
Scientiae Mathematicae Japonicae Online, Vol. 9, (2003), 259–266 259

MINIMIZATION THEOREM IN A BANACH SPACE AND ITS
APPLICATIONS
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Abstract. In this paper, we prove a minimization theorem for a proper lower semi-
continuous convex function in a real Banach space, applying Takahashi’s nonconvex
minimization theorem. Then we give another proof of Bishop-Phelps’ theorem.

1 Introduction In 1965, Brøndsted and Rockafellar [5] proved the following theorem:
Let E be a real Banach space and let f : E → (−∞,∞] be a proper lower semicontinuous
convex function. Then for all ε > 0 and (x0, x

∗
0) ∈ ∂εf , there exists (x, x∗) ∈ ∂f such

that ‖x − x0‖ ≤ √
ε and ‖x∗ − x∗

0‖ ≤ √
ε. This is a generalization of Bishop-Phelps’

theorem and dual Bishop-Phelps’ theorem [2]; see also Phelps [13]. Applying Brøndsted-
Rockafellar’s theorem, Rockafellar [16] proved that the subdifferential of a proper lower
semicontinuous convex function on a Banach space is maximal monotone. Later, Borwein
[3] obtained a generalization of Brøndsted-Rockafellar’s theorem by applying Ekeland’s
variational principle [8], and gave another proof of Rockafellar’s theorem; see also Simons
[18] for another proof of Rockafellar’s theorem.

On the other hand, in 1976, Caristi [6] proved a fixed point theorem in a complete metric
space which is a generalization of the Banach contraction principle. Ekeland [8] also proved a
nonconvex minimization theorem for a proper lower semicontinuous function, bounded from
below. Takahashi [21] proved the following nonconvex minimization theorem: Let (X, d) be
a complete metric space and let f : X → (−∞,∞] be a proper lower semicontinuous function
which is bounded from below. Suppose that, for each u ∈ X with f(u) > infx∈X f(x), there
exists v ∈ X such that v �= u and f(v) + d(u, v) ≤ f(u). Then there exists x0 ∈ X such
that f(x0) = infx∈X f(x). This theorem was used to obtain Caristi’s fixed point theorem
[6], Ekeland’s variational principle [8] and Nadler’s fixed point theorem [12].

In this paper, applying Takahashi’s nonconvex minimization theorem, we prove a min-
imization theorem in a Banach space. Further, using this, we give another proof of dual
Bishop-Phelps’ theorem [2]. We also study the metric completeness of a normed linear
space.

2 Preliminaries Throughout this paper, we denote by R and N the set of all real numbers
and the set of all positive integers, respectively. Let (X, d) be a metric space. Then a
mapping f : X → (−∞,∞] (= R ∪ {∞}) is said to be proper if there exists a ∈ X such
that f(a) ∈ R. The domain of f is defined by D(f) = {x ∈ X : f(x) ∈ R}. Also f is said
to be lower semicontinuous if the set {x ∈ X : f(x) ≤ r} is closed in X for all r ∈ R. Let
E be a (real) normed linear space and let E∗ be the dual space of E. Then a mapping
f : E → (−∞,∞] is said to be convex if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)
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for all x, y ∈ E and α ∈ (0, 1). Let f : E → (−∞,∞] be a proper and convex function.
Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y) for all y ∈ E}

for all x ∈ E. It is easy to prove that 0 ∈ ∂f(x0) if and only if f(x0) = minx∈E f(x). For
ε > 0, the approximate subdifferential ∂εf of f is defined as follows:

∂εf(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y) + ε for all y ∈ E}

for all x ∈ E. The domain of ∂f and the range of ∂f are defined by D(∂f) = {x ∈ E :
∂f(x) �= ∅} and R(∂f) = {x∗ ∈ E∗ : x∗ ∈ ∂f(x) for some x ∈ D(∂f)}, respectively. The
duality mapping J : E → 2E∗

is defined as follows:

