FOLDNESS OF SOME TYPES OF POSITIVE IMPLICATIVE HYPER BCK-IDEALS IN HYPER BCK-ALGEBRAS

YOUNG BAE JUN, SEOK ZUN SONG AND WOOK HWAN SHIM

Received May 28, 2003

ABSTRACT. The foldness of $PI(\ll, \ll, \subseteq)_{BCK}$ -ideals and $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideals is considered, and their properties are investigated. Hyper homomorphic inverse image of $PI(\ll, \ll, \subseteq)_{BCK}$ -ideals, $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideals, $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideals, and $PI(\ll, \ll, \ll)_{BCK}$ -ideals are discussed.

1. INTRODUCTION

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Since then a great deal of literature has been produced on the theory of BCK-algebras, In particular, emphasis seems to have been put on the ideal theory of BCK-algebras. The hyperstructure theory (called also multialgebras) is introduced in 1934 by F. Marty [11] at the 8th congress of Scandinavian Mathematiciens. In [8], Y. B. Jun et al. applied the hyperstructures to BCKalgebras, and introduced the concept of a hyper BCK-algebra which is a generalization of a BCK-algebra, and investigated some related properties. They also introduced the notion of a hyper BCK-ideal and a weak hyper BCK-ideal, and gave relations between hyper BCK-ideals and weak hyper BCK-ideals. Y. B. Jun et al. [9] gave a condition for a hyper BCK-algebra to be a BCK-algebra, and introduced the notion of a strong hyper BCKideal, a weak hyper BCK-ideal and a reflexive hyper BCK-ideal. They showed that every strong hyper BCK-ideal is a hypersubalgebra, a weak hyper BCK-ideal and a hyper BCKideal; and every reflexive hyper BCK-ideal is a strong hyper BCK-ideal. In [6], Y. B. Jun and X. L. Xin introduced the notion of an implicative hyper BCK-ideal. They gave the relations among hyper BCK-ideals, implicative hyper BCK-ideals and positive implicative hyper BCK-ideals. They stated some characterizations of implicative hyper BCK-ideals. And they also introduced the notion of implicative hyper BCK-algebras and investigated the relation between implicative hyper BCK-ideals and implicative hyper BCK-algebras. In [7], Y. B. Jun and X. L. Xin introduced the notion of a positive implicative hyper BCK-ideal, and investigated some related properties. Y. B. Jun and W. H. Shim [2] discussed several types of positive implicative hyper BCK-ideals in hyper BCK-algebras, and investigated their relations. Y. B. Jun and W. H. Shim [1] considered the foldness of $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideals and $PI(\ll, \ll, \ll)_{BCK}$ -ideals in hyper BCK-algebras, and discussed their fuzzy version. In this paper we deal with the foldness of $PI(\subseteq,\subseteq,\subseteq)_{BCK}$ ideals and $PI(\ll, \ll, \subseteq)_{BCK}$ -ideals. We investigate relations among such notions. We

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 20N20.

Key words and phrases. Hyper BCK-ideal, (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal, (k, m; n)-fold positive implicative ideal, increasing (resp. decreasing) condition, hyper homomorphism.

This work was supported by grant R01-2001-000-00004-0 (2002) from the Korea Science of Engineering Foundation.

verify that every hyper homomorphic inverse images of $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \ll, \ll)_{BCK}$ -ideals, $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideals and $PI(\ll, \ll, \subseteq)_{BCK}$ -ideals are also $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \ll, \ll)_{BCK}$ -ideals, $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideals and $PI(\ll, \ll, \subseteq)_{BCK}$ -ideals.

2. Preliminaries

We include some elementary aspects of hyper BCK-algebras that are necessary for this paper, and for more details we refer to [5] and [10]. Let H be a nonempty set endowed with a hyper operation " \circ ", that is, \circ is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$. For two subsets A and B of H, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$.

By a hyper BCK-algebra we mean a nonempty set H endowed with a hyper operation " \circ " and a constant 0 satisfying the following axioms:

- (K1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,
- (K2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- (K3) $x \circ H \ll \{x\},$
- (K4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$.

