K-SET CONTRACTIVE RETRACTIONS IN SPACES OF CONTINUOUS FUNCTIONS

GIULIO TROMBETTA

Received April 11, 2003; revised May 7, 2003

Abstract

Let X be an infinite-dimensional Banach space, and let B_{X} and S_{X} be its closed unit ball and unit sphere, respectively. A continuous mapping $R: B_{X} \rightarrow S_{X}$ is said to be a retraction provided that $x=R x$ for all $x \epsilon S_{X}$. It is well known that when X is finite-dimensional there is no retraction from B_{X} onto S_{X}. We prove that in some Banach spaces of continuous functions for every $\varepsilon>0$ there exists a retraction of the closed unit ball onto the unit sphere being a $(1+\varepsilon)$-set contraction.

1. Introduction

The Scottish Book [8] contains the following question (Problem 36) raised around 1935 by S. Ulam : "There exists a retraction of the closed unit ball of a Hilbert space onto the unit sphere ? "S. Kakutani [6] gave a positive answer to this question.V. Klee [7] proved that answer to Ulam's question is " yes " in the more general setting of infinite-dimensional Banach spaces. B. Nowak [9] using a complicated construction that was subsequentely somewhat simplified by Y. Benyamini and Y. Sternfeld [3] showed that, for any infinitedimensional Banach space X , there is a retraction $R: B_{X} \rightarrow S_{X}$ satisfying the Lipschitz condition

$$
\text { (1) }\|R x-R y\| \leq k\|x-y\|, \text { for all } x, y \in B_{X}
$$

Given an infinite-dimensional Banach space X , let $k_{0}(X)$ denote the infimum of the k's for which such retraction exists.

Then $k_{0}(X) \geq 3$ (See [5]). Recall that, if A is a bounded subset of a Banach space X , the Hausdorff measure of noncompactness of A is defined by

$$
\chi(A):=\inf \{r>0: \text { A can be covered by a finite number of balls centered in } \mathrm{X}\} .
$$

A continuous mapping $T: D(T) \subset X \rightarrow X$ is said to be a k-set contraction if there exists a constant $k \geq 0$ such that

$$
\text { (2) } \chi(T(A)) \leq k \chi(A), \text { for all bounded sets } A \subset D(T) \text {. }
$$

Let \mathbb{R}^{n} be the n-dimensional Euclidean space with the maximum norm $|\cdot|_{\infty}$.Throughout this paper we shall use the following notations. $E:=(E,\|\cdot\|)$ will denote a finite-dimensional real normed space and K a compact convex subset of E with nonempty interior (Without loss of generality, we can assume that K contains the origin as an interior point). $C\left(K, \mathbb{R}^{n}\right)$ the space of continuous functions on K with values in \mathbb{R}^{n} equipped with the sup norm $\|\cdot\|_{\infty}$. Let X be an infinite-dimensional Banach space. By $k_{1}(X)$ denote the infimum of the set of all numbers k for which there is a retraction $R: B_{X} \rightarrow S_{X}$ satisfying the above condition (2). In this context J. Wosko [10] proved that $k_{1}(C[0,1])=1$ and that for any infinitedimensional Banach space X there is no a 1-set retraction $R: B_{X} \rightarrow S_{X}$ being lipschitzian

[^0]with some constant k . Moreover, he posed the problem to estimate $k_{1}(X)$ for particular classical Banach spaces and to establish for which spaces is $k_{1}(X)<k_{0}(X)$. In this note we extend from $C[0,1]$ to $C\left(K, \mathbb{R}^{n}\right)$ the Wosko's result, i.e. we prove that $k_{1}\left(C\left(K, \mathbb{R}^{n}\right)\right)=1$.

2. Preliminaries

Let Y be a real normed space. We write $B_{Y, r}$ to denote the closed ball of Y centered at the origin with radius r. For a set $A \subset Y, \bar{A}$ it is closure, int A its interior, ∂A its boundary and $\operatorname{diam} A$ its diameter. Further we set $S_{Y, r}:=\partial B_{Y, r}$.

Consider the mapping $\varphi: K \backslash\{0\} \rightarrow \partial K$ defined by $\varphi(t)=w_{t}$, where w_{t} is the unique element of $\left\{\lambda t: \lambda \in\left[0,+\infty[\} \cap \partial K\right.\right.$. Let α be a positive real number such that $B_{E, \alpha} \subset K$. In this section we prove that φ satisfies the Lipschitz condition:
(2.1) $\left\|w_{t}-w_{s}\right\| \leq L\|t-s\|, \quad$ for all $s, t \epsilon K \backslash i n t B_{E, \alpha}$.

