc, q-ideals and α -ideals in BCI-algebras, SEA Bull Math 24(2000),243-253.
- [9] Xi Ougen, Fuzzy BCI-algebras, Math. Japon 36(1991),935-942.
- [10] L.A.Zadeh, Fuzzy sets, Inform & Control, 8(1965), 338-353.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000,P.R.China

E-mail: zhanjianming@hotmail.com