In any hyper BCK-algebra H, the following hold (see [5] and [10]):

$(p1) \ 0 \circ 0 = \{0\},\$	$(p2) \ 0 \ll x,$
(p3) $x \ll x$,	$(p4) A \ll A,$
(p5) $A \subseteq B$ implies $A \ll B$,	$(p6) \ 0 \circ x = \{0\},\$
$(p7) \ 0 \circ A = \{0\},\$	(p8) $x \circ 0 = \{x\}$ and $A \circ 0 = A$,
(p9) $A \ll \{0\}$ implies $A = \{0\}$,	(p10) $A \subseteq B \ll C$ implies $A \ll C$

for all $x, y, z \in H$ and for all nonempty subsets A, B and C of H. In what follows let H denote a hyper BCK-algebra unless otherwise specified.

Definition 2.1. [10] A nonempty subset A of H is called a *hyper BCK-ideal* of H if it satisfies the following conditions:

- (I1) $0 \in A$,
- (I2) $\forall x, y \in H \ (x \circ y \ll A, y \in A \Rightarrow x \in A).$

Definition 2.2. [10] A nonempty subset A of H is called a *weak hyper BCK-ideal* of H if it satisfies (I1) and

(I3) $\forall x, y \in H \ (x \circ y \subseteq A, y \in A \Rightarrow x \in A).$

Definition 2.3. [2] A nonempty subset A of H is called a $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H if it satisfies (I1) and

(I4) $\forall x, y, z \in H \ ((x \circ y) \circ z \ll A, y \circ z \subseteq A \Rightarrow x \circ z \subseteq A).$

Proposition 2.4. [5] Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCKideal of H such that $A \ll I$, then A is contained in I.

3. Foldness of Some Types of Positive Implicative Hyper BCK-ideals

For any $x, y \in H$ and any natural number n, denote

$$x \circ y^n = (\cdots ((x \circ \underbrace{y) \circ y}) \cdots) \circ \underbrace{y}_{n-\text{times}}$$

Definition 3.1. [1] Let k, m and n be natural numbers. A nonempty subset A of H is called a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H if it satisfies (I1) and (J1) $\forall x, y, z \in H$ $((x \circ y) \circ z^k \ll A, y \circ z^m \subseteq A \Rightarrow x \circ z^n \subseteq A)$.

Example 3.2. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table:

0	0	a	b
0	{0}	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{a,b\}$	$\{0, a, b\}$

Then $A = \{0, a\}$ is a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H for natural numbers k, m and n.

Example 3.3. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table:

0	0	a	b
0	{0}	{0}	$\{0\}$
a	$\{a\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{a\}$	$\{0,a\}$

Then $A = \{0, b\}$ is a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H for natural numbers k, m and n > 2. But it is not a (2, 3; 1)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H since $(b \circ a) \circ a^2 = \{0\} \ll A$ and $a \circ a^3 = \{0\} \subseteq A$, but $b \circ a^1 = \{a\} \not\subseteq A$.

Theorem 3.4. [1] Every (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal is a hyper BCK-ideal for natural numbers k, m and n.

The converse of Theorem 3.4 may not be true (see [1]).

Definition 3.5. [9] A nonempty subset A of H is said to be *reflexive* if $x \circ x \subseteq A$ for all $x \in H$.

Definition 3.6. Let k be a natural number. A nonempty subset A of H is said to be k-reflexive if $x \circ x^k \subseteq A$ for all $x \in H$.

Theorem 3.7. Let A be a hyper BCK-ideal of H. If A is reflexive then it is k-reflexive.

Proof. Let $x \circ x \subseteq A$, then $x \circ x^2 \subseteq A \circ x \ll A$, and so $x \circ x^2 \subseteq A$ since A is a hyper BCK-ideal. Continuing this process, we get $x \circ x^k \subseteq A$ for natural number k. \Box

The converse of Theorem 3.7 is not true as seen in the following example.

Example 3.8. Let $H = \{0, a, b\}$ be the hyper *BCK*-algebra in Example 3.3. Then the subset $A = \{0\}$ of *H* is 2-reflexive, but it is not reflexive since $b \circ b = \{0, a\} \not\subseteq A$.