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for all x ∈ E. It is known that if j(x) = 2−1‖x‖2 for all x ∈ E, then ∂j(x) = J(x) for all
x ∈ E. A function f : E → R is said to be affine if

f(αx + (1 − α)y) = αf(x) + (1 − α)f(y)

for all x, y ∈ E and α ∈ [0, 1]. If f : E → R is affine continuous, then there exist x∗ ∈ E∗

and µ ∈ R such that f(x) = 〈x, x∗〉+ µ for all x ∈ E. We know the following theorems; see
[13, 20]:

Theorem 2.1. Let E be a normed linear space, let f : E → (−∞,∞] be a proper lower
semicontinuous convex function and let g : E → R be a continuous convex function. Then

∂(f + g)(x) = ∂f(x) + ∂g(x)

for all x ∈ E.

Theorem 2.2. Let E be a normed linear space and let f : E → (−∞,∞] be a proper lower
semicontinuous convex function. Then there exist x∗ ∈ E∗ and µ ∈ R such that

f(x) ≥ 〈x, x∗〉 + µ

for all x ∈ E.

We also know the following theorem; see [7]:

Theorem 2.3. Let E be a Banach space, let f1, f2, . . . , fm : E → (−∞,∞] be proper lower
semicontinuous convex functions and let f be a function defined by

f(x) = max
i=1,2,...,m

fi(x)

for all x ∈ E. If D(f) has a nonempty interior, then

∂f(x) = co
(⋃

{∂fi(x) : i ∈ I(x)}
)

for all x in the interior of D(f), where I(x) = {i = 1, 2, . . . , m : f(x) = fi(x)}.
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3 Minimization Theorem and its Applications Applying Takahashi’s nonconvex
minimization theorem, we prove the following theorem in a Banach space:

Theorem 3.1. Let E be a Banach space and let f : E → (−∞,∞] be a proper lower
semicontinuous convex function which is bounded from below. Suppose that there exists
δ > 0 such that (x, x∗) ∈ ∂f and f(x) > infw∈E f(w) imply ‖x∗‖ ≥ δ. Then there exists
x0 ∈ E such that f(x0) = infw∈E f(w).

Proof. Suppose the existence of δ > 0 such that (x, x∗) ∈ ∂f and f(x) > infw∈E f(w)
imply ‖x∗‖ ≥ δ. For u ∈ E satisfying f(u) > infw∈E f(w), we define a proper lower
semicontinuous convex function F from E into (−∞,∞] as follows:

F (x) = f(x) +
δ

2
‖x − u‖

for all x ∈ E. Let k(x) = ‖x − u‖ for all x ∈ X . Then, it holds from Theorem 2.1 that

∂F (u) = ∂
(
f +

δ

2
k
)
(u)

= ∂f(u) +
δ

2
∂k(u)

= ∂f(u) +
{
x∗ ∈ E∗ : ‖x∗‖ ≤ δ

2

}
.

If 0 ∈ ∂F (u), then we have u∗ ∈ E∗ and v∗ ∈ E∗ such that

u∗ ∈ ∂f(u), ‖v∗‖ ≤ δ

2
and 0 = u∗ + v∗.

Hence we have ‖u∗‖ ≤ δ/2. By assumption, we have f(u) = infw∈E f(w). This contradicts
to f(u) > infw∈E f(w). Hence we have

0 /∈ ∂F (u).

Hence there exists v ∈ E such that F (v) < F (u), that is,

f(v) +
δ

2
‖u − v‖ < f(u).

Since E is complete and f is bounded from below, by Takahashi’s minimization theorem,
there exists x0 ∈ E such that f(x0) = infw∈E f(w). This completes the proof.

Applying Theorem 3.1, we first prove the following dual Bishop-Phelps’ theorem [2]:

Theorem 3.2 (Bishop-Phelps [2]). Let E be a Banach space, let C be a nonempty
bounded closed convex subset of E and let A be the set of all continuous linear functionals
x∗ ∈ E∗ such that

x∗(x0) = max
x∈C

x∗(x)

for some x0 ∈ C. Then A is norm dense in E∗.