Assume that \mathbb{R}^{n} is the n -dimensional Euclidean space provided with the usual inner product $\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i}$ where $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right) \cdot|\cdot|_{n}$ denotes the Euclidean norm on $\mathbb{R}^{n}, \theta(u, v)$ the angle between two non zero vectors u and v of \mathbb{R}^{n} such that $0 \leq \theta(u, v) \leq \pi$ and u_{v} the orthogonal projection of u onto $\langle v\rangle:=\{\lambda v: \lambda \in \mathbb{R}\}$. Let K be a compact convex set in \mathbb{R}^{n} containing the origin as an interior point and let α be a positive real number such that $B_{\mathbb{R}^{n}, \alpha} \subset K$. In order to prove (2.1) it is sufficient to show that it is true for $\varphi: K \backslash \operatorname{int} B_{\mathbb{R}^{n}, \alpha} \rightarrow \partial K$.

Lemma 1. Let K be a compact convex set in \mathbb{R}^{n} containing the origin as an interior point. Set $\beta:=\min \left\{|u|_{n}: u \in \partial K\right\}$ and $d:=\operatorname{diamK}$. Then $\inf \left\{\cos \left(\theta\left(v-u, u_{v}-u\right)\right): u \neq v\right.$, $|u|_{n} \leq|v|_{n},|u-v|_{n}<\frac{\beta}{2}$ and $\left.u, v \in \partial K\right\} \geq \frac{\beta}{2 d}$.

Proof. Let $u, v \in \partial K$ with $u \neq v,|u|_{n} \leq|v|_{n}$ and $|u-v|_{n}<\frac{\beta}{2}$. We will prove that $\operatorname{sen}(\theta(-v, u-v))=\operatorname{sen}\left(\frac{\pi}{2}-\theta\left(v-u, u_{v}-u\right)\right) \geq \frac{\beta}{2 d}$. Therefore $\cos \left(\theta\left(v-u, u_{v}-u\right)\right) \geq$ $\frac{\beta}{2 d}$. Let r be the straight line through u and v. Then $r \cap i n t B_{\mathbb{R}^{n}, \frac{\beta}{2}}=\emptyset$. Suppose $r \cap S_{\mathbb{R}^{n}, \frac{\beta}{2}}=$ $\{s, t\}$. We have two possible cases. The segment $[u, v]$ contains $\{s, t\}$. Then $\beta \leq|u|_{n}^{2} \leq$ $|u-s|_{n}+|s|_{n} \leq|u-v|_{n}+|s|_{n}<\beta$, a contradiction! The segment $[u, v] \nsupseteq\{s, t\}$. Let π be the plane containing $0, u$ and $v ; r_{1}$ the straight line through v tangent to $B_{\mathbb{R}^{n}, \frac{\beta}{2}} \cap \pi$ in p, which lies in the half-plane determinted by the straight line through 0 and v that contains s and $t ; r_{2}$ the straight line through 0 and u (see figure below). Then the segment $[p, v] \cap$ $r_{2}=w \in K$. Hence $u \notin \partial K$, again a contradiction! Therefore $\cos \left(\theta\left(v-u, u_{v}-u\right)\right)=$ $\operatorname{sen}\left(\frac{\pi}{2}-\theta\left(v-u, u_{v}-u\right)\right) \geq \operatorname{sen}(\theta(-v, p-v))=\frac{|p|_{n}}{|v|_{n}} \geq \frac{\beta}{2 d}$.

Proposition 2. Let K be a compact convex set in \mathbb{R}^{n} containing the origin as an interior point and α be a positive real number such that $B_{\mathbb{R}^{n}, \alpha} \subset K$. Set $c:=\max \left\{|u|_{n}: u \in \partial K\right\}$. Then the map φ is uniformly continuous on $K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$.

Proof. Since $K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$ is compact, it is sufficient to show that φ is continuous on $K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$. Our proof will be by way of contradiction. So suppose that there exists a sequence $\left(t_{n}\right)$ of elements of $K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$ such that $t_{n} \rightarrow t(n \rightarrow+\infty)$ and $w_{t_{n}} \nrightarrow w_{t}(n \rightarrow+\infty)$. By the compactness of ∂K we can find a subsequence $\left(w_{t_{n_{k}}}\right)$ of $\left(w_{t_{n}}\right)$ convergent to $w \in \partial K \backslash\left\{w_{t}\right\}$. For all $k \in N$, since $t_{n_{k}} \in\left[\left(\alpha /\left|w_{t_{n_{k}}}\right|_{n}\right) w_{t_{n_{k}}}, w_{t_{n_{k}}}\right]$, there is $\lambda_{n_{k}} \in\left[1,\left|w_{t_{n_{k}}}\right|_{n} / \alpha\right] \subset[1, c / \alpha]$ such that $w_{t_{n_{k}}}=\lambda_{n_{k}} t_{n_{k}}$. Let $\left(\lambda_{n_{k_{s}}}\right)$ be a subsequence of $\left(\lambda_{n_{k}}\right)$ convergent to $\lambda \in[1, c / \alpha]$. Then, since $w_{t_{n_{k_{s}}}} \rightarrow w(s \rightarrow+\infty), \lambda_{n_{k_{s}}} \rightarrow \lambda(s \rightarrow+\infty)$ and $t_{n_{k_{s}}} \rightarrow t(s \rightarrow+\infty)$, we have that $w=\lambda t$. Therefore $w=w_{t}$, a contradiction!

