TANGENTIAL BOUNDARY BEHAVIOR OF THE POISSON INTEGRALS OF FUNCTIONS IN THE POTENTIAL SPACE WITH THE ORLICZ NORM

EIICHI NAKAI AND SHIGEO OKAMOTO

Received February 14, 2003; revised June 27, 2003

ABSTRACT. Nagel, Rudin and Shapiro (1982) investigated the tangential boundary behavior of the Poisson integrals of functions in the potential space $L_K^p(\mathbb{R}^n) = \{K * F : F \in L^p(\mathbb{R}^n)\}$ with a kernel $K : \mathbb{R}^n \setminus \{0\} \to [0, +\infty)$ which is positive, integrable, radial and decreasing. In this paper, we extend the result to $L_K^{\Phi}(\mathbb{R}^n) = \{K * F : F \in L^{\Phi}(\mathbb{R}^n)\}$, where $L^{\Phi}(\mathbb{R}^n)$ is the Orlicz space. Moreover we introduce Ω_R -limit for a continuous increasing function $R : [0, +\infty) \to [0, +\infty)$ with $R(y) \to 0$ as $y \to 0$. The tangential approach region is defined by the function R. We give a relation between R(y) for which all functions in $L_K^{\Phi}(\mathbb{R}^n)$ have the Ω_R -limit and the $L^{\tilde{\Phi}}$ -norm of $P_y * K$, where $\tilde{\Phi}$ is the complementary function of Φ , and calculate R(y) precisely.

1. INTRODUCTION

It is well known that, for $f \in L^p(\mathbb{R}^n)$, its Poisson integral $u(x,y) = P_y * f(x), x \in \mathbb{R}^n$, y > 0, converges nontangentially to f(x) a.e. when y tends to 0. It is also well known that, for general $f \in L^p(\mathbb{R}^n)$, convergence fails when the approach regions have a certain degree of tangentiality. The tangential boundary behavior of the Poisson integrals of functions in subspaces of $L^p(\mathbb{R}^n)$ was studied by Nagel, Rudin and Shapiro [4], Nagel and Stein [5], Dorronsoro [1], etc.

Nagel, Rudin and Shapiro [4] investigated the potential space $L_K^p(\mathbb{R}^n) = \{K * F : F \in L^p(\mathbb{R}^n)\}$ with a kernel $K : \mathbb{R}^n \setminus \{0\} \to [0, +\infty)$ which is positive, integrable, radial and decreasing. We note that $L_K^p(\mathbb{R}^n)$ is a subspace of $L^p(\mathbb{R}^n)$. They [4] gave the relation between the geometric properties of approach regions on which the tangential limit of $P_y * f$ exists for all $f \in L_K^p$ and the $L^{p'}$ -norm of $P_y * K$ with $K \notin L^{p'}$, where 1/p + 1/p' = 1.

exists for all $f \in L_K^p$ and the $L^{p'}$ -norm of $P_y * K$ with $K \notin L^{p'}$, where 1/p + 1/p' = 1. In this paper, we extend the result in [4] to $L_K^{\Phi}(\mathbb{R}^n) = \{K * F : F \in L^{\Phi}(\mathbb{R}^n)\}$, where $L^{\Phi}(\mathbb{R}^n)$ is the Orlicz space, and give the relation between the geometric properties of approach regions and the $L^{\tilde{\Phi}}$ -norm of $P_y * K$ with $K \notin L^{\tilde{\Phi}}$, where $\tilde{\Phi}$ is the complementary function of Φ . However, the $L^{\tilde{\Phi}}$ -norm of $P_y * K$ is not simple. So we introduce Ω_R -limit for a continuous increasing function $R : [0, +\infty) \to [0, +\infty)$ with $R(y) \to 0$ as $y \to 0$ (see Definition 3.2). The tangential approach region is defined by the function R. We give a relation between R(y) for which the Poisson integrals of all functions in $L_K^{\Phi}(\mathbb{R}^n)$ have the Ω_R -limit and the $L^{\tilde{\Phi}}$ -norm of $P_y * K$, and calculate R(y) precisely for kernels K of the form

$$K(x) = K_{\rho}(x) = \frac{\rho(|x|)}{|x|^n},$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B25, Secondary 46E30.

Key words and phrases. tangential limit, Poisson integral, potential, Orlicz space.

where the function $\rho: (0, +\infty) \to (0, +\infty)$ satisfies that $\rho(r)/r^n$ is decreasing and

$$\int_0^{+\infty} \frac{\rho(r)}{r} \, dr < +\infty.$$

If $K \in L^{\tilde{\Phi}}(\mathbb{R}^n)$, then K * F is continuous for every $F \in L^{\Phi}(\mathbb{R}^n)$. In this case, the tangential limit of the Poisson integral of $f \in L^{\Phi}_K$ exists trivially. So we are interested in the case $K \notin L^{\tilde{\Phi}}(\mathbb{R}^n)$.

The Bessel kernel J_{α} , $0 < \alpha < n$, is the function on \mathbb{R}^n whose Fourier transform is $\widehat{J_{\alpha}}(\xi) = (1 + |\xi|^2)^{-\alpha/2}, \xi \in \mathbb{R}^n$. Then $J_{\alpha}(x) \sim K_{\rho}(x)$ for small |x| with $\rho(r) = r^{\alpha}$ for small r > 0. This case was studied in [4] and [5].

If $\rho(r) = r^{\alpha}$ for small r > 0 with $0 < \alpha < n/p$, then the Hardy-Littlewood-Sobolev theorem shows that

$$L^p_{K_n}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n),$$

where $-n/p + \alpha = -n/q$. In this case the Poisson integrals of all functions $f \in L^p_{K_{\rho}}$ have the Ω_R -limit with $R(y) = y^{1-\alpha p/n}$. As α is bigger, the Ω_R -limit gets more tangential. If $\alpha = n/p$, then

$$L^p_{K_{\rho}}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \cap BMO(\mathbb{R}^n).$$

In this case $R(y) = (\log(1/y))^{-(p-1)/n}$ (see Theorem 3.7 and Example 3.1). We note that there is a larger class of functions than $L^p_{J_{\alpha}}(\mathbb{R}^n)$ such that all functions in the class have the Ω_R -limit with the above R. (see Dorronsoro [1]). If $\alpha > n/p$, then

$$L^p_{K_o}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \cap \operatorname{Lip}_{\beta}(\mathbb{R}^n),$$

where $\beta = -p/n + \alpha$. In this case, the tangential limit of the Poisson integral of $f \in L^p_{K_{\rho}}$ exists trivially.

One of the authors [7, 8, 9] showed that, if

$$\Phi^{-1}\left(\frac{1}{r^n}\right) \int_0^r \frac{\rho(t)}{t} dt \le C \Psi^{-1}\left(\frac{1}{r^n}\right) \quad \text{for} \quad r > 0,$$

then

$$L^{\Phi}_{K_{\rho}}(\mathbb{R}^n) \subset L^{\Phi}(\mathbb{R}^n) \cap L^{\Psi}(\mathbb{R}^n).$$

If $\phi: (0, +\infty) \to (0, +\infty)$ is increasing and

$$\Phi^{-1}\left(\frac{1}{r^n}\right)\int_0^r \frac{\rho(t)}{t}\,dt \le C\phi(r) \quad \text{for} \quad r>0,$$

then

$$L^{\Phi}_{K_{\rho}}(\mathbb{R}^n) \subset L^{\Phi}(\mathbb{R}^n) \cap BMO_{\phi}(\mathbb{R}^n).$$

If $\phi \equiv 1$, then BMO_{ϕ} is the usual BMO. In these cases, see Theorem 3.8, Remark 3.4 and Example 3.2.

Let $\Phi \in \nabla_2$. Then, for all functions F such that $\Phi(k|F(x)|)$ is integrable for all k > 0, the Poisson integrals of $f = K_{\rho} * F$ have the Ω_R -limit with at least $R(y) = y / \left(\int_0^y (\rho(r)/r) dr \right)^{1/n}$, for every kernel K_{ρ} (see Theorem 3.9).

Notations and definitions of function spaces are in the next section. We state main results and examples in Section 3 and proofs of main results in Sections 4–6.

The authors would like to thank the referee for his many comments.

2. NOTATIONS AND DEFINITIONS

In this section we state some notations and definitions. We also state properties of the N-function and the Orlicz space.

2.1. \mathbb{R}^n is the *n*-dimensional Euclidean space, with norm $|x| = \sqrt{\sum x_i^2}$, $x = (x_1, ..., x_n)$ and

$$\mathbb{R}^{n+1}_{+} = \{ (x, y) : x \in \mathbb{R}^n, y > 0 \}.$$

Let B(a, r) be the ball $\{x \in \mathbb{R}^n : |x - a| < r\}$ with center a and of radius r > 0. We denote the measure of a measurable set $E \subset \mathbb{R}^n$ by |E|. Let $\sigma_n = |B(0, 1)|$. Then $|B(0, r)| = \sigma_n r^n$.

2.2. A function $\Phi : [0, +\infty) \to [0, +\infty)$ is called an N-function if Φ is continuous, convex, strictly increasing, $\lim_{r\to+0} \Phi(r)/r = 0$ and $\lim_{r\to+\infty} \Phi(r)/r = +\infty$. For an N-function Φ , the complementary function is defined by

$$\Phi(r) = \sup\{rs - \Phi(s) : s \ge 0\}, \quad r \ge 0$$

Then $\widetilde{\Phi}$ is also an N-function, $\widetilde{\widetilde{\Phi}} = \Phi$, and,

(2.1)
$$r \le \Phi^{-1}(r)\widetilde{\Phi}^{-1}(r) \le 2r.$$

2.3. A function $\Phi : [0, +\infty) \to [0, +\infty)$ is said to satisfy the Δ_2 -condition, denoted $\Phi \in \Delta_2$, if

$$\Phi(2r) \le C\Phi(r), \quad r \ge 0,$$

for some C > 0. This condition is also called the doubling condition. A function $\Phi : [0, +\infty) \to [0, +\infty)$ is said to satisfy the ∇_2 -condition, denoted $\Phi \in \nabla_2$, if

$$\Phi(r) \le \frac{1}{2k} \Phi(kr), \quad r \ge 0,$$

for some k > 1.

Let Φ is an N-function. Then $\Phi \in \Delta_2$ if and only if $\widetilde{\Phi} \in \nabla_2$.

2.4. For an N-function Φ , let

$$L^{\Phi}(\mathbb{R}^n) = \left\{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \Phi(\epsilon | f(x)|) \, dx < +\infty \text{ for some } \epsilon > 0 \right\}$$
$$M^{\Phi}(\mathbb{R}^n) = \left\{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \Phi(k | f(x)|) \, dx < +\infty \text{ for all } k > 0 \right\},$$
$$\|f\|_{\Phi} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx \le 1 \right\}.$$

Then $L^{\Phi}(\mathbb{R}^n)$ is a Banach space with the norm $\|\cdot\|_{L^{\Phi}}$. $M^{\Phi}(\mathbb{R}^n)$ is a closed subspace of $L^{\Phi}(\mathbb{R}^n)$. If and only if $\Phi \in \Delta_2$, then $L^{\Phi}(\mathbb{R}^n) = M^{\Phi}(\mathbb{R}^n)$.