Proof. Assume that there exists a∗ ∈ E∗ such that a∗ /∈ A. Then there exists δ > 0 such
that Sδ(a∗) ∩ A = ∅, where Sδ(a∗) = {x∗ ∈ E∗ : ‖x∗ − a∗‖ < δ}. Let g be the indicator
function of C, that is, g(x) = 0 if x ∈ C and g(x) = ∞ if x /∈ C. Then we have

R(∂g) = A.
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So, it holds that

x∗ ∈ R(∂g) =⇒ ‖x∗ − a∗‖ ≥ δ.(1)

Define a proper lower semicontinuous convex function f : E → (−∞,∞] as follows:

f(x) = g(x) − a∗(x)

for all x ∈ E. Then f is bounded from below. Indeed, since C is bounded, there exists
M > 0 such that ‖x‖ ≤ M for all x ∈ C. This implies that

infx∈E f(x) = infx∈E{g(x) − a∗(x)} = infx∈C{−a∗(x)} ≥ −M‖a∗‖.
Hence f is bounded from below.

Let (z, z∗) ∈ ∂f be given. Since ∂f(z) = ∂g(z) − a∗, there exists x∗ ∈ ∂g(z) such that
z∗ = x∗ − a∗. Since x∗ ∈ R(∂g), by (1), we have ‖z∗‖ = ‖x∗ − a∗‖ ≥ δ. Hence we have

(z, z∗) ∈ ∂f =⇒ ‖z∗‖ ≥ δ.(2)

Applying Theorem 3.1, we have x0 ∈ E such that f(x0) = infx∈E f(x). This implies
0 ∈ ∂f(x0) and this contradicts to (2). Therefore we have A = E∗. This completes the
proof.

Next, applying Theorem 3.1, we prove that if f : E → (−∞,∞] is a proper lower
semicontinuous convex function which is coercive, then R(∂f) = E∗. Before proving it, we
prove the following lemma:

Lemma 3.3. Let E be a normed linear space and let f : E → (−∞,∞] be a proper lower
semicontinuous convex function satisfying

‖xn‖ → ∞ =⇒ f(xn) → ∞.

Then f is bounded from below.

Proof. Suppose that f is not bounded from below. Then there exists a sequence {xn} in
E such that f(xn) → −∞. This sequence {xn} is bounded. In fact, if {xn} is unbounded,
then we have a subsequence {xni}i∈N of {xn} such that ‖xni‖ → ∞. By assumption, we
have f(xni) → ∞. This contradicts to f(xni) → −∞, and hence {xn} is bounded. Thus
we have M > 0 satisfying ‖xn‖ ≤ M for all n ∈ N.

Applying Theorem 2.2, we have x∗ ∈ E∗ and µ ∈ R such that f(x) ≥ 〈x, x∗〉 + µ for all
x ∈ E. Thus we have

f(xn) ≥ 〈xn, x∗〉 + µ ≥ −M‖x∗‖ + µ

for all n ∈ N. Thus {f (xn)} is bounded from below. This contradicts to f(xn) → −∞.
Therefore f is bounded from below.

Let E be a normed linear space and let f : E → (−∞,∞] be a proper lower semicon-
tinuous convex function. Then f is said to be coercive [4] if

‖xn‖ → ∞ =⇒ f(xn)
‖xn‖ → ∞.

