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Abstract. In this note, we give another proof of the close relationship of B-algebras with
groups using the observation that the zero adjoint mapping is surjective. Moreover, we find
a condition for an algebra defined on the real numbers to be a B-algebra using the analytic

method. In addition we note certain other facts about commutative B-algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([4, 5]). It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li introduced a wide class of
abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a
proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([9]) introduced
the notion of d-algebras, i.e., (I) x ∗ x = 0; (V) 0 ∗ x = 0; (VI) x ∗ y = 0 and y ∗ x = 0 imply
x = y, which is another useful generalization of BCK-algebras, and then they investigated
several relations between d-algebras and BCK-algebras as well as some other interesting
relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H.
S. Kim ([6]) introduced a new notion, called an BH-algebra, i.e., (I), (II) x∗0 = x and (VI),
which is a generalization of BCH/BCI/BCK-algebras, and defined the notions of ideals
and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded
BH-algebras. Recently J. Neggers and H. S. Kim ([11]) introduced a new notion which
appears to be of some interest, i.e., that of a B-algebra, and studied some of its properties.
M. Kondo and Y. B. Jun ([7]) proved that the class of B-algebras is equivalent in one sense
to the class of groups by using the property: x = 0 ∗ (0 ∗ x), for all x ∈ X . J. Neggers
and H. S. Kim ([11]) argued slightly differently in taking their position. In this note, we
give another proof using that the zero adjoint mapping is surjective. Moreover, we find a
condition for an algebra defined on the real numbers to be a B-algebra using the analytic
method. In addition we note certain other facts about commutative B-algebras.

2. Preliminaries.

A B-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation “∗”
satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))
for all x, y, z in X .
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If we let y := x in (III), then we have

(a) (x ∗ x) ∗ z = x ∗ (z ∗ (0 ∗ x)).

If we let z := x in (a), then we obtain also

(b) 0 ∗ x = x ∗ (x ∗ (0 ∗ x)).

Using (I) and (a), it follows that

(c) 0 = x ∗ (0 ∗ (0 ∗ x)).

We have already discussed that the three axioms (I), (II) and (III) are independent (see
[11]).

Example 2.1. Let X := {0, 1, 2, 3} be a set with the following table:

∗
0

1

2

3

0 1 2 3

0 3 2 1

1 0 3 2

2 1 0 3

3 2 1 0

Then (X : ∗, 0) is a B-algebra.

Example 2.2 ([11]). Let X be the set of all real numbers except for a negative integer −n.
Define a binary operation ∗ on X by

x ∗ y :=
n(x − y)

n + y
.

Then (X ; ∗, 0) is a B-algebra.

Lemma 2.3 ([11]). If (X ; ∗, 0) is a B-algebra, then y ∗ z = y ∗ (0 ∗ (0 ∗ z)) for all y, z ∈ X.

If we take y := 0 in Lemma 2.3, we obtain a useful formula

(d) 0 ∗ z = 0 ∗ (0 ∗ (0 ∗ z)).

Proposition 2.4 ([11]). If (X ; ∗, 0) is a B-algebra, then

(IV) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y

for any x, y, z ∈ X.
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3. B-algebras and groups.

Proposition 3.1. Let (X ; ◦, 0) be a group. If we define x ∗ y := x ◦ y−1, then (X ; ∗, 0) is
a B-algebra.

Proof. We know that x ∗ x = x ◦ x−1 = 0 and x ∗ 0 = x ◦ 0−1 = x ◦ 0 = x. For any x, y, z in
X , we see that (x∗y)∗z = (x◦y−1)◦z−1 = x◦ (z ◦y)−1 = x∗ (z ∗y−1) = x∗ (z ∗ (0∗y)). �

¿From the above Proposition 3.1 we can see that every group (X ; ◦, 0) determines a
B-algebra (X ; ∗, 0), called a group-derived B-algebra. It is then a question of interest to
determine whether or not all B-algebras are so group-derived. We claim that this is not the
case in general, and thus that this class of algebras contains the class of groups indirectly
via the group-derived principle we have explained in Proposition 3.1.

