B-ALGEBRAS AND GROUPS

P. J. Allen, J. Neggers and Hee Sik Kim

Received February 18, 2003

ABSTRACT. In this note, we give another proof of the close relationship of B-algebras with groups using the observation that the zero adjoint mapping is surjective. Moreover, we find a condition for an algebra defined on the real numbers to be a B-algebra using the analytic method. In addition we note certain other facts about commutative B-algebras.

1. INTRODUCTION.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([4, 5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras, i.e., (I) x * x = 0; (V) 0 * x = 0; (VI) x * y = 0 and y * x = 0 imply x = y, which is another useful generalization of *BCK*-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between *d*-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced a new notion, called an BH-algebra, i.e., (I), (II) x * 0 = x and (VI), which is a generalization of BCH/BCI/BCK-algebras, and defined the notions of ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. Recently J. Neggers and H. S. Kim ([11]) introduced a new notion which appears to be of some interest, i.e., that of a *B*-algebra, and studied some of its properties. M. Kondo and Y. B. Jun ([7]) proved that the class of B-algebras is equivalent in one sense to the class of groups by using the property: x = 0 * (0 * x), for all $x \in X$. J. Neggers and H. S. Kim ([11]) argued slightly differently in taking their position. In this note, we give another proof using that the zero adjoint mapping is surjective. Moreover, we find a condition for an algebra defined on the real numbers to be a *B*-algebra using the analytic method. In addition we note certain other facts about commutative B-algebras.

2. Preliminaries.

A *B*-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(I) x * x = 0, (II) x * 0 = x, (III) (x * y) * z = x * (z * (0 * y))for all x, y, z in X.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 20N02.

Keywords and phrases. B-algebra, group, commutative, center.

If we let y := x in (III), then we have

(a)
$$(x * x) * z = x * (z * (0 * x)).$$

If we let z := x in (a), then we obtain also

(b)
$$0 * x = x * (x * (0 * x)).$$

Using (I) and (a), it follows that

(c)
$$0 = x * (0 * (0 * x)).$$

We have already discussed that the three axioms (I), (II) and (III) are independent (see [11]).

Example 2.1. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Then (X : *, 0) is a *B*-algebra.

Example 2.2 ([11]). Let X be the set of all real numbers except for a negative integer -n. Define a binary operation * on X by

$$x * y := \frac{n(x-y)}{n+y}.$$

Then (X; *, 0) is a *B*-algebra.

Lemma 2.3 ([11]). If (X; *, 0) is a *B*-algebra, then y * z = y * (0 * (0 * z)) for all $y, z \in X$.

If we take y := 0 in Lemma 2.3, we obtain a useful formula

(d)
$$0 * z = 0 * (0 * (0 * z)).$$

Proposition 2.4 ([11]). If (X; *, 0) is a *B*-algebra, then

(IV)
$$x * (y * z) = (x * (0 * z)) * y$$

for any $x, y, z \in X$.

160

Proposition 3.1. Let $(X; \circ, 0)$ be a group. If we define $x * y := x \circ y^{-1}$, then (X; *, 0) is a *B*-algebra.

Proof. We know that $x * x = x \circ x^{-1} = 0$ and $x * 0 = x \circ 0^{-1} = x \circ 0 = x$. For any x, y, z in X, we see that $(x * y) * z = (x \circ y^{-1}) \circ z^{-1} = x \circ (z \circ y)^{-1} = x * (z * y^{-1}) = x * (z * (0 * y))$. \Box

From the above Proposition 3.1 we can see that every group $(X; \circ, 0)$ determines a *B*-algebra (X; *, 0), called a *group-derived B*-algebra. It is then a question of interest to determine whether or not all *B*-algebras are so group-derived. We claim that this is not the case in general, and thus that this class of algebras contains the class of groups indirectly via the group-derived principle we have explained in Proposition 3.1.

Proposition 3.2. Let (X; *, 0) be a group-derived B-algebra. Define a map $\varphi : X \to X$ by $\varphi(x) := 0 * x$, then φ is a surjection.

