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Abstract. Criteria for a complex space to be hyperbolic, hyperbolically imbedded, taut or
tautly imbedded are presented. In particular, the following generalization of theorems by
Eastwood and Kobayashi is produced by replacing the requirement of hyperbolicity of the
image space by normality of the mapping: Let f : X → Z be a normal map between complex
spaces X and Z. If either (1) there is an open cover {Vα} of Z such that each connected
component of f−1(Vα) is hyperbolic or (2) for every z ∈ Z each connected component of
f−1(z) is compact hyperbolic, then X is hyperbolic. The following common generalization of
results of Zaidenberg and Abate is also established: A complex subspace X of a complex space
Y is hyperbolically imbedded in Y if the inclusion map from X to Y is normal.

§1. This paper begins with Theorem A, which cites a number of recent results of
Kobayashi and Eastman.

Theorem A. [9] Let f : X → Z be a holomorphic map between complex spaces X and Z.
Then

(1) [Kobayashi] X is hyperbolic if Z is hyperbolic and f : X → Z is a spread.
(2) [Kobayashi] X is hyperbolic if Z is hyperbolic and f is finite-to-one.
(3) [Eastman] X is hyperbolic if Z is hyperbolic and there is an open cover {Vα} of Z

such that each f−1(Vα) is hyperbolic.
(4) [Kobayashi] X is hyperbolic if Z is hyperbolic and f : X → Z is a complex fiber space

with compact hyperbolic fibers.
(5) [Kobayashi] X is taut if Z is taut, f is proper and there is an open cover {Vα} of Z

such that each f−1(Vα) is taut.
(6) [Kobayashi] X is complete hyperbolic if Z is complete hyperbolic, f is proper and

finite-to-one.

Zaidenberg and Kobayashi obtained results similar to those in Theorem A using normal
maps (see §2 below for definition ) with relative compact images instead of hyperbolicity of
the image space. These are cited in Theorem B.

Theorem B[9]. Let f : X → Z be a normal map of complex spaces with a relatively
compact image. Then

(1) [Zaidenburg] X is hyperbolic if there is an open cover {Vα} of Z such that each
f−1(Vα) is hyperbolic.

(2) [Kobayashi] X is complete hyperbolic if f is proper and for every z ∈ Z, each con-
nected component of f−1(z) is hyperbolic.

In this article, common generalizations of Theorem A(2) and A(4), and of Theorem A(3)
and Theorem B(1), and other generalizations of Theorems A and B are established. Abate
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[2] has proved that a complex space X is hyperbolic if the identity map of X is normal and
Zaidenberg [12] has discovered that a relatively compact complex subspace X of a complex
space Y is hyperbolically imbedded in Y if the inclusion map from X to Y is normal. These
two results are unified and extended.
Some of the contributions of this note to the study of normal maps and hyperbolicity

are listed below. The notation H(X,Y ) is used for the space of holomorphic maps between
complex spaces X and Y endowed with the compact-open topology.

• A complex subspace X of a complex space Y is hyperbolically imbedded in Y if the
inclusion i ∈ H(X,Y ) is normal, or more generally if there is a normal map f ∈ H(Z, Y )
from a complex space Z such that f(Z) = X and f : Z → X is a covering map.

• Let X and Z be complex spaces and let f ∈ H(X,Z) be a normal map. Then X is
hyperbolic if either
(1) there is an open cover {Vα} of Z such that each connected component of f−1(Vα) is

hyperbolic or
(2) for every z ∈ Z, each connected component of f−1(z) is compact hyperbolic.
In addition if f is proper and has a relatively compact image in Z, then X is compact

hyperbolic.

• Let f ∈ H(X,Z) be a proper map from a complex space X to a taut ( complete
hyperbolic ) space Z. Then X is taut ( complete hyperbolic ) if
either (1) there is an open cover {Vα} of Z such that each connected component of

f−1(Vα) is hyperbolic
or (2) for each z ∈ Z, each connected component of f−1(z) is hyperbolic.

