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SHAPES OF PLANAR CUBIC CURVES
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Abstract. We derive a value to determine the shape of a cubic curve segment. It
can be easily calculated from the Hermite data at two points.

1 Introduction and Description of Method Walton & Meek have examined the
shapes of the whole parametric cubic curves ([3]). Their paper presents results on the
number and location of curvature extrema of the whole cubic segments.

With help of Mathematica, we derive a value to characterize the shapes of the cubic
curves which is easily computed from given Hermite data at two specified points. The value
enables us to determine in advance the number and location of the curvature extrema of
the resulting curve without its practical computation.

We consider a cubic curve: z(t),−∞ < t < ∞ satisfying z(0) = z0 and z(1) = z1. Its
signed curvature κ(t) is given by

κ(t) = (z′ × z′′)(t)/ ‖z′(t)‖3(1)

where “ × ” and ‖•‖ mean the cross product of two vectors and the Euclidean norm,
respectively. We assume that z′(0)(= z′

0) and z′(1)(= z′
1) are linearly independent, i.e.,

z′
0 × z′

1(= D) �= 0. Then, ∆z(= z1 − z0) can be represented in terms of z′
0 and z′

1:

∆z = λz′
0 + µz′

1(2)

where D(λ, µ) = (∆z × z′
1, z

′
0 × ∆z). Note the identity

z(t) = f(t)z0 + f(1 − t)z1 + g(t)z′
0 − g(1 − t)z′

1(3)
= {f (t) + f(1− t)} z0 + {λf(1 − t) + g(t)}z′

0 + {µf(1 − t) − g(1 − t)}z′
1

with f(t) = (1 − t)2(1 + 2t), g(t) = (1 − t)2t. A simple calculation gives

Lemma 1 z′(t) × z′′(t)(= φ(t)) reduces to

−2D{3(1 − λ− µ)t2 − 3(1 − 2µ)t+ 1 − 3µ}(4)

The following theorem provides an alternative derivation of the results presented in Walton
& Meek ([3]) on the shapes (cusp, loop, inflections points) of the cubic curves without use
of translation, rotation, uniform scaling and reflection.

Theorem 1 The presence of a singularity and inflection points on the cubic curve is char-
acterized by the sign of I (=1 − 4λ− 4µ+ 12λµ):
Case 1 (Cusp): I = 0 ((λ, µ) �= (1/2, 1/2)) a cusp, no inflection point
Case 2 (Loop): I > 0 a loop, no inflection point
Case 3 (Two or one inflection point): I < 0 two inflection points (λ+µ �= 1) or one
inflection point (λ+ µ = 1), no singularity
Case 4 (Quadratic): I = 0 ((λ, µ) = (1/2, 1/2)) no singularity, no inflection point
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Dependent on the sign of I, we give a simple proof of the above four cases.
Case 1: Note that a cusp occurs if and only if the quadratic polynomials z′(t)(= (x′(t), y′(t))
have the common zero(s). Sylvester’s resultant of the above quadratic ones is equal to
−3D2I and at least one of z′(t) is really quadratic for (λ, µ) �= (1/2, 1/2) since its coeffi-
cient of t2 is 3(1−2λ)z′

0+3(1−2µ)z′
1. Hence, a cusp occurs if I = 0 and (λ, µ) �= (1/2, 1/2).

The common zero is p = 1/(3 − 6λ).
Case 2: (z(p)− z(q))/(p− q) = (0, 0) (p �= q) gives a homogeneous system of equations in
A(= (1−2λ)(p2+pq+q2)+(3λ−2)(p+q)+1) and B(= (1−2µ)(p2+pq+q2)+(3µ−1)(p+q))
whose coefficient matrix is (z′

0, z
′
1). Since the matrix is nonsingular, we obtain A = B = 0,

i.e., if I > 0

p, q =
1 − 2µ±√

I

2(1 − λ− µ)
(5)

Case 3: The discriminant of the quadratic (4) is −12I if λ+ µ �= 1.
Case 4: Note that (4) is constant.
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Figure 1: Singularities and inflection points on whole cubic segments.

Remark 1: In Case 3 (λ+µ = 1), a transformation makes a special case of a cubic function
([3]) since with the coefficient z3 of t3 of z(t),

(z3 × z)(t) = (−1 + 2µ)(tD + z0 × ∆z′)(6)

In Figures 1-2, Ni(i = 0, 1, 2), L and C mean the whole and restricted cubic curves have
i inflection points, a loop and a cusp, respectively. Here we note the similar results on the
restricted (not whole) cubic segment z(t), 0 ≤ t ≤ 1 ([1]). Since our analysis does not use
any algebraic manipulation, Cases 1-2 require the conditions so that the common zero p
∈ (0, 1) and the both (p, q) ∈ (0, 1), respectively. Case 3 requires to count the number of
the zeros of (4) ∈ (0, 1). As a consequence of these results, for example, we see that a cusp
occurs in (or out of) the restricted segment if (λ, µ) lies on the lower (or upper) branch of
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the hyperbolic I = 0. The following lemma helps us examine the curvature extrema where
“ · ” means the dot product of two vectors.