Let $C_{\text{comp}}(\mathbb{R}^n)$ be the set of all continuous functions with compact supports. Then $C_{\text{comp}}(\mathbb{R}^n)$ is dense in $M^{\Phi}(\mathbb{R}^n)$.

We have Hölder's inequality for Orlicz spaces:

(2.2)
$$\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \le 2 \|f\|_{\Phi} \|g\|_{\widetilde{\Phi}}$$

We also have the following equivalence:

(2.3)
$$||f||_{\Phi} \leq \sup\left\{\int_{\mathbb{R}^n} |f(x)g(x)| \, dx : \int_{\mathbb{R}^n} \widetilde{\Phi}(|g(x)|) \, dx \leq 1\right\} \leq 2||f||_{\Phi}.$$

If and only if $\Phi \in \Delta_2$, then

(2.4)
$$\int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\|f\|_{\Phi}}\right) dx = 1 \quad \text{for all } f \in L^{\Phi} \text{ with } \|f\|_{\Phi} \neq 0.$$

Let $\{f_j\}_j \subset L^{\Phi}$. If $f_j \to 0$ in L^{Φ} as $j \to +\infty$, then

(2.5)
$$\int_{\mathbb{R}^n} \Phi(|f_j(x)|) \, dx \to 0 \quad \text{as} \quad j \to +\infty.$$

If and only if $\Phi \in \Delta_2$, the converse is true.

2.5. The letter K and the word kernel denote a nonnegative L^1 -function on \mathbb{R}^n which is radial and decreasing; i.e., K(x) = K(x') if |x| = |x'| and $K(x) \leq K(x')$ if $|x| \geq |x'|$. Also, $K(0) = +\infty$ (we are not interested in bounded K), and we usually normalize so that $||K||_1 = 1$. Let

$$L_K^{\Phi} = L_K^{\Phi}(\mathbb{R}^n) = \{ f = K * F : F \in L^{\Phi}(\mathbb{R}^n) \},\$$
$$M_K^{\Phi} = M_K^{\Phi}(\mathbb{R}^n) = \{ f = K * F : F \in M^{\Phi}(\mathbb{R}^n) \}.$$

2.6. The Poisson kernel for \mathbb{R}^{n+1}_+ is

$$P_y(x) = \frac{c_n y}{(|x|^2 + y^2)^{(n+1)/2}} \quad (x \in \mathbb{R}^n, y > 0),$$

where $c_n = \Gamma\left(\frac{n+1}{2}\right) \pi^{-(n+1)/2}$ is so chosen that $\|P_y\|_1 = 1$ for $0 < y < +\infty$. $(P_y * K)(x)$ is the harmonic extension of K to \mathbb{R}^{n+1}_+ . For $f \in L_K^{\Phi}$, the Poisson integral u = P[f] means that

$$u(x,y) = P[f](x,y) = (P_y * f)(x) = (P_y * K * F)(x),$$

for some $F \in L^{\Phi}(\mathbb{R}^n)$.

2.7. For a function $\phi: (0, +\infty) \to (0, +\infty)$, let

$$BMO_{\phi}(\mathbb{R}^{n}) = \left\{ f \in L^{1}_{loc}(\mathbb{R}^{n}) : \|f\|_{BMO_{\phi}} < +\infty \right\},$$

where $\|f\|_{BMO_{\phi}} = \sup_{B=B(a,r)} \frac{1}{\phi(r)} \frac{1}{|B|} \int_{B} |f(x) - f_{B}| dx,$
and $f_{B} = \frac{1}{|B|} \int_{B} f(x) dx.$

If $\phi(r) \equiv 1$, then $\text{BMO}_{\phi}(\mathbb{R}^n) = \text{BMO}(\mathbb{R}^n)$. If $\phi(r) = r^{\alpha}$, $0 < \alpha \leq 1$, then it is known that $\text{BMO}_{\phi}(\mathbb{R}^n) = \text{Lip}_{\alpha}(\mathbb{R}^n)$. All functions in BMO_{ϕ} are continuous, if and only if

(2.6)
$$\int_0^1 \frac{\phi(t)}{t} dt < +\infty$$

(see [2] and [6]).

2.8. For functions $\theta, \kappa : (0, +\infty) \to (0, +\infty)$, we denote $\theta(r) \sim \kappa(r)$ if there exists a constant C > 0 such that

$$C^{-1}\theta(r) \le \kappa(r) \le C\theta(r), \quad r > 0.$$

A function $\theta : (0, +\infty) \to (0, +\infty)$ is said to be almost increasing (almost decreasing) if there exists a constant C > 0 such that $\theta(r) \le C\theta(s)$ ($\theta(r) \ge C\theta(s)$) for $r \le s$.

The letter C shall always denote a constant, not necessarily the same one.

3. Main results and examples

For an N-function Φ and for a ball B, let

$$||f||_{\Phi,B} = \inf\left\{\lambda > 0: \frac{1}{|B|} \int_B \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx \le 1\right\}.$$

For a kernel K and for an N-function $\Phi,$ let

$$k(r,y) = |B(0,r)| ||P_y * K||_{\widetilde{\Phi}, B(0,r)}, \quad r > 0, \ y > 0,$$

where Φ is the complementary N-function of Φ . Let $0 < \beta < +\infty$. We define the *approach* region

$$\Omega^{\Phi}_{K,\beta}(x_0) = \{ (x,y) \in \mathbb{R}^{n+1}_+ : k(|x-x_0|,y) < \beta \}, \quad x_0 \in \mathbb{R}^n,$$

and the associated maximal function

$$(\mathfrak{M}[\Omega^{\Phi}_{K,\beta}]f)(x_0) = \sup\{|u(x,y)| : (x,y) \in \Omega^{\Phi}_{K,\beta}(x_0)\},\$$

where u = P[f].

We assume that $\Phi \in \nabla_2$ and $K \notin L^{\widetilde{\Phi}}(\mathbb{R}^n)$. Let

(3.1)
$$\tau_{\beta}(y) = \sup\{r > 0 : k(r, y) < \beta\}.$$

.

Then

(3.2)
$$\begin{cases} 0 < \tau_{\beta}(y) < +\infty, \\ \tau_{\beta} \text{ is continuous and increasing,} \\ \tau_{\beta}(y) \to 0 \text{ as } y \to 0, \\ k(\tau_{\beta}(y), y) = \beta, \\ k(r, y) < \beta \Leftrightarrow r < \tau_{\beta}(y). \end{cases}$$

Hence we can write

$$\Omega^{\Phi}_{K,\beta}(x_0) = \{(x,y) \in \mathbb{R}^{n+1}_+ : k(|x-x_0|,y) < \beta\}$$

= $\{(x,y) \in \mathbb{R}^{n+1}_+ : |x-x_0| < \tau_{\beta}(y)\}, \quad x_0 \in \mathbb{R}^n.$

Moreover, the approach region $\Omega_{K,\beta}^{\Phi}(x_0)$ is tangential to the boundary of \mathbb{R}^{n+1}_+ , i.e.

(3.3)
$$\begin{cases} \tau_{\beta}(y)/y \ge c_0 > 0 \quad \text{for all } y > 0, \\ \tau_{\beta}(y)/y \to +\infty \quad \text{as} \quad y \to 0. \end{cases}$$

The properties (3.2) and (3.3) will be proved in the next section.

If $K \in L^{\widetilde{\Phi}}$ and $F \in L^{\Phi}$, then f = K * F is continuous, so that u = P[f] is continuous on the closure of \mathbb{R}^{n+1}_+ . In this case the tangential limit of u exists trivially. Therefore we are interested in the case $K \notin L^{\widetilde{\Phi}}$.

Our main results are following.

Theorem 3.1. Let Φ be an N-function and $\Phi \in \nabla_2$. Then there exists a constant C > 0 such that, for all $f = K * F \in L_K^{\Phi}$ and for all t > 0,

$$\left| \left\{ x \in \mathbb{R}^n : (\mathfrak{M}[\Omega_{K,\beta}^{\Phi}]f)(x) > t \right\} \right| \le \int_{\mathbb{R}^n} \Phi\left(\frac{C(\beta + \|K\|_1)|F(x)|}{t} \right) \, dx$$

where C is independent of K, β , F and t.

Definition 3.1. A function u on \mathbb{R}^{n+1}_+ is said to have Ω^{Φ}_K -limit L at a point $x_0 \in \mathbb{R}^n$ if it is true for every $0 < \beta < +\infty$ that $u(x, y) \to L$ as $(x, y) \to (x_0, 0)$ within $\Omega^{\Phi}_{K,\beta}(x_0)$.

Remark 3.1. Since k(r, y) is increasing with respect to r (see (4.6)), $\tau_{\beta}(y)$ is increasing with respect to β . Hence $\Omega_{K,\beta}^{\Phi} \subset \Omega_{K,\beta'}^{\Phi}$ if $\beta \leq \beta'$.

Theorem 3.2. Let Φ be an N-function and $\Phi \in \nabla_2$. If $f \in M_K^{\Phi}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_K^{Φ} -limit of u exists at x_0 and equals $f(x_0)$.

Corollary 3.3. Let Φ be an N-function and $\Phi \in \Delta_2 \cap \nabla_2$. If $f \in L_K^{\Phi}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_K^{Φ} -limit of u exists at x_0 and equals $f(x_0)$.

The next proposition shows that Theorem 3.2 is optimal with regard to the size of the approach regions. To formulate this precisely, compare

$$\Omega^{\Phi}_{K,\beta}(x_0) = \{ (x,y) \in \mathbb{R}^{n+1}_+ : |x - x_0| < \tau_{\beta}(y) \}$$

with another region

(3.4)
$$\Omega(x_0) = \{ (x, y) \in \mathbb{R}^{n+1}_+ : |x - x_0| < \omega(y) \}.$$

where ω is some positive continuous function. Let

(3.5)
$$(\mathfrak{M}[\Omega]f)(x_0) = \sup\{|u(x,y)| : (x,y) \in \Omega(x_0)\}, \quad x_0 \in \mathbb{R}^n,$$

where u = P[f].

Proposition 3.4. Let Ω and $\mathfrak{M}[\Omega]$ be as in (3.4) and (3.5), respectively. If there exists $c_* > 0$ such that, for all $f = K * F \in L^{\Phi}_K(\mathbb{R}^n)$ and for all t > 0,

(3.6)
$$|\{x \in \mathbb{R}^n : (\mathfrak{M}[\Omega]f)(x) > t\}| \le \int_{\mathbb{R}^n} \Phi\left(\frac{c_*|F(x)|}{t}\right) \, dx,$$

then there exists $\beta > 0$ such that, for all y > 0, $\omega(y) \leq \tau_{\beta}(y)$.