Proposition 3. Let K be a compact convex set in \mathbb{R}^{n} containing the origin as an interior point and α be a positive real number such that $B_{\mathbb{R}^{n}, \alpha} \subset K$. Set $\beta:=\min \left\{|u|_{n}: u \in \partial K\right\}$ and $d:=\operatorname{diamK}$. Then there exists L such that $\left|w_{t}-w_{s}\right|_{n} \leq L|t-s|_{n}$, for all $s, t \epsilon K \backslash$ int $B_{\mathbb{R}^{n}, \alpha}$.
Proof. By the Proposition 2 there exists a $\delta>0$ such that $|t-s|_{n}<\delta \Rightarrow\left|w_{t}-w_{s}\right|_{n}<$ $\frac{\beta}{2}$ for all $s, t \epsilon K \backslash \operatorname{int} B_{\mathbb{R}^{n}, \alpha}$. Moreover $|t-s|_{n} \geq \delta \Rightarrow\left|w_{t}-w_{s}\right|_{n} \leq \frac{d}{\delta}|t-s|_{n}$, for all $s, t \epsilon K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$. Now, suppose $s, t \epsilon K \backslash i n t B_{\mathbb{R}^{n}, \alpha},|t-s|_{n}<\delta, s \neq t\left(\Rightarrow w_{t} \neq w_{s}\right)$ and $\left|w_{s}\right|_{n} \leq\left|w_{t}\right|_{n}$. By Lemma 1 it follows that $\cos \theta:=\cos \left(\theta\left(w_{t}-w_{s}, w_{s_{\left(w_{t}\right)}}-w_{s}\right)\right) \geq \frac{\beta}{2 d}$. On the other hand it is easy to see that $\left|w_{s_{\left(w_{t}\right)}}-w_{s}\right|_{n} \leq \frac{d}{\alpha}|t-s|_{n}$. Therefore $\left|w_{t}-w_{s}\right|_{n}=$ $\frac{\left|w_{s}\left(w_{t}\right)-w_{s}\right|_{n}}{\cos \theta} \leq \frac{d}{\alpha \cos \theta}|t-s|_{n} \leq \frac{2 d^{2}}{\alpha \beta}|t-s|_{n}$. Set $\mathrm{L}:=\max \left\{\frac{d}{\delta}, \frac{2 d^{2}}{\alpha \beta}\right\}$. It follows that $\left|w_{t}-w_{s}\right|_{n} \leq$ $L|t-s|_{n}$, for all $s, t \epsilon K \backslash i n t B_{\mathbb{R}^{n}, \alpha}$.

Corollary 4. Let $K \subset E$ and let α be a positive real number such that $B_{E, \alpha} \subset K$. Then there exists L such that $\left\|w_{t}-w_{s}\right\| \leq L\|t-s\|, \quad$ for all $s, t \epsilon K \backslash$ int $B_{E, \alpha}$

We need the following proposition.

Proposition 5. Let $K \subset E$ and $\left.\alpha_{0} \in\right] 0,1[$. Set $\beta:=\min \{\|u\|: u \in \partial K\}$ and $d:=$ diamK.Then there is a constant L such that $\forall \alpha \in\left[\alpha_{0}, 1[, \forall \varepsilon \in] 0, \frac{\alpha_{0} \beta}{2}[, \forall s \in \alpha K\right.$ and $\forall t \in K \backslash \alpha K$

$$
\|t-s\| \leq \varepsilon \Rightarrow\left\|\alpha^{-1} s-w_{t}\right\| \leq\left(2 L+\frac{1}{\alpha_{0}}+\frac{4 d}{\alpha_{0} \beta}\right) \varepsilon .
$$

Proof. Fix $\alpha \in\left[\alpha_{0}, 1[, \varepsilon \in] 0, \frac{\alpha_{0} \beta}{2}[, s \in \alpha K\right.$ and $t \in K \backslash \alpha K$ with $\|t-s\| \leq \varepsilon$. Then $\|s\|>\frac{\alpha_{0} \beta}{2}$. Infact, if $\|s\| \leq \frac{\alpha_{0} \beta}{2}$, we have that $\alpha_{0} \beta<\|t\| \leq\|t-s\|+\|s\| \leq \varepsilon+\frac{\alpha_{0} \beta}{2}<$ $\alpha_{0} \beta$, a contradiction! Therefore, by the Corollary 4, there exists a constant L such that $\left\|w_{t}-w_{s}\right\| \leq L\|t-s\| \quad$ for all $s, t \epsilon K \backslash \frac{\alpha_{0} \beta}{2} K$.

