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Abstract. Let X be an infinite-dimensional Banach space, and let BX and SX be its

closed unit ball and unit sphere, respectively. A continuous mapping R : BX → SX is

said to be a retraction provided that x = Rx for all x²SX . It is well known that when

X is finite-dimensional there is no retraction from BX onto SX . We prove that in some

Banach spaces of continuous functions for every ε > 0 there exists a retraction of the

closed unit ball onto the unit sphere being a (1 + ε)-set contraction.

1. Introduction

The Scottish Book [8] contains the following question (Problem 36) raised around 1935
by S. Ulam : ” There exists a retraction of the closed unit ball of a Hilbert space onto the
unit sphere ? ” S. Kakutani [6] gave a positive answer to this question.V. Klee [7] proved
that answer to Ulam’s question is ” yes ” in the more general setting of infinite-dimensional
Banach spaces. B. Nowak [9] using a complicated construction that was subsequentely
somewhat simplified by Y. Benyamini and Y. Sternfeld [3] showed that, for any infinite-
dimensional Banach space X, there is a retraction R : BX → SX satisfying the Lipschitz
condition

(1) kRx−Ryk ≤ k kx− yk , for all x, y²BX .
Given an infinite-dimensional Banach space X, let k0 (X) denote the infimum of the k’s

for which such retraction exists.
Then k0 (X) ≥ 3 (See [5]). Recall that, if A is a bounded subset of a Banach space X,

the Hausdorff measure of noncompactness of A is defined by

χ (A) := inf {r > 0 : A can be covered by a finite number of balls centered in X} .
A continuous mapping T : D (T ) ⊂ X → X is said to be a k-set contraction if there

exists a constant k ≥ 0 such that
(2)χ (T (A)) ≤ kχ (A) , for all bounded sets A ⊂ D (T ) .

Let Rn be the n-dimensional Euclidean space with the maximum norm |·|∞ .Throughout
this paper we shall use the following notations. E := (E, k·k) will denote a finite-dimensional
real normed space and K a compact convex subset of E with nonempty interior ( Without
loss of generality, we can assume that K contains the origin as an interior point ). C (K,Rn)
the space of continuous functions on K with values in Rn equipped with the sup norm k·k∞.
Let X be an infinite-dimensional Banach space. By k1 (X) denote the infimum of the set of
all numbers k for which there is a retraction R : BX → SX satisfying the above condition
(2) . In this context J. Wosko [10] proved that k1 (C [0, 1]) = 1 and that for any infinite-
dimensional Banach space X there is no a 1-set retraction R : BX → SX being lipschitzian
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with some constant k. Moreover, he posed the problem to estimate k1 (X) for particular
classical Banach spaces and to establish for which spaces is k1 (X) < k0 (X) . In this note we
extend from C [0, 1] to C (K,Rn) the Wosko’s result, i.e. we prove that k1( C (K,Rn)) = 1.

2. Preliminaries

Let Y be a real normed space. We write BY,r to denote the closed ball of Y centered at

the origin with radius r. For a set A ⊂ Y, A it is closure, intA its interior, ∂A its boundary
and diamA its diameter. Further we set SY,r := ∂ BY,r .
Consider the mapping ϕ : K\ {0} → ∂K defined by ϕ(t) = wt,where wt is the unique

element of {λt : λ ∈ [0,+∞[} ∩ ∂K. Let α be a positive real number such that BE,α ⊂ K.
In this section we prove that ϕ satisfies the Lipschitz condition :

(2.1) kwt − wsk ≤ L kt− sk , for all s, t²K\intBE,α.

Assume that Rn is the n-dimensional Euclidean space provided with the usual inner
product hu, vi = Pn

i=1 uivi where u = (u1, ..., un) and v = (v1, ..., vn) . |.|n denotes the
Euclidean norm on Rn , θ (u, v) the angle between two non zero vectors u and v of Rn such
that 0 ≤ θ (u, v) ≤ π and uv the orthogonal projection of u onto hvi := {λv : λ ∈ R} . Let
K be a compact convex set in Rn containing the origin as an interior point and let α be a
positive real number such that BRn,α ⊂ K. In order to prove (2.1) it is sufficient to show
that it is true for ϕ : K\intBRn,α → ∂K.