Theorems 3.1, 3.2, Corollary 3.3 and Proposition 3.4 are generalization of the results of Nagel, Rudin and Shapiro [4]. However the definition of τ_{β} is not simple and τ_{β} is difficult to calculate. To investigate the geometric properties of approach regions, we introduce Ω_R -limit.

Definition 3.2. For $R: (0, +\infty) \to (0, +\infty)$ and for $0 < b < +\infty$, let

$$\Omega_{R,b}(x_0) = \{ (x,y) \in \mathbb{R}^{n+1}_+ : |x - x_0| < bR(y) \}, \quad x_0 \in \mathbb{R}^n.$$

A function u on \mathbb{R}^{n+1}_+ is said to have Ω_R -limit L at a point $x_0 \in \mathbb{R}^n$ if it is true for every $0 < b < +\infty$ that $u(x, y) \to L$ as $(x, y) \to (x_0, 0)$ within $\Omega_{R,b}(x_0)$.

In the case $\Phi(r) = r^p$ with $1 and <math>K \notin L^{p'}$, we have

$$k(r,y) = |B(0,r)| ||P_y * K||_{\widetilde{\Phi},B(0,r)} = |B(0,r)|^{1/p} ||P_y * K||_{L^{p'}(B(0,r))} \le |B(0,r)|^{1/p} ||P_y * K||_{p'}.$$

This implies

$$\left(\frac{\beta}{\sigma_n^{1/p} \|P_y * K\|_{p'}}\right)^{p/n} \le \tau_\beta(y).$$

Hence, for $R(y) = \|P_y * K\|_{p'}^{-p/n}$, if $f \in L_K^p$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$. This is a result of Nagel, Rudin and Shapiro [4]. They [4] also showed that, if (3.6) holds, then $\omega(y) \leq C \|P_y * K\|_{p'}^{-p/n}$. We extend this result to the following.

Theorem 3.5. Let Φ be an N-function, $\Phi \in \nabla_2$ and $K \notin L^{\tilde{\Phi}}(\mathbb{R}^n)$. Let τ_{β} , $0 < \beta < +\infty$, be as in (3.1). Then there exists a continuous increasing function $R: (0, +\infty) \to (0, +\infty)$ with $R(y) \to 0$ as $y \to 0$ such that

$$\forall b > 0 \; \exists \beta > 0 \; \forall y > 0 : bR(y) \le \tau_{\beta}(y).$$

In this case the Ω^{Φ}_{K} -limit is also the Ω_{R} -limit.

Moreover, if $\Phi \in \Delta_2 \cap \nabla_2$, then the function R also have the property

$$\forall \beta > 0 \; \exists b > 0 \; \forall y > 0 : \tau_{\beta}(y) \le bR(y).$$

In this case the Ω_K^{Φ} -limit and the Ω_R -limit are the same.

Remark 3.2. We can choose $R \sim \tau_{\beta_0}$ for any fixed $\beta_0 > 0$ (see Proof of Theorem 3.5).

In the following, we calculate the function $\tau = \tau_1 \sim R$. For a function $\rho : (0, +\infty) \rightarrow (0, +\infty)$, let

$$K_{\rho}(x) = \frac{\rho(|x|)}{|x|^n}.$$

We assume that $\rho(r)/r^n$ is decreasing and that

$$\int_0^{+\infty} \frac{\rho(r)}{r} \, dr < +\infty.$$

Then K_{ρ} is a kernel. From the decreasingness of $\rho(r)/r^n$ it follows that $\rho(2r) \leq 2^n \rho(r)$ for r > 0. Let

$$\bar{\rho}(r) = \int_0^r \frac{\rho(t)}{t} \, dt$$

Then $\rho(r) \leq C\bar{\rho}(r)$ for all r > 0. If $\rho(r)/r^{\alpha}$ is almost increasing for small r > 0 with $\alpha > 0$, then $\bar{\rho} \sim \rho$ for small r > 0. If $\rho(r)/r^{\beta}$ is almost decreasing for small r > 0 with $\beta > 0$, then $\bar{\rho}(r)/r^{\beta}$ is also almost decreasing for small r > 0 (see Lemma 6.2 (iii), (iv)).

Proposition 3.6. Let $\tau = \tau_1$ be as in (3.1) for a kernel K_{ρ} and an N-function Φ with $K_{\rho} \notin L^{\widetilde{\Phi}}(\mathbb{R}^n)$.

(i) If
$$\Phi \in \nabla_2$$
, then

(3.7)
$$C^{-1} \le \tau(y)^{-n} \int_{y}^{\tau(y)} \widetilde{\Phi}\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}} + \frac{y\tau(y)^{n}\bar{\rho}(t)}{t^{n+1}}\right) t^{n-1} dt \le C$$

for small $y > 0$.

(ii) If
$$\Phi \in \Delta_2 \cap \nabla_2$$
, then

(3.8)
$$C^{-1} \le \tau(y)^{-n} \int_{y}^{1} \widetilde{\Phi}\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}} + \frac{y\tau(y)^{n}\bar{\rho}(t)}{t^{n+1}}\right) t^{n-1} dt \le C$$

(iii) If $\Phi \in \nabla_2$, $\Phi(r)/r^p$ is almost decreasing with $1 , and, <math>\rho(r)/r^{\beta}$ is almost decreasing for small r > 0 with $0 < \beta < n/p$, then

(3.9)
$$C^{-1} \le \left(\frac{y}{\tau(y)}\right)^n \widetilde{\Phi}\left(\frac{\tau(y)^n \bar{\rho}(y)}{y^n}\right) \le C \quad \text{for small } y > 0.$$

Theorem 3.7. Let $\Phi(r) = r^p$ with $1 . Let <math>\rho(r)/r^{\alpha}$ be almost increasing and $\rho(r)/r^{\beta}$ be almost decreasing for small r > 0, with $0 \le \alpha \le n/p$ and $\alpha \le \beta < n$.

for small y > 0.

(i) In the case that $\alpha > 0$, let 1/p + 1/p' = 1 and

(3.10)
$$R(y) = \left(\int_{y}^{1} \left(\frac{\rho(t)}{t^{n/p}}\right)^{p'} t^{-1} dt\right)^{-p/(np')} \text{ for small } y > 0.$$

(ii) In the case that $0 < \beta < n/p$, let

(3.11)
$$R(y) = \begin{cases} y/\rho(y)^{p/n} & (\alpha > 0) \\ y/\bar{\rho}(y)^{p/n} & (\alpha = 0) \end{cases} \text{ for small } y > 0.$$

If $f \in L^p_{K_{\rho}}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$. Moreover, this is optimal in the sense of Proposition 3.4.

Remark 3.3. If the integral in (3.10) is finite as $y \to 0$, then $K_{\rho} \in L^{p'}(\mathbb{R}^n)$.

Let SV be the set of all continuous functions $\ell : (0, +\infty) \to (0, +\infty)$ satisfying, for some constant C > 0,

$$C^{-1} \le \frac{\ell(s)}{\ell(r)} \le C$$
 for $\frac{1}{2} \le \log_r s \le 2, \ r \ne 1, \ s \ne 1.$

Then, for every $\epsilon > 0$, $\ell(r)r^{\epsilon}$ is almost increasing and $\ell(r)/r^{\epsilon}$ is almost decreasing.

Theorem 3.8. Let N-function $\Phi(r)$ be of the form $r^p\ell(r)$ with $1 and <math>\ell \in SV$, and $\rho(r)$ be of the form $r^{\alpha}m(r)$ with $0 \le \alpha \le n/p$ and $m \in SV$.

(i) In the case that $\alpha = n/p$, let 1/p + 1/p' = 1 and

(3.12)
$$R(y) = \left(\int_{y}^{1} m(t)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt\right)^{-p/(np')} \quad for \ small \ y > 0.$$

(ii) In the case that $0 < \alpha < n/p$, let

(3.13)
$$R(y) = y^{1-\alpha p/n} \frac{\ell(1/y)^{1/n}}{m(y)^{p/n}} \quad \text{for small } y > 0.$$

(iii) In the case that $\alpha = 0$, let

(3.14)
$$R(y) = y \, \frac{\ell (1/\bar{m}(y))^{1/n}}{\bar{m}(y)^{p/n}} \quad \text{for small } y > 0.$$

If $f \in L^{\Phi}_{K_{\rho}}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$. Moreover, this is optimal in the sense of Proposition 3.4.

Remark 3.4. Let

$$\phi(r) = m(r)\ell\left(\frac{1}{r}\right)^{-1/p}.$$

If $\phi(r)$ is almost increasing for small r > 0, then

$$L^{\Phi}_{K_{\rho}}(\mathbb{R}^n) \subset L^{\Phi}(\mathbb{R}^n) \cap BMO_{\phi}(\mathbb{R}^n).$$

If $\int_y^1 \phi(t)^{p'}/t \, dt < +\infty$ as $y \to 0$, then $K_\rho \in L^{\widetilde{\Phi}}(\mathbb{R}^n)$. If $\int_y^1 \phi(t)^{p'}/t \, dt \to +\infty$ as $y \to 0$, then (2.6) fails.

The following result is not necessarily optimal.

Theorem 3.9. Let $\Phi \in \nabla_2$ and

$$R(y) = \frac{y}{\bar{\rho}(y)^{1/n}}.$$

If $f \in M_{K_{\rho}}^{\Phi}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$.

At the end of this section, we state examples. Examples 3.1 and 3.2 follow immediately from Theorems 3.7 and 3.8, respectively. Example 3.3 is for the case of $\Phi \in \nabla_2 \setminus \Delta_2$. A proof of Example 3.3 is in Section 6. Example 3.3 is not necessarily optimal.