Proposition 3.2. Let (X ; ∗, 0) be a group-derived B-algebra. Define a map ϕ : X → X by
ϕ(x) := 0 ∗ x, then ϕ is a surjection.

Proof. If g ∈ X , then ϕ(g−1) = 0 ∗ g−1 = 0 ◦ (g−1)−1 = g. �

The mapping ϕ discussed in Proposition 3.2 is called a zero adjoint mapping. The
Proposition 3.2 means that if ϕ is not surjective, then the algebra (X ; ∗, 0) cannot be a
group-derived B-algebra. Hence the condition that ϕ : X → X be a surjection is certainly
necessary for the B-algebra to be group derived.

Theorem 3.3. Let (X ; ∗, 0) be a B-algebra. If the map ϕ : X → X by ϕ(x) := 0 ∗ x is a
surjection, then the algebra (X ; ∗, 0) is group derived.

Proof. Let (X ; ∗, 0) be a B-algebra. Assume the zero adjoint mapping ϕ : X → X is a
surjection. If x ∈ X , then there is y ∈ X such that x = 0 ∗ y and hence 0 ∗ (0 ∗ x) =
0 ∗ (0 ∗ (0 ∗ y)) = (0 ∗ y) ∗ 0 = 0 ∗ y = x, i.e.,

(e) 0 ∗ (0 ∗ x) = x.

Define a binary operation “ ◦ ” on X by

x ◦ y := x ∗ (0 ∗ y).

Then (X ; ∗, 0) is a group. In fact, it follows that x ◦ 0 = x ∗ (0 ∗ 0) = x ∗ 0 = x and
0 ◦ x = 0 ∗ (0 ∗ x) = x. Therefore 0 acts like an identity element on X . Also, x ◦ (0 ∗ x) =
x ∗ (0 ∗ (0 ∗ x)) = (x ∗ x) ∗ 0 = 0 and (0 ∗ x) ◦ x = (0 ∗ x) ∗ (0 ∗ x) = 0, i.e., 0 ∗ x behaves like
a multiplicative inverse for the element x with respect to the operation ◦. Finally, in order
to establish the associative law, we obtain:

x ◦ (y ◦ z) = x ∗ (0 ∗ (y ∗ (0 ∗ z))
= x ∗ ((0 ∗ z) ∗ y) [by (III)]
= x ∗ ((0 ∗ z) ∗ (0 ∗ (0 ∗ y))) [by (e)]
= (x ∗ (0 ∗ y)) ∗ (0 ∗ z) [(III)]
= (x ◦ y) ◦ z.

Note that x ◦ y−1 = x ∗ (0 ∗ y−1) = x ∗ (0 ∗ (0 ∗ y)) = x ∗ y, whence (X, ; ∗, 0) is also group
derived from the group (X ; ◦, 0) as defined. This proves the theorem. �
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Theorem 3.4. Every B-algebra is group derived.

Proof. Let ϕ : X → X be the zero adjoint mapping defined by ϕ(x) := 0 ∗ x. Let t ∈ X ,
and let x = ϕ(t) ∈ X . Then we observe that

ϕ(x) = 0 ∗ x

= (t ∗ t) ∗ x [by (I)]
= t ∗ (x ∗ (0 ∗ t)) [by (III)]
= t ∗ (x ∗ x) [x = ϕ(t) = 0 ∗ x]
= t. [ by (I), (II)]