Lemma 1. Let K be a compact convex set in Rn containing the origin as an interior point.
Set β := min {|u|n : u ∈ ∂K} and d := diamK. Then inf

©
cos (θ (v − u, uv − u)) : u 6= v,

|u|n ≤ |v|n , |u− v|n < β
2 and u, v ∈ ∂K

ª≥ β
2d .

Proof. Let u, v ∈ ∂K with u 6= v, |u|n ≤ |v|n and |u− v|n < β
2 . We will prove that

sen (θ (−v, u− v)) = sen
¡
π
2 − θ (v − u, uv − u)

¢ ≥ β
2d . Therefore cos (θ (v − u, uv − u)) ≥

β
2d . Let r be the straight line through u and v. Then r∩ intBRn, β2 = ∅. Suppose r∩SRn,β2 ={s, t} . We have two possible cases. The segment [u, v] contains{s, t} . Then β ≤ |u|n ≤
|u− s|n + |s|n ≤ |u− v|n + |s|n < β, a contradiction! The segment [u, v] # {s, t}. Let π be
the plane containing 0, u and v ; r1 the straight line through v tangent to BRn, β2

∩ π in p,
which lies in the half-plane determinted by the straight line through 0 and v that contains
s and t ; r2 the straight line through 0 and u (see figure below). Then the segment [p, v]∩
r2 = w ∈ K. Hence u /∈ ∂K, again a contradiction! Therefore cos (θ (v − u, uv − u)) =
sen

¡
π
2 − θ (v − u, uv − u)

¢ ≥ sen (θ (−v, p− v)) = |p|n
|v|n ≥

β
2d .
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Proposition 2. Let K be a compact convex set in Rn containing the origin as an interior
point and α be a positive real number such that BRn,α ⊂ K. Set c := max {|u|n : u ∈ ∂K} .
Then the map ϕ is uniformly continuous on K\intBRn,α.
Proof. SinceK\intBRn,α is compact, it is sufficient to show that ϕ is continuous onK\intBRn,α.
Our proof will be by way of contradiction. So suppose that there exists a sequence (tn) of
elements ofK\intBRn,α such that tn → t (n→ +∞) and wtn 9 wt (n→ +∞). By the com-
pactness of ∂K we can find a subsequence

³
wtnk

´
of (wtn) convergent to w ∈ ∂K\ {wt}. For

all k ∈ N, since tnk ∈
h³
α/
¯̄̄
wtnk

¯̄̄
n

´
wtnk , wtnk

i
, there is λnk ∈

h
1,
¯̄̄
wtnk

¯̄̄
n
/α
i
⊂ [1, c/α]

such that wtnk = λnk tnk . Let
¡
λnks

¢
be a subsequence of (λnk) convergent to λ ∈ [1, c/α] .

Then, since wtnks
→ w (s → +∞), λnks → λ (s → +∞) and tnks → t (s → +∞) , we

have that w = λt. Therefore w = wt, a contradiction!

Proposition 3. Let K be a compact convex set in Rn containing the origin as an interior
point and α be a positive real number such that BRn,α ⊂ K. Set β := min {|u|n : u ∈ ∂K} and
d := diamK. Then there exists L such that |wt − ws|n ≤ L |t− s|n , for all s, t²K\intBRn,α.
Proof. By the Proposition 2 there exists a δ > 0 such that |t− s|n < δ ⇒ |wt − ws|n <
β
2 for all s, t²K\intBRn,α. Moreover |t− s|n ≥ δ ⇒ |wt − ws|n ≤ d

δ |t− s|n , for all
s, t²K\intBRn,α. Now, suppose s, t²K\intBRn,α, |t− s|n < δ, s 6= t (⇒ wt 6= ws) and
|ws|n ≤ |wt|n . By Lemma 1 it follows that cosθ := cos

³
θ
³
wt − ws, ws(wt) − ws

´´
≥ β

2d .