Lemma 2 For v(t) = κ′(t)‖z′(t)‖5,

v(t) = −3φ(t)z′(t) · z′′(t) + φ′(t) ‖z′(t)‖2

v′(t) = −φ(t)
{
3 ‖z′′(t)‖2 + 4z′(t) · z(3)(t)

}
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Figure 2: Singularities and inflection points on restricted cubic segments.

For the above Cases 1-4, we consider the curvature extrema where (α, β, γ) = (‖z′
0‖ , ‖z′

1‖ , z′
0·

z′
1).

Case 1: Letting λ = 1/3 −m/6, µ = 1/3 − 1/(6m) (m �= −1),

m3v(t) = D(−1 + t+mt)3Q(t)(7)

where quadratic Q(t)(= a1t
2 − b1t+ c1) satisfies

a1 = 4(1 +m)(α2m2 + 2γm+ β2)
(
= 4(1 +m) ‖mz′

0 + z′
1‖2
)

b1 = 5α2m3 + (8α2 + 5γ)m2 + 11γm+ 3β2, c1 = m
{
m(m+ 4)α2 + 3γ

}
(8)

Q

(
1

1 +m

)
=
α2m4 − 2γm2 + β2

1 +m

(
=

∥∥m2z′
0 − z′

1

∥∥2

1 +m

)

Note that Q is a linear combination of α2, β2, γ to make the above derivation of Q(1/(1+m))
easier. Here we note that t = 1/(1 + m) does not give the curvature extrema since then
the denominator of κ′(t) vanishes. Since a1Q(1/(1 +m)) > 0, no or two curvature extrema
occur and the two extrema (if exist) are on one side of the cusp.
Case 2: Since φ(t) of v′(t) has no zero, the curve has one zero or three curvature extrema.
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Mathematica helps us obtain the following relation with (p, q) by (5)

v(p) + v(q) = −48v
(
p+ q

2

)
(9)

which shows there is at least one curvature extremum on the same side of the loop.
Case 3: If λ+ µ �= 1, unlike a cusp or loop case, φ(t) has two distinct zeros:

p, q =
3(1 − 2µ) ∓√−3I

6(1 − λ− µ)
(10)

Note φ(t) = 0 for t = p, q and φ′(t) = −6D {(1 − λ− µ)t− (1 − 2µ)} to obtain

v(p) = 2D ‖z′(p)‖2 √−3I, v(q) = −2D ‖z′(q)‖2 √−3I(11)

If the quadratic factor ψ(t)(= a2t
2 + b2t + c2) in braces of v′(t) of Lemma 2 has no zero

or a double zero, there exists a single curvature extremum in the loop, and two extrema
are on the opposite sides of the loop. Next, assume that ψ(t) has two distinct zeros, i.e.,
b22 − 4a2c2 > 0. Then,

a2
2

(
− b2

2a2
− p

)(
− b2

2a2
− q

)
− 5(b22 − 4a2c2)

8
(12) (

= 5400(1 − λ− µ)2(α2β2 − γ2)
)

= 5400 {D(1 − λ− µ)}2

where coefficients (a2, b2, c2) are given by

a2 = 180
{
(1 − 2λ)2α2 + 2(1 − 2λ)(1 − 2µ)γ + (1 − 2µ)2β2

}
(
= 180 ‖(1 − 2λ)z′

0 + (1 − 2µ)z′
1‖2
)

(13)

b2 = −120
{
(2 − 7λ+ 6λ2)α2 + (3 − 5λ− 7µ+ 12λµ)γ + (1 − 5µ+ 6µ2)β2

}
c2 = 12

{
(6 − 16λ+ 9λ2)α2 + 2(3 − 3λ− 8µ+ 9λµ)γ + (1 − 3µ)2β2

}
Note the position of the symmetric axis of ψ(t) to see that the two zeros do not lie in the
interval (p, q) (or (q, p)). Therefore, v(p)v(q) < 0 shows that a single extremum is on the
curve segment between the two inflection points corresponding to t = p, q. If there are
five curvature extrema, there are one and three extrema in the opposite sides of the curve
segment, respectively.