Example 3.1. Let $1 , <math>0 \le \alpha \le n/p$, $-\infty < \beta < +\infty$, $-\infty < \gamma < +\infty$, $\Phi(r) = r^p$, and, $\rho(r) = r^{\alpha} (\log(1/r))^{-\beta} (\log\log(1/r))^{-\gamma}$ for small r > 0. Let

$$R(y) = \begin{cases} y \left(\log \log \frac{1}{y} \right)^{(\gamma-1)p/n} & \text{when } \alpha = 0, \beta = 1, \gamma > 1, \\ y \left(\log \frac{1}{y} \right)^{(\beta-1)p/n} \left(\log \log \frac{1}{y} \right)^{\gamma p/n} & \text{when } \alpha = 0, \beta > 1, \\ y^{1-\alpha p/n} \left(\log \frac{1}{y} \right)^{\beta p/n} \left(\log \log \frac{1}{y} \right)^{\gamma p/n} & \text{when } 0 < \alpha < n/p, \\ \left(\log \frac{1}{y} \right)^{-(1-1/p-\beta)p/n} \left(\log \log \frac{1}{y} \right)^{\gamma p/n} & \text{when } \alpha = n/p, \beta < 1 - 1/p, \\ \left(\log \log \frac{1}{y} \right)^{-(1-1/p-\gamma)p/n} & \text{when } \alpha = n/p, \beta = 1 - 1/p, \gamma < 1 - 1/p, \\ \left(\log \log \log \frac{1}{y} \right)^{-(p-1)/n} & \text{when } \alpha = n/p, \beta = 1 - 1/p, \gamma = 1 - 1/p. \end{cases}$$

If $f \in L^p_{K_{\rho}}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$. Moreover, this is optimal in the sense of Proposition 3.4. (If $\alpha > n/p$, or if $\alpha = n/p$ and $\beta > 1 - 1/p$, or if $\alpha = n/p$, $\beta = 1 - 1/p$ and $\gamma > 1 - 1/p$, then $K_{\rho} \in L^{\tilde{\Phi}}(\mathbb{R}^n)$.)

Example 3.2. Let $1 , <math>-\infty < \theta < +\infty$ and

$$\Phi(r) = \begin{cases} r^p (\log r)^{\theta p} & \text{for large } r > 0, \\ r^p (\log(1/r))^{-\theta p} & \text{for small } r > 0. \end{cases}$$

For constants α and β with $0 \le \alpha \le n/p$ and $-\infty < \beta < +\infty$, let $\rho(r) = r^{\alpha} (\log(1/r))^{-\beta}$ for small r > 0. Let

$$R(y) = \begin{cases} y \left(\log \frac{1}{y} \right)^{(\beta-1)p/n} \left(\log \log \frac{1}{y} \right)^{\theta p/n} & \text{when} \quad \alpha = 0, \ \beta > 1, \\ y^{1-\alpha p/n} \left(\log \frac{1}{y} \right)^{(\beta+\theta)p/n} & \text{when} \quad 0 < \alpha < n/p, \\ \left(\log \frac{1}{y} \right)^{-(1-1/p-\beta-\theta)p/n} & \text{when} \quad \alpha = n/p, \ 1 - 1/p > \beta + \theta, \\ \left(\log \log \frac{1}{y} \right)^{-(p-1)/n} & \text{when} \quad \alpha = n/p, \ 1 - 1/p = \beta + \theta. \end{cases}$$

If $f \in L^{\Phi}_{K_{\rho}}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$. Moreover, this is optimal in the sense of Proposition 3.4. (If $\alpha > n/p$, or if $\alpha = n/p$ and $1 - 1/p < \beta + \theta$, then $K_{\rho} \in L^{\tilde{\Phi}}(\mathbb{R}^n)$.)

Example 3.3. Let

$$\Phi(r) = \begin{cases} \exp r & \text{for large } r > 0, \\ 1/\exp(1/r) & \text{for small } r > 0, \end{cases}$$

and $\rho(r) = (\log(1/r))^{-2}$ for small r > 0. Let

$$R(y) = y^{1-\epsilon} \left(\log \frac{1}{y}\right)^{1/n}$$
 for small $y > 0$

where $\epsilon > 0$ is small enough. If $f \in M_{K_{\rho}}^{\Phi}$ and u = P[f], then, for almost all $x_0 \in \mathbb{R}^n$, the Ω_R -limit of u exists at x_0 and equals $f(x_0)$.

4. Proofs of the properties
$$(3.2)$$
 and (3.3)

To show the properties (3.2) and (3.3), we investigate the properties of k(r, y). First we state two lemmas.

Lemma 4.1. Let Φ be an N-function and $||g||_1 \leq 1$. Then, for $z_0 \in \mathbb{R}^n$ and r > 0,

$$\int_{B(z_0,r)} \Phi(|f * g(x)|) \, dx \le \|g\|_1 \sup_{z \in \mathbb{R}^n} \int_{B(z,r)} \Phi(|f(x)|) \, dx.$$

Proof. Let

$$\alpha = \|g\|_1, \quad \beta = \sup_{z \in \mathbb{R}^n} \int_{B(z,r)} \Phi(|f(x)|) \, dx$$

If $\alpha = 0$, then this inequation is clear. We assume $\alpha \neq 0$. Let $\mu(A) = \int_A |g(x)| dx/\alpha$ for $A \subset \mathbb{R}^n$. Then μ is a probability measure. We note by χ_E the characteristic function of $E \subset \mathbb{R}^n$. Then we have

$$\int_{B(z_0,r)} \Phi(|f * g(x)|) dx \leq \int_{\mathbb{R}^n} \Phi\left(\int_{\mathbb{R}^n} |f(x - x')| |g(x')| dx'\right) \chi_{B(z_0,r)}(x) dx$$

$$= \int_{\mathbb{R}^n} \Phi\left(\alpha \int_{\mathbb{R}^n} |f(x - x')| d\mu(x')\right) \chi_{B(z_0,r)}(x) dx$$

$$\leq \alpha \int_{\mathbb{R}^n} \Phi\left(\int_{\mathbb{R}^n} |f(x - x')| d\mu(x')\right) \chi_{B(z_0,r)}(x) dx$$

$$\leq \alpha \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \Phi\left(|f(x - x')|\right) d\mu(x')\right) \chi_{B(z_0,r)}(x) dx$$

$$\leq \alpha \int_{\mathbb{R}^n} \beta d\mu(x') = \alpha \beta. \quad \Box$$

Lemma 4.1 shows that, if |f| is radial and decreasing and $||g||_1 \leq 1$, then

(4.1)
$$||f * g||_{\Phi, B(0,r)} \le ||g||_1 ||f||_{\Phi, B(0,r)}.$$

Lemma 4.2. Let K be a kernel and Φ be an N-function. Then, for all r > 0,

(4.2)
$$\|P_y * K\|_{\Phi, B(0,r)} \le \|P_y\|_{\Phi, B(0,r)} \le \frac{c_n}{\Phi^{-1}(1)y^n} \quad \text{for } y > 0$$

(4.3)
$$\|P_{y_2} * K\|_{\Phi, B(0,r)} \le \|P_{y_1} * K\|_{\Phi, B(0,r)} \quad for \ y_1 < y_2.$$

If $K \notin L^{\Phi}(\mathbb{R}^n)$, then, for every r > 0,

$$(4.4) ||P_y * K||_{\Phi, B(0,r)} \to +\infty \text{ as } y \to 0$$

- If $\Phi \in \Delta_2$, then, for r > 0, y > 0 and t > 1,
- (4.5) $\|P_y * K\|_{\Phi, B(0, tr)} \le \|P_y * K\|_{\Phi, B(0, r)} < t^n \|P_y * K\|_{\Phi, B(0, tr)}.$

Proof. P_y and K are radial and decreasing. Hence $P_y * K$ is also radial and decreasing. By $||P_y||_1 = ||K||_1 = 1, P_{y+y_1} = P_y * P_{y_1} \text{ and } P_y(x) \leq c_n/y^n$, using (4.1), we have (4.2) and (4.3). If $K \in L^1(\mathbb{R}^n) \setminus L^{\Phi}(\mathbb{R}^n)$, then

$$\int_{B(0,r)} \Phi\left(\frac{K(x)}{\lambda}\right) \, dx = +\infty \quad \text{for all } r > 0, \lambda > 0.$$

Since $P_y * K \to K$ a.e. as $y \to 0$, we have (4.4). By the inequality

$$\frac{1}{|B(0,tr)|} \int_{B(0,tr)} \Phi\left(\frac{P_y * K(x)}{\lambda}\right) \, dx \le \frac{1}{|B(0,r)|} \int_{B(0,r)} \Phi\left(\frac{P_y * K(x)}{\lambda}\right) \, dx,$$

we have the first inequality in (4.5). If $\Phi \in \Delta_2$, then, for $\lambda = \|P_y * K\|_{\Phi, B(0,r)}$,

$$\frac{1}{|B(0,tr)|} \int_{B(0,tr)} \Phi\left(\frac{P_y * K(x)}{\lambda/t^n}\right) dx \ge \frac{1}{|B(0,r)|} \int_{B(0,tr)} \Phi\left(\frac{P_y * K(x)}{\lambda}\right) dx$$
$$> \frac{1}{|B(0,r)|} \int_{B(0,r)} \Phi\left(\frac{P_y * K(x)}{\lambda}\right) dx = 1.$$

Fince $\|P_y * K\|_{\Phi,B(0,tr)} > \lambda/t^n$, this is the second inequality in (4.5).

Hence $||P_y * K||_{\Phi,B(0,tr)} > \lambda/t^n$, this is the second inequality in (4.5).

We assume that $\Phi \in \nabla_2$ and $K \notin L^{\widetilde{\Phi}}$. Then $\widetilde{\Phi} \in \Delta_2$. We apply Lemma 4.2 to $\widetilde{\Phi}$. Then (4.3) and (4.4) imply

(4.6)
$$k(r, y_1) \ge k(r, y_2) \text{ for } y_1 < y_2 \quad \text{and} \quad k(r, y) \to +\infty \text{ as } y \to 0.$$

Let $\ell(\lambda, y) = \int_B \widetilde{\Phi}(P_y * K(x)/\lambda) dx$. Then $\ell(\lambda, y)$ is continuous with respect to λ and y, strictly decreasing with respect to λ , $\ell(\lambda, y) \to +\infty$ as $\lambda \to 0$, and, $\ell(\lambda, y) \to 0$ as $\lambda \to +\infty$. Hence $||P_y * K||_{\widetilde{\Phi}, B(0,r)}$ is continuous with respect to y, and so is k(r, y). By (4.5) and (4.2) we have that k(r, y) is continuous with respect to r and

(4.7)
$$k(r_1, y) < k(r_2, y) \text{ for } r_1 < r_2 \text{ and } k(r, y) \to 0 \text{ as } r \to 0.$$

Let $m = P_y * K(x)$ for |x| = 1. For all $\lambda > 0$, there exists $\lambda' > 0$ such that

$$\frac{1}{\lambda'}\widetilde{\Phi}\left(t\right) \leq \widetilde{\Phi}\left(\frac{m}{\lambda}t\right) \quad \text{for all } t > 0$$

Then, for B = B(0, r),

$$\begin{split} \frac{1}{|B|} \int_{B} \widetilde{\Phi} \left(\frac{|B|(P_{y} * K)(x)}{\lambda} \right) \, dx &\geq \frac{1}{|B|} \int_{B(0,1)} \widetilde{\Phi} \left(\frac{|B|m}{\lambda} \right) \, dx \\ &\geq \frac{\sigma_{n}}{\lambda'} \frac{\widetilde{\Phi}(|B|)}{|B|} > 1 \quad \text{for large } r > 0. \end{split}$$

