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Abstract. Rough set theory was introduced by Pawlak. It is an excellent tool to
handle granularity of data. We know that a field of sets (and fuzzy sets) with the
inclusion of sets (fuzzy sets) creates a complete lattice. In this note, we shall discuss
when is a family of rough sets with the rough set inclusion a complete lattice. And we
shall give its algorithm.

1. Introduction

Rough set theory was introduced by Pawlak [1]. It is an excellent tool to handle granu-
larity of data. During the last 10 years it has attracted the attention of many researchers
and practitioners all over the world who contributed to its development and application.
Rough set theory may be used to describe dependecies between attributes, to evaluate sig-
nificance of attributes, and to deal with inconsistent data, to name just a few possible uses
of this theory to knowledge and data analysis. As an approuch to handling with uncertain
data, such as probability theroy, evidence theory, and fuzzy set set theory,etc ([2]).

The rough set theory is founded on the assumption that, with every object of the universe
of discourse, we associate some information. Objects characterized by the same information
are indiscernible in view of the available information about them. The indiscernibility
relation generated in this way is the mathematical basis for the rough set theory.

It is known that a field of sets with the inclusion of sets creates a complete lattice. For
rough sets, when is a family of rough sets with the rough set inclusion a complete lattice?

2. Preliminaries

We assume the following definitions of an approximation space.

Definition 2.1. The ordered pair 〈U, C〉, where U is any nonempty set called a universe,
and C is a finite family of nonempty subsets of U with ∪C = U . We call the ordeded pair
an approximation space.

Definition 2.2 Let 〈U, C〉 be an approximation space, and x ∈ U . Let
Md(x) = {K ∈ C : x ∈ K and if x ∈ S ∈ C and S ⊂ K then K = S}

That is, Md(x) is the family of minimal elements containing x in C.

Definition 2.3. Let 〈U, C〉 be an approximation space. For X ⊂ U , we define that C∗(X) =
{K ∈ C : K ⊂ X}. And X∗ = ∪C∗(X) is called the lower approximation of the set X.
X∗∗ = X − X∗ is the boundary of the set X. Let Bn(X) = ∪{Md(x) : x ∈ X∗∗} and
C∗(X) = C∗(X) ∪ Bn(X). Call X∗ = ∪C∗(X) the upper approximation of X.
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Definition 2.4. Let 〈U, C〉 be an approximation space. For x ∈ U , define Kx = {K ∈ C :
x ∈ K}. Kx is called the neighborhood system of x. It is clear that Kx �= ∅ for each x ∈ U .
We call Kx ∈ Kx the smallest neighborhood of x, if Kx ⊂ K for each K ∈ Kx.

Remark 2.5. Let 〈U, C〉 be an approximation space, and X ⊂ U , then we have the following
simple results:

(a). Bn(X) ∩ C∗(X) = ∅.
(b). If K1 and K2 are in C with K1 �= K2, and K1, K2 is respectively the smallest

neighborhood of x1 and x2, then x1 �= x2. And if K1, K2 is only respectively the smallest
neighborhood of x1 and x2 with x1 �= x2, then K1 �= K2.

(c). For any K ∈ Bn(X), then K ∩ X �= ∅, and K ∩ (U − X) �= ∅. That is K contains
at least two elements, and K is a minimal element containing some x ∈ X∗

∗ .
(d). If K ∈ Bn(X) and K is the smallest neighborhood of x, then x �∈ X∗.

Definition 2.6. Let 〈U, C〉 be an approximation space. For X ⊂ U , we define XC =
{Y : C∗(Y ) = C∗(X) and C∗(Y ) = C∗(X)}, is called the rough set in 〈U, C〉. The family
{XC : X ⊂ U} of all rough sets will be denoted by Rs(U, C).

Definition 2.7. For XC , YC ∈ Rs(U, C), we define that
Xc ⊂c Yc ⇐⇒ C∗(X) ⊂ C∗(Y ) and C∗(X) ⊂ C∗(Y ).

The expression Xc ⊂c Yc should be read: the rough set Xc is roughly included in the rough
set Yc.

It is clear that the relation of rough set inclusion is partial order relation. And we know
that a lattice which has only finite elements is a complete lattice.

3. The main results

It is known that a field of sets (fuzzy sets) with the inclusion of sets (fuzzy sets) creates
a complete lattice. We have a natural question: When is a family of rough sets with the
rough inclusion a complete lattice?

For X ⊂ U , we can get the rough set Xc ∈ Rs(U, C) is identified with pairs 〈C∗(X), C∗(X)〉.
Let P = {〈C∗(X), C∗(X)〉 : X ⊂ U}. For 〈A1, B1〉, 〈A2, B2〉 ∈ P , we define that

〈A1, B1〉 ⊂p 〈A2, B2〉 ⇐⇒ A1 ⊂ A2 and B1 ⊂ B2.
We shall find the conditions of existence of supremum and infimum in the poset 〈P,⊂p〉 for
any set A ⊂ P .