Suppose $\left\|w_{s}\right\| \leq\left\|w_{t}\right\|$. We prove that $\left\|w_{s}-\alpha^{-1} s\right\| \leq \frac{\varepsilon}{\alpha_{0}}$. Hence $\left\|w_{t}-\alpha^{-1} s\right\| \leq$ $\left\|w_{t}-w_{s}\right\|+\left\|w_{s}-\alpha^{-1} s\right\| \leq\left(L+\frac{1}{\alpha_{0}}\right) \varepsilon$. Clearly $\mathrm{s} \in\left[0, \alpha w_{s}\right]$. Moreover, if $\|s\|<\left(\alpha-\frac{\varepsilon}{\left\|w_{s}\right\|}\right)\left\|w_{s}\right\|$, we have that $\alpha\left\|w_{t}\right\|<\|t\| \leq\|t-s\|+\|s\|<\alpha\left\|w_{s}\right\| \leq \alpha\left\|w_{t}\right\|$, a contradiction! Therefore $\left\|w_{s}-\alpha^{-1} s\right\| \leq \alpha^{-1}\left\|\alpha w_{s}-s\right\| \leq \frac{1}{\alpha_{0}}\left\|\left(\alpha-\frac{\varepsilon}{\left\|w_{s}\right\|}\right) w_{s}-\alpha w_{s}\right\| \leq \frac{\varepsilon}{\alpha_{0}}$.

Now assume $\left\|w_{t}\right\| \leq\left\|w_{s}\right\|$ and denote by w_{s}^{\prime} the element of $\left[0, w_{s}\right]$ such that $\left\|w_{s}^{\prime}\right\|=\left\|w_{t}\right\|$. Define the mapping $T: E \rightarrow B_{E, \frac{\alpha_{0} \beta}{2}}$ by $T(s)=\frac{\alpha_{0} \beta}{2} \frac{s}{\|s\|}$ if $s \in E \backslash B_{E, \frac{\alpha_{0} \beta}{2}}, T(s)=s$ if $s \in B_{E, \frac{\alpha_{0} \beta}{2}}$. T satisfies (see for instance [4, p. 88]) the Lipschitz condition: $\|T(t)-T(s)\| \leq$ $2\|t-s\|$ for all $s, t \in E$. Therefore, since $s, t \notin B_{E, \frac{\alpha_{0} \beta}{2}}$, we have that $\frac{\alpha_{0} \beta}{2} \frac{1}{\left\|w_{t}\right\|}\left\|w_{t}-w_{s}^{\prime}\right\|=$ $\left\|T\left(w_{t}\right)-T\left(w_{s}\right)\right\|=\|T(t)-T(s)\| \leq 2\|t-s\|$. Hence $\left\|w_{t}-w_{s}^{\prime}\right\| \leq \frac{4}{\alpha_{0} \beta}\left\|w_{t}\right\|\|t-s\| \leq$ $\frac{4 d}{\alpha_{0} \beta} \varepsilon$. If $\left\|w_{s}^{\prime}\right\| \leq\left\|\alpha^{-1} s\right\|$, then $\left\|w_{t}-\alpha^{-1} s\right\| \leq\left\|w_{t}-w_{s}\right\|+\left\|w_{s}-\alpha^{-1} s\right\| \leq\left\|w_{t}-w_{s}\right\|+$ $\left\|w_{s}^{\prime}-w_{s}\right\| \leq 2\left\|w_{t}-w_{s}\right\|+\left\|w_{t}-w_{s}^{\prime}\right\| \leq\left(2 L+\frac{4 d}{\alpha_{0} \beta}\right) \varepsilon$.If $\left\|\alpha^{-1} s\right\|<\left\|w_{s}^{\prime}\right\|$, then $\left\|\alpha^{-1} s-w_{t}\right\| \leq$ $\left\|\alpha^{-1} s-w_{s}^{\prime}\right\|+\left\|w_{t}-w_{s}^{\prime}\right\|$.

Now we prove that $\left\|\alpha^{-1} s-w_{s}^{\prime}\right\| \leq \frac{\varepsilon}{\alpha_{0}}$. Therefore $\left\|\alpha^{-1} s-w_{t}\right\| \leq\left(\frac{1}{\alpha_{0}}+\frac{4 d}{\alpha_{0} \beta}\right) \varepsilon$. We show that $s \in\left[\left(\alpha-\frac{\varepsilon}{\left\|w_{s}^{\prime}\right\|}\right) w_{s}^{\prime}, \alpha w_{s}^{\prime}\right]$. Infact $\left\|\alpha^{-1} s\right\|<\left\|w_{s}^{\prime}\right\| \Rightarrow\|s\|<\left\|\alpha w_{s}^{\prime}\right\| \Rightarrow s \in$ $\left[0, \alpha w_{s}^{\prime}\right]$. Suppose $\|s\|<\left(\alpha-\frac{\varepsilon}{\left\|w_{s}^{\prime}\right\|}\right) w_{s}^{\prime}=\alpha\left\|w_{s}^{\prime}\right\|-\varepsilon$. Then $\alpha\left\|w_{t}\right\|<\|t\| \leq\|t-s\|+$ $\|s\|<\alpha\left\|w_{s}^{\prime}\right\| .=\alpha\left\|w_{t}\right\|$, a contradiction! Hence $\left\|\alpha^{-1} s-w_{s}^{\prime}\right\|=\alpha^{-1}\left\|s-\alpha w_{s}^{\prime}\right\| \leq$ $\alpha^{-1}\left\|\left(\alpha-\frac{\varepsilon}{\left\|w_{s}^{\prime}\right\|}\right) w_{s}^{\prime}, \alpha w_{s}^{\prime}\right\| \leq \frac{\varepsilon}{\alpha_{0}}$.