If λ+µ = 1(⇔ (λ, µ) = (1/2+s, 1/2−s), s �= 0), φ(t) has a single zero p = (6s−1)/(12s).
Mathematica helps us get v(t) = D

{
a3(t− p)4 + b3(t− p)2 + c3

}
:

a3 = −2160s3 ‖z′
0 − z′

1‖2
, b3 = 12s

{
‖(1 + 6s)z′

0 + (1 − 6s)z′
1‖2 − 4γ

}
(14)

c3 =
1

48s

∥∥(1 + 6s)2z′
0 − (1 − 6s)2z′

1

∥∥2

Since a3c3 < 0, two curvature extrema exist on the opposite sides of the inflection point.
Case 4: Note

v(t) = 3D
(
α2 − γ − t ‖z′

0 − z′
1‖2
)

(15)

which shows there is a single curvature extremum on the quadratic curve.
The following theorem presents the number and positions of the curvature extrema:
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Theorem 2 Let M(=the number of the curvature extrema). Then, for Cases 1-4 of The-
orem 1, we obtain
Case 1 (Cusp): M = 0, 2. If M = 2, curvature extrema are on the same side of the cusp.
Case 2 (Loop): M = 1, 3. At least one curvature extremum is in the loop.
Case 3 (Two or one inflection point): If λ + µ �= 1, M = 3, 5. One curvature ex-
tremum is on the curve segment connecting the two inflection points. On the (exterior)
opposite sides of the connecting curve segment one extremum on each side for M = 3 or
one and three extrema for M = 5 exist. If λ + µ = 1, two curvature extrema exist on the
opposite sides of the inflection point.
Case 4 (quadratic): M = 1.

Finally we give a remark for D(= z′
0 × z′

1) = 0, for example, z′
1 = rz′

0. Assume
z′

0×∆z(= D̄) �= 0; otherwise z(t) reduces to a linear segment and we omit this case. Then,
linearly independent ∆z and z′

0 are used in (3) instead of z′
0 and z′

1. Note the identity

z(t) = f(t)z0 + f(1 − t)z1 + g(t)z′
0 − g(1 − t)z′

1(16)

First, note φ(t)(= z′(t) × z′′(t)) = 6D̄
{
(t− 1)2 − rt2

}
. Next, (i) Sylvester’s resultant of

quadratic z′(t) is 36D̄2r (note that a cusp occurs if z′(t) has common roots), and their
coefficients of t2 are 3 {(1 + r)z′

0 − 2∆z}. Therefore, a cusp occurs for r = 0 at t = 1. (ii)
(z(p)−z(q))/(p−q) = 0, p �= q gives a system of homogeneous equations in A(= (1+r)(p2+
pq + q2)− (2 + r)(p+ q) + 1) and B(= 2(p2 + pq + q2) − 3(p+ q)) whose coefficient matrix
is (z′

0,−∆z). Note D̄ �= 0 to obtain A = B = 0, i.e., p, q = (1 ± √−3r)/(1 − r) (r < 0).
Hence, a loop exists for r < 0. (iii) For r > 0 (r �= 1), φ(t) has two zeros p, q = 1/(1 ∓√

r)
where the curve has two inflection points, and for r = 1, φ(t) has one zero t = 1/2 where
an inflection point occurs.

For the curvature extrema, we require to check the following results:
(i) for r = 0, v(t) = −12D̄s3(18s2 ‖c‖2 +15sc ·d+2 ‖d‖2), t = s+1 with c = z′

0−2∆z and
d = z′

0−3∆z. Here s = 0 makes the denominator of the derivative of the curvature, and so
it does not give the curvature extrema. In addition, the signs of the coefficient of s2 and the
constant term are of the same. Therefore, if the two roots exist, they are of the same sign
(with respect to s), i.e., both of them are greater or less than one (with respect to t) where
the cusp occurs. (ii) for r < 0, p, q = (1±√−3r)/(1−r) and (9) is valid. (iii) for r > 0 (r �=
1), with (p, q) = (1/(1−√

r), 1/(1+
√
r)), v(p) = 12D̄ ‖z′(p)‖2 √

r, v(q) = −12D̄ ‖z′(q)‖2 √
r

and (12) is 5400
{
D̄(1 − r)

}2; for r = 1, v(t) = 3D̄(720s4 ‖c‖2−48s2c ·d−‖d‖2), t = s+1/2
with c = z′

0 −∆z and d = z′
0 − 3∆z. Hence, v(t) has a zero on each side of t = 1/2 where

the inflection point occurs. (iv) Since the coefficient of t3 of z(t) is (1 + r)z′
0 − 2∆z, z can

not be quadratic. Hence we have the following result:
Remark 2 (z′

1 = rz′
0, z

′
0 × ∆z �= 0). For r = 0, r < 0, r > 0, we have exactly the

same results in the above Cases 1-3 of Theorem 2, respectively where r = 1 corresponds to
λ+ µ = 1.
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