SAKAGUCHI-TYPE HARMONIC UNIVALENT FUNCTIONS

Om P. Ahuja and Jay M. Jahangiri

Received September 24, 2002; revised May 23, 2003

Abstract

We take the Sakaguchi class of analytic univalent functions which are starlike with respect to symmetric points in the open unit disc Δ and extend it to the complex-valued harmonic univalent functions in Δ. A necessary and sufficient convolution characterization for such harmonic functions is determined. Also, a sufficient coefficient bound for these functions is introduced which in turn proves that they are harmonic starlike of order $\alpha / 2,0 \leq \alpha<1$, in the open unit disc.

1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play important roles in a variety of problems in applied mathematics. Harmonic functions have been studied by differential geometers such as Choquet [1], Kneser [5], Lewy [6], and Radó [7]. Recent interest in harmonic complex functions has been triggered by geometric function theorists Clunie and Sheil-Small [2]. In [2] they developed the basic theory of complex harmonic univalent functions f defined on the open unit disk $\Delta=\{z:|z|<1\}$ with the normalization $f(0)=0$ and $f_{z}(0)=1$. Such functions may be written as $f=h+\bar{g}$ where h and g are analytic in Δ. In this case, f is sense-preserving if $\left|g^{\prime}\right|<\left|h^{\prime}\right|$ in Δ, or equivalently, if the dilatation function $w=g^{\prime} / h^{\prime}$ satisfies $|w(z)|<1$ for $z \in \Delta$. To this end, without loss of generality, for $f=h+\bar{g}$ we may write

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{1}
\end{equation*}
$$

On the other hand, Sakaguchi [8] introduced the class S of analytic univalent functions in Δ which are starlike with respect to symmetrical points. An analytic function $f(z)$ is said to be starlike with respect to symmetrical points if there exists an $\epsilon>0$ sufficiently small such that, for every ρ in $(1-\epsilon, 1)$ and every ζ with $|\zeta|=\rho$, the angular velocity of $f(z)$ about the point $f(-\zeta)$ is positive at $z=\zeta$ as z traverses the circle $|z|=\rho$ in a positive direction. Thus, we have the inequality

$$
\begin{equation*}
\Re \frac{2 \zeta f^{\prime}(\zeta)}{f(\zeta)-f(-\zeta)}>0 \tag{2}
\end{equation*}
$$

for all ζ in some ring $1-\epsilon<|\zeta|<1$, where $\epsilon>0$ is sufficiently small. Note that (e.g. see [3] Vol. I, p. 165) the inequality (2) in $r<|z|<1$ does not in itself imply univalence.

[^0]Key words and phrases. Harmonic, Univalent, Starlike.

Extending the definition (2) to include the harmonic functions, for $0 \leq \alpha<1$ we let $S H(\alpha)$ denote the class of complex-valued, sense-preserving, harmonic univalent functions f of the form (1) which satisfy the condition

$$
\begin{equation*}
\Im\left(\frac{2 \frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)-f\left(-r e^{i \theta}\right)}\right) \geq \alpha \tag{3}
\end{equation*}
$$

where $z=r e^{i \theta}, 0 \leq r<1$ and $0 \leq \theta<2 \pi$.
In this paper we determine a convolution characterization for functions in $S H(\alpha)$. We then introduce a sufficient coefficient condition for harmonic functions to be in $S H(\alpha)$. It is also shown that such functions in $S H(\alpha)$ are also starlike of order α.

2. Main Results

To prove our results in this section, we shall need the following lemma which is due to the second author [4].
2.1. Lemma. Let $f=h+\bar{g}$ be of the form (1) and suppose that the coefficients of h and g satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) \leq 2, \quad a_{1}=1,0 \leq \alpha<1 \tag{4}
\end{equation*}
$$

Then f is sense-preserving, harmonic univalent, and starlike of order α in Δ.
The condition (4) for $\alpha=0$ was obtained by Silverman and Silvia [10].
A function f is said to be starlike of order α in Δ (e.g. see [9] p. 244) if

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right) \geq \alpha, \quad|z|=r<1 \tag{5}
\end{equation*}
$$