Theorem 3.4. Let E be a Banach space and let f : E → (−∞,∞] be a proper lower
semicontinuous convex function which is coercive. Then

R(∂f) = E∗.
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Proof. Assume that there exists a∗ ∈ E∗ such that a∗ /∈ R(∂f). Then there exists δ > 0
such that Sδ(a∗) ∩ R(∂f) = ∅. Define a proper lower semicontinuous convex function
g : E → (−∞,∞] as follows: g(x) = f(x)− a∗(x) for all x ∈ E. Then g is coercive. In fact,
let {xn} be a sequence in E such that ‖xn‖ → ∞. Then since we have

g(xn)
‖xn‖ =

f(xn)
‖xn‖ − 〈xn, a∗〉

‖xn‖ ≥ f(xn)
‖xn‖ − ‖a∗‖

and f is coercive, we have that g(xn)/‖xn‖ → ∞. Thus g is coercive. Then it follows that
‖xn‖ → ∞ =⇒ g(xn) → ∞. So, by Lemma 3.3, g is bounded from below.

Let (z, z∗) ∈ ∂g be given. Since ∂g(z) = ∂f(z) − a∗, there exists x∗ ∈ ∂f(z) such that
z∗ = x∗ − a∗. Since x∗ ∈ R(∂f), we have ‖z∗‖ = ‖x∗ − a∗‖ ≥ δ. Hence we have

(z, z∗) ∈ ∂g =⇒ ‖z∗‖ ≥ δ.(3)

Applying Theorem 3.1, we have x0 ∈ E such that g(x0) = infx∈E g(x). This implies
0 ∈ ∂g(x0). This contradicts to (3). Therefore R(∂f) = E∗. This completes the proof.

Corollary 3.5. Let E be a Banach space, let J be the duality mapping of E and let f :
E → (−∞,∞] be a proper lower semicontinuous convex function. Then

R(J + r∂f) = E∗

for all r > 0.

Proof. Let r > 0 be given and let j(x) = 2−1‖x‖2 for all x ∈ E. Then it holds from
Theorem 2.1 that ∂(j + rf)(x) = J(x) + r∂f(x) for all x ∈ E. By Theorem 2.2, there exist
x∗ ∈ E∗ and µ ∈ R such that rf(x) ≥ 〈x, x∗〉 + µ for all x ∈ E. Let {xn} be a sequence in
E such that ‖xn‖ → ∞. Then since

j(xn) + rf(xn)
‖xn‖ ≥ 1

2
‖xn‖ +

〈xn, x∗〉
‖xn‖ +

µ

‖xn‖ ≥ 1
2
‖xn‖ − ‖x∗‖ +

µ

‖xn‖ ,

we have
j(xn) + rf(xn)

‖xn‖ −→ ∞.

Hence the function j+rf is coercive. By Theorem 3.4, we have R(J + r∂f) = R(∂(j + rf)) =
E∗.

4 The Metric Completeness of a Normed Linear Space In this section, we study
the metric completeness of a normed linear space. The following theorem was proved by
Takahashi [21].

Theorem 4.1 (Takahashi [21]). Let X be a metric space. Then the following are equiv-
alent:

1. X is complete;

2. for each Lipschitz continuous function f : X → [0,∞), if for every u ∈ X with
f(u) > infw∈X f(w), there exists v ∈ X such that v �= u and f(v) + d(u, v) ≤ f(u),
then there exists x0 ∈ X such that f(x0) = infw∈X f(w).

In the case where the space X is a normed linear space, the mapping f : X → (−∞,∞]
defined in the proof of Theorem 4.1 is a convex function. So, we have the following theorem:
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Theorem 4.2. Let E be a normed linear space. Then the following are equivalent:

1. E is complete;

2. for each Lipschitz continuous convex function f : E → [0,∞), if there exists δ > 0
such that (x, x∗) ∈ ∂f and f(x) > infw∈E f(w) imply ‖x∗‖ ≥ δ, then there exists
x0 ∈ E such that f(x0) = infw∈E f(w).