• Let X be a complex subspace of a complex space of Y and let f ∈ H(X,Z) be a
normal map from X to a complex space Z with a relatively compact image. Then X is
hyperbolically imbedded ( tautly imbedded ) in Y if there is an open cover {Vα} of Z such
that each f−1(Vα) is hyperbolically imbedded ( tautly imbedded ) in Y .

§2. The authors [8], extending Hayman’s notion of uniformly normal family of functions,
introduced the notion of uniformly normal families of holomorphic maps between complex
spaces calling a map f normal if the singleton set {f} is uniformly normal. This definition
encompasses the concepts of normal maps defined by various authors in various settings
and generalizations of results for normal maps including classical theorems by Lehto and
Virtanen, Schottky, Hayman, Pommerenke and Lappan and generalizations of more recent
theorems by Hahn, Järvi, and Zaidenberg have been obtained. It should be pointed out
that holomorphic maps into hyperbolic spaces as well as into hyperbolically imbedded (not
necessarily relatively compact) subspaces are normal maps and that a hyperbolic space is
hyperbolically imbedded in itself. The definition of a uniformly normal family is now stated
for the sake of completeness. Let X and Y be topological ( complex ) spaces. The notation
Y∞ will denote the one-point compactification of the space Y and C(X,Y ) ( H(X,Y ) ) will
represent the space of continuous ( holomorphic ) maps from X to Y endowed with the
compact-open topology. The following notations will also be used: C is the complex plane,
∆ = {z ∈ C : |z| < 1} and F ◦G = {f ◦ g : f ∈ F, g ∈ G} where F,G are function spaces.

Definition. Let X, Y be complex spaces. A family F ⊂ H(X,Y ) is uniformly normal if
F ◦ H(∆,X) is relatively compact in C(∆, Y∞). A map f ∈ H(X,Y ) is said to be normal
if a singleton set {f} is uniformly normal.

A semi-length function [10] on a complex space X is a upper-semi-continuous non-
negative function H on the tangent cone, T (X), such that H(av) = |a|H(v) for a ∈
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C, v, av ∈ T (X). A length function is a semi-length function which is continuous and
H(v) > 0 for all nonzero v ∈ T (X). We denote by dH the distance function generated on
X by H , that is,

dH(x, y) = inf
γ

∫ b

a

H(γ′(t))dt,

where γ : [a, b] → X is a C1 curve joining x to y. The distance function dH is known
to generate the topology on X. If X , Y are complex spaces with length functions H,E
respectively and f ∈ H(X,Y ), the norm |df |H,E of the tangent map for f with respect to
H,E is defined by

|df |H,E = |df | = sup{|dfp| : p ∈ X}
where

|dfp|H,E = |dfp| = sup{E(dfp(v)) : v ∈ T (X)p, H(v) = 1}.

If X is a complex space, kX ( KX ) will denote the Kobayashi hyperbolic pseudo-distance
( Kobayashi-Royden’s semi-length function [10] ) on X .

Propositions 1 and 2 for uniformly normal families are proved in [6].

Proposition 1 . Let X be a complex space and H a semi-length function on X such that
f∗(H) ≤ K∆ for all f ∈ H(∆,X). Let Y be a complex space. Then the following statements
are equivalent for F ⊂ H(X,Y );

(1) F is uniformly normal.
(2) F ◦ H(∆,X) is an evenly continuous subset of H(∆, Y ).
(3) There is a length function E on Y such that |df |H,E ≤ 1 for each f ∈ F .

Proposition 2. Let X, Y be complex spaces. If F ⊂ H(X,Y ) is uniformly normal, then
F is relatively compact in C(X,Y∞).

Proposition 3, due to Brody [9], will be used extensively.

Proposition 3. Let Y be a compact subspace of a complex space Z. If Y is hyperbolic,
there is a relatively compact neighborhood U of Y which is hyperbolically imbedded in Z.

§3. Zaidenberg [12] has observed that a relatively compact complex subspace X of a
complex space Y is hyperbolically imbedded in Y if the inclusion map from X to Y is
normal. The following theorem extends this result by dropping the requirement of relative
compactness as well as the result of Abate [2] that a complex space X is hyperbolic if the
identity map of X is normal.