We also define the convolution or Hadamard product of two power series $f(z)=$ $\sum_{n=1}^{\infty} a_{n} z^{n}$ and $F(z)=\sum_{n=1}^{\infty} A_{n} z^{n}$ by

$$
(f * F)(z)=f(z) * F(z)=\sum_{n=1}^{\infty} a_{n} A_{n} z^{n}
$$

2.2. Theorem. Let α be a constant such that $0 \leq \alpha<1$. Then a harmonic function $f=h+\bar{g}$ is in $S H(\alpha)$ if and only if

$$
h(z) * \frac{(1-\alpha) z+(\alpha+\xi) z^{2}}{(1-z)^{2}(1+z)}-\overline{g(z)} * \frac{(\alpha+\xi) \bar{z}+(1-\alpha) \bar{z}^{2}}{(1-\bar{z})^{2}(1+\bar{z})} \neq 0
$$

where $|\xi|=1, \quad \xi \neq-1$ and $0<|z|<1$.
Proof. For $0 \leq \alpha<1$, a harmonic function $f=h+\bar{g}$ is in $S H(\alpha)$ if and only if the condition (3) holds. Differentiating $f\left(r e^{i \theta}\right)$ with respect to θ and substituting in (3) we obtain

$$
\Re\left[\frac{2 z h^{\prime}(z)-2 \overline{z g^{\prime}(z)}-\alpha[f(z)-f(-z)]}{(1-\alpha)[f(z)-f(-z)]}\right] \geq 0
$$

Or equivalently,

$$
\begin{equation*}
\frac{2 z h^{\prime}(z)-2 \overline{z g^{\prime}(z)}-\alpha[h(z)+\overline{g(z)}-h(-z)-\overline{g(-z)}]}{(1-\alpha)[h(z)+\overline{g(z)}-h(-z)-\overline{g(-z)}]} \neq \frac{\xi-1}{\xi+1} \tag{6}
\end{equation*}
$$

where $|\xi|=1, \xi \neq-1$ and $0<|z|<1$.
Simplifying (6) we obtain the equivalent condition

$$
\begin{equation*}
2(1+\xi) z h^{\prime}(z)+(1-2 \alpha-\xi)[h(z)-h(-z)]-2(1+\xi) \overline{z g^{\prime}(z)}+(1-2 \alpha-\xi)[\overline{g(z)-g(-z)}] \neq 0 \tag{7}
\end{equation*}
$$

Upon noting that $z h^{\prime}(z)=h(z) *\left(z /(1-z)^{2}\right), z g^{\prime}(z)=g(z) *\left(z /(1-z)^{2}\right), h(z)-h(-z)=$ $2 h(z) *\left(z /\left(1-z^{2}\right)\right)$ and $g(z)-g(-z)=2 g(z) *\left(z /\left(1-z^{2}\right)\right)$, the condition (7) yields the necessary and sufficient condition required by Theorem 2.2.

Next we give a sufficient coefficient condition for harmonic functions in $S H(\alpha)$.
2.3. Theorem. For h and g as in (1), let the harmonic function $f=h+\bar{g}$ satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{\frac{2(n-1)}{1-\alpha}\left(\left|a_{2 n-2}\right|+\left|b_{2 n-2}\right|\right)+\frac{2 n-1-\alpha}{1-\alpha}\left|a_{2 n-1}\right|+\frac{2 n-1+\alpha}{1-\alpha}\left|b_{2 n-1}\right|\right\} \leq 2 \tag{8}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$. Then f is sense-preserving harmonic univalent in Δ and $f \in S H(\alpha)$.

Proof. Since

$\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right)$
$=\sum_{n=1}^{\infty} 2(n-1)\left|a_{2 n-2}\right|+\sum_{n=1}^{\infty}(2 n-1)\left|a_{2 n-1}\right|+\sum_{n=1}^{\infty} 2(n-1)\left|b_{2 n-2}\right|+\sum_{n=1}^{\infty}(2 n-1)\left|b_{2 n-1}\right|$
$\leq \sum_{n=1}^{\infty}\left\{\frac{2(n-1)}{1-\alpha}\left(\left|a_{2 n-2}\right|+\left|b_{2 n-2}\right|\right)+\frac{2 n-1-\alpha}{1-\alpha}\left|a_{2 n-1}\right|+\frac{2 n-1+\alpha}{1-\alpha}\left|b_{2 n-1}\right|\right\} \leq 2$,
by Lemma 2.1, we conclude that f is sense-preserving, harmonic, univalent and starlike in Δ. To prove $f \in S H(\alpha)$, according to the condition (3), we need to show that