3. Main Results

Set $C:=C\left(K, \mathbb{R}^{n}\right)$. We start to define a mapping $Q: B_{C} \rightarrow B_{C}$ by

$$
(Q f)(t):=\left\{\begin{array}{c}
f\left(\frac{2}{1+\|f\|_{\infty}} t\right) \text { if } t \in K_{f}:=\frac{1+\|f\|_{\infty}}{2} K \\
f\left(w_{t}\right) \text { if } t \in K \backslash K_{f}
\end{array}\right.
$$

By the continuity of f and by the Proposition 2 it is very simple to prove that $Q f$ is continuous on K. Moreover we have that $\|f\|_{\infty}=\|Q f\|_{\infty}=\max \left\{|(Q f)(t)|_{\infty}: t \in K_{f}\right\}$ for all $f \in B_{C}$ and $Q f=f$ for all $f \in S_{C}$.
Proposition 6. The mapping Q is continuous.
Proof. Let $\left(f_{n}\right)$ be a sequence in B_{C} such that $f_{n} \xrightarrow{\|\cdot\|_{\infty}} f(n \rightarrow+\infty)$. Fix ε. Then $\exists n_{1} \in \mathbb{N}$: $\forall n \geq n_{1}\left\|f_{n}-f\right\|_{\infty} \leq \frac{\varepsilon}{2}$ (1). Since f is uniformly continuous on K, we have that $\exists \delta>0$: $\forall s, t \in K \quad\|t-s\| \leq \delta \Rightarrow|f(t)-f(s)|_{\infty} \leq \frac{\varepsilon}{2}(2)$. Choose $n_{2} \in \mathbb{N}: \forall n \geq n_{2}$

$$
\left|\frac{2}{1+\left\|f_{n}\right\|_{\infty}}-\frac{2}{1+\|f\|_{\infty}}\right| \leq \frac{\delta}{c}(3)
$$

where $c:=\max _{t \in K}\|t\|$. Now we show that $\forall n \geq \bar{n}:=\max \left\{n_{1}, n_{2}\right\}$ and $\forall t \in K$ we have that $\left|\left(Q f_{n}\right)(t)-(Q f)(t)\right|_{\infty} \leq \varepsilon$, so that $\left\|Q f_{n}-Q f\right\|_{\infty} \leq \varepsilon$. Let $t \in K_{f} \cap K_{f_{n}}$ and $n \geq \bar{n}$. By (1), (2) and (3) it follows that

$$
\begin{gathered}
\left|\left(Q f_{n}\right)(t)-(Q f)(t)\right|_{\infty}=\left|f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(\frac{2}{1+\|f\|_{\infty}} t\right)\right|_{\infty} \\
\leq\left|f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)\right|_{\infty}+\left|f\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(\frac{2}{1+\|f\|_{\infty}} t\right)\right|_{\infty} \leq \varepsilon
\end{gathered}
$$

Let $t \in K_{f} \triangle K_{f_{n}}$ (where \triangle denotes the symmetric difference) and $n \geq \bar{n}$. Then

$$
\begin{align*}
& \quad\left|\left(Q f_{n}\right)(t)-(Q f)(t)\right|_{\infty}=\left|f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(w_{t}\right)\right|_{\infty} \tag{4}\\
& \text { or } \quad\left|\left(Q f_{n}\right)(t)-(Q f)(t)\right|_{\infty}=\left|f_{n}\left(w_{t}\right)-f\left(\frac{2}{1+\|f\|_{\infty}} t\right)\right|_{\infty} \tag{5}
\end{align*}
$$

If (4) holds. We have, by (1), (2) and (3), that

$$
\begin{aligned}
\left\lvert\, f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)\right. & -\left.f\left(w_{t}\right)\right|_{\infty} \leq\left|f_{n}\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)\right|_{\infty} \\
& +\left|f\left(\frac{2}{1+\left\|f_{n}\right\|_{\infty}} t\right)-f\left(w_{t}\right)\right|_{\infty} \leq \varepsilon
\end{aligned}
$$