Hence

(4.8)
$$k(r,y) = \| |B|(P_y * K) \|_{\widetilde{\Phi},B} \to +\infty \quad \text{as} \quad r \to +\infty.$$

These properties (4.6), (4.7), (4.8) and the continuity of k(r, y) yield (3.2). Next we show (3.3). We note that

$$\left(\frac{\tau_{\beta}(y)}{y}\right)^n = \frac{k(\tau_{\beta}(y), y)}{\sigma_n y^n \|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta}(y))}} = \frac{\beta}{\sigma_n y^n \|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta}(y))}},$$

and we show

(4.9)
$$y^n \| P_y * K \|_{\widetilde{\Phi}, B(0, \tau_\beta(y))} \le c_1 < +\infty \text{ for all } y > 0,$$

 $y^n \| P_y * K \|_{\widetilde{\Phi}, B(0, \tau_\beta(y))} \to 0 \quad \text{as} \quad y \to 0.$ (4.10)

By (4.2) we have (4.9). For all $\varepsilon > 0$, let

$$K = G_{\varepsilon} + H_{\varepsilon}, \quad G_{\varepsilon} \in L^{\infty}, \quad \|G_{\varepsilon}\|_{1} < 1, \quad \|H_{\varepsilon}\|_{1} < \varepsilon.$$

For $C_{\varepsilon} = \|G_{\varepsilon}\|_{\infty}/\tilde{\Phi}^{-1}(1)$, using Lemma 4.1, we have

$$\int_{B(0,r)} \widetilde{\Phi}\left(\frac{|P_y * G_{\varepsilon}(x)|}{C_{\varepsilon}}\right) \, dx \le \sup_{z \in \mathbb{R}^n} \int_{B(z,r)} \widetilde{\Phi}\left(\frac{|G_{\varepsilon}(x)|}{C_{\varepsilon}}\right) \, dx \le |B(0,r)|.$$

Then

 $||P_y * G_{\varepsilon}||_{\widetilde{\Phi}, B(0,r)} \le C_{\varepsilon}$ for all r > 0.

By (4.1) and (4.2) we have

$$||P_y * H_{\varepsilon}||_{\widetilde{\Phi}, B(0, r)} \le \frac{\varepsilon c_n}{\widetilde{\Phi}^{-1}(1)y^n} \quad \text{for all } r > 0.$$

Hence, for $y^n \leq \varepsilon/C_{\varepsilon}$ and $r = \tau_{\beta}(y)$,

$$y^{n} \| P_{y} * K \|_{\widetilde{\Phi}, B(0, \tau_{\beta}(y))} \leq \frac{\varepsilon c_{n}}{\widetilde{\Phi}^{-1}(1)} + C_{\varepsilon} y^{n} \leq \varepsilon \left(\frac{c_{n}}{\widetilde{\Phi}^{-1}(1)} + 1 \right).$$

Therefore we have (3.3).

5. Proofs of Theorem 3.1–3.5

Let

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f(z)| dz$$
 and $M_{\Phi}f(x) = \sup_{B \ni x} ||f||_{\Phi,B}$,

where the supremum is taken over all balls B containing x. The next two lemmas are [10, Lemma 5.2] and [4, Lemma 2.2].

Lemma 5.1. There exists C > 0 such that, for all $F \in L^{\Phi}(\mathbb{R}^n)$ and for all t > 0,

$$|\{x \in \mathbb{R}^n : M_{\Phi}F(x) > t\}| \le C \int_{\mathbb{R}^n} \Phi\left(\frac{|F(x)|}{t}\right) dx$$

Lemma 5.2. If $F \in L^1$, and $g \ge 0$ is radial and decreasing, then

$$\int_{\mathbb{R}^n} |F(x)| g(x) \, dx \le (MF)(0) \int_{\mathbb{R}^n} g(x) \, dx.$$

We have the following:

Theorem 5.3. Let Φ and $\tilde{\Phi}$ be a complementary pair of N-functions. Then there exists a constant C > 0 such that

$$|(K * F)(x)| \le C\left((M_{\Phi}F)(x_0)|x - x_0|^n ||K||_{\widetilde{\Phi}, B(0, |x - x_0|)} + (MF)(x_0)||K||_1 \right)$$

whenever $F \in L^{\Phi}$, K is a nonnegative, radial and decreasing function on \mathbb{R}^n , $x_0 \in \mathbb{R}^n$, $x \in \mathbb{R}^n$.

Proof. Take $x_0 = 0$, without loss of generality. Fix x. Then

$$|(K * F)(x)| \le \int_{\mathbb{R}^n} K(x-z)|F(z)| dz = I_1 + I_2,$$

where I_1 and I_2 are integrals over B = B(0, 2|x|) and B^C respectively. Hölder's inequality shows that

$$I_{1} = \int_{B} K(x-z)|F(z)| dz \leq 2|B| \|K(x-\cdot)\|_{\tilde{\Phi},B} \|F\|_{\Phi,B}$$
$$\leq 2|B| \|K(x-\cdot)\|_{\tilde{\Phi},B} (M_{\Phi}F)(0).$$

Since $B(0, |x|) \subset B(x, 2|x|)$ and K is radial and decreasing,

$$\begin{split} \frac{1}{|B(0,2|x|)|} \int_{B(0,2|x|)} \widetilde{\Phi}\left(\frac{K(z-x)}{\lambda}\right) dz \\ &= \frac{1}{|B(x,2|x|)|} \int_{B(x,2|x|)} \widetilde{\Phi}\left(\frac{K(z)}{\lambda}\right) dz \\ &\leq \frac{1}{|B(0,|x|)|} \int_{B(0,|x|)} \widetilde{\Phi}\left(\frac{K(z)}{\lambda}\right) dz. \end{split}$$

Hence

$$||K(x-\cdot)||_{\widetilde{\Phi},B(0,2|x|)} \le ||K||_{\widetilde{\Phi},B(0,|x|)}$$

and

$$I_1 \le 2^{n+1} \sigma_n |x|^n ||K||_{\widetilde{\Phi}, B(0, |x|)} (M_{\Phi} F)(0).$$

If $z \in B^C$, then $|x - z| \ge |z|/2$, hence $K(x - z) \le K(z/2)$, so that

$$I_{2} = \int_{B^{C}} K(x-z) |F(z)| \, dz \le \int_{B^{C}} K(z/2) |F(z)| \, dz \le MF(0) \|K(\cdot/2)\|_{1} = 2^{n} MF(0) \|K\|_{1},$$

by Lemma 5.2. These two estimates prove the theorem.

Since P_y and K are nonnegative, radial and decreasing, so is $P_y * K$. Hence Theorem 5.3 holds with $P_y * K$ in place of K.

By Hölder's inequality, $MF \leq CM_{\Phi}F$. By Fubini's theorem, $||P_y * K||_1 = ||P_y||_1 ||K||_1 = ||K||_1$. Hence Theorem 5.3 implies the following:

Theorem 5.4. Let Φ and $\widetilde{\Phi}$ be a complementary pair of N-functions. If $F \in L^{\Phi}$, and u is defined in \mathbb{R}^{n+1}_+ by

$$u(x,y) = (P_y * K * F)(x),$$

then

$$|u(x,y)| \le C(M_{\Phi}F)(x_0) \left(||K||_1 + k(|x-x_0|,y) \right),$$

where $k(r, y) = |B(0, r)| ||P_y * K||_{\tilde{\Phi}, B(0, r)}$ and $x_0 \in \mathbb{R}^n$.

Proof of Theorem 3.1. If u = P[f] and f = K * F, Theorem 5.4 shows that

(5.1) $|u(x,y)| \le C(M_{\Phi}F)(x_0)(\beta + ||K||_1)$

in $\Omega^{\Phi}_{K,\beta}(x_0)$. Thus

$$\mathfrak{M}[\Omega_{K,\beta}^{\Phi}]f(x_0) \le C(\beta + \|K\|_1)M_{\Phi}F(x_0) \quad \text{for all } x_0 \in \mathbb{R}^n$$

Combining Lemma 5.1, we have Theorem 3.1.

Proof of Theorem 3.2. Let

$$E = E(\beta, \epsilon) = \left\{ x_0 \in \mathbb{R}^n : \limsup_{(x,y) \in \Omega^{\Phi}_{K,\beta}, (x,y) \to (x_0,0)} |u(x,y) - f(x_0)| > \epsilon \right\}.$$

We shall prove that |E|=0 for all β and for all ϵ . For each $j \in \mathbb{N}$, there exists $G_j \in C_{\text{comp}}(\mathbb{R}^n)$ such that

$$\|F - G_j\|_{\Phi} \le 1/j.$$

Let $g_j = K * G_j$ and $v_j(x, y) = P_y * g_j(x)$. Then
 $\|f - g_j\|_{\Phi} \le \|K\|_1 \|F - G_j\|_{\Phi} \to 0$ as $j \to +\infty$.

We can use (2.5) for $3C(\beta + 1)(F - G_j)/\epsilon$ and $3(f - g_j)/\epsilon$, where C is the constant in Theorem 3.1. Let

$$E_{1,j} = \left\{ x_0 \in \mathbb{R}^n : \limsup_{(x,y) \in \Omega^{\Phi}_{K,\beta}, (x,y) \to (x_0,0)} |u(x,y) - v_j(x,y)| > \epsilon/3 \right\},\$$

$$E_{2,j} = \left\{ x_0 \in \mathbb{R}^n : \limsup_{(x,y) \in \Omega^{\Phi}_{K,\beta}, (x,y) \to (x_0,0)} |v_j(x,y) - g_j(x_0)| > \epsilon/3 \right\},\$$

$$E_{3,j} = \left\{ x_0 \in \mathbb{R}^n : |g_j(x_0) - f(x_0)| > \epsilon/3 \right\}.$$

Then $E \subset E_{1,j} \cup E_{2,j} \cup E_{3,j}$ for $j = 1, 2, \cdots$. By Theorem 3.1 we have

$$|E_{1,j}| \le \int_{\mathbb{R}^n} \Phi\left(\frac{C(\beta+1)|F(x) - G_j(x)|}{\epsilon/3}\right) \, dx \to 0 \quad \text{as} \quad j \to +\infty$$

Since v_j is continuous on the closure of \mathbb{R}^{n+1}_+ ,

$$\lim_{(x,y)\in\Omega^{\Phi}_{K,\beta},(x,y)\to(x_0,0)}|v_j(x,y)-g_j(x_0)|=0$$

Hence we have $|E_{2,j}| = 0$. And we have

$$|E_{3,j}| = \int_{E_{3,j}} dx \le \frac{1}{\Phi(1)} \int_{\mathbb{R}^n} \Phi\left(\frac{|g_j(x) - f(x)|}{\epsilon/3}\right) dx \to 0 \quad \text{as} \quad j \to +\infty. \quad \Box$$