$$
\Im\left(\frac{2 \frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)-f\left(-r e^{i \theta}\right)}\right)=\Re\left(\frac{-2 i \frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)-f\left(-r e^{i \theta}\right)}\right)=\Re \frac{A(z)}{B(z)} \geq \alpha
$$

where $z=r e^{i \theta} \in \Delta, 0 \leq \alpha<1$,

$$
\begin{align*}
A(z) & =-2 i \frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right) \\
& =2 r e^{i \theta}+2 \sum_{n=2}^{\infty} n a_{n} r^{n} e^{n i \theta}-2 \sum_{n=1}^{\infty} n \bar{b}_{n} r^{n} e^{-n i \theta} \\
& =2 r e^{i \theta}+2 \sum_{n=2}^{\infty}\left[2(n-1) a_{2 n-2} r^{2 n-2} e^{(2 n-2) i \theta}+(2 n-1) a_{2 n-1} r^{2 n-1} e^{(2 n-1) i \theta}\right] \\
& -2 \sum_{n=1}^{\infty}\left[2(n-1) \bar{b}_{2 n-2} r^{2 n-2} e^{-(2 n-2) i \theta}+(2 n-1) \bar{b}_{2 n-1} r^{2 n-1} e^{-(2 n-1) i \theta}\right] \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
B(z) & =f\left(r e^{i \theta}\right)-f\left(-r e^{i \theta}\right) \\
& =2\left[r e^{i \theta}+\sum_{n=2}^{\infty} a_{2 n-1} r^{2 n-1} e^{(2 n-1) i \theta}+\sum_{n=1}^{\infty} \bar{b}_{2 n-1} r^{2 n-1} e^{-(2 n-1) i \theta}\right] \tag{10}
\end{align*}
$$

Using the fact that $\Re(\omega) \geq \alpha$ if and only if $|1-\alpha+\omega| \geq|1+\alpha-\omega|$, it suffices to show that

$$
\begin{equation*}
|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{11}
\end{equation*}
$$

On the other hand, for $A(z)$ and $B(z)$ as given by (9) and (10) we have

$$
\begin{align*}
& |A(z)+(1-\alpha) B(z)| \\
& \begin{array}{l}
=2 r \mid 2-\alpha+\sum_{n=2}^{\infty}\left\{2(n-1) a_{2 n-2} r^{2 n-3} e^{(2 n-3) i \theta}+(2 n-\alpha) a_{2 n-1} r^{2 n-2} e^{(2 n-2) i \theta}\right\} \\
\quad-\sum_{n=1}^{\infty}\left\{2(n-1) \bar{b}_{2 n-2} r^{2 n-3} e^{-(2 n-1) i \theta}+(2 n-2+\alpha) \bar{b}_{2 n-1} r^{2 n-2} e^{-2 n i \theta}\right\} \mid \\
\geq 2 r\left[(2-\alpha)-\sum_{n=2}^{\infty} 2(n-1)\left|a_{2 n-2}\right|-\sum_{n=2}^{\infty}(2 n-\alpha)\left|a_{2 n-1}\right|\right. \\
\left.\quad-\sum_{n=1}^{\infty} 2(n-1)\left|b_{2 n-2}\right|-\sum_{n=1}^{\infty}(2 n-2+\alpha)\left|b_{2 n-1}\right|\right]
\end{array}
\end{align*}
$$

and

$$
\begin{align*}
& |A(z)-(1+\alpha) B(z)| \\
& \begin{array}{l}
=2 r \mid-\alpha+\sum_{n=2}^{\infty}\left\{2(n-1) a_{2 n-2} r^{2 n-3} e^{(2 n-3) i \theta}+(2 n-2-\alpha) a_{2 n-1} r^{2 n-2} e^{(2 n-2) i \theta}\right\} \\
\\
\quad-\sum_{n=1}^{\infty}\left\{2(n-1) \bar{b}_{2 n-2} r^{2 n-3} e^{-(2 n-1) i \theta}+(2 n+\alpha) \bar{b}_{2 n-1} r^{2 n-2} e^{-2 n i \theta}\right\} \mid \\
\leq 2 r\left[\alpha+\sum_{n=2}^{\infty} 2(n-1)\left|a_{2 n-2}\right|+\sum_{n=2}^{\infty}(2 n-2-\alpha)\left|a_{2 n-1}\right|\right.
\end{array} \\
& \left.\quad+\sum_{n=1}^{\infty} 2(n-1)\left|b_{2 n-2}\right|+\sum_{n=1}^{\infty}(2 n+\alpha)\left|b_{2 n-1}\right|\right] .
\end{align*}
$$