Proposition 3.9. Let A be an m-reflexive subset of H. If A is a (k,m;n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H, then

$$\forall x, y \in H \ (x \circ y^{k+1} \subseteq A \ \Rightarrow \ x \circ y^n \subseteq A).$$

Proof. Let $x, y \in H$ be such that $x \circ y^{k+1} \subseteq A$. Then $(x \circ y) \circ y^k = x \circ y^{k+1} \ll A$ by (p5). Since $y \circ y^m \subseteq A$ by hypothesis, it follows from (J1) that $x \circ y^n \subseteq A$.

Definition 3.10. [1] Let k, m and n be natural numbers. A nonempty subset A of H is called a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of H if it satisfies (I1) and (J2) $\forall x, y, z \in H$ $((x \circ y) \circ z^k \ll A, y \circ z^m \ll A \Rightarrow x \circ z^n \ll A).$

The following example shows that there is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal which is not a hyper BCK-ideal.

Example 3.11. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table:

0	0	a	b
0	{0}	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0,a\}$	$\{0,a\}$
b	$\{b\}$	$\{a, b\}$	$\{0, a, b\}$

Then $A = \{0, b\}$ is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of H for natural numbers k, m and n, but not a hyper BCK-ideal of H since $a \circ b = \{0, a\} \ll A$ and $b \in A$, but $a \notin A$.

Definition 3.12. Let k, m and n be natural numbers. A nonempty subset A of H is called a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H if it satisfies (I1) and

(J3) $\forall x, y, z \in H \ ((x \circ y) \circ z^k \subseteq A, y \circ z^m \subseteq A \Rightarrow x \circ z^n \subseteq A).$

Example 3.13. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table.

0	0	a	b
0	{0}	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0,a\}$	$\{0,a\}$
b	$\{b\}$	$\{b\}$	$\{0,a\}$

Then $A = \{0, b\}$ is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H for natural numbers k, m and n.

Theorem 3.14. Let k, m and n be natural numbers. Every (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal is a weak hyper BCK-ideal.

Proof. Let A be a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H and let $x, y \in H$ be such that $x \circ y \subseteq A$ and $y \in A$. Taking z = 0 in (J3) and using (p8), we have $(x \circ y) \circ 0^k = x \circ y \subseteq A$ and $y \circ 0^m = \{y\} \subseteq A$. It follows from (J3) that $\{x\} = x \circ 0^n \subseteq A$, that is, $x \in A$. Therefore A is a weak hyper BCK-ideal of H.

The converse of Theorem 3.14 may not be true as seen in the following example.

Example 3.15. Let $H = \{0, a, b, c\}$ be a hyper *BCK*-algebra with the following table:

0	0	a	b	c
0	{0}	{0}	{0}	{0}
a	$\{a\}$	$\{0\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{b\}$	$\{0\}$	$\{0\}$
c	$\{c\}$	$\{c\}$	$\{b\}$	$\{0\}$

Then $A = \{0, a\}$ is a (weak) hyper *BCK*-ideal but not a (k, m; 1)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal because $(c \circ b) \circ b^k = \{0\} \subseteq A$ and $b \circ b^m = \{0\} \subseteq A$ but $c \circ b = \{b\} \not\subseteq A$.

Definition 3.16. Let k, m and n be natural numbers. A nonempty subset A of H is called a (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal of H if it satisfies (I1) and

 $(\mathrm{J4}) \ \forall x,y,z \in H \ ((x \circ y) \circ z^k \ll A, \, y \circ z^m \ll A \ \Rightarrow \ x \circ z^n \subseteq A).$

Example 3.17. In Example 3.13, $A = \{0, b\}$ is a (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal of H for natural numbers k, m and n.

Definition 3.18. A hyper *BCK*-algebra *H* is said to be *m*-fold positive implicative if $(x \circ y) \circ z^m = (x \circ z^m) \circ (y \circ z^m)$ for all $x, y, z \in H$.

Example 3.19. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table.