Proof of Proposition 3.4. Let $B = B(0, \tau_{\beta}(y))$. Since $||P_y * K||_{\tilde{\Phi}, B}$ equals the norm of $P_y * K$ in the Orlicz space $L^{\tilde{\Phi}}(B, dx/|B|)$, using (2.3), we have

$$\begin{aligned} \|P_y * K\|_{\widetilde{\Phi},B} &= \|P_y * K\|_{L^{\widetilde{\Phi}}(B,dx/|B|)} \\ &\leq \sup\left\{ \left| \int_B (P_y * K)(x)F(x) \, dx/|B| \right| : \int_B \Phi(|F(x)|) dx/|B| \le 1 \right\}. \end{aligned}$$

Then there exists $F \in L^{\Phi}(\mathbb{R}^n)$ such that $F(x) \ge 0$, F(x) = 0 for $x \notin B$,

$$\int_{B} \Phi(|F(x)|) dx/|B| \le 1 \quad \text{and} \quad \|P_y * K\|_{\widetilde{\Phi},B} \le 2 \int_{B} (P_y * K)(x)F(x) dx/|B|.$$

Let u = P[f], f = K * F. Then

$$u(0,y) = P_y * K * F(0) = \int (P_y * K)(0-x)F(x) \, dx = \int_B (P_y * K)(x)F(x) \, dx.$$

Hence

$$u(0,y) \ge |B| \|P_y * K\|_{\widetilde{\Phi},B} / 2 = k(\tau_\beta(y), y) / 2 = \beta/2.$$

If $x \in B(0, \omega(y))$, then $(0, y) \in \Omega(x)$, so that $u(0, y) \leq \mathfrak{M}[\Omega]f(x)$. Hence $B(0, \omega(y)) \subset \{\mathfrak{M}[\Omega]f(x) \geq u(0, y)\} \subset \{\mathfrak{M}[\Omega]f(x) > \beta/4\}.$

We have, for $\beta \geq 4c_*$,

(5.2)
$$\sigma_n \omega(y)^n \le |\{\mathfrak{M}[\Omega]f(x) > \beta/4\}| \le \int \Phi\left(\frac{c_*F(x)}{\beta/4}\right) dx$$
$$\le \int \Phi(F(x)) dx \le |B| \le \sigma_n \tau_\beta(y)^n,$$

by (3.6). Then we have, for $\beta \ge 4c_*$, $\omega(y) \le \tau_\beta(y)$.

In (5.2), if $\Phi \in \Delta_2$, then, for all $\beta > 0$,

(5.3)
$$\sigma_{n}\omega(y)^{n} \leq |\{\mathfrak{M}[\Omega]f(x) > \beta/4\}| \leq \int \Phi\left(\frac{c_{*}F(x)}{\beta/4}\right) dx$$
$$\leq C_{c_{*},\beta} \int \Phi(F(x)) dx \leq C_{c_{*},\beta}|B| \leq C_{c_{*},\beta}\sigma_{n}\tau_{\beta}(y)^{n},$$

where $C_{c_*,\beta}$ depends on Φ , c_* and β .

Proof of Theorem 3.5. Fix $\beta_0 > 0$ and let $R = \tau_{\beta_0}$. Since $\tau_{\beta}(y)$ is increasing with respect to β , and $\|P_y * K\|_{\Phi,B(0,r)}$ is decreasing with respect to r, we have

$$\|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta}(y))} \leq \|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta_0}(y))} \quad \text{for} \quad \beta_0 \leq \beta.$$

Hence

$$\left(\frac{\tau_{\beta}(y)}{\tau_{\beta_0}(y)}\right)^n = \frac{\beta/\|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta}(y))}}{\beta_0/\|P_y * K\|_{\widetilde{\Phi}, B(0, \tau_{\beta_0}(y))}} \ge \frac{\beta}{\beta_0}.$$

For $\beta \geq b^n \beta_0$, we have

$$b\tau_{\beta_0}(y) \le b\left(\frac{\beta_0}{\beta}\right)^{1/n} \tau_{\beta}(y) \le \tau_{\beta}(y).$$

Let $\Phi \in \Delta_2 \cap \nabla_2$. By Theorem 3.1

$$\left| \left\{ x \in \mathbb{R}^n : \mathfrak{M}[\Omega^{\Phi}_{K,\beta}]f(x) > t \right\} \right| \le \int_{\mathbb{R}^n} \Phi\left(\frac{C(\beta+1)|F(x)|}{t} \right) \, dx$$

In Proof of Proposition 3.4 and (5.3), using τ_{β} , $C(\beta + 1)$ and β_0 instead of ω , c_* and β , respectively, we have

$$\tau_{\beta}(y) \le C_{\beta,\beta_0} \tau_{\beta_0}(y),$$

where $C_{\beta,\beta_0} > 0$ depends on Φ, β, β_0 .

6. Proofs of Proposition 3.6 and Theorems 3.7-3.9

To prove Proposition 3.6, we state a proposition and two lemmas.

Proposition 6.1. Assume that $\Phi \in \nabla_2$, that K and H are kernels, not in L^{Φ} , and that there are constants $a, b, \epsilon > 0$ such that

(6.1)
$$0 < a \le \frac{K(x)}{H(x)} \le b < +\infty \quad if \quad 0 < |x| < \epsilon$$

Then there are constants a', b', such that

(6.2)
$$0 < a' \le \frac{\|P_y * K\|_{\widetilde{\Phi}, B(0, r)}}{\|P_y * H\|_{\widetilde{\Phi}, B(0, r)}} \le b' < +\infty$$

for $0 < r < +\infty$ and 0 < y < 1.

Proof. Let K = K' + K'', H = H' + H'', where K' and H' are the restrictions of K and H to $\{|x| < \epsilon\}$. Then $K'' \in L^{\infty} \cap L^1$. Hence

$$\begin{aligned} \|P_y * K''\|_{\widetilde{\Phi}, B(0,r)} &= \inf\left\{\lambda > 0: \frac{1}{|B(0,r)|} \int_{B(0,r)} \widetilde{\Phi}\left(\frac{P_y * K''(x)}{\lambda}\right) \, dx \le 1\right\} \\ &\leq \inf\left\{\lambda > 0: \frac{1}{|B(0,r)|} \sup_{z \in \mathbb{R}^n} \int_{B(z,r)} \widetilde{\Phi}\left(\frac{K''(x)}{\lambda}\right) \, dx \le 1\right\} \le \frac{\|K''\|_{\infty}}{\widetilde{\Phi}^{-1}(1)} < +\infty. \end{aligned}$$

The same is true for $||P_y * H''||_{\tilde{\Phi}, B(0,r)}$. Since $||P_y * K||_{\tilde{\Phi}, B(0,r)}$ and $||P_y * H||_{\tilde{\Phi}, B(0,r)}$ tend to $+\infty$ when $y \to 0$ (see (4.4) in Lemma 4.2), it follows that the upper and lower limits of the ratio in (6.2) are unchanged if K and H are replaced by K' and H'. Since $aH' \leq K' \leq bH'$ and $\tilde{\Phi} \in \Delta_2$, (6.2) holds.

Lemma 6.2. (i) If $\rho(r)$ is almost increasing for small r > 0, then

$$\int_0^r \rho(t)\,dt \sim r\rho(r) \quad for \; small \; r>0.$$

(ii) If $\rho(r)$ is almost increasing and $\rho(r)/r^{\beta}$ is almost decreasing for small r > 0 with $0 \le \beta < n$, then

$$\int_{r}^{1} \frac{\rho(t)}{t^{n+1}} dt \sim \frac{\rho(r)}{r^{n}} \quad \text{for small } r > 0.$$

(iii) If $\rho(r)/r^{\alpha}$ is almost increasing for small r > 0 with $0 < \alpha \leq n$, then

$$\bar{\rho}(r) = \int_0^r \frac{\rho(t)}{t} \, dt \sim \rho(r) \quad \text{for small } r > 0.$$

(iv) If $\rho(r)/r^{\beta}$ is almost decreasing for small r > 0 with $\beta > 0$, then $\bar{\rho}(r)/r^{\beta}$ is also almost decreasing for small r > 0.

Proof. (i) We note that $\rho(r)/r^n$ is decreasing.

$$\frac{1}{n+1}r\rho(r) = \frac{\rho(r)}{r^n} \int_0^r t^n \, dt \le \int_0^r \rho(t) \, dt \le Cr\rho(r)$$

(ii) If 0 < r < 1/2, then

$$\frac{1}{2n}\frac{\rho(r)}{r^n} \le \rho(r) \int_r^1 \frac{1}{t^{n+1}} \, dt \le C \int_r^1 \frac{\rho(t)}{t^{n+1}} \, dt \le C \frac{\rho(r)}{r^\beta} \int_r^1 \frac{1}{t^{n-\beta+1}} \, dt \le \frac{C}{n-\beta} \frac{\rho(r)}{r^n}.$$

(iii) Using the decreasingness of $\rho(r)/r^n$, we have

$$\frac{1}{n}\rho(r) = \frac{\rho(r)}{r^n} \int_0^r t^{n-1} dt \le \int_0^r \frac{\rho(t)}{t} dt \le C \frac{\rho(r)}{r^\alpha} \int_0^r \frac{1}{t^{-\alpha+1}} dt \le \frac{C}{\alpha}\rho(r).$$

(iv) For r < s, let t = (r/s)u. Then

$$\int_0^r \frac{\rho(t)}{t} dt = \int_0^s \frac{\rho((r/s)u)}{u} du \ge \left(\frac{r}{s}\right)^\beta \int_0^s \frac{\rho(u)}{u} du. \quad \Box$$

Lemma 6.3. Suppose ρ is almost increasing and $\rho(r)/r^{\beta}$ is almost decreasing for small r > 0 with $0 < \beta < n$. If $\Phi \in \nabla_2$, then

(6.3)
$$\|P_y * K_\rho\|_{\widetilde{\Phi}, B(0,r)} \sim \inf\left\{\lambda > 0: r^{-n} \int_y^r \widetilde{\Phi}\left(\frac{\rho(t)}{\lambda t^n} + \frac{y\overline{\rho}(t)}{\lambda t^{n+1}}\right) t^{n-1} dt \le 1\right\},$$

for $0 < y \le r/2$.

Proof. Let

$$H_{\rho}(x) = \int_0^1 \frac{\rho(t)}{t} P_t(x) dt.$$

Using

$$|x|^2 + t^2 \sim \begin{cases} |x|^2 & (0 \le t \le |x|), \\ t^2 & (|x| < t), \end{cases}$$

we have

$$H_{\rho}(x) \sim \frac{1}{|x|^{n+1}} \int_{0}^{|x|} \rho(t) \, dt + \int_{|x|}^{1} \frac{\rho(t)}{t^{n+1}} \, dt \quad \text{for} \quad |x| < 1/2.$$

By Lemma 6.2, we have

$$K_{\rho}(x) \sim H_{\rho}(x)$$
 for $|x| < 1/2$.