Proof. It is immediate from Theorem 3.1 that (1) implies (2). We prove that (2) implies (1).
Let f : E → [0,∞) be a Lipschitz continuous convex function such that, for each u ∈ E with
f(u) > infw∈E f(w), there exists v ∈ E such that v �= u and f(v)+‖u− v‖ ≤ f(u). Fix any
(x, x∗) ∈ E×E∗ such that f(x) > infw∈E f(w) and ‖x∗‖ < 1. We show x∗ /∈ ∂f(x). Indeed,
if f(x) = ∞, we have ∂f(x) = ∅. In the case of f(x) < ∞, since f(x) > infw∈E f(w), there
exists y ∈ E such that y �= x and f(y)+‖x−y‖ ≤ f(x). Since f(x) < ∞, we have f(y) < ∞.
Thus we have

〈x − y, x∗〉 ≤ ‖x − y‖‖x∗‖
< ‖x − y‖ ≤ f(x) − f(y)

and hence

f(y) < f(x) + 〈y − x, x∗〉.
This implies x∗ /∈ ∂f(x). Thus it holds that

(x, x∗) ∈ ∂f and f(x) > infw∈E f(w) =⇒ ‖x∗‖ ≥ 1.

By assumption, there exists x0 ∈ E such that f(x0) = infw∈E f(w). From Theorem 4.1, E
is complete.

5 Example In this section, we study an example of convex functions satisfying the as-
sumption in Theorem 3.1. We first prove the following lemma:

Lemma 5.1. Let E be a Banach space and let f : E → (−∞,∞] be a proper lower semi-
continuous convex function which is bounded from below. Suppose that the set

{∂f(x) : x ∈ E}
is finite. Then there exists x0 ∈ E such that f(x0) = infw∈E f(w).

Proof. By assumption, we have points x1, x2, . . . , xr in E such that

{∂f(x1), ∂f(x2), . . . , ∂f(xr)} = {∂f(x) : x ∈ E}.
Put

I0 = {i = 1, 2, . . . , r : f(xi) > inf
w∈E

f(w)}.

If I0 is empty, then f(x) = infw∈E f(w) for all x ∈ E. So, we may assume that I0 is
nonempty. Fix any i ∈ I0. Then, there exists δi > 0 such that

x∗ ∈ ∂f(xi) =⇒ ‖x∗‖ ≥ δi.

In fact, if not, then there exists a sequence {x∗
n} in ∂f(xi) such that ‖x∗

n‖ → 0. Since
∂f(xi) is closed, we have 0 ∈ ∂f(xi). This implies f(xi) = infw∈E f(w). This contradicts
to i ∈ I0.

Put δ = mini∈I0 δi(> 0). If (x, x∗) ∈ ∂f and f(x) > infw∈E f(w), then there exists
i ∈ I0 such that ∂f(x) = ∂f(xi). Hence we have ‖x∗‖ ≥ δi ≥ δ. Therefore, by Theorem
3.1, there exists x0 ∈ E such that f(x0) = infw∈E f(w).
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Using Theorem 2.3 and Lemma 5.1, we can prove the following:

Theorem 5.2. Let E be a Banach space and let f1, f2, . . . , fm : E → R be affine continuous
functions. Suppose that the function f defined by

f(x) = max
i=1,2,...,m

fi(x)

for all x ∈ E is bounded from below. Then there exists x0 ∈ E such that f(x0) =
infw∈E f(w).

Proof. Since each fi is affine continuous, we have x∗
i ∈ E∗ and µi ∈ R such that

fi(x) = 〈x, x∗
i 〉 + µi

for all x ∈ E. Hence we have ∂fi(x) = x∗
i for all x ∈ E and i = 1, 2, . . . , m. Put

I(x) = {i = 1, 2, . . .m : f(x) = fi(x)} for all x ∈ E. Since D(f) = E, by Theorem 2.3, we
have

∂f(x) = co
(⋃

{∂fi(x) : i ∈ I(x)}
)

= co{x∗
i : i ∈ I(x)}

for all x ∈ E. Since {I(x) : x ∈ E} is finite, the set

{∂f(x) : x ∈ E} = {co{x∗
i : i ∈ I(x)} : x ∈ E}

is also finite. Therefore, by Lemma 5.1, there exists x0 ∈ E such that f(x0) = infw∈E f(w).
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