On the other hand it is easy to see that
¯̄̄
ws(wt) − ws

¯̄̄
n
≤ d

α |t− s|n . Therefore |wt − ws|n =¯̄̄
ws(wt)

−ws
¯̄̄
n

cos θ ≤ d
α cos θ |t− s|n ≤ 2d2

αβ |t− s|n . Set L:=max
n
d
δ ,

2d2

αβ

o
. It follows that |wt − ws|n ≤

L |t− s|n , for all s, t²K\intBRn,α.
Corollary 4. Let K ⊂ E and let α be a positive real number such that BE,α ⊂ K. Then
there exists L such that kwt − wsk ≤ L kt− sk , for all s, t²K\intBE,α
We need the following proposition.
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Proposition 5. Let K ⊂ E and α0 ∈ ]0, 1[ . Set β := min {kuk : u ∈ ∂K} and d :=
diamK.Then there is a constant L such that ∀α ∈ [α0, 1[ , ∀ε ∈

i
0, α0β2

h
, ∀ s ∈ αK and

∀t ∈ K\αK

kt− sk ≤ ε⇒ °°α−1s− wt°° ≤ µ2L+ 1

α0
+
4d

α0β

¶
ε.

Proof. Fix α ∈ [α0, 1[ , ε ∈
i
0, α0β2

h
, s ∈ αK and t ∈ K\αK with kt− sk ≤ ε. Then

ksk > α0β
2 . Infact, if ksk ≤ α0β

2 , we have that α0β < ktk ≤ kt− sk + ksk ≤ ε + α0β
2 <

α0β, a contradiction! Therefore, by the Corollary 4, there exists a constant L such that
kwt − wsk ≤ L kt− sk for all s, t²K\α0β2 K.
Suppose kwsk ≤ kwtk . We prove that

°°ws − α−1s°° ≤ ε
α0
. Hence

°°wt − α−1s°° ≤
kwt − wsk+

°°ws − α−1s°° ≤ ³L+ 1
α0

´
ε. Clearly s∈ [0,αws] .Moreover, if ksk <

³
α− ε

kwsk
´
kwsk ,

we have that α kwtk < ktk ≤ kt− sk + ksk < α kwsk ≤ α kwtk , a contradiction! Therefore°°ws − α−1s°° ≤ α−1 kαws − sk ≤ 1
α0

°°°³α− ε
kwsk

´
ws − αws

°°° ≤ ε
α0
.

Now assume kwtk ≤ kwsk and denote by w0s the element of [0, ws] such that kw0sk = kwtk .
Define the mapping T : E → B

E,
α0β
2
by T (s) = α0β

2
s
ksk if s ∈ E\BE,α0β2 , T (s) = s if

s ∈ B
E,

α0β
2
. T satisfies (see for instance [4, p. 88]) the Lipschitz condition: kT (t)− T (s)k ≤

2 kt− sk for all s, t ∈ E. Therefore, since s, t /∈ B
E,

α0β
2
, we have that α0β2

1
kwtk kwt − w0sk =

kT (wt)− T (ws)k = kT (t)− T (s)k ≤ 2 kt− sk . Hence kwt − w0sk ≤ 4
α0β

kwtk kt− sk ≤
4d
α0β

ε. If kw0sk ≤
°°α−1s°° , then °°wt − α−1s°° ≤ kwt − wsk + °°ws − α−1s°° ≤ kwt − wsk +

kw0s − wsk ≤ 2 kwt − wsk+kwt − w0sk ≤ (2L+ 4d
α0β

)ε.If
°°α−1s°° < kw0sk , then °°α−1s− wt°° ≤°°α−1s− w0s°°+ kwt − w0sk .

