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FUZZY FANTASTIC FILTERS OF LATTICE IMPLICATION ALGEBRAS
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Abstract. We fuzzify the concept of fantastic filters of lattice implication algebras
and give the relations among fuzzy filter, fuzzy positive implicative filter and fuzzy
fantastic filter.

1 Introduction and Preliminaries In order to research the logical system whose propo-
sitional value is given in a lattice, Xu [4] proposed the concept of lattice implication algebras,
and discussed some of their properties. Xu and Qin [5] introduced the notion of a filter in
a lattice implication algebra, and investigated their properties. Y.B.Jun [3] introduced the
concept of a positive implicative filter and associative filter in a lattice implication algebra,
and obtained some related properties. Also, Y.B.Jun [2] fuzzify the concept of positive im-
plicative filters and associative filters in lattice implication algebras, and investigate some
results. In [1], Y.B.Jun introduced the notion of a fantastic filter in a lattice implication
algebra and gave some results. In this paper, we fuzzify the concept of fantastic filters
of lattice implication algebras and give the relations among fuzzy filter , fuzzy positive
implicative filter and fuzzy fantastic filter.

By a lattice implication algebra we mean a bounded lattice (L,∨,∧, 0, 1) with order-
reversing involution “′” and a binary operation “ → ” satisfying the following conditions:

(I1) x → (y → z) = y → (x → z)
(I2) x → x = 1
(I3) x → y = y′ → x′

(I4) x → y = y → x = 1 ⇒ x = y
(I5) (x → y) → y = (y → x) → x
(L1) (x ∨ y) → z = (x → z) ∧ (y → z)
(L2) (x ∧ y) → z = (x → z) ∨ (y → z)

for all x, y, z ∈ L.
Note that the condition (L1) and (L2) are equivalent to the condition (L1) and (L2) are

equivalent to the conditions:
(L3) x → (y ∧ z) = (x → y) ∧ (x → z), and
(L4) x → (y ∨ z) = (x → y) ∨ (x → z), respectively.
In the sequel the binary operation “ → ” will be denoted by juxtaposition. We can

define a partial ordering “ ≤ ” on a lattice implication algebra L by x ≤ y if and only if
xy = 1.

In a lattice implication algebra L the following hold:
(1) 0x = 1, 1x = x and x1 = 1.
(2) x′ = x0
(3) xy ≤ (yz)(xz)
(4) x ∨ y = (xy)y
(5) ((yx)y′)′ = x ∧ y = ((xy)x′)′
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(6) x ≤ y implies yz ≤ xz and zx ≤ zy
(7) x ≤ (xy)y
In what follows L denotes a lattice implication algebra unless otherwise specified.
Definition 1.1([5]) A subset F of L is called a filter of L if it satisfies:
(F1) 1 ∈ F
(F2) x ∈ F and xy ∈ F imply y ∈ F for all x, y ∈ L.
Definition 1.2 ([3]) A subset F of L is called a positive implicative filter of L if it

satisfies (F1) and
(F3) x((yz)y) ∈ F and x ∈ F imply y ∈ F for all x, y, z ∈ L.
Definition 1.3([1]) A subset F of L is called a fantastic filter of L if it satisfies (F1)

and
(F4) z(yx) ∈ Fandz ∈ F imply ((xy)y)x ∈ F for all x, y, z ∈ L.
Definition 1.4 [6]) Let µ be a fuzzy set in L. Then µ is called a fuzzy filter of L if
(FF1) µ(1) ≥ µ(x)
(FF2) µ(y) ≥ min{µ(x), µ(xy)} for all x, y ∈ L.
Definition 1.5 ([6]) A fuzzy set µ in L is called a fuzzy positive implicative filter of

L if it satisfies:
(FF1) and
(PF1) µ(y) ≥ min{µ(x((yz)y)), µ(x)} for all x, y, z ∈ L.

2 Main Results
Definition 2.1 A fuzzy set µ in L is called a fuzzy fantastic filter of L if it satisfies (FF1)
and

(FF3) µ(((xy)y)x) ≥ min{µ(z(yx)), µ(z)} for all x, y, z ∈ L.
Example 2.2 let L = {0, a, b, c, d, 1} be a partial ordering as follows:

0 ≤ d ≤ a ≤ 1, 0 ≤ c ≤ b ≤ 1 and 0 ≤ d ≤ b ≤ 1.
Define a unary operation “′” and a binary operation denoted by juxtaposition on L as

follows:
x x′

0 1
a c
b d
c a
d b
1 0

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

Define ∨- and ∧-operation on L as follows:

x ∨ y = (xy)y, x ∧ y = ((x′y′)y′)′

Then L is a lattice implication algebra . Define a fuzzy set in L by

µ(x) =
{

0.8 if x ∈ {b, c, 1}
0.2 otherwise

Then it is easy to verify that µ is a fuzzy fantastic filter of L.
Theorem 2.3 Every fuzzy fantastic filter of L is a fuzzy filter.
Proof. Let µ be a fuzzy fantastic filter of a lattice implication algebra L. Taking y = 1 in
(FF3), we have µ(x) = µ(((x1)1)x) ≥ min{µ(z(1x)), µ(z)} = min{µ(zx), µ(z)}. Hence µ
is a fuzzy filter of L.

We now give an equivalent condition for a fuzzy filter to be a fuzzy fantastic filter.
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Theorem 2.4 A fuzzy filter µ of L is fuzzy fantastic filter if and only if it satisfies
(FF4) µ(((xy)y)x) ≥ µ(yx) for all x, y ∈ L.

Proof. Assume that µ is a fuzzy fantastic filter of L and x, y ∈ L. Then µ(((xy)y)x) ≥
min{µ(1(yx)), µ(1)} = min{µ(yx), µ(1)} = µ(yx). Conversely, supposed that µ satisfies
inequality (FF4). For any x, y, z ∈ L, we have µ(((xy)y)x) ≥ µ(yx) ≥ min{µ(z), µ(z(yx))}.
Hence µ is a fuzzy fantastic filter of L.
Lemma 2.5([2]) Every fuzzy positive implicative filter of a lattice implication algebra is a
fuzzy filter.
Lemma 2.6([2]) A fuzzy filter of L is a fuzzy positive implicative filter of a lattice impli-
cation algebra L if and only if it satisfies:

(PF2) µ(x) ≥ µ((xy)x) for all x, y ∈ L.
Lemma 2.7([6]) Let µ be a fuzzy filter of a lattice implication algebra L, then µ is order
preserving.
Theorem 2.8 Every fuzzy positive implication filter of L is fuzzy fantastic.
Proof. Let µ be a fuzzy positive implicative filter of L. Then µ is a fuzzy filter of L by
Lemma 2.5. Since x ≤ ((xy)y)x, we get (((xy)y)x)y ≤ xy. Hence

((((xy)y)x)y)(((xy)y)x) ≥ (xy)(((xy)y)x) = ((xy)y)((xy)x) ≥ yx, and thus
µ(yx) ≤ µ(((((xy)y)x)y)(((xy)y)x)) [Lemma 2.7]

≤ µ(((xy)y)x) [Lemma 2.6]
that is, µ(yx) ≤ µ(((xy)y)x). Therefore , by Theorem 2.4, µ is a fuzzy fantastic filter of L.
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