If (5) is true. Analogously we obtain $\left|f_{n}\left(w_{t}\right)-f\left(\frac{2}{1+\|f\|_{\infty}} t\right)\right|_{\infty} \leq \varepsilon$. Let $t \in K \backslash\left(K_{f} \cup K_{f_{n}}\right)$ and $n \geq \bar{n}$. By (1) it follows

$$
\left|\left(Q f_{n}\right)(t)-(Q f)(t)\right|_{\infty}=\left|f_{n}\left(w_{t}\right)-f\left(w_{t}\right)\right|_{\infty} \leq \frac{\varepsilon}{2}
$$

Let us recall [2] that there is an explicite formula for the Hausdorff measure of noncompactness in C. For any bounded set $A \subset C$ we have

$$
(*) \quad \chi(A)=\frac{1}{2} \omega_{0}(A)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \omega(A, \varepsilon)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \sup _{f \in A} \omega(f, \varepsilon),
$$

where $\omega(f, \varepsilon)=\sup \left\{|f(t)-f(s)|_{\infty}: s, t \in K,\|t-s\| \leq \varepsilon\right\}$.
Proposition 7. The mapping Q is a 1-set contraction.
Proof. By Proposition 5 and Corollary 4 we can find a constant M such that $\forall \varepsilon \in\left[o, \frac{1}{4} \beta\right]$ (where $\beta:=\min \{\|u\|: u \in \partial K\}$), $\forall f \in B_{C}$ and $\forall s, t \in K$ we have $\|t-s\| \leq \varepsilon \Rightarrow$ $|(Q f)(t)-(Q f)(s)|_{\infty} \leq M \varepsilon$. Therefore for any $\varepsilon \in\left[o, \frac{1}{4} \beta\right]$ and any $f \in B_{C}$

$$
\begin{aligned}
& \omega(Q f, \varepsilon)=\sup \left\{|(Q f)(t)-(Q f)(s)|_{\infty}: s, t \in K,\|t-s\| \leq \varepsilon\right\} \leq \\
& \leq \sup \left\{|f(t)-f(s)|_{\infty}: s, t \in K,\|t-s\| \leq M \varepsilon\right\} \leq \omega(f, M \varepsilon)
\end{aligned}
$$

In view of $(*)$ this implies $\omega_{0}(Q A) \leq \omega_{0}(A)$ for any $A \subset B_{C}$. Therefore $\chi(Q A) \leq \chi(A)$, i.e. Q is a 1 -set contraction.

For any $u \in] 0,+\infty\left[\right.$ define the mapping $P_{u}: f \in B_{C} \rightarrow P_{u} f \in C$ putting

$$
\left(P_{u} f\right)_{i}(t):=\max \left\{0, \frac{u}{2}\left(2 \frac{\|t\|}{\left\|w_{t}\right\|}-\|f\|_{\infty}-1\right)\right\}(i=1, \ldots, n)
$$

Remark 8. For all $f \in B_{C}$ and for all $t \in K_{f}$ we have that $\left(P_{u} f\right)_{i}(t)=0$ for $i=1, \ldots, n$.

Proposition 9. For any $u \in] 0,+\infty\left[\right.$ and any $f \in B_{C}:(i) P_{u} f$ is continuous, (ii) P_{u} is continuous, (iii) P_{u} is compact.

Proof. (i) follows by the continuity of f and by the Proposition 2.
(ii) : Let $\left(f_{n}\right)$ be a sequence in B_{C} such that $f_{n} \xrightarrow{\|\cdot\|_{\infty}} f(n \rightarrow+\infty)$. Fix ε.Then $\exists \bar{n} \in \mathbb{N}$: $n \geq \bar{n}\left\|f_{n}-f\right\|_{\infty} \leq \frac{2}{u} \varepsilon(1)$. Now we prove that $\forall n \geq \bar{n}$ and $\forall t \in K\left|\left(P_{u} f_{n}\right)(t)-\left(P_{u} f\right)(t)\right|_{\infty} \leq$ ε. Hence $\left\|P_{u} f_{n}-P_{u} f\right\|_{\infty} \leq \varepsilon$.

Let $t \in K_{f} \cap K_{f_{n}}$ and $n \geq \bar{n}$. Then $\left|\left(P_{u} f_{n}\right)(t)-\left(P_{u} f\right)(t)\right|_{\infty}=0$. Let $t \in K_{f} \triangle K_{f_{n}}$ and $n \geq \bar{n}$. Then

$$
\begin{align*}
& \left.\left.\left|\left(P_{u} f_{n}\right)(t)-\left(P_{u} f\right)(t)\right|_{\infty}=\frac{u}{2} \right\rvert\, 2 \frac{\|t\|}{\left\|w_{t}\right\|}-\left\|f_{n}\right\|_{\infty}-1\right) \mid \tag{2}\\
& \text { or } \left.\left.\left|\left(P_{u} f_{n}\right)(t)-\left(P_{u} f\right)(t)\right|_{\infty}=\frac{u}{2} \right\rvert\, 2 \frac{\|t\|}{\left\|w_{t}\right\|}-\|f\|_{\infty}-1\right) \mid \tag{3}
\end{align*}
$$