Proof. If $g \in X$, then $\varphi(g^{-1}) = 0 * g^{-1} = 0 \circ (g^{-1})^{-1} = g$. \Box

The mapping φ discussed in Proposition 3.2 is called a *zero adjoint* mapping. The Proposition 3.2 means that if φ is not surjective, then the algebra (X; *, 0) cannot be a group-derived *B*-algebra. Hence the condition that $\varphi : X \to X$ be a surjection is certainly necessary for the *B*-algebra to be group derived.

Theorem 3.3. Let (X; *, 0) be a *B*-algebra. If the map $\varphi : X \to X$ by $\varphi(x) := 0 * x$ is a surjection, then the algebra (X; *, 0) is group derived.

Proof. Let (X; *, 0) be a *B*-algebra. Assume the zero adjoint mapping $\varphi : X \to X$ is a surjection. If $x \in X$, then there is $y \in X$ such that x = 0 * y and hence 0 * (0 * x) = 0 * (0 * (0 * y)) = (0 * y) * 0 = 0 * y = x, i.e.,

(e)
$$0 * (0 * x) = x.$$

Define a binary operation " \circ " on X by

$$x \circ y := x * (0 * y)$$

Then (X; *, 0) is a group. In fact, it follows that $x \circ 0 = x * (0 * 0) = x * 0 = x$ and $0 \circ x = 0 * (0 * x) = x$. Therefore 0 acts like an identity element on X. Also, $x \circ (0 * x) = x * (0 * (0 * x)) = (x * x) * 0 = 0$ and $(0 * x) \circ x = (0 * x) * (0 * x) = 0$, i.e., 0 * x behaves like a multiplicative inverse for the element x with respect to the operation \circ . Finally, in order to establish the associative law, we obtain:

$$x \circ (y \circ z) = x * (0 * (y * (0 * z)))$$

= x * ((0 * z) * y) [by (III)]
= x * ((0 * z) * (0 * (0 * y))) [by (e)]

$$= (x * (0 * y)) * (0 * z)$$
[(III)]

$$= (x \circ y) \circ z.$$

Note that $x \circ y^{-1} = x * (0 * y^{-1}) = x * (0 * (0 * y)) = x * y$, whence (X, ; *, 0) is also group derived from the group $(X; \circ, 0)$ as defined. This proves the theorem. \Box

Theorem 3.4. Every B-algebra is group derived.

Proof. Let $\varphi : X \to X$ be the zero adjoint mapping defined by $\varphi(x) := 0 * x$. Let $t \in X$, and let $x = \varphi(t) \in X$. Then we observe that

$$\begin{aligned}
\varphi(x) &= 0 * x \\
&= (t * t) * x & [by (I)] \\
&= t * (x * (0 * t)) & [by (III])] \\
&= t * (x * x) & [x = \varphi(t) = 0 * x] \\
&= t. & [by (I), (II)]
\end{aligned}$$

Cons
sequently, φ is a surjective. By applying Theorem 3.3 we conclude that every
 B -algebra is group derived. $\ \ \Box$

Remark. Let $(G; \circ, e)$ be an arbitrary group. If we define $x * y := yxy^{-2}$, then x * x = eand x * e = x and $e * x = x^{-1}$. Now consider the expressions $(x * y) * z = zyxy^{-2}z^{-2}$ and $x * (z * (e * y)) = x * (y^{-1}zy^2) = (y^{-1}zy^2)x(y^{-1}zy^2)^{-2}$. Thus, let us assume that is actually the case that $zyxy^{-2}z^{-2} = (y^{-1}zy^2)x(y^{-1}zy^2)^{-2}\cdots(*)$ in $(G; \circ, e)$. It follows that since $\varphi(x) = e * x = x^{-1}$ is a surjection, (G; *, e) is group derived, i.e., there is an operation " \circledast " such that $x * y = x \circledast y^{(-1)}$, where $y^{(-1)} \circledast y = y \circledast y^{(-1)} = e = y * y$. But this means that $x^{-1} = e * x^{-1} = e \circledast x^{(-1)} = x^{(-1)}$, i.e., $x^{-1} = x^{(-1)}$, and hence that $x * y = x \circledast y^{-1}$. In fact, the condition leads to the conclusion that G is an abelian group, i.e., yxy^{-2} becomes xy^{-1} .