0	0	a	b
0	{0}	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0,a\}$	$\{0\}$
b	$\{b\}$	$\{b\}$	$\{0,b\}$

It is routine to verify that H is m-fold positive implicative for every natural number m.

Lemma 3.20. Let A be a weak hyper BCK-ideal of H and let B and C be subsets of H. If $B \circ C \subseteq A$ and $C \subseteq A$, then $B \subseteq A$.

Proof. Assume that $B \circ C \subseteq A$ and $C \subseteq A$. Then $b \circ c \subseteq A$ for all $b \in B$ and $c \in C \subseteq A$, and thus $b \in A$ by (I3). Therefore $B \subseteq A$.

Definition 3.21. A hyper *BCK*-algebra *H* is said to satisfy the *increasing* (resp. *decreasing*) condition if for every $x, y \in H$, $x \circ y^m \subseteq x \circ y^n$ (resp. $x \circ y^m \supseteq x \circ y^n$) whenever $m \leq n$ for natural numbers *m* and *n*.

Example 3.22. The hyper BCK-algebra $H = \{0, a, b\}$ in Example 3.11 satisfies the increasing condition, and the hyper BCK-algebra $H = \{0, a, b\}$ in Example 3.3 satisfies the decreasing condition.

Theorem 3.23. If H satisfies the increasing condition and if H is r-fold positive implicative for some natural number r, then every weak hyper BCK-ideal is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal where k, m and n are natural numbers such that $r = \min\{k, m\} \ge n$.

Proof. Let A be a weak hyper BCK-ideal of H and let $x, y, z \in H$ be such that $(x \circ y) \circ z^k \subseteq A$ and $y \circ z^m \subseteq A$. Since H is r-fold positive implicative, $(x \circ y) \circ z^r = (x \circ z^r) \circ (y \circ z^r)$. Note that $(x \circ y) \circ z^r \subseteq (x \circ y) \circ z^k \subseteq A$ and $y \circ z^r \subseteq y \circ z^m \subseteq A$. Thus, by Lemma 3.20, we have $x \circ z^n \subseteq x \circ z^r \subseteq A$. Consequently A is a (k, m; n)-fold hyper BCK-ideal of H.

Theorem 3.24. Let m be a natural number and let A be a nonempty subset of H. Then A is an (m, m; m)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H if and only if the set

 $A_w := \{ x \in H \mid x \circ w^m \subseteq A \}, \ w \in H,$

is a weak hyper BCK-ideal of H.

Proof. Suppose that A is an (m, m; m)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H. Since $0 \circ w^m = \{0\} \subseteq A$ for all $w \in H$, we have $0 \in A_w$. Let $x, y, w \in H$ be such that $x \circ y \subseteq A_w$ and $y \in A_w$. Then $(x \circ y) \circ w^m \subseteq A$ and $y \circ w^m \subseteq A$. It follows from (J3) that $x \circ w^m \subseteq A$ or equivalently $x \in A_w$. Hence A_w is a weak hyper BCK-ideal of H. Conversely, assume that for $u \in H$, A_u is a weak hyper BCK-ideal of H. Obviously $0 \in A$. Let $x, y, z \in H$ be such that $(x \circ y) \circ z^m \subseteq A$ and $y \circ z^m \subseteq A$. Then $x \circ y \subseteq A_z$ and $y \in A_z$. Since A_z is a weak hyper BCK-ideal of H, it follows from (I3) that $x \circ z^m \subseteq A$. Hence A is an (m, m; m)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H.

Theorem 3.25. Assume that H satisfies the increasing condition. For any natural numbers k, m and n with $k \leq m \leq n$, if A is a (k,m;n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H, then

$$A_w := \{ x \in H \mid x \circ w^m \subseteq A \}, \ w \in H,$$

is a weak hyper BCK-ideal of H.