Conssequently, ϕ is a surjective. By applying Theorem 3.3 we conclude that every B-algebra
is group derived. �
Remark. Let (G; ◦, e) be an arbitrary group. If we define x ∗ y := yxy−2, then x ∗ x = e
and x ∗ e = x and e ∗ x = x−1. Now consider the expressions (x ∗ y) ∗ z = zyxy−2z−2 and
x ∗ (z ∗ (e ∗ y)) = x ∗ (y−1zy2) = (y−1zy2)x(y−1zy2)−2. Thus, let us assume that is actually
the case that zyxy−2z−2 = (y−1zy2)x(y−1zy2)−2 · · · (∗) in (G; ◦, e). It follows that since
ϕ(x) = e ∗x = x−1 is a surjection, (G; ∗, e) is group derived, i.e., there is an operation “� ”
such that x ∗ y = x � y(−1), where y(−1) � y = y � y(−1) = e = y ∗ y. But this means that
x−1 = e ∗ x−1 = e � x(−1) = x(−1), i.e., x−1 = x(−1), and hence that x ∗ y = x � y−1. In
fact, the condition leads to the conclusion that G is an abelian group, i.e., yxy−2 becomes
xy−1.

Recently, J. Neggers and H. S. Kim ([10]) investigated analytic T -algebras and obtained
useful formulas for finding some examples for various BCK-related algebras. We apply
the same method discussed there to the class of B-algebras. Suppose that we set x ∗ y :=
x− ϕ(x, y) where ϕ : R2 → R is an arbitrary function of two variables on the real numbers
R. If x ∗ x = x − ϕ(x, x) = 0, then ϕ(x, x) = x, while if x ∗ 0 = x − ϕ(x, 0) = x, then
ϕ(x, 0) = 0. If the condition (III) holds, then

(x ∗ y) ∗ z = x ∗ y − ϕ(x ∗ y, z)
= x − ϕ(x, y) − ϕ(x ∗ y, z)
= x − ϕ(x, y) − ϕ(x − ϕ(x, y), z)

and

x ∗ (z ∗ (0 ∗ y)) = x − ϕ(x, z ∗ (0 ∗ y))
= x − ϕ(x, z − ϕ(z, 0 ∗ y))
= x − ϕ(x, z − ϕ(z,−ϕ(0, y))).

It follows that

(f) x − ϕ(x, y) − ϕ(x − ϕ(x, y), z) = x − ϕ(x, z − ϕ(z,−ϕ(0, y)))

If ϕ satisfies the condition (i), then (R; ∗, 0) is a B-algebra. We summarize:

Proposition 3.5. Let ϕ : R2 → R be an arbitrary function of two variables on the real
numbers R satisfying ϕ(x, x) = x and ϕ(x, 0) = 0. If the mapping ϕ satisfies the condition
(f), then (R; ∗, 0) is a B-algebra.
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4. Commutativity and center.

A B-algebra (X ; ∗, 0) is said to be commutative ([11]) if a ∗ (0 ∗ b) = b ∗ (0 ∗ a) for any
a, b ∈ X .

Proposition 4.1. ([11]) If (X ; ∗, 0) is a commutative B-algebra, then

(g) x ∗ y = (0 ∗ y) ∗ (0 ∗ x).

for any x, y ∈ X.

Proposition 4.2. ([1]) If (X ; ∗, 0) is a B-algebra, then 0 ∗ (0 ∗ x) = x for any x ∈ X.

Proposition 4.3. If (X ; ∗, 0) is a B-algebra with the condition (g), then X is commutative.

Proof. By applying Proposition 4.2 we obtain:

x ∗ (0 ∗ y) = (0 ∗ (0 ∗ y)) ∗ (0 ∗ x)
= y ∗ (0 ∗ x)

for any x, y ∈ X . �

Theorem 4.4. Let (X ; ∗, 0) be a B-algebra derived from a group (X ; ◦, 0). Then (X ; ∗, 0)
is commutative if and only if (X ; ◦, 0) is commutative.

Proof. Since x ∗ y = x ◦ y−1, we have

x ∗ (0 ∗ y) = x ∗ (0 ◦ y−1)
= x ∗ y−1

= x ◦ y

and x ∗ (0 ∗ y) = y ∗ (0 ∗ x) reduces to the condition x ◦ y = y ◦ x, i.e., x and y commute in
the group (X ; ◦, 0).