Theorem 3.1. For an approximation space 〈U, C〉, the following conditions are equivalent:
a). For each K ∈ C, if | K |≥ 2, then there are at least two elements y and z in U , such

that K is the smallest neighborhood of y and z respectively.
b). For any family A ⊂ P(U) (powerset of U), there exists Z ⊂ U , such that

∪{C∗(A) : A ∈ A} = C∗(Z) ∪{C∗(A) : A ∈ A} = C∗(Z)
And there is an Z1 ⊂ U , such that

∩{C∗(A) : A ∈ A} = C∗(Z1) ∩{C∗(A) : A ∈ A} = C∗(Z1)

Proof. a) ⇒ b). For A ⊂ P(U), let
A1 = ∪{C∗(A) : A ∈ A}, A2 = ∪{C∗(A) : A ∈ A}.

If A1 = A2, let Z = ∪A1. It is clear that Z satisfies condition b). If A1 �= A2, we define Z
as follows:

Set A2 −A1 = {K1, K2, · · · , Kp}, and Mi = {y : Ki is the smallest neighborhood of y}
for 1 ≤ i ≤ p. We claim the following facts:
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(1). If i �= j, then Mi ∩ Mj = ∅. And | Mi |≥ 2 because of | Ki |≥ 2.
(2). For each 1 ≤ i ≤ p, Mi ∩ (∪A1) = ∅. In fact, suppose there is an y ∈ U with

y ∈ (Mi ∩ (∪A1)) for some i. Then we can get an Ay ∈ A and Ky ∈ C∗(Ay) such that
y ∈ (Mi ∩ Ky). By the definition of Mi, Ki ⊂ Ky. This contradicts to that Ki �∈ A1.

(3). For each 1 ≤ i ≤ p, Ki ∩ (∪A) �= ∅. In fact, since Ki ∈ A2, hence Ki ∈ C∗(A) for
some A ∈ A, and Ki ∩ A �= ∅.

(4). Let Z = ∪A1 ∪ {y1, y2, · · · , yp}, where yi ∈ Mi for each 1 ≤ i ≤ p. It is clear that
A1 ⊂ C∗(Z). We shall prove that C∗(Z) ⊂ A1. Now suppose that K ′ ∈ C∗(Z), i.e., K ′ ⊂ Z.

(i). If K ′ = {x} for some x ∈ U . By (3), x ∈ Ax for some Ax ∈ A, and {x} = K ′ ⊂ Ax.
Hence K ′ ∈ C∗(Ax) ⊂ A1.

(ii). Suppose | K ′ |≥ 2. From condition a), there are y and z in U with K ′ is the smallest
neighborhood of y and z. If y ∈ ∪A1, then we can get some Ay ∈ A and Ky ∈ C∗(Ay)
with y ∈ Ky. Thus K ′ ⊂ Ky and K ′ ∈ A1. If z ∈ ∪A1, we can get same conclusion by
similar method. If {y, z} ∩ (∪A1) = ∅, then {y, z} ⊂ {y1, y2, · · · , yp}. This contradicts to
the construction of {y1, y2, · · · , yp} (see (b) of Remark 2.5).

To sum up we get that C∗(Z) ⊂ A1 and A1 = C∗(Z).
(5). Now we shall prove that A2 = C∗(Z). By means of (1) and (2), Z∗

∗ = {y1, y2, · · · , yp},
and Bn(Z) = {K1, K2, · · · , Kp}. Hence A2 = C∗(Z).

b) ⇒ a). Suppose there were an K ′ ∈ C such that | K ′ |≥ 2 and | Y |≤ 1, where
Y = {y : K ′ is the smallest neighborhood of y}.

Suppose Y = {a} for some a ∈ U . For each b ∈ (K ′ − Y ), let Cb = {K : K ∈ C and
b ∈ K, K �= K ′}. If Cb = ∅, then there is only K ′ in C which contains b. In this case K ′ is
the smallest neighborhood of b, this is a contradiction. Hence Cb �= ∅ for each b ∈ (K ′ −Y ).
Pick Kb ∈ Cb with K ′ �⊂ Kb (If for any Kb ∈ Cb, we have that K ′ ⊂ Kb, then K ′ is the
smallest neighborhood of b, this is a contradiction.) Let A′ = {Kb : b ∈ (K ′ − Y ), and
Kb ∈ Cb with K ′ �⊂ Kb}. For any Kb ∈ A′, a �∈ Kb because of that K ′ �⊂ Kb and K ′ is the
smallest neighborhood of a. For the family A = A′ ∪ {a}, there is a set Z ⊂ U such that
C∗(Z) = ∪{C∗(A) : A ∈ A} by the condition b), hence ∪A′ ⊂ Z and K ′ �∈ C∗(Z) (Because
of K ′ �⊂ A for each A ∈ A.) But by means of condition b),