Proof. Assume that A is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H. Obviously, $0 \in A_w$. Let $x, y, w \in H$ be such that $x \circ y \subseteq A_w$ and $y \in A_w$. Then $(x \circ y) \circ w^k \subseteq (x \circ y) \circ w^m \subseteq A$ and $y \circ w^m \subseteq A$. Hence, by (J3), we have $x \circ w^m \subseteq x \circ w^n \subseteq A$ or equivalently $x \in A_w$. Therefore A_w is a weak hyper BCK-ideal of H. Using (p5), we have the following result.

Theorem 3.26. Every (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal.

The converse of Theorem 3.26 may not be true as seen in the following example.

Example 3.27. In Example 3.13, the set $A = \{0, b\}$ is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H for natural numbers k, m and n, but not a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H since $(a \circ 0) \circ 0^k = \{a\} \ll A$ and $0 \circ 0^m = \{0\} \subseteq A$, but $a \circ 0^n = \{a\} \not\subseteq A$.

Theorem 3.28. Every (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal is both a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal and a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal.

Proof. Let A be a (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal of H. Using (p5), we know that A is a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H. Let $x, y, z \in H$ be such that $(x \circ y) \circ z^k \ll A$ and $y \circ z^m \ll A$. Then $x \circ z^n \subseteq A$ by (J4), and so $x \circ z^n \ll A$ by (p5). Hence A is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of H.

Corollary 3.29. Every (k,m;n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal is a hyper BCK-ideal.

Proof. It follows from Theorems 3.4 and 3.28.

Definition 3.30. [3] Let G and H be hyper BCK-algebras. A mapping $f : G \to H$ is called a *hyper homomorphism* if it satisfies

- f(0) = 0,
- $\forall x, y \in G \ (\mathfrak{f}(x \circ y) = \mathfrak{f}(x) \circ \mathfrak{f}(y)).$

Lemma 3.31. Let $\mathfrak{f}: G \to H$ be a hyper homomorphism of hyper BCK-algebras. For any subsets A and B of G, if $A \ll B$, then $\mathfrak{f}(A) \ll \mathfrak{f}(B)$.

Proof. Let A and B be subsets of G such that $A \ll B$. Let $u \in \mathfrak{f}(A)$. Then $u = \mathfrak{f}(a)$ for some $a \in A$. Since $A \ll B$, for the $a \in A$ there exists $b \in B$ such that $a \ll b$, i.e., $0 \in a \circ b$. Hence $0 = \mathfrak{f}(0) \in \mathfrak{f}(a \circ b) = \mathfrak{f}(a) \circ \mathfrak{f}(b) = u \circ \mathfrak{f}(b)$ for $\mathfrak{f}(b) \in \mathfrak{f}(B)$, and so $\mathfrak{f}(A) \ll \mathfrak{f}(B)$. \Box

Theorem 3.32. Let $\mathfrak{f} : G \to H$ be a hyper homomorphism of hyper BCK-algebras. If B is a (k,m;n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of H, then $\mathfrak{f}^{-1}(B)$ is a (k,m;n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of G.

Proof. Obviously $0 \in \mathfrak{f}^{-1}(B)$. Let $x, y, z \in G$ be such that $(x \circ y) \circ z^k \ll \mathfrak{f}^{-1}(B)$ and $y \circ z^m \subseteq \mathfrak{f}^{-1}(B)$. Then $(\mathfrak{f}(x) \circ \mathfrak{f}(y)) \circ \mathfrak{f}(z)^k = \mathfrak{f}((x \circ y) \circ z^k) \ll \mathfrak{f}(\mathfrak{f}^{-1}(B)) \subseteq B$ by Lemma 3.31, and $\mathfrak{f}(y) \circ \mathfrak{f}(z)^m = \mathfrak{f}(y \circ z^m) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(B)) \subseteq B$. Since B is a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, it follows from (J1) that $\mathfrak{f}(x \circ z^n) = \mathfrak{f}(x) \circ \mathfrak{f}(z)^n \subseteq B$ so that $x \circ z^n \subseteq \mathfrak{f}^{-1}(B)$. Therefore $\mathfrak{f}^{-1}(B)$ is a (k, m; n)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal of G.