Now we prove that
°°α−1s− w0s°° ≤ ε

α0
. Therefore

°°α−1s− wt°° ≤ ( 1α0 +
4d
α0β

)ε. We

show that s ∈
h
(α− ε

kw0sk )w
0
s,αw

0
s

i
. Infact

°°α−1s°° < kw0sk ⇒ ksk < kαw0sk ⇒ s ∈
[0,αw0s] . Suppose ksk < (α − ε

kw0sk )w
0
s = α kw0sk − ε. Then α kwtk < ktk ≤ kt− sk +

ksk < α kw0sk . = α kwtk , a contradiction! Hence
°°α−1s− w0s°° = α−1 ks− αw0sk ≤

α−1
°°°(α− ε

kw0sk )w
0
s,αw

0
s

°°° ≤ ε
α0
.

3. Main results

Set C := C (K,Rn) . We start to define a mapping Q : BC → BC by

(Qf)(t) :=

(
f( 2

1+kfk∞ t) if t ∈ Kf :=
1+kfk∞

2 K

f(wt) if t ∈ K\Kf

By the continuity of f and by the Proposition 2 it is very simple to prove that Qf is
continuous on K. Moreover we have that kfk∞ = kQfk∞ = max {|(Qf)(t)|∞ : t ∈ Kf} for
all f ∈ BC and Qf = f for all f ∈ SC .
Proposition 6. The mapping Q is continuous.

Proof. Let (fn) be a sequence in BC such that fn
k·k∞−→ f (n→ +∞).Fix ε. Then ∃ n1 ∈ N :

∀n ≥ n1 kfn − fk∞ ≤ ε
2 (1). Since f is uniformly continuous on K, we have that ∃ δ > 0 :∀s, t ∈ K kt− sk ≤ δ ⇒ |f(t)− f(s)|∞ ≤ ε

2 (2). Choose n2 ∈ N : ∀n ≥ n2¯̄̄̄
2

1 + kfnk∞
− 2

1 + kfk∞

¯̄̄̄
≤ δ

c
(3),
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where c := max
t∈K

ktk . Now we show that ∀ n ≥ n := max {n1, n2} and ∀t ∈ K we have that

|(Qfn)(t)− (Qf)(t)|∞ ≤ ε, so that kQfn −Qfk∞ ≤ ε. Let t ∈ Kf ∩Kfn and n ≥ n. By
(1), (2) and (3) it follows that

|(Qfn)(t)− (Qf)(t)|∞ =
¯̄̄̄
fn(

2

1 + kfnk∞
t)− f( 2

1 + kfk∞
t)

¯̄̄̄
∞

≤
¯̄̄̄
fn(

2

1 + kfnk∞
t)− f( 2

1 + kfnk∞
t)

¯̄̄̄
∞
+

¯̄̄̄
f(

2

1 + kfnk∞
t)− f( 2

1 + kfk∞
t)

¯̄̄̄
∞
≤ ε.

Let t ∈ Kf4Kfn(where 4 denotes the symmetric difference) and n ≥ n. Then

|(Qfn)(t)− (Qf)(t)|∞ =
¯̄̄̄
fn(

2

1 + kfnk∞
t)− f(wt)

¯̄̄̄
∞
(4)

or |(Qfn)(t)− (Qf)(t)|∞ =
¯̄̄̄
fn(wt)− f( 2

1 + kfk∞
t)

¯̄̄̄
∞

(5)

If (4) holds. We have, by (1), (2) and (3), that¯̄̄̄
fn(

2

1 + kfnk∞
t)− f(wt)

¯̄̄̄
∞
≤
¯̄̄̄
fn(

2

1 + kfnk∞
t)− f( 2

1 + kfnk∞
t)

¯̄̄̄
∞

+

¯̄̄̄
f(

2

1 + kfnk∞
t)− f(wt)

¯̄̄̄
∞
≤ ε.

If (5) is true. Analogously we obtain
¯̄̄
fn(wt)− f( 2

1+kfk∞ t)
¯̄̄
∞
≤ ε . Let t ∈ K\(Kf∪Kfn)

and n ≥ n. By (1) it follows
|(Qfn)(t)− (Qf)(t)|∞ = |fn(wt)− f(wt)|∞ ≤

ε

2
.

