B-ALGEBRAS AND GROUPS

P. J. Allen, J. Neggers and Hee Sik Kim

Received February 18, 2003

Abstract

In this note, we give another proof of the close relationship of B-algebras with groups using the observation that the zero adjoint mapping is surjective. Moreover, we find a condition for an algebra defined on the real numbers to be a B-algebra using the analytic method. In addition we note certain other facts about commutative B-algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([4,5])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[2,3] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras, i.e., (I) $x * x=0$; (V) $0 * x=0$; (VI) $x * y=0$ and $y * x=0$ imply $x=y$, which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced a new notion, called an $B H$-algebra, i.e., (I), (II) $x * 0=x$ and (VI), which is a generalization of $B C H / B C I / B C K$-algebras, and defined the notions of ideals and boundedness in BH -algebras, and showed that there is a maximal ideal in bounded $B H$-algebras. Recently J. Neggers and H. S. Kim ([11]) introduced a new notion which appears to be of some interest, i.e., that of a B-algebra, and studied some of its properties. M. Kondo and Y. B. Jun ([7]) proved that the class of B-algebras is equivalent in one sense to the class of groups by using the property: $x=0 *(0 * x)$, for all $x \in X$. J. Neggers and H. S. Kim ([11]) argued slightly differently in taking their position. In this note, we give another proof using that the zero adjoint mapping is surjective. Moreover, we find a condition for an algebra defined on the real numbers to be a B-algebra using the analytic method. In addition we note certain other facts about commutative B-algebras.

2. Preliminaries.

A B-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$
for all x, y, z in X.
2000 Mathematics Subject Classification. 06F35, 20N02.
Keywords and phrases. B-algebra, group, commutative, center.

If we let $y:=x$ in (III), then we have
(a)

$$
(x * x) * z=x *(z *(0 * x))
$$

If we let $z:=x$ in (a), then we obtain also
(b)

$$
0 * x=x *(x *(0 * x))
$$

Using (I) and (a), it follows that
(c)

$$
0=x *(0 *(0 * x))
$$

We have already discussed that the three axioms (I), (II) and (III) are independent (see [11]).

Example 2.1. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Then $(X: *, 0)$ is a B-algebra.
Example 2.2 ([11]). Let X be the set of all real numbers except for a negative integer $-n$.
Define a binary operation $*$ on X by

$$
x * y:=\frac{n(x-y)}{n+y} .
$$

Then $(X ; *, 0)$ is a B-algebra.

Lemma 2.3 ([11]). If $(X ; *, 0)$ is a B-algebra, then $y * z=y *(0 *(0 * z))$ for all $y, z \in X$.

If we take $y:=0$ in Lemma 2.3, we obtain a useful formula
(d)

$$
0 * z=0 *(0 *(0 * z)) .
$$

Proposition 2.4 ([11]). If $(X ; *, 0)$ is a B-algebra, then

$$
\begin{equation*}
x *(y * z)=(x *(0 * z)) * y \tag{IV}
\end{equation*}
$$

for any $x, y, z \in X$.
3. B-ALGEBRAS AND GROUPS.

Proposition 3.1. Let $(X ; \circ, 0)$ be a group. If we define $x * y:=x \circ y^{-1}$, then $(X ; *, 0)$ is a B-algebra.

Proof. We know that $x * x=x \circ x^{-1}=0$ and $x * 0=x \circ 0^{-1}=x \circ 0=x$. For any x, y, z in X, we see that $(x * y) * z=\left(x \circ y^{-1}\right) \circ z^{-1}=x \circ(z \circ y)^{-1}=x *\left(z * y^{-1}\right)=x *(z *(0 * y))$.
¿From the above Proposition 3.1 we can see that every group ($X ; \circ, 0$) determines a B-algebra $(X ; *, 0)$, called a group-derived B-algebra. It is then a question of interest to determine whether or not all B-algebras are so group-derived. We claim that this is not the case in general, and thus that this class of algebras contains the class of groups indirectly via the group-derived principle we have explained in Proposition 3.1.

Proposition 3.2. Let $(X ; *, 0)$ be a group-derived B-algebra. Define a map $\varphi: X \rightarrow X$ by $\varphi(x):=0 * x$, then φ is a surjection.

Proof. If $g \in X$, then $\varphi\left(g^{-1}\right)=0 * g^{-1}=0 \circ\left(g^{-1}\right)^{-1}=g$.
The mapping φ discussed in Proposition 3.2 is called a zero adjoint mapping. The Proposition 3.2 means that if φ is not surjective, then the algebra $(X ; *, 0)$ cannot be a group-derived B-algebra. Hence the condition that $\varphi: X \rightarrow X$ be a surjection is certainly necessary for the B-algebra to be group derived.
Theorem 3.3. Let $(X ; *, 0)$ be a B-algebra. If the map $\varphi: X \rightarrow X$ by $\varphi(x):=0 * x$ is a surjection, then the algebra $(X ; *, 0)$ is group derived.