Lemma 3.33. Let $\mathfrak{f}: G \to H$ be a hyper isomorphism of hyper BCK-algebras. Then

- (i) $\forall x, y \in H \ (x \ll y \Rightarrow \mathfrak{f}^{-1}(x) \ll \mathfrak{f}^{-1}(y)).$
- (ii) $\forall B \subseteq H, \forall y \in H \ (B \ll y \Rightarrow \mathfrak{f}^{-1}(B) \ll \mathfrak{f}^{-1}(y)).$

Proof. (i) Let $x, y \in H$ be such that $x \ll y$. Then $\mathfrak{f}(a_x) = x \ll y = \mathfrak{f}(a_y)$ for some $a_x, a_y \in G$. Hence $\mathfrak{f}(0) = 0 \in x \circ y = \mathfrak{f}(a_x) \circ \mathfrak{f}(a_y) = \mathfrak{f}(a_x \circ a_y)$, and so

$$0 \in \mathfrak{f}^{-1}(\mathfrak{f}(0)) \in \mathfrak{f}^{-1}(\mathfrak{f}(a_x \circ a_y)) = a_x \circ a_y.$$

Hence $a_x \ll a_y$, i.e., $\mathfrak{f}^{-1}(x) \ll \mathfrak{f}^{-1}(y)$.

(ii) Assume that $B \ll y$ for $B \subseteq H$ and $y \in H$. Let $a \in \mathfrak{f}^{-1}(B)$. Then $\mathfrak{f}(a) \in B$, and so $\mathfrak{f}(a) \ll y$. Since \mathfrak{f} is onto, we have $\mathfrak{f}(a_y) = y$ for some $a_y \in G$. Hence $0 \in \mathfrak{f}(a) \circ y =$ $\mathfrak{f}(a) \circ \mathfrak{f}(a_y) = \mathfrak{f}(a \circ a_y)$, which implies that $0 = \mathfrak{f}^{-1}(0) \in \mathfrak{f}^{-1}(\mathfrak{f}(a \circ a_y)) = a \circ a_y$. This shows that $a \ll a_y$, that is, $\mathfrak{f}^{-1}(B) \ll \mathfrak{f}^{-1}(y)$. **Theorem 3.34.** Let $\mathfrak{f}: G \to H$ be a hyper isomorphism of hyper BCK-algebras. If B is a (k,m;n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of H, then $\mathfrak{f}^{-1}(B)$ is a (k,m;n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of G.

Proof. Obviously $0 \in \mathfrak{f}^{-1}(B)$. Let $x, y, z \in G$ be such that $(x \circ y) \circ z^k \ll \mathfrak{f}^{-1}(B)$ and $y \circ z^m \ll \mathfrak{f}^{-1}(B)$. Using Lemma 3.31, we get $(\mathfrak{f}(x) \circ \mathfrak{f}(y)) \circ \mathfrak{f}(z)^k \ll B$ and $\mathfrak{f}(y) \circ \mathfrak{f}(z)^m \ll B$. Since B is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal, it follows from (J2) that $\mathfrak{f}(x \circ z^n) = \mathfrak{f}(x) \circ \mathfrak{f}(z)^n \ll B$. Let $a \in x \circ z^n$. Then $\mathfrak{f}(a) \in \mathfrak{f}(x \circ z^n) \ll B$ and so $\mathfrak{f}(a) \ll b$ for some $b \in B$. Hence $a \in \mathfrak{f}^{-1}(\mathfrak{f}(a)) \ll \mathfrak{f}^{-1}(b) \subseteq \mathfrak{f}^{-1}(B)$ by Lemma 3.33, and thus $x \circ z^n \ll \mathfrak{f}^{-1}(B)$. Therefore $\mathfrak{f}^{-1}(B)$ is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of G.

Theorem 3.35. Let $\mathfrak{f} : G \to H$ be a hyper homomorphism of hyper BCK-algebras. If B is a (k,m;n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of H, then $\mathfrak{f}^{-1}(B)$ is a (k,m;n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of G.