If (2) is true. We have, since $\|t\| \leq \frac{1+\|f\|_{\infty}}{2 r}\left\|w_{t}\right\|$,

$$
\left.\frac{u}{2} \left\lvert\, 2 \frac{\|t\|}{\left\|w_{t}\right\|}-\left\|f_{n}\right\|_{\infty}-1\right.\right) \left.\left|\leq \frac{u}{2}\right|\left\|f_{n}\right\|_{\infty}-\|f\|_{\infty} \right\rvert\, \leq \frac{u}{2}\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon
$$

If (3) holds. Analogously we obtain $\left.\frac{u}{2} \left\lvert\, 2 \frac{\|t\|}{\left\|w_{t}\right\|}-\|f\|_{\infty}-1\right.\right) \mid \leq \varepsilon$.
Let $t \in K \backslash\left(K_{f} \cup K_{f_{n}}\right)$ and $n \geq \bar{n}$. We have

$$
\left|\left(P_{u} f_{n}\right)(t)-\left(P_{u} f\right)(t)\right|_{\infty}=\frac{u}{2}\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon
$$

(iii) : Let $u \in] 0,+\infty\left[\right.$. Since C is a Banach space, it sufficient to show that $P_{u}\left(B_{C}\right)$ is totally bounded. We start to observe that $\left\|P_{u} f\right\|_{\infty}=\frac{u}{2}\left(1-\|f\|_{\infty}\right)$ for any $f \in B_{C}$. Therefore, by $0 \leq\|f\|_{\infty} \leq 1$, it follows that $\left\|P_{u} f\right\|_{\infty} \in\left[0, \frac{u}{2}\right]$ for any $f \in B_{C}$. Now we prove that

$$
\begin{equation*}
\left|\left\|P_{u} f\right\|_{\infty}-\left\|P_{u} g\right\|_{\infty}\right| \leq \varepsilon \Rightarrow\left\|P_{u} f-P_{u} g\right\|_{\infty} \leq \varepsilon \tag{4}
\end{equation*}
$$

Let $t \in K_{f} \cap K_{g}$. Then $\left|\left(P_{u} f\right)(t)-\left(P_{u} g\right)(t)\right|_{\infty}=0$.
Let $t \in K \backslash\left(K_{f} \cup K_{g}\right)$. Then $\left|\left(P_{u} f\right)(t)-\left(P_{u} g\right)(t)\right|_{\infty}=\frac{u}{2}\left|\|f\|_{\infty}-\|g\|_{\infty}\right|=\left|\left\|P_{u} f\right\|_{\infty}-\left\|P_{u} g\right\|_{\infty}\right|$.
Let $t \in K_{f} \triangle K_{f_{n}}$. Then

$$
\left|\left(P_{u} f\right)(t)-\left(P_{u} g\right)(t)\right|_{\infty}=\left|\left(P_{u} f\right)(t)\right|_{\infty} \text { (5) or }\left|\left(P_{u} f\right)(t)-\left(P_{u} g\right)(t)\right|_{\infty}=\left|\left(P_{u} g\right)(t)\right|_{\infty} \text { (6). }
$$

If (5) holds. For all $t \in K_{g} \backslash K_{f}$ we have $\|t\| \leq \frac{1+\|g\|_{\infty}}{2 r}\left\|w_{t}\right\|$. Therefore

$$
\left|\left(P_{u} f\right)(t)\right|_{\infty}=\frac{u}{2}\left|2 \frac{\|t\|}{\left\|w_{t}\right\|}-\|f\|_{\infty}-1\right| \leq \frac{u}{2}\left|\|f\|_{\infty}-\|g\|_{\infty}\right|=\left|\left\|P_{u} f\right\|_{\infty}-\left\|P_{u} g\right\|_{\infty}\right|
$$

If (6) holds. Analogously we obtain $\left|\left(P_{u} g\right)(t)\right|_{\infty} \leq\left|\left\|P_{u} f\right\|_{\infty}-\left\|P_{u} g\right\|_{\infty}\right|$.
Hence the inequality (4) is true.
Let $\varepsilon>0$. Fixed an ε-net $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ in $\left[0, \frac{u}{2}\right]$, choose $\left\{f_{1}, \ldots, f_{m}\right\} \subset B_{C}$ such that $\left\|P_{u} f_{j}\right\|_{\infty}=\alpha_{j}$ for $j=1, \ldots, m$. Then $\left\{P_{u} f_{1}, \ldots, P_{u} f_{m}\right\}$ is an ε-net in $P_{u}\left(B_{C}\right)$. Infact for any $f \in B_{C}$ there exists $j \in\{1, \ldots, m\}$ such that $\left|\left\|P_{u} f\right\|_{\infty}-\left\|P_{u} f_{j}\right\|_{\infty}\right| \leq \varepsilon$. By (4) it follows that $\left\|P_{u} f-P_{u} f_{j}\right\|_{\infty} \leq \varepsilon$. Hence $P_{u}\left(B_{C}\right)$ is totally bounded.