Theorem 1. Let X be a complex subspace of a complex space Y . Then X is hyperbolically
imbedded in Y if either of the following conditions is satisfied.

(1) The inclusion i ∈ H(X,Y ) is a normal map.
(2) There is a normal map f ∈ H(Z, Y ) from a complex space Z such that f(Z) ⊂ X

and f : Z → X is a covering projection.

Proof. (1) By Proposition 1, choose a length function E on Y such that

dE(f(p), f(q)) ≤ kX(p, q) for p, q ∈ X.
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(2) Let E be a length function on Y such that

dE(f(a), f(b)) ≤ kZ(a, b) for a, b ∈ Z.

Let p, q ∈ X and p̃ ∈ f−1(p). Then

kX(p, q) = inf
q̃∈f−1(q)

kZ(p̃, q̃) ≥ dE(p, q). �

To be a hyperbolic space a weaker condition than Proposition 1(1) is sufficient as the
following result shows. Theorem 2(3) extends Theorem A(2).

Theorem 2. Let f ∈ H(X,Y ) be a normal map between complex spaces. Then X is
hyperbolic if either of the following conditions is satisfied.

(1) Given x, x′ ∈ X with x �= x′ and f(x) = f(x′), there is a neighborhood V of f(x) in
Y such that x and x′ are in different components of f−1(V ).

(2) Every x ∈ X has a neighborhood U such that f is a homeomorphism from U onto an
open set f(U).

(3) For every y ∈ Y the inverse image f−1(y) is finite.

Proof. By Proposition 1, choose a length function E on Y such that

dE(f(p), f(q)) ≤ kX(p, q) for p, q ∈ X.

Since kX is an inner pseudo-distance and dE is an inner distance, the theorem follows from
a result of Kobayashi [9]. �

The following corollaries extend Theorem A(1) and other results of Kobayashi [9] where
maps involved are into hyperbolic spaces.

Corollary 1. Let π ∈ H(X,Z) be a spread of complex spaces. If π is a normal map, then
X is hyperbolic.

Corollary 2. Let π ∈ H(X,Z) be a covering map of complex spaces. If π is normal, then
X is hyperbolic.

The following theorem extends Theorem A(2), A(3) and A(4) where the image space Z
is assumed to be hyperbolic and Theorem B(1) where the map f is assumed to be a normal
map with a relatively compact image. If a is a point in a topological space, the notation
N (a) denotes the set of open neighborhoods of a.

Theorem 3. Let f ∈ H(X,Z) be a normal map between complex spaces X and Z. Then
X is hyperbolic if either of the following conditions holds.

(1) There is an open cover {Vα} of Z such that each connected component of f−1(Vα) is
hyperbolic,

(2) For every z ∈ Z, each connected component of f−1(z) is compact hyperbolic.

Proof. Let φn be a sequence in H(∆,X) and let

D = ∆− {a ∈ ∆ : φn(an)→ ∞ ∈ X∞ for every sequence an → a}.
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If D = ∅, the sequence φn diverges to ∞. It is now shown that if a ∈ D, with either of the
assumptions (1) or (2), there is aW (a) ∈ N (a) and a subsequence φnk

|W (a) of the sequence
of restrictions of φn to W (a) which is relatively compact in H(W (a),X), i.e., it is shown
that D is open.

Suppose a ∈ D. Choose a subsequence µn of φn such that µn(an) → x ∈ X for a
sequence an → a. Since f ◦H(∆,X) is relatively compact in C(∆, Z∞), it may be assumed
that f ◦ µn converges to h ∈ C(∆, Z∞). Assuming (1), a member V of the given open
covering, W (a) ∈ N (a), and a subsequence φnk

|W (a) of the sequence of restrictions of
φn to W (a) may be chosen such that f ◦ φnk