Proof. Obviously $0 \in \mathfrak{f}^{-1}(B)$. Let $x, y, z \in G$ be such that $(x \circ y) \circ z^k \subseteq \mathfrak{f}^{-1}(B)$ and $y \circ z^m \subseteq \mathfrak{f}^{-1}(B)$. Then $(\mathfrak{f}(x) \circ \mathfrak{f}(y)) \circ \mathfrak{f}(z)^k = \mathfrak{f}((x \circ y) \circ z^k) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(B)) \subseteq B$ and $\mathfrak{f}(y) \circ \mathfrak{f}(z)^m = \mathfrak{f}(y \circ z^m) \subseteq \mathfrak{f}(\mathfrak{f}^{-1}(B)) \subseteq B$. Since B is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal, it follows from (J3) that $\mathfrak{f}(x \circ z^n) = \mathfrak{f}(x) \circ \mathfrak{f}(z)^n \subseteq B$ so that $x \circ z^n \subseteq \mathfrak{f}^{-1}(\mathfrak{f}(x \circ z^n)) \subseteq \mathfrak{f}^{-1}(B)$. Hence $\mathfrak{f}^{-1}(B)$ is a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal of G.

Theorem 3.36. Let $\mathfrak{f} : G \to H$ be a hyper homomorphism of hyper BCK-algebras. If B is a (k,m;n)-fold $PI(\ll,\ll,\subseteq)_{BCK}$ -ideal of H, then $\mathfrak{f}^{-1}(B)$ is a (k,m;n)-fold $PI(\ll,\ll,\subseteq)_{BCK}$ -ideal of G.

Proof. Obviously $0 \in \mathfrak{f}^{-1}(B)$. Let $x, y, z \in G$ be such that $(x \circ y) \circ z^k \ll \mathfrak{f}^{-1}(B)$ and $y \circ z^m \ll \mathfrak{f}^{-1}(B)$. Then by Lemma 3.31, we have $(\mathfrak{f}(x) \circ \mathfrak{f}(y)) \circ \mathfrak{f}(z)^k \ll B$ and $\mathfrak{f}(y) \circ \mathfrak{f}(z)^m \ll B$. Since B is a (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal, it follows from (J4) that $\mathfrak{f}(x \circ z^n) = \mathfrak{f}(x) \circ \mathfrak{f}(z)^n \subseteq B$ so that $x \circ z^n \subseteq \mathfrak{f}^{-1}(\mathfrak{f}(x \circ z^n)) \subseteq \mathfrak{f}^{-1}(B)$. Hence $\mathfrak{f}^{-1}(B)$ is a (k, m; n)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal of G.

The following example shows that $\{0\}$ may not be a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal (resp. $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal) of H.

Example 3.37. Let $H = \{0, a, b\}$ be a hyper *BCK*-algebra with the following Cayley table.

0	0	a	b
0	{0}	$\{0\}$	{0}
a	$\{a\}$	$\{0,a\}$	$\{0\}$
b	$\{b\}$	$\{b\}$	$\{0,a\}$

Then H satisfies the decreasing condition and is a 2-fold positive implicative hyper BCKalgebra but not a 1-fold positive implicative, since $\{0\} = (b \circ b) \circ b \neq (b \circ b) \circ (b \circ b) = \{0, a\}$. It is routine to verify that $\{0\}$ is none of (2, 2; 1)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal, (2, 2; 1)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal, (2, 2; 1)-fold $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal and (2, 2; 1)-fold $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal) of H.

Theorem 3.38. If H satisfies the increasing condition and if H is r-fold positive implicative for some natural number r, then $\{0\}$ is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal (resp. $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal) of G, where k, mand n are natural numbers such that $r = \min\{k, m\} \ge n$.