Recently, J. Neggers and H. S. Kim ([10]) investigated analytic *T*-algebras and obtained useful formulas for finding some examples for various *BCK*-related algebras. We apply the same method discussed there to the class of *B*-algebras. Suppose that we set x * y := $x - \varphi(x, y)$ where $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is an arbitrary function of two variables on the real numbers *R*. If $x * x = x - \varphi(x, x) = 0$, then $\varphi(x, x) = x$, while if $x * 0 = x - \varphi(x, 0) = x$, then $\varphi(x, 0) = 0$. If the condition (III) holds, then

$$\begin{aligned} (x*y)*z &= x*y - \varphi(x*y,z) \\ &= x - \varphi(x,y) - \varphi(x*y,z) \\ &= x - \varphi(x,y) - \varphi(x - \varphi(x,y),z) \end{aligned}$$

and

$$\begin{aligned} x*(z*(0*y)) &= x - \varphi(x, z*(0*y)) \\ &= x - \varphi(x, z - \varphi(z, 0*y)) \\ &= x - \varphi(x, z - \varphi(z, -\varphi(0, y))). \end{aligned}$$

It follows that

(f)
$$x - \varphi(x, y) - \varphi(x - \varphi(x, y), z) = x - \varphi(x, z - \varphi(z, -\varphi(0, y)))$$

If φ satisfies the condition (i), then (R; *, 0) is a *B*-algebra. We summarize:

Proposition 3.5. Let $\varphi : R^2 \to R$ be an arbitrary function of two variables on the real numbers R satisfying $\varphi(x, x) = x$ and $\varphi(x, 0) = 0$. If the mapping φ satisfies the condition (f), then (R; *, 0) is a B-algebra.

4. Commutativity and center.

A B-algebra (X; *, 0) is said to be *commutative* ([11]) if a * (0 * b) = b * (0 * a) for any $a, b \in X$.

Proposition 4.1. ([11]) If (X; *, 0) is a commutative B-algebra, then

(g)
$$x * y = (0 * y) * (0 * x).$$

for any $x, y \in X$.

Proposition 4.2. ([1]) If (X; *, 0) is a B-algebra, then 0 * (0 * x) = x for any $x \in X$.

Proposition 4.3. If (X; *, 0) is a *B*-algebra with the condition (g), then X is commutative.

Proof. By applying Proposition 4.2 we obtain:

$$x * (0 * y) = (0 * (0 * y)) * (0 * x)$$

= y * (0 * x)

for any $x, y \in X$. \Box

Theorem 4.4. Let (X; *, 0) be a *B*-algebra derived from a group $(X; \circ, 0)$. Then (X; *, 0) is commutative if and only if $(X; \circ, 0)$ is commutative.

Proof. Since $x * y = x \circ y^{-1}$, we have

$$x * (0 * y) = x * (0 \circ y^{-1})$$

= $x * y^{-1}$
= $x \circ y$

and x * (0 * y) = y * (0 * x) reduces to the condition $x \circ y = y \circ x$, i.e., x and y commute in the group $(X; \circ, 0)$.

Since $x \circ y = x * (0 * y)$, $x \circ y = y \circ x$ leads to x * (0 * y) = y * (0 * x), i.e., (X; *, 0) is commutative. \Box

Let (X; *, 0) be a *B*-algebra and let $g \in X$. Define $g^n := g^{n-1} * (0 * g) \ (n \ge 1)$ and $g^0 := 0$. Note that $g^1 = g^0 * (0 * g) = 0 * (0 * g) = g$.

Proposition 4.5. If (X; *, 0) is a *B*-algebra, then for any $x, y \in X$

- (*i*). $(x * y) * y = x * y^2$;
- (*ii*). (x * y) * (0 * y) = x.