(W (a)) ⊂ V, and hence φnk
(W ′(a)) ⊂ M

where M is the connected component of f−1(V ) satisfying φnk
(ak) → x ∈ M . Since M is

hyperbolic, {φnk
|W (a)}, the sequence of restrictions of φnk

to W (a), is relatively compact
in C(W (a),M∞). It follows that {φnk

|W (a)} is relatively compact in H(W (a),X) for some
W (a) ∈ N (a).
Assuming (2), let A be the connected component of f−1(h(a)) containing x. From

Proposition 3 choose a relatively compact neighborhood U of A hyperbolically imbedded
in X . Since the hyperbolic distance kU defines the topology of U , choose a relatively
compact neighborhood K ⊂ U of A such that ∂K ∩ f−1(h(a)) = ∅. Suppose that for each
W (a) ∈ N (a), lim inf φnk

(Wa) ∩ (X −K) �= ∅. Choose a subsequence φ(1)
nk of φnk

such that
the subsequence φ(1)

nk (bk) �∈ K for a sequence bk → a. Let γk be the line segment akbk.
Then φnk

(γk) ∩ ∂K �= ∅. Choose xnk
∈ φ

(1)
nk (γk) ∩ ∂K. A subsequence of the sequence xnk

converges to a point x′ ∈ ∂K and f(x′) �= f(x). Choose a neighborhood V of f(x) such that
f(x′) �∈ V. Now f ◦φnk

(W ′(a)) ⊂ V ultimately for an elementW ′(a) ∈ N (a) since f ◦φnk
→

h ∈ C(∆, Z∞). This is a contradiction as lim f(xnk
) = f(x′). It follows that there isW (a) ∈

N (a) such that ultimately φnk
(Wa) ⊂ K and then that the sequence of restrictions φnk

|W (a)

converges in H(W (a),X) since K is relatively compact and hyperbolically imbedded in X .

To complete the proof of the theorem, let

µ = {Wa : a ∈ D,Wa ∈ N (a), φn|Wa has a convergent subsequence in H(Wa, X)}.
Since D is open in ∆, there is a countable subcover {Wi} ⊂ µ of D. First choose a
subsequence φ(1)

n of φn converging in H(W1, X). Then choose a subsequence φ
(2)
n of φ(1)

n

converging inH(W2, X). Continuing, sequences are obtained satisfying φ
(k)
n is a subsequence

of φ(k+1)
n such that φ(k)

n converges in H(∪k
i=1Wi, X). The diagonal sequence φ

(k)
k converges

to a map φ ∈ H(D,X). Define φ̃ ∈ C(∆, Y∞) by φ̃(a) = φ(a) for a ∈ D and φ̃(a) = ∞ if
a ∈ ∆−D. Then φk

k converges to φ̃, i.e., H(∆,X) is relatively compact in C(∆,X∞). �

Similar criteria provide sufficient conditions for a complex space to be taut or compact
hyperbolic.

Theorem 4. Let f ∈ H(X,Z) be a proper map between complex spaces X and Z such that
f ◦H(∆,X) is relatively compact in H(∆, Z)∪{∞} ( H(∆, Z) ). Then X is taut ( compact
hyperbolic ) if either of the following conditions holds.

(1) There is an open cover {Vα} of Z such that each connected component of f−1(Vα) is
hyperbolic.

(2) For each z ∈ Z, each f−1(z) is hyperbolic.

Proof. Let φn be a sequence in H(∆,X) and let
D = ∆− {a ∈ ∆ : φn(an)→ ∞ ∈ X∞ for every sequence an → a}.
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If D = ∅, the sequence φn diverges to∞ and we are finished. So assume D �= ∅ and we may
suppose f ◦φn converges to h ∈ H(∆, Z).We will show that D = ∆ and then the proof can
proceed as those given for Theorem 3.
Let a ∈ ∆ and let L be a compact neighborhood of h(a). There is a W (a) ∈ N (a) such

that ultimately f ◦φn(W (a)) ⊂ L and so φn(W (a)) ⊂ f−1(L). There is, then, a subsequence
φnj such that φnj (a) converges to a point x ∈ f−1(L) since f−1(L) is compact and so a ∈ D.
To show X is compact when f ◦ H(∆,X) is relatively compact in H(∆, Z), let xn be a

sequence in X and define φn ∈ H(∆,X) by φn(x) = xn. Since f ◦ φn is relatively compact
in H(∆, Z), it follows from the properness of f that a subsequence xnj converges to a point
x ∈ X. �

Generalizations of A(5) and A(6) are presented in Corollary 3.