Proof. Let $(X ; *, 0)$ be a B-algebra. Assume the zero adjoint mapping $\varphi: X \rightarrow X$ is a surjection. If $x \in X$, then there is $y \in X$ such that $x=0 * y$ and hence $0 *(0 * x)=$ $0 *(0 *(0 * y))=(0 * y) * 0=0 * y=x$, i.e.,

$$
\begin{equation*}
0 *(0 * x)=x \tag{e}
\end{equation*}
$$

Define a binary operation " \circ " on X by

$$
x \circ y:=x *(0 * y) .
$$

Then $(X ; *, 0)$ is a group. In fact, it follows that $x \circ 0=x *(0 * 0)=x * 0=x$ and $0 \circ x=0 *(0 * x)=x$. Therefore 0 acts like an identity element on X. Also, $x \circ(0 * x)=$ $x *(0 *(0 * x))=(x * x) * 0=0$ and $(0 * x) \circ x=(0 * x) *(0 * x)=0$, i.e., $0 * x$ behaves like a multiplicative inverse for the element x with respect to the operation o. Finally, in order to establish the associative law, we obtain:

$$
\begin{align*}
x \circ(y \circ z) & =x *(0 *(y *(0 * z)) \\
& =x *((0 * z) * y) \tag{III}\\
& =x *((0 * z) *(0 *(0 * \tag{III}\\
& =(x *(0 * y)) *(0 * z) \\
& =(x \circ y) \circ z .
\end{align*}
$$

$$
=x *((0 * z) *(0 *(0 * y))) \quad[\mathrm{by}(\mathrm{e})]
$$

Note that $x \circ y^{-1}=x *\left(0 * y^{-1}\right)=x *(0 *(0 * y))=x * y$, whence $(X, ; *, 0)$ is also group derived from the group $(X ; \circ, 0)$ as defined. This proves the theorem.

Theorem 3.4. Every B-algebra is group derived.
Proof. Let $\varphi: X \rightarrow X$ be the zero adjoint mapping defined by $\varphi(x):=0 * x$. Let $t \in X$, and let $x=\varphi(t) \in X$. Then we observe that

$$
\begin{aligned}
\varphi(x) & =0 * x \\
& =(t * t) * x \\
& =t *(x *(0 * t)) \\
& =t *(x * x) \\
& =t
\end{aligned}
$$

$$
=t *(x * x) \quad[x=\varphi(t)=0 * x]
$$

$$
[\text { by }(\mathrm{I}),(\mathrm{II})]
$$

Conssequently, φ is a surjective. By applying Theorem 3.3 we conclude that every B-algebra is group derived.
Remark. Let $(G ; \circ, e)$ be an arbitrary group. If we define $x * y:=y x y^{-2}$, then $x * x=e$ and $x * e=x$ and $e * x=x^{-1}$. Now consider the expressions $(x * y) * z=z y x y^{-2} z^{-2}$ and $x *(z *(e * y))=x *\left(y^{-1} z y^{2}\right)=\left(y^{-1} z y^{2}\right) x\left(y^{-1} z y^{2}\right)^{-2}$. Thus, let us assume that is actually the case that $z y x y^{-2} z^{-2}=\left(y^{-1} z y^{2}\right) x\left(y^{-1} z y^{2}\right)^{-2} \cdots(*)$ in $(G ; \circ, e)$. It follows that since $\varphi(x)=e * x=x^{-1}$ is a surjection, $(G ; *, e)$ is group derived, i.e., there is an operation " \circledast " such that $x * y=x \circledast y^{(-1)}$, where $y^{(-1)} \circledast y=y \circledast y^{(-1)}=e=y * y$. But this means that $x^{-1}=e * x^{-1}=e \circledast x^{(-1)}=x^{(-1)}$, i.e., $x^{-1}=x^{(-1)}$, and hence that $x * y=x \circledast y^{-1}$. In fact, the condition leads to the conclusion that G is an abelian group, i.e., $y x y^{-2}$ becomes $x y^{-1}$.

Recently, J. Neggers and H. S. Kim ([10]) investigated analytic T-algebras and obtained useful formulas for finding some examples for various $B C K$-related algebras. We apply the same method discussed there to the class of B-algebras. Suppose that we set $x * y:=$ $x-\varphi(x, y)$ where $\varphi: R^{2} \rightarrow R$ is an arbitrary function of two variables on the real numbers R. If $x * x=x-\varphi(x, x)=0$, then $\varphi(x, x)=x$, while if $x * 0=x-\varphi(x, 0)=x$, then $\varphi(x, 0)=0$. If the condition (III) holds, then

$$
\begin{aligned}
(x * y) * z & =x * y-\varphi(x * y, z) \\
& =x-\varphi(x, y)-\varphi(x * y, z) \\
& =x-\varphi(x, y)-\varphi(x-\varphi(x, y), z)
\end{aligned}
$$

and

$$
\begin{aligned}
x *(z *(0 * y)) & =x-\varphi(x, z *(0 * y)) \\
& =x-\varphi(x, z-\varphi(z, 0 * y)) \\
& =x-\varphi(x, z-\varphi(z,-\varphi(0, y)))
\end{aligned}
$$

It follows that

$$
\begin{equation*}
x-\varphi(x, y)-\varphi(x-\varphi(x, y), z)=x-\varphi(x, z-\varphi(z,-\varphi(0, y))) \tag{f}
\end{equation*}
$$

If φ satisfies the condition (i), then $(R ; *, 0)$ is a B-algebra. We summarize:
Proposition 3.5. Let $\varphi: R^{2} \rightarrow R$ be an arbitrary function of two variables on the real numbers R satisfying $\varphi(x, x)=x$ and $\varphi(x, 0)=0$. If the mapping φ satisfies the condition (f), then $(R ; *, 0)$ is a B-algebra.