Let us recall [2] that there is an explicite formula for the Hausdorff measure of noncom-
pactness in C. For any bounded set A ⊂ C we have

(∗) χ(A) =
1

2
ω0(A) =

1

2
lim
ε→0+

ω(A, ε) =
1

2
lim
ε→0+

sup
f∈A

ω(f, ε),

where ω(f, ε) = sup { |f(t)− f(s)|∞ : s, t ∈ K, kt− sk ≤ ε} .
Proposition 7. The mapping Q is a 1-set contraction.

Proof. By Proposition 5 and Corollary 4 we can find a constant M such that ∀ε ∈ £o, 14β¤
( where β := min {kuk : u ∈ ∂K}), ∀f ∈ BC and ∀s, t ∈ K we have kt− sk ≤ ε ⇒
|(Qf)(t)− (Qf)(s)|∞ ≤Mε. Therefore for any ε ∈ £o, 14β¤ and any f ∈ BC

ω(Qf, ε) = sup {|(Qf)(t)− (Qf)(s)|∞ : s, t ∈ K, kt− sk ≤ ε} ≤
≤ sup { |f(t)− f(s)|∞ : s, t ∈ K, kt− sk ≤Mε} ≤ ω(f,Mε).

In view of (∗) this implies ω0(QA) ≤ ω0(A) for any A ⊂ BC . Therefore χ(QA) ≤ χ(A),
i.e. Q is a 1-set contraction.

For any u ∈ ]0,+∞[ define the mapping Pu : f ∈ BC → Puf ∈ C putting

(Puf)i(t) := max

½
0,
u

2
(2
ktk
kwtk − kfk∞ − 1)

¾
(i = 1, ..., n).

Remark 8. For all f ∈ BC and for all t ∈ Kf we have that (Puf)i(t) = 0 for i = 1, ..., n.
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Proposition 9. For any u ∈ ]0,+∞[ and any f ∈ BC : (i) Puf is continuous, (ii) Pu is
continuous, (iii) Pu is compact.

Proof. (i) follows by the continuity of f and by the Proposition 2.

(ii) : Let (fn) be a sequence in BC such that fn
k·k∞−→ f (n → +∞).Fixε.Then ∃ n ∈ N :

n ≥ n kfn − fk∞ ≤ 2
uε (1). Now we prove that ∀ n ≥ n and ∀t ∈ K | (Pufn)(t)− (Puf)(t)|∞ ≤

ε. Hence kPufn − Pufk∞ ≤ ε.
Let t ∈ Kf ∩Kfn and n ≥ n. Then | (Pufn)(t)− (Puf)(t)|∞ = 0. Let t ∈ Kf4Kfn and

n ≥ n. Then

| (Pufn)(t)− (Puf)(t)|∞ =
u

2

¯̄̄̄
2
ktk
kwtk − kfnk∞ − 1)

¯̄̄̄
(2)

or | (Pufn)(t)− (Puf)(t)|∞ =
u

2

¯̄̄̄
2
ktk
kwtk − kfk∞ − 1)

¯̄̄̄
(3).

If (2) is true. We have, since ktk ≤ 1+kfk∞
2r kwtk ,

u

2

¯̄̄̄
2
ktk
kwtk − kfnk∞ − 1)

¯̄̄̄
≤ u
2
|kfnk∞ − kfk∞| ≤

u

2
kfn − fk∞ ≤ ε.

If (3) holds. Analogously we obtain u
2

¯̄̄
2 ktk
kwtk − kfk∞ − 1)

¯̄̄
≤ ε.

Let t ∈ K\(Kf ∪Kfn) and n ≥ n. We have
| (Pufn)(t)− (Puf)(t)|∞ =

u

2
kfn − fk∞ ≤ ε.