By $P_t * P_y = P_{t+y}$, we have

$$(H_{\rho} * P_y)(x) = \int_0^1 \frac{\rho(t)}{t} P_{t+y}(x) \, dt.$$

For |x| + y < 1/2, let

$$I_1 = \int_0^{|x|+y} \frac{\rho(t)}{t} P_{t+y}(x) \, dt, \quad I_2 = \int_{|x|+y}^1 \frac{\rho(t)}{t} P_{t+y}(x) \, dt.$$

Then

$$I_2 = \int_{|x|+y}^1 \frac{\rho(t)}{t} \frac{c_n(t+y)}{(|x|^2 + (t+y)^2)^{(n+1)/2}} \, dt. \sim \int_{|x|+y}^1 \frac{\rho(t)}{t^{n+1}} \, dt \sim \frac{\rho(|x|+y)}{(|x|+y)^n}.$$

If $|x| \leq y$, then

$$I_1 \sim \int_0^{|x|+y} \frac{\rho(t)}{t} \frac{t+y}{(|x|+t+y)^{n+1}} \, dt \sim \frac{1}{y^n} \bar{\rho}(|x|+y) \sim \frac{\bar{\rho}(y)}{y^n}.$$

If |x| > y, then

$$\begin{split} I_1 &\sim \int_0^{|x|+y} \frac{\rho(t)}{t} \frac{t+y}{(|x|+t+y)^{n+1}} \, dt \sim \frac{1}{|x|^{n+1}} \int_0^{|x|+y} \frac{\rho(t)}{t} (t+y) \, dt \\ &= \frac{1}{|x|^{n+1}} ((|x|+y)\rho(|x|+y) + y\bar{\rho}(|x|+y)) \sim \frac{\rho(|x|)}{|x|^n} + \frac{y\bar{\rho}(|x|)}{|x|^{n+1}} \end{split}$$

Hence

$$P_y * H_\rho(x) \sim \begin{cases} \frac{\bar{\rho}(y)}{y^n} & (|x| \le y), \\ \frac{\rho(|x|)}{|x|^n} + \frac{y\bar{\rho}(|x|)}{|x|^{n+1}} & (|x| \ge y), \end{cases} \quad \text{when} \quad |x| + y < 1/2.$$

Therefore

$$\int_{B(0,y)} \widetilde{\Phi}\left(\frac{P_y * H_{\rho}(x)}{\lambda}\right) \, dx \sim \widetilde{\Phi}\left(\frac{\bar{\rho}(y)}{\lambda y^n}\right) y^n \\ \sim \int_y^{2y} \widetilde{\Phi}\left(\frac{\bar{\rho}(t)}{\lambda t^n}\right) t^{n-1} \, dt \sim \int_y^{2y} \widetilde{\Phi}\left(\frac{y\bar{\rho}(t)}{\lambda t^{n+1}}\right) t^{n-1} \, dt,$$

and

$$\int_{B(0,r)\setminus B(0,y)} \widetilde{\Phi}\left(\frac{P_y * H_\rho(x)}{\lambda}\right) \, dx \sim \int_y^r \widetilde{\Phi}\left(\frac{\rho(t)}{\lambda t^n} + \frac{y\bar{\rho}(t)}{\lambda t^{n+1}}\right) t^{n-1} \, dt.$$

This shows (6.3).

Proof of Proposition 3.6. Let $\tau = \tau_1$. From

$$k(\tau(y), y) = |B(0, \tau(y))| ||P_y * K_{\rho}||_{\widetilde{\Phi}, B(0, \tau(y))} = 1,$$

it follows that

$$||P_y * K_{\rho}||_{\widetilde{\Phi}, B(0, \tau(y))} = \frac{1}{|B(0, \tau(y))|} \sim \frac{1}{\tau(y)^n}.$$

By Lemma 6.3, we have

$$\|P_y * K_\rho\|_{\widetilde{\Phi}, B(0,\tau(y))} \sim \inf\left\{\lambda > 0 : \tau(y)^{-n} \int_y^{\tau(y)} \widetilde{\Phi}\left(\frac{\rho(t)}{\lambda t^n} + \frac{y\overline{\rho}(t)}{\lambda t^{n+1}}\right) t^{n-1} dt \le 1\right\}.$$

By (2.4) we have (3.7).

If $\widetilde{\Phi} \in \nabla_2$, then

$$\int_{1}^{+\infty} \widetilde{\Phi}\left(\frac{1}{s^n}\right) s^{n-1} \, ds < +\infty.$$

Hence

$$\tau(y)^{-n} \int_{\tau(y)}^{1} \widetilde{\Phi}\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}} + \frac{y\tau(y)^{n}\bar{\rho}(t)}{t^{n+1}}\right) t^{n-1} dt \\ \leq C\tau(y)^{-n} \int_{\tau(y)}^{1} \widetilde{\Phi}\left(\frac{\tau(y)^{n}}{t^{n}}\right) t^{n-1} dt \leq C \int_{1}^{1/\tau(y)} \widetilde{\Phi}\left(\frac{1}{s^{n}}\right) s^{n-1} ds \leq C.$$

Therefore we have (3.8).

If $y \leq t$, then

$$\frac{\tau(y)^n \rho(t)}{t^n} + \frac{y \tau(y)^n \bar{\rho}(t)}{t^{n+1}} \le 2 \frac{\tau(y)^n \bar{\rho}(t)}{t^n}.$$

From the almost increasingness of $\tilde{\Phi}(r)/r^{p'}$ and the almost decreasingness of $\bar{\rho}(r)/r^{\beta}$, it follows that

$$\begin{split} \widetilde{\Phi}\left(\frac{\tau(y)^n\rho(t)}{t^n} + \frac{y\tau(y)^n\bar{\rho}(t)}{t^{n+1}}\right) &\leq C\widetilde{\Phi}\left(\frac{\tau(y)^n\bar{\rho}(t)}{t^n}\right) \leq C\left(\frac{\tau(y)^n\bar{\rho}(t)}{t^n}\right)^{p'} \frac{\widetilde{\Phi}\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)}{\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)^{p'}} \\ &\leq C\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^\beta}\right)^{p'} \frac{\widetilde{\Phi}\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)}{\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)^{p'}} t^{-p'(n-\beta)} \quad \text{for} \quad y \leq t. \end{split}$$

Hence

$$\tau(y)^{-n} \int_{y}^{\tau(y)} \widetilde{\Phi}\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}} + \frac{y\tau(y)^{n}\bar{\rho}(t)}{t^{n+1}}\right) t^{n-1} dt$$
$$\leq C\tau(y)^{-n} \left(\frac{\tau(y)^{n}\bar{\rho}(y)}{y^{\beta}}\right)^{p'} \frac{\widetilde{\Phi}\left(\frac{\tau(y)^{n}\bar{\rho}(y)}{y^{n}}\right)}{\left(\frac{\tau(y)^{n}\bar{\rho}(y)}{y^{n}}\right)^{p'}} y^{-p'(n/p-\beta)} = C\left(\frac{y}{\tau(y)}\right)^{n} \widetilde{\Phi}\left(\frac{\tau(y)^{n}\bar{\rho}(y)}{y^{n}}\right).$$

On the other hand

$$\begin{aligned} \tau(y)^{-n} \int_{y}^{\tau(y)} \widetilde{\Phi} \left(\frac{\tau(y)^{n} \rho(t)}{t^{n}} + \frac{y\tau(y)^{n} \bar{\rho}(t)}{t^{n+1}} \right) t^{n-1} dt \\ &\geq \tau(y)^{-n} \int_{y}^{2y} \widetilde{\Phi} \left(\frac{y\tau(y)^{n} \bar{\rho}(t)}{t^{n+1}} \right) t^{n-1} dt \\ &\sim \tau(y)^{-n} \int_{y}^{2y} \widetilde{\Phi} \left(\frac{\tau(y)^{n} \bar{\rho}(y)}{y^{n}} \right) y^{n-1} dt = C \left(\frac{y}{\tau(y)} \right)^{n} \widetilde{\Phi} \left(\frac{\tau(y)^{n} \bar{\rho}(y)}{y^{n}} \right). \quad \Box \end{aligned}$$

Proof of Theorem 3.7. We show that R is equivalent to τ in Proposition 3.6. Then we have the conclusion by Theorem 3.5.

In the case (i), using $\rho \sim \bar{\rho}$, we have

$$\frac{\tau(y)^n \rho(t)}{t^n} + \frac{y\tau(y)^n \bar{\rho}(t)}{t^{n+1}} \sim \frac{\tau(y)^n \rho(t)}{t^n} \quad \text{for} \quad y \le t.$$

By $\widetilde{\Phi}(r) \sim r^{p'}$, we have

$$\tau(y)^{-n}\widetilde{\Phi}\left(\frac{\tau(y)^n\rho(t)}{t^n} + \frac{y\tau(y)^n\bar{\rho}(t)}{t^{n+1}}\right)t^n \sim \tau(y)^{np'/p}\left(\frac{\rho(t)}{t^{n/p}}\right)^{p'}.$$

Using (3.8) in Proposition 3.6, we have that τ is equivalent to R in (3.10).

In the case (ii), it follows from (3.9) in Proposition 3.6.

Proof of Theorem 3.8. We have that $\tilde{\Phi}(r) \sim r^{p'}\ell(r)^{-p'/p}$. Actually, $\Phi(r) = r^p\ell(r)$ implies $\Phi^{-1}(r) \sim r^{1/p}\ell(r)^{-1/p}$. From (2.1) it follows that $\tilde{\Phi}^{-1}(r) \sim r^{1/p'}\ell(r)^{1/p}$. This implies $\tilde{\Phi}(r) \sim r^{p'}\ell(r)^{-p'/p}$.