219

Proof. Assume that H satisfies the increasing condition and let k, m, n and r be natural numbers such that $r = \min\{k, m\} \ge n$ and H is r-fold positive implicative. Let $x, y, z \in H$ be such that $(x \circ y) \circ z^k \ll \{0\}$ and $y \circ z^m \ll \{0\}$. Then $(x \circ y) \circ z^r \subseteq (x \circ y) \circ z^k \ll \{0\}$ and $y \circ z^m \ll \{0\}$. Using (p9) and (p10), we have $(x \circ y) \circ z^r = \{0\}$ and $y \circ z^r = \{0\}$. Since H is r-fold positive implicative, we have

$$\{0\} = (x \circ y) \circ z^{r} = (x \circ z^{r}) \circ (y \circ z^{r}) = (x \circ z^{r}) \circ \{0\},\$$

and so $x \circ z^r \ll \{0\}$. Since $n \leq r$, we get $x \circ z^n \subseteq x \circ z^r \ll \{0\}$, and thus $x \circ z^n \ll \{0\}$ by (p10). Therefore $\{0\}$ is a (k, m; n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of H. Similarly, we have the remaining results.

Theorem 3.39. Let G and H be r-fold positive implicative hyper BCK-algebras that satisfy the increasing condition. Let $\mathfrak{f}: G \to H$ be a hyper homomorphism. Then

$$\operatorname{Ker}(\mathfrak{f}) := \{ x \in G \mid \mathfrak{f}(x) = 0 \}$$

is a (k,m;n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal (resp. $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal) of G where k, m, n and r are natural numbers such that $r = \min\{k, m\} \ge n$. Moreover, if \mathfrak{f} is a hyper isomorphism, then $\operatorname{Ker}(\mathfrak{f})$ is a (k,m;n)-fold $PI(\ll, \ll, \ll)_{BCK}$ -ideal of G.

Proof. The proof is by Theorems 3.35, 3.32, 3.36, 3.34, and 3.38.

We now pose an open problem.

Open Problem 3.40. Let $\mathfrak{f}: G \to H$ be a hyper homomorphism of hyper BCK-algebras and let A be a subset of G. Is $\mathfrak{f}(A)$ a (k, m; n)-fold $PI(\subseteq, \subseteq, \subseteq)_{BCK}$ -ideal (resp. $PI(\ll, \ll, \ll)_{BCK}$ -ideal, $PI(\ll, \subseteq, \subseteq)_{BCK}$ -ideal, and $PI(\ll, \ll, \subseteq)_{BCK}$ -ideal) of H under what condition(s)?

References

- S. M. Hong, Y. B. Jun and W. H. Shim, Folding theory applied to some types of positive implicative hyper BCK-ideals in hyper BCK-algebras, Bull. Korean Math. Soc. (to appear).
- Y. B. Jun and W. H. Shim, Some types of positive implicative hyper BCK-ideals, Scientiae Mathematicae Japonicae Online 6 (2002), 63–68.
- [3] Y. B. Jun and W. H. Shim, Fuzzy implicative hyper BCK-ideals of hyper BCK-algebras, Internat. J. Math. & Math. Sci. 29 (2002), no. 2, 63–70.
- [4] Y. B. Jun and W. H. Shim, Fuzzy structures of PI(≪, ⊆, ⊆)_{BCK}-ideals in hyper BCK-algebras, Internat. J. Math. & Math. Sci. 2003 (2003), no. 9, 549–556.
- [5] Y. B. Jun and X. L. Xin, Scalar elements and hyper atoms of hyper BCK-algebras, Scientiae Mathematicae 2 (1999), no. 3, 303-309.
- Y. B. Jun and X. L. Xin, Implicative hyper BCK-ideals of hyper BCK-algebras, Math. Japonica 52 (2000), no. 3, 435–443.
- [7] Y. B. Jun and X. L. Xin, Positive implicative hyper BCK-algebras, Scientiae Mathematicae Japonicae Online 5 (2001), 67–76.
- [8] Y. B. Jun and X. L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae Japonicae 53 (2001), no. 2, 353–360.
- Y. B. Jun, X. L. Xin, M. M. Zahedi and E. H. Roh, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japonica 51 (2000), no. 3, 493-498.
- [10] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, On hyper BCK-algebras, Italian J. Pure and Appl. Math. 8 (2000), 127-136.
- [11] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.

Young Bae Jun and Wook Hwan Shim, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

SEOK ZUN SONG, DEPARTMENT OF MATHEMATICS, CHEJU NATIONAL UNIVERSITY, CHEJU 690-756, KOREA *E-mail address*: szsong@cheju.ac.kr