C∗(Z) = C∗({a}) ∪ (∪{C∗(K) : K ∈ A′}) = {K ′} ∪ (∪{C∗(K) : K ∈ A′}).
Since (K ′ − {a}) ⊂ ∪A′ ⊂ Z and a �∈ ∪(∪{C∗(K) : K ∈ A′}) (if a ∈ ∪C∗(Kb) for some
Kb ∈ A′, then a ∈ Kb and K ′ ⊂ Kb.), we get that a ∈ Z. Therefore K ′ ⊂ Z and K ′ ∈ C∗(Z).
This is a contradiction. If Y = ∅, then we can get also the similar conclusion. Thus a) is
true.

Theorem 3.2. For an approximation space 〈U, C〉, the following condition a) implies
condition b):

a). For each K ∈ C, if | K |≥ 2, then there are at least two elements y and z in U , such
that K is the smallest neighborhood of y and z respectively.

b). For any family A ⊂ P(U), there is an Z ⊂ U , such that
∩{C∗(A) : A ∈ A} = C∗(Z) ∩{C∗(A) : A ∈ A} = C∗(Z)

Proof. a) =⇒ b). For any A ⊂ P(U), let

B = {K1, K2, · · · , Kp} = ∩{C∗(A) : A ∈ A} − ∩{C∗(A) : A ∈ A},

and Mi = {y : Ki is the smallest neighborhood of y}. By (c) of Remark 2.5 and condition
a), we know that | Mi |≥ 2 for each 1 ≤ i ≤ p. Pick out yi ∈ Mi and let

Z = ∪(∩{C∗(A) : A ∈ A}) ∪ {yi : 1 ≤ i ≤ p}.
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We prove that C∗(Z) = ∩{C∗(A) : A ∈ A}. It is clear that ∩{C∗(A) : A ∈ A} ⊂ C∗(Z)
by means of the definition of Z. Suppose that K ∈ C∗(Z), but K �∈ ∩{C∗(A) : A ∈ A}, then
we can get an AK ∈ A with K �∈ C∗(AK), that is K �⊂ AK . Pick out a ∈ (K − AK) ∩ {yi :
1 ≤ i ≤ p}, there is an K ′ ∈ C∗(AK) with a ∈ K ′, and K ′ is the smallest neighborhood
of a. Since K ′ ∈ Bn(AK) and K ′ ⊂ K, K ′ contains at least two elements, hence K has
at least two elements. By condition a), there are x and y in U such that K is the smallest
neighborhood of x and y and K ⊂ Z.

(1). If either x or y, say that x ∈ ∪(∩{C∗(A) : A ∈ A}). Then for any A ∈ A, there is an
KA ∈ C∗(A) with x ∈ KA. Since K ⊂ KA, thus K ∈ ∩{C∗(A) : A ∈ A}. This contradicts
the mention as above.

(2). If neither x not y is in ∪(∩{C∗(A) : A ∈ A}), then {x, y} ⊂ {y1, y2, · · · , yp}. This
contradicts the struction of {y1, y2, · · · , yp}. Therefore C∗(Z) = ∩{C∗(A) : A ∈ A}.

(3). Furtherlly we prove that C∗(Z) = ∩{C∗(A) : A ∈ A}. Suppose that K ∈ ∩{C∗(A) :
A ∈ A}. If K ∈ C∗(A) for every A ∈ A, then K ∈ C∗(Z) ⊂ C∗(Z) by the above proved part.
Else there is an A′

K ∈ A with K �∈ C∗(A′
K), then K ∈ B, i.e., K = Ki for some 1 ≤ i ≤ p.

Because Ki is the smallest neighborhood of yi, and yi ∈ Z, thus K = Ki ∈ C∗(Z).
(4). Now we conclude that C∗(Z) ⊂ ∩{C∗(A) : A ∈ A}. Suppose there were an

K ∈ C∗(Z) with K �∈ ∩{C∗(A) : A ∈ A}, then K ∈ C∗(Z) − C∗(Z) = Bn(Z). From the
definition of Z, we can get an x ∈ K ∩ {y1, y2, · · · , yp} . Then K = Ki for some 1 ≤ i ≤ p.
Hence K ∈ B ⊂ ∩{C∗(A) : A ∈ A}, that is C∗(Z) ⊂ ∩{C∗(A) : A ∈ A}.