Since x ◦ y = x ∗ (0 ∗ y), x ◦ y = y ◦ x leads to x ∗ (0 ∗ y) = y ∗ (0 ∗ x), i.e., (X ; ∗, 0) is
commutative. �

Let (X ; ∗, 0) be a B-algebra and let g ∈ X . Define gn := gn−1 ∗ (0 ∗ g) (n ≥ 1) and
g0 := 0. Note that g1 = g0 ∗ (0 ∗ g) = 0 ∗ (0 ∗ g) = g.

Proposition 4.5. If (X ; ∗, 0) is a B-algebra, then for any x, y ∈ X

(i). (x ∗ y) ∗ y = x ∗ y2;
(ii). (x ∗ y) ∗ (0 ∗ y) = x.

Proof. (i). Refer to [1].
(ii). It follows from (III) and (I) that (x∗y)∗ (0∗y) = x∗ ((0∗y)∗ (0∗y)) = x∗0 = x. �
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Corollary 4.6. If (X ; ∗, 0) is a B-algebra then the right cancellation law holds, i.e., y∗x =
y′ ∗ x implies y = y′.

Proof. Suppose that y ∗ x = y′ ∗ x. Then

y = (y ∗ x) ∗ (0 ∗ x) [by Proposition 4.5-(ii)]
= (y′ ∗ x) ∗ (0 ∗ x)
= y′ ∗ ((0 ∗ x) ∗ (0 ∗ x)) [by (III)]
= y′ ∗ 0.

= y.

�

Proposition 4.6. If (X ; ∗, 0) is a commutative B-algebra, then (0 ∗ x) ∗ (x ∗ y) = y ∗ x2

for any x, y ∈ X.

Proof. If X is a commutative B-algebra then

(0 ∗ x) ∗ (x ∗ y) = ((0 ∗ x) ∗ (0 ∗ y)) ∗ x [by (IV)]
= (y ∗ x) ∗ x [ Proposition 4.1]
= y ∗ x2. [by Proposition 4.5-(i)]

�

Let (X ; ∗, 0) be a B-algebra. Define Z(X) := {x ∈ X |x∗(0∗y) = y∗(0∗x),∀y ∈ X}, and
we call it the center of X . Note that 0 ∈ Z(X). In fact, for any x ∈ X , x = x∗0 = x∗(0∗0).
By applying Proposition 4.2 0 ∈ Z(X).

Let (X ; ∗, 0) be a B-algebra. A non-empty subset N of X is said to be a subalgebra ([12])
if x ∗ y ∈ N for any x, y ∈ N .

Theorem 4.7. If (X ; ∗, 0) is a B-algebra, then the center Z(X) is a subalgebra of X.

Proof. For any x, y ∈ X , by (IV) and Proposition 4.2 we obtain 0∗(x∗y) = (0∗(0∗y))∗x =
y ∗ x. If α, β ∈ Z(X), then

(α ∗ β) ∗ (0 ∗ x) = α ∗ ((0 ∗ x) ∗ (0 ∗ β)) [by (III)]
= α ∗ (β ∗ (0 ∗ (0 ∗ x)) [β ∈ Z(X)]
= α ∗ (β ∗ x) [by Proposition 4.2]
= (α ∗ (0 ∗ x)) ∗ β [by (IV)]
= (x ∗ (0 ∗ α)) ∗ β [α ∈ Z(X)]
= x ∗ (β ∗ (0 ∗ (0 ∗ α))) [by (III)]
= x ∗ (β ∗ α) [by Proposition 4.2]
= x ∗ (0 ∗ (α ∗ β))

for any x ∈ X . Hence Z(X) is a subalgebra of X . �

J. Neggers and H. S. Kim ([12]) introduced the notion of a normal subalgebra, i.e., a
non-empty subset N of X is normal if and only if (x∗a)∗ (y ∗ b) ∈ N for any x∗y, a∗ b ∈ N .
It is not known that the notion of a normal subalgebra is equivalent to the normal subgroup
of the derived group. It is also interesting to prove or disprove that the center Z(X) of X
is a normal subalgebra of X .
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