(iii) : Let u ∈ ]0,+∞[ . Since C is a Banach space, it sufficient to show that Pu(BC)
is totally bounded. We start to observe that kPufk∞ = u

2 (1 − kfk∞) for any f ∈ BC .
Therefore, by 0 ≤ kfk∞ ≤ 1, it follows that kPufk∞ ∈

£
0, u2

¤
for any f ∈ BC . Now we

prove that

|kPufk∞ − kPugk∞| ≤ ε⇒ kPuf − Pugk∞ ≤ ε (4).

Let t ∈ Kf ∩Kg. Then |(Puf)(t)− (Pug)(t)|∞ = 0.
Let t ∈ K\(Kf∪Kg). Then |(Puf)(t)− (Pug)(t)|∞ = u

2 |kfk∞ − kgk∞| = |kPufk∞ − kPugk∞| .
Let t ∈ Kf4Kfn . Then

|(Puf)(t)− (Pug)(t)|∞ = |(Puf)(t)|∞ (5) or |(Puf)(t)− (Pug)(t)|∞ = |(Pug)(t)|∞ (6).

If (5) holds. For all t ∈ Kg\Kf we have ktk ≤ 1+kgk∞
2r kwtk . Therefore

|(Puf)(t)|∞ =
u

2

¯̄̄̄
2
ktk
kwtk − kfk∞ − 1

¯̄̄̄
≤ u
2
|kfk∞ − kgk∞| = |kPufk∞ − kPugk∞|

If (6) holds. Analogously we obtain |(Pug)(t)|∞ ≤ |kPufk∞ − kPugk∞| .
Hence the inequality (4) is true.
Let ε > 0. Fixed an ε-net {α1, ...,αm} in

£
0, u2

¤
, choose {f1, ..., fm} ⊂ BC such that

kPufjk∞ = αj for j = 1, ...,m.Then {Puf1, ..., Pufm} is an ε-net in Pu(BC). Infact for

any f ∈ BC there exists j ∈ {1, ...,m} such that ¯̄kPufk∞ − kPufjk∞¯̄ ≤ ε. By (4) it
follows that kPuf − Pufjk∞ ≤ ε. Hence Pu(BC) is totally bounded.

Now consider the mapping Tu : BC → C

Tuf = Qf + Puf.
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Clearly, the mapping Tu is a 1-set contraction, and Tuf = f for any f ∈ SC . Moreover,
for any f ∈ BC , we have that

kTufk∞ = kQf + Pufk∞ = max {|(Qf)(t) + (Puf)(t)|∞ : t ∈ K}
≥ max

½
max
t∈Kf

|(Qf)(t)|∞ , max
t∈K\Kf

|(Qf)(t) + (Puf)(t)|∞
¾

≥ max

½
kfk∞ , max

t∈K\Kf

|(Qf)(wt) + (Puf)(wt)|∞
¾

≥ max

½
kfk∞ , max

t∈K\Kf

|f(wt) + (Puf)(wt)|∞
¾

= max

½
kfk∞ , max

t∈K\Kf

n
max
i=n

¯̄̄
fi(wt) +

u

2
(1− kfk∞)

¯̄̄¾
≥ max

½
kfk∞ , max

t∈K\Kf

n
max
i=n

fi(wt) +
u

2
(1− kfk∞)

¾
≥ max

n
kfk∞ ,

u

2
(1− kfk∞)− kfk∞

o
.

The last term attains its minimum u
u+4 for functions f with kfk∞ = u

u+4 . Therefore

kTufk∞ ≥ u
u+4 for all f ∈ BC . Set

Ruf =
1

kTufk∞
Tuf

For all f ∈ BC we have

ω(Ruf, ε) =
1

kTufk∞
ω(Tuf, ε) ≤ u+ 4

u
ω(Tuf, ε).

Hence for any set A ⊂ BC
ω0(RuA) ≤ u+ 4

u
ω0(A).

Therefore

χ(RuA) ≤ u+ 4
u

χ(A).

Since limu→∞ u+4
u
= 1, the following result holds.

Theorem 10. k1(C) = 1.
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