Theorem 3.3. For an approximation space 〈U, C〉, the following conditions are equivalent:
a). For each K ∈ C, if | K |≥ 2, then there are at least two elements y and z in U , such

that K is the smallest neighborhood of y and z respectively.
b). For any family A ⊂ P(U), there is a supremum in the poset 〈P,⊂P〉 as follows
sup{〈C∗(X), C∗(X)〉 : X ∈ A} = 〈∪{C∗(X) : X ∈ A},∪{C∗(X) : X ∈ A}〉.
c). For any family A ⊂ P(U), there are the following supremum and infimum in the

poset 〈P,⊂P〉
sup{〈C∗(X), C∗(X)〉 : X ∈ A} = 〈∪{C∗(X) : X ∈ A},∪{C∗(X) : X ∈ A}〉,
inf{〈C∗(X), C∗(X)〉 : X ∈ A} = 〈∩{C∗(X) : X ∈ A},∩{C∗(X) : X ∈ A}〉.

Theorem 3.4. For an approximation space 〈U, C〉, the following conditions are equivalent:
a). For each K ∈ C, if | K |≥ 2, then there are at least two elements y and z in U , such

that K is the smallest neighborhood of y and z respectively.
b). For any family of rough sets, there is a supremum in a poset 〈Rs(U, C),⊂C〉.
c). For any family of rough sets, there are a supremum and an infimum in a poset

〈Rs(U, C),⊂C〉 , that is, the poset 〈Rs(U, C),⊂C〉 is a complete lattice.

4. The algorithm

In this section, we shall give the algorithm of the supremum as above. For the infimum,
we can get similarly its algorithm.

The algorithm:

a). Input initial data: sets U , C and A.
x = U.getAt(n); \\ x is the nth element of U .
U.insert(a); \\ U ∪ {a}.
U.power(); \\ retrieves the cardinal number of U .
U.isIn(A); \\ if A ⊂ U , retrieves 1; else retrieves 0.
A = U.union(B); \\ A = U ∪ B.
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X = A.selfunin(); \\ X = ∪A.
C = A.subtract(B); \\ C = A − B.
K = C.f indMin(x); \\ K is the smallest element containing x of C.

b). \\ Constructing A1 = ∪{C∗(A) : A ∈ A}.

1). initialize an empty set A1;
2). n = A.power();
3). m = C.power();
4). initialize i = 1;
5). initialize j = 1;
6). if C.getAt(j) �⊂ A.getAt(i), goto 8);
7). A1.insert(C.getAt(j));
8). j = j + 1; if j ≤ m, goto 6);
9). i = i + 1; if i ≤ n, goto 5);
10). W = A1.selfunion();

c). \\ Constructing A2.

1). initialize an empty set X∗;
2). initialize an empty set A2;
3). n = A.power();
4). m = C.power();
5). initialize i = 1;
6). initialize j = 1;
7). if C.getAt(j) �⊂ A.getAt(i), goto 10);
8). X∗ = X∗.union(C.getAt(j));
9). A2.insert(C.getAt(j));
10). j = j + 1; if j ≤ m, goto 7);
11). X∗∗ = A.getAt(i).subtract(X∗);
12). p = X∗∗ .power();
13). initialize k = 1;
14). A2.insert(C.f indMin(X∗

∗ .getAt(k)));
15). k = k + 1; if k ≤ p, goto 14);
16). i = i + 1; if i ≤ n, goto 6);

d). \\ Constructing Y = {y1, y2, · · · , yp}.

1). V = A2.subtract(A1);
2). initialize an empty set Y ;
3). n = V.power();
4). initialize i = 1;
5). m = V.getAt(i).power();
6). initialize j = 1;
7). if C.f indMin(V.getAt(i).getAt(j)) = V.getAt(i); then Y.insert(V.getAt(i).

getAt(j)); and goto 9);
8). j = j + 1; if j ≤ m, goto 7);
9). i = i + 1; if i ≤ n, goto 5);

e). \\ Constructing Z.
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1). initialize an empty set Z;
2). Z = W.union(Y );

References

[1] Z.Pawlak. Rough sets. Int. J. Computer and Information Science, 1982. 341-356.
[2] S.Roman and V.Daniel. A generalized definition of rough approximations based on

similarity. IEEE Trans. on Knowledge and data Engineering. Vol.12, No.2 (2000).
331-336.

[3] Z.Bonikowski, E.Bryniarski and U.W.Skardowska. Extensions and intentions in the
rough set theory. J. of information Sciences 107(1998). 149-167.

Dept. of Math. College of Science, ShenZhen University,
ShenZhen 518060, Guang-Dong, China.
e-mail address: zmgao@szu.edu.cn

Dept.of Elec. Engineering, TsingHua University, BeiJing, China.
e-mail address: gaoyi99@mails.tsinghua.edu.cn

Dept. of Math. Osaka kyoiku University, 4-498 Asahigaoka,
Kashiwara, Osaka 582-8582, Japan.
e-mail address: yasui@cc.osaka-kyoiku.ac.jp