Proof. (i). Refer to [1].

(ii). It follows from (III) and (I) that (x*y)*(0*y) = x*((0*y)*(0*y)) = x*0 = x. \Box

Corollary 4.6. If (X; *, 0) is a *B*-algebra then the right cancellation law holds, i.e., y * x = y' * x implies y = y'.

Proof. Suppose that y * x = y' * x. Then

$$y = (y * x) * (0 * x)$$
 [by Proposition 4.5-(ii)]
= $(y' * x) * (0 * x)$
= $y' * ((0 * x) * (0 * x))$ [by (III)]
= $y' * 0.$
= $y.$

Proposition 4.6. If (X; *, 0) is a commutative *B*-algebra, then $(0 * x) * (x * y) = y * x^2$ for any $x, y \in X$.

Proof. If X is a commutative B-algebra then

$$\begin{array}{ll} (0*x)*(x*y) = ((0*x)*(0*y))*x & [by (IV)] \\ &= (y*x)*x & [\mbox{ Proposition 4.1}] \\ &= y*x^2. & [by \mbox{ Proposition 4.5-(i)}] \end{array}$$

Let (X; *, 0) be a *B*-algebra. Define $Z(X) := \{x \in X \mid x*(0*y) = y*(0*x), \forall y \in X\}$, and we call it the *center* of X. Note that $0 \in Z(X)$. In fact, for any $x \in X$, x = x*0 = x*(0*0). By applying Proposition 4.2 $0 \in Z(X)$.

Let (X; *, 0) be a *B*-algebra. A non-empty subset *N* of *X* is said to be a *subalgebra* ([12]) if $x * y \in N$ for any $x, y \in N$.

Theorem 4.7. If (X; *, 0) is a B-algebra, then the center Z(X) is a subalgebra of X.

Proof. For any $x, y \in X$, by (IV) and Proposition 4.2 we obtain 0 * (x * y) = (0 * (0 * y)) * x = y * x. If $\alpha, \beta \in Z(X)$, then

$$\begin{aligned} \alpha * \beta \end{pmatrix} * (0 * x) &= \alpha * ((0 * x) * (0 * \beta)) & [by (III)] \\ &= \alpha * (\beta * (0 * (0 * x))) & [\beta \in Z(X)] \\ &= \alpha * (\beta * x) & [by Proposition 4.2] \\ &= (\alpha * (0 * x)) * \beta & [by (IV)] \\ &= (x * (0 * \alpha)) * \beta & [\alpha \in Z(X)] \\ &= x * (\beta * (0 * (0 * \alpha))) & [by (III)] \\ &= x * (\beta * \alpha) & [by Proposition 4.2] \\ &= x * (0 * (\alpha * \beta)) & [by Proposition 4.2] \end{aligned}$$

for any $x \in X$. Hence Z(X) is a subalgebra of X. \Box

(

J. Neggers and H. S. Kim ([12]) introduced the notion of a normal subalgebra, i.e., a non-empty subset N of X is normal if and only if $(x * a) * (y * b) \in N$ for any $x * y, a * b \in N$. It is not known that the notion of a normal subalgebra is equivalent to the normal subgroup of the derived group. It is also interesting to prove or disprove that the center Z(X) of X is a normal subalgebra of X.

References

- 1. Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6
- 2. Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- 3. Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- 4. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- 5. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 6. Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematicae 1 (1998), 347-354.
- 7. M. Kondo and Y. B. Jun, The class of B-algebras coincides with the class of groups, Sci. Math. Japo. Online 7 (2002), 175-177.
- 8. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
- 9. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26. 10. J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japonica 53 (2001), 25-31.
- 11. J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- 12. J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 207-214.

P. J. Allen and J. Neggers Department of Mathematics University of Alabama Tuscaloosa, AL 35487-0350 U. S. A. {pallen}{jneggers}@gp.as.ua.edu

Hee Sik Kim Department of Mathematics Hanyang University Seoul 133-791, Korea heekim@hanyang.ac.kr