Corollary 3. Let f ∈ H(X,Z) be a proper map from a complex space X to a complete
hyperbolic ( taut ) space Z. Then X is complete hyperbolic ( taut ) if either of the following
conditions is satisfied.

(1) There is an open cover {Vα} of Z such that each connected component of f−1(Vα) is
hyperbolic.

(2) For each z ∈ Z, each connected component of f−1(z) is hyperbolic.

Proof. Only the statement concerning completeness needs to be checked. Let xn be a
Cauchy sequence with respect to kX . Since f is distance decreasing with respect to the
hyperbolic distances kX and kZ , the sequence f(xn) is Cauchy and converges to a point,
say p ∈ Z. Let K be a compact neighborhood of p. ultimately xn ∈ f−1(K). Since f−1(K)
is compact, xn, being a Cauchy sequence, must converge. �

Corollary 4 extends Theorem B(2) under the same assumption. It should be cautioned
that this corollary applies neither to the identity map id : ∆ → ∆ since it does not have a
relative compact image , nor to the inclusion map i : ∆→ C since it is not proper.

Corollary 4. Let f ∈ H(X,Z) be a proper normal map between complex spaces X and Z
with a relatively compact image. Then X is compact and hyperbolic if either of the following
conditions holds.

(1) There is an open cover {Vα} of Z such that each connected component of f−1(Vα) is
hyperbolic.

(2) For each z ∈ Z, each connected component of f−1(z) is hyperbolic.

Theorem 5 is similar to Theorem B(1).

Theorem 5. Let X be a complex subspace of a complex space of Y . Let f ∈ H(X,Z) be a
normal map from X to a complex space Z with a relatively compact image. Then

X is hyperbolically imbedded ( tautly imbedded ) in Y if there is an open cover {Vα} of
Z such that each f−1(Vα) is hyperbolically imbedded ( tautly imbedded ) in Y .

Proof. (1) Let φn be a sequence H(∆,X) ⊂ C(∆, Y∞) and without loss suppose f ◦ φn

converges to h ∈ H(∆, Z). Let

E = ∆− {a ∈ ∆ : φn(an)→ ∞ ∈ Y∞ for every sequence an → a}.

If E = ∅, the sequence φn diverges to∞ . On the other hand let a ∈ E and let V ∈ N (h(a))
such that f−1(V ) is hyperbolically imbedded in Y . There is a subsequence φnk

such that
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φnk
(ak) → y ∈ Y for a sequence an → a. There is a W ′(a) ∈ N (a) of a such that

ultimately f ◦ φn(W ′(a)) ⊂ V and hence φn(W ′(a)) ⊂ f−1(V ). It follows that {φnk
|W ′(a)}

is relatively compact in C(W ′(a), Y∞). Since φnk
(ak) → y ∈ Y, we have that {φnk

|W (a)}
is relatively compact in H(W (a), Y ) for a W (a) ∈ N (a) i.e., a ∈ E iff a subsequence
of φn|W (a) converges in H(W (a), Y ) for W (a) ∈ N (a). As in Theorem 3, it follows that
H(∆,X) is relatively compact in C(∆, Y∞).
It will now be shown that E = ∆ when E �= ∅ and the proof X is tautly imbedded

in Y can then proceed as in the proof of Theorem 3. Let a ∈ ∆ and let U ∈ N (h(a))
such that f−1(U) is tautly imbedded in Y . Choose a W (a) ∈ N (a) such that ultimately
f ◦ φn(W (a)) ⊂ U and hence φn(W (a)) ⊂ f−1(U). It follows that there is a W (a) ∈ N (a)
such that φn|W (a) has a convergent sequence in H(W (a), Y ). Therefore a ∈ E. �
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