Now consider the mapping $T_{u}: B_{C} \rightarrow C$

$$
T_{u} f=Q f+P_{u} f
$$

Clearly, the mapping T_{u} is a 1-set contraction, and $T_{u} f=f$ for any $f \in S_{C}$. Moreover, for any $f \in B_{C}$, we have that

$$
\begin{aligned}
\left\|T_{u} f\right\|_{\infty} & =\left\|Q f+P_{u} f\right\|_{\infty}=\max \left\{\left|(Q f)(t)+\left(P_{u} f\right)(t)\right|_{\infty}: t \in K\right\} \\
& \geq \max \left\{\max _{t \in K_{f}}|(Q f)(t)|_{\infty}, \max _{t \in K \backslash K_{f}}\left|(Q f)(t)+\left(P_{u} f\right)(t)\right|_{\infty}\right\} \\
& \geq \max \left\{\|f\|_{\infty}, \max _{t \in K \backslash K_{f}}\left|(Q f)\left(w_{t}\right)+\left(P_{u} f\right)\left(w_{t}\right)\right|_{\infty}\right\} \\
& \geq \max \left\{\|f\|_{\infty}, \max _{t \in K \backslash K_{f}}\left|f\left(w_{t}\right)+\left(P_{u} f\right)\left(w_{t}\right)\right|_{\infty}\right\} \\
& =\max \left\{\|f\|_{\infty}, \max _{t \in K \backslash K_{f}} \max _{i=n}^{n}\left|f_{i}\left(w_{t}\right)+\frac{u}{2}\left(1-\|f\|_{\infty}\right)\right|\right\} \\
& \geq \max \left\{\|f\|_{\infty}, \max _{t \in K \backslash K_{f}} \max _{i=n}^{n} f_{i}\left(w_{t}\right)+\frac{u}{2}\left(1-\|f\|_{\infty}\right)\right\} \\
& \geq \max \left\{\|f\|_{\infty}, \frac{u}{2}\left(1-\|f\|_{\infty}\right)-\|f\|_{\infty}\right\}
\end{aligned}
$$

The last term attains its minimum $\frac{u}{u+4}$ for functions f with $\|f\|_{\infty}=\frac{u}{u+4}$. Therefore $\left\|T_{u} f\right\|_{\infty} \geq \frac{u}{u+4}$ for all $f \in B_{C}$. Set

$$
R_{u} f=\frac{1}{\left\|T_{u} f\right\|_{\infty}} T_{u} f
$$

For all $f \in B_{C}$ we have

$$
\omega\left(R_{u} f, \varepsilon\right)=\frac{1}{\left\|T_{u} f\right\|_{\infty}} \omega\left(T_{u} f, \varepsilon\right) \leq \frac{u+4}{u} \omega\left(T_{u} f, \varepsilon\right)
$$

Hence for any set $A \subset B_{C}$

$$
\omega_{0}\left(R_{u} A\right) \leq \frac{u+4}{u} \omega_{0}(A) .
$$

Therefore

$$
\chi\left(R_{u} A\right) \leq \frac{u+4}{u} \chi(A)
$$

Since $\lim _{u \rightarrow \infty} \frac{u+4}{u}=1$, the following result holds.
Theorem 10. $k_{1}(C)=1$.

References

[1] R.R. Akhmerov, M.I. Kamenskiŭ, A.S. Potapov, A.S. Rodkina and B.N. Sadovskiĭ, Measures of noncompactness and condensing operators, Birkhäuser, Basel, Boston, Berlin, 1992.
[2] J.Banaš and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math., Marcel Dekker, 60, New York and Basel, 1980.
[3] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88 (1983), 439-445.
[4] H. Brezis, Analyse Fonctionnelle Théorie et applications, Masson, Paris 1983.
[5] K. Goebel and W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge 1990.
[6] S. Kakutani, Topological properties of the unit sphere of a Hilbert space, Proc. Imp. Acad. Tokyo, 19 (1943), 269-271.
[7] V. Klee, Convex Bodies and periodic homeomorphisms in Hilbert spaces, Trans. Amer. Math. Soc., 74 (1953), 10-43.
[8] D. Mauldin, The Scottish Book, Birkhäuser, Boston, 1981.
[9] B. Nowak, On the lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27 (1979), 861-864.
[10] J. Wosko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Sklodowska, 45 (1991), 127-130.

Dipartimento di Matematica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy

[^0]: 2000 Mathematics Subject Classification. 46E15, 47H09.
 Key words and phrases. retraction, k-set contraction, Hausdorff measure of noncompactness.