In the case (i), using $\rho \sim \bar{\rho}$, we have

$$\frac{\tau(y)^n \rho(t)}{t^n} + \frac{y\tau(y)^n \bar{\rho}(t)}{t^{n+1}} \sim \frac{\tau(y)^n \rho(t)}{t^n} \quad \text{for} \quad y \le t,$$

and

$$\widetilde{\Phi}\left(\frac{\tau(y)^n\rho(t)}{t^n} + \frac{y\tau(y)^n\bar{\rho}(t)}{t^{n+1}}\right) \sim \widetilde{\Phi}\left(\frac{\tau(y)^n\rho(t)}{t^n}\right) \\ \sim \left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{p'} \ell\left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{-p'/p} \quad \text{for} \quad y \le t.$$

Let

$$E(y) = \tau(y)^{-n} \int_{y}^{\tau(y)} \left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{p'} \ell\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{-p'/p} t^{n-1} dt.$$

Then, by (3.7) in Proposition 3.6, we have $C^{-1} \leq E(y) \leq C$. Choose $\delta > 0$ and $\nu > 1$ so that

$$1 < \frac{p'}{1 - \delta p'/n} < \nu < \frac{1 - \delta p}{2\delta},$$

and let

$$B_{1}(y) = \tau(y)^{-n} \int_{\tau(y)^{\nu}}^{1} \left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{p'} \ell\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{-p'/p} t^{n-1} dt,$$
$$B_{2}(y) = \tau(y)^{-n} \int_{\tau(y)^{\nu}}^{1} \left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{n-1} dt.$$

If we show that

(6.4)
$$y < \tau(y)^{\nu} < \tau(y) < 1 \quad \text{for small } y > 0,$$

(6.5)
$$\ell\left(\frac{\tau(y)^n\rho(t)}{t^n}\right) \sim \ell\left(\frac{1}{t}\right) \quad \text{for } y \le t \le \tau(y)^{\nu},$$

(6.6)
$$B_1(y), \ B_2(y) \to 0 \quad \text{as } y \to 0,$$

then we have

$$E(y) \sim \tau(y)^{-n} \int_{y}^{1} \left(\frac{\tau(y)^{n} \rho(t)}{t^{n}}\right)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{n-1} dt$$
$$= \tau(y)^{np'/p} \int_{y}^{1} m(t)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt \quad \text{for small } y > 0,$$

and then

$$\tau(y) \sim R(y) = \left(\int_{y}^{1} m(t)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt\right)^{-p/(np')}$$

•

In the following we show (6.4)–(6.6). From the almost increasingness of $r^{\delta p'}\ell(r)^{-p'/p}$ and

$$\frac{\tau(y)^n \rho(t)}{t^n} \le \frac{C}{t^n},$$

it follows that

$$(6.7) \quad \ell\left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{-p'/p} = \left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{-\delta p'} \left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{\delta p'} \ell\left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{-p'/p}$$
$$\leq C\left(\frac{\tau(y)^n\rho(t)}{t^n}\right)^{-\delta p'} \left(\frac{1}{t^n}\right)^{\delta p'} \ell\left(\frac{1}{t}\right)^{-p'/p}$$
$$= C\tau(y)^{-\delta np't} t^{-\delta np'/p} m(t)^{-\delta p'} \ell\left(\frac{1}{t}\right)^{-p'/p} \quad \text{for } t < 1, \ \tau(y) < 1.$$

Hence, using the almost increasingness of $t^{\delta n p'/p} m(t)^{p'-\delta p'} \ell\left(\frac{1}{t}\right)^{-p'/p}$, we have

$$\begin{split} E(y) &= \tau(y)^{np'/p} \int_{y}^{\tau(y)} m(t)^{p'} \ell\left(\frac{\tau(y)^{n} \rho(t)}{t^{n}}\right)^{-p'/p} t^{-1} dt \\ &\leq C \tau(y)^{np'/p - \delta np'} \int_{y}^{\tau(y)} t^{-\delta np'/p} m(t)^{p' - \delta p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt \\ &\leq C \tau(y)^{np'/p - \delta np'} \int_{y}^{\tau(y)} t^{-2\delta np'/p} t^{-1} dt \leq C \tau(y)^{np'/p - \delta np'} y^{-2\delta np'/p} t^{-1} dt \end{split}$$

From $C^{-1} \leq E(y)$ it follows that

$$y \le C\tau(y)^{(1-\delta p)/(2\delta)} < \tau(y)^{\nu}$$
 for small $y > 0$.

Then we have (6.4). For $y \leq t \leq \tau(y)^{\nu} < 1$, we have

$$\frac{C}{t^n} \ge \frac{\tau(y)^n \rho(t)}{t^n} \ge \frac{t^{n/\nu} \rho(t)}{t^n} = \frac{m(t)}{t^{\delta}} \frac{1}{t^{n-n/p-\delta-n/\nu}} \ge \frac{C}{t^{n/p'-\delta-n/\nu}},$$

We note that $n/p' - \delta - n/\nu > 0$. Hence we have (6.5). By (6.7) we have

$$B_{1}(y) = \tau(y)^{np'/p} \int_{\tau(y)^{\nu}}^{1} m(t)^{p'} \ell\left(\frac{\tau(y)^{n}\rho(t)}{t^{n}}\right)^{-p'/p} t^{-1} dt$$

$$\leq C\tau(y)^{np'/p-\delta np'} \int_{\tau(y)^{\nu}}^{1} t^{-\delta np'/p} m(t)^{p'-\delta p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt$$

$$\leq C\tau(y)^{np'/p-\delta np'} \int_{\tau(y)^{\nu}}^{1} t^{-2\delta np'/p} t^{-1} dt$$

$$\leq C\tau(y)^{np'/p-\delta np'} \tau(y)^{-2\nu\delta np'/p}$$

$$= C\tau(y)^{(np'/p)(1-\delta p-2\nu\delta)} \to 0 \quad \text{as } y \to 0.$$

Using the almost increasingness of $t^{\delta n p'/p} m(t)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p}$, we have

$$B_{2}(y) = \tau(y)^{np'/p} \int_{\tau(y)^{\nu}}^{1} m(t)^{p'} \ell\left(\frac{1}{t}\right)^{-p'/p} t^{-1} dt$$

$$= \tau(y)^{np'/p} \int_{\tau(y)^{\nu}}^{1} t^{-\delta np'/p} t^{-1} dt$$

$$\leq C\tau(y)^{np'/p} \int_{\tau(y)^{\nu}}^{1} t^{-\delta np'/p} t^{-1} dt$$

$$\leq C\tau(y)^{np'/p} \tau(y)^{-\nu\delta np'/p}$$

$$= C\tau(y)^{(np'/p)(1-\nu\delta)} \to 0 \quad \text{as } y \to 0.$$

In the cases (ii) and (iii), let $W(r) = \widetilde{\Phi}(r)/r \sim r^{p'-1}\ell(r)^{-p'/p}$. Then $W^{-1}(r) \sim r^{1/(p'-1)}\ell(r)$. Using (3.9) in Proposition 3.6, we have

$$W\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)\sim \frac{1}{\bar{\rho}(y)}$$

and then

$$\frac{\tau(y)^n \bar{\rho}(y)}{y^n} \sim W^{-1}\left(\frac{1}{\bar{\rho}(y)}\right) \sim \frac{1}{\bar{\rho}(y)^{1/(p'-1)}} \ell\left(\frac{1}{\bar{\rho}(y)}\right).$$

Hence

$$\tau(y) \sim y \, \frac{\ell(1/\bar{\rho}(y))^{1/n}}{\bar{\rho}(y)^{p/n}}$$

We note that $\bar{\rho}(y) \sim y^{\alpha} m(y)$ in the case (ii) and that $\bar{\rho}(y) \sim \bar{m}(y)$ in the case (iii). Therefore we have that τ is equivalent to R in (3.13) or in (3.14).

Proof of Theorem 3.9. Let

(6.8)
$$w(y,t) = \frac{\tau(y)^n \rho(t)}{t^n} + \frac{y\tau(y)^n \bar{\rho}(t)}{t^{n+1}}$$

Then $w(y,t) \leq w(y,y)$ for t > y. By the increasingness of $\widetilde{\Phi}(r)/r$, we have

$$\begin{aligned} \tau(y)^{-n} \int_{y}^{\tau(y)} \widetilde{\Phi}(w(y,t)) t^{n-1} \, dt &\leq \tau(y)^{-n} \int_{y}^{\tau(y)} w(y,t) \frac{\widetilde{\Phi}(w(y,y))}{w(y,y)} t^{n-1} \, dt \\ &= \frac{\widetilde{\Phi}(w(y,y))}{w(y,y)} \int_{y}^{\tau(y)} \left(\frac{\rho(t)}{t} + \frac{y\bar{\rho}(t)}{t^{2}}\right) \, dt \leq C \frac{\widetilde{\Phi}(w(y,y))}{w(y,y)} \bar{\rho}(\tau(y)). \end{aligned}$$

By Proposition 3.6 (i), we have

(6.9)
$$\frac{\widetilde{\Phi}(w(y,y))}{w(y,y)}\overline{\rho}(\tau(y)) \ge C^{-1}.$$

From $\bar{\rho}(\tau(y)) \to 0$ as $y \to 0$, it follows that $w(y, y) \to +\infty$ as $y \to 0$. Therefore we have $R(y) = y/\bar{\rho}(y)^{1/n} \leq \tau(y)$ for small y > 0.

Proof of Example 3.3. Let

$$\ell(r) = \begin{cases} \log r & \text{for large } r > 0, \\ 1/\log(1/r) & \text{for small } r > 0. \end{cases}$$

Then $\Phi(r) \sim r\ell(r)$. Let w(y,t) be as in (6.8). For small y > 0, w(y,y) is large. Then $\ell(w(y,y)) = \log w(y,y)$. By (6.9), we have

$$C^{-1} \le \bar{\rho}(\tau(y))\ell(w(y,y)) \le \bar{\rho}(\tau(y))\log\left(\frac{\tau(y)^n\bar{\rho}(y)}{y^n}\right)$$

This shows that

$$C^{-1}\bar{\rho}(\tau(y))^{-1} \le -n\log\frac{1}{\tau(y)} + n\log\frac{1}{y} + \log\bar{\rho}(y).$$

By $\bar{\rho}(y) \sim (\log(1/y))^{-1}$ for small y > 0, we have

$$\frac{1}{\tau(y)} \le \frac{(\log(1/y))^{-1/n}}{y^{1-\epsilon}} = \frac{1}{R(y)}, \quad \epsilon = 1 - \frac{n}{n+C^{-1}}.$$

References

- [1] J. R. Dorronsoro, Poisson integrals of regular functions, Trans. Amer. Math. Soc. 297 (1986), 669-685.
- [2] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189–196.
- Y. Mizuta, Integral representations, differentiability properties and limits at infinity for Beppo Levi functions, Potential Anal. 6 (1997), 237-267.
- [4] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of function in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331–360.
- [5] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83–106.
- [6] E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. 43 (1984), 519–529.
- [7] _____, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), 587–602.
- [8] _____, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473–487.
- [9] _____, On generalized fractional integrals on the weak Orlicz spaces, BMO_{ϕ} , the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), 389–401, Walter de Gruyter, Berlin, New York, 2002.
- [10] C. Pérez and R. L. Wheeden, Uncertainty Principle estimates for vector fields, J. Funct. Anal. 181 (2001), 146–188.
- [11] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1991.

EIICHI NAKAI, DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN

E-mail address: enakai@cc.osaka-kyoiku.ac.jp

Shigeo Okamoto, Ikeda Senior High School Attached To Osaka Kyoiku University, 1-5-1, Midorigaoka Ikeda-city, Osaka 563-0026, Japan

E-mail address: sgo@mb9.seikyou.ne.jp