Now, by substituting for (12) and (13) in (11), we obtain

$$
\begin{aligned}
&|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \\
& \geq 4 r\left[2(1-\alpha)-\sum_{n=1}^{\infty} 2(n-1)\left|a_{2 n-2}\right|-\right. \sum_{n=1}^{\infty}(2 n-1-\alpha)\left|a_{2 n-1}\right| \\
&\left.\quad-\sum_{n=1}^{\infty} 2(n-1)\left|b_{2 n-2}\right|-\sum_{n=1}^{\infty}(2 n-1+\alpha)\left|b_{2 n-1}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
\geq 4 r(1-\alpha)\left[2-\sum_{n=1}^{\infty} \frac{2(n-1)}{1-\alpha}\left|a_{2 n-2}\right|\right. & -\sum_{n=1}^{\infty} \frac{2 n-1-\alpha}{1-\alpha}\left|a_{2 n-1}\right| \\
& \left.-\sum_{n=1}^{\infty} \frac{2(n-1)}{1-\alpha}\left|b_{2 n-2}\right|-\sum_{n=1}^{\infty} \frac{2 n-1+\alpha}{1-\alpha}\left|b_{2 n-1}\right|\right] \geq 0
\end{aligned}
$$

2.4. Corollary. Let f be as in Theorem 2.3. Then f is starlike of order $\alpha / 2$ for $0 \leq \alpha<1$.

Proof. By the sufficient condition (4), we conclude that f is starlike of order $\alpha / 2 ; 0 \leq$ $\alpha<1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n-\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|a_{n}\right|+\frac{n+\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|b_{n}\right|\right) \leq 2 . \tag{14}
\end{equation*}
$$

We will show that the coefficient condition (8) required for $f \in S H(\alpha), 0 \leq \alpha<1$, implies the sufficient coefficient condition (14), which in turn implies that f is starlike of order $\alpha / 2 ; 0 \leq \alpha<1$. By a simple algebraic manipulation, we see that this is the case, since

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{n-\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|a_{n}\right|+\frac{n+\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|b_{n}\right|\right) \\
& \begin{aligned}
&= \sum_{n=2}^{\infty} \frac{2 n-2-\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|a_{2 n-2}\right|+\sum_{n=1}^{\infty} \frac{2 n-1-\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|a_{2 n-1}\right| \\
& \quad+\sum_{n=2}^{\infty} \frac{2 n-2+\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|b_{2 n-2}\right|+\sum_{n=1}^{\infty} \frac{2 n-1+\frac{\alpha}{2}}{1-\frac{\alpha}{2}}\left|b_{2 n-1}\right| \\
& \leq \sum_{n=1}^{\infty} \frac{2(n-1)}{1-\alpha}\left|a_{2 n-2}\right|+\sum_{n=1}^{\infty} \frac{2 n-1-\alpha}{1-\alpha}\left|a_{2 n-1}\right| \\
& \quad+\sum_{n=1}^{\infty} \frac{2(n-1)}{1-\alpha}\left|b_{2 n-2}\right|+\sum_{n=1}^{\infty} \frac{2 n-1+\alpha}{1-\alpha}\left|b_{2 n-1}\right| \leq 2 .
\end{aligned}
\end{aligned}
$$

We remark that for f as in Theorem 2.3, the function $(f(z)-f(-z)) / 2$ is also starlike of order $\alpha / 2$ in Δ.

Acknowledgment. The authors would like to express their appreciation for the referee's careful review of this article.

References

1. G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. 69(2) (1945), 156-165.
2. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
3. A. W. Goodman, Univalent Functions Vols. I \& II, Mariner Publ. Co., Tampa, Florida. (1983).
4. J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470-477.
5. H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124.
6. H. Lewy, On the non-vanishing of the jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
7. T. Radó, Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 49.
8. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 2(1) (1959), 72-75.
9. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 2(42) (1990), 237-248.
10. H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28 (1999), 275-284.

Department of Mathematical Sciences, Kant State University, 14111 Claridon Troy Road, Burton, Ohio 44021-9500, U.S.A.
e-mail: ahuja@geauga.kent.edu
e-mail: jay@geauga.kent.edu

[^0]: 2000 AMS Subject Classification: Primary 30C45; Secondary 30C50.