4. Commutativity and center.

A B-algebra $(X ; *, 0)$ is said to be commutative ([11]) if $a *(0 * b)=b *(0 * a)$ for any $a, b \in X$.

Proposition 4.1. ([11]) If $(X ; *, 0)$ is a commutative B-algebra, then
(g)

$$
x * y=(0 * y) *(0 * x)
$$

for any $x, y \in X$.

Proposition 4.2. ([1]) If $(X ; *, 0)$ is a B-algebra, then $0 *(0 * x)=x$ for any $x \in X$.
Proposition 4.3. If $(X ; *, 0)$ is a B-algebra with the condition (g), then X is commutative.

Proof. By applying Proposition 4.2 we obtain:

$$
\begin{aligned}
x *(0 * y) & =(0 *(0 * y)) *(0 * x) \\
& =y *(0 * x)
\end{aligned}
$$

for any $x, y \in X$.

Theorem 4.4. Let $(X ; *, 0)$ be a B-algebra derived from a group $(X ; \circ, 0)$. Then $(X ; *, 0)$ is commutative if and only if $(X ; \circ, 0)$ is commutative.

Proof. Since $x * y=x \circ y^{-1}$, we have

$$
\begin{aligned}
x *(0 * y) & =x *\left(0 \circ y^{-1}\right) \\
& =x * y^{-1} \\
& =x \circ y
\end{aligned}
$$

and $x *(0 * y)=y *(0 * x)$ reduces to the condition $x \circ y=y \circ x$, i.e., x and y commute in the group $(X ; \circ, 0)$.

Since $x \circ y=x *(0 * y), x \circ y=y \circ x$ leads to $x *(0 * y)=y *(0 * x)$, i.e., $(X ; *, 0)$ is commutative.

Let $(X ; *, 0)$ be a B-algebra and let $g \in X$. Define $g^{n}:=g^{n-1} *(0 * g)(n \geq 1)$ and $g^{0}:=0$. Note that $g^{1}=g^{0} *(0 * g)=0 *(0 * g)=g$.

Proposition 4.5. If $(X ; *, 0)$ is a B-algebra, then for any $x, y \in X$
(i). $(x * y) * y=x * y^{2}$;
(ii). $(x * y) *(0 * y)=x$.

Proof. (i). Refer to [1].
(ii). It follows from (III) and (I) that $(x * y) *(0 * y)=x *((0 * y) *(0 * y))=x * 0=x$.

Corollary 4.6. If $(X ; *, 0)$ is a B-algebra then the right cancellation law holds, i.e., $y * x=$ $y^{\prime} * x$ implies $y=y^{\prime}$.

Proof. Suppose that $y * x=y^{\prime} * x$. Then

$$
\begin{align*}
y & =(y * x) *(0 * x) & \text { [by Proposition 4.5-(ii)] } \tag{ii}\\
& =\left(y^{\prime} * x\right) *(0 * x) & \\
& =y^{\prime} *((0 * x) *(0 * x)) & \tag{III}\\
& =y^{\prime} * 0 . & \\
& =y . &
\end{align*}
$$

Proposition 4.6. If $(X ; *, 0)$ is a commutative B-algebra, then $(0 * x) *(x * y)=y * x^{2}$ for any $x, y \in X$.

Proof. If X is a commutative B-algebra then

$$
\begin{aligned}
(0 * x) *(x * y) & =((0 * x) *(0 * y)) * x \\
& =(y * x) * x
\end{aligned}
$$

[by (IV)]

$$
=y * x^{2} . \quad[\text { by Proposition } 4.5-(\mathrm{i})]
$$

Let $(X ; *, 0)$ be a B-algebra. Define $Z(X):=\{x \in X \mid x *(0 * y)=y *(0 * x), \forall y \in X\}$, and we call it the center of X. Note that $0 \in Z(X)$. In fact, for any $x \in X, x=x * 0=x *(0 * 0)$. By applying Proposition $4.20 \in Z(X)$.

Let $(X ; *, 0)$ be a B-algebra. A non-empty subset N of X is said to be a subalgebra ([12]) if $x * y \in N$ for any $x, y \in N$.
Theorem 4.7. If $(X ; *, 0)$ is a B-algebra, then the center $Z(X)$ is a subalgebra of X.
Proof. For any $x, y \in X$, by (IV) and Proposition 4.2 we obtain $0 *(x * y)=(0 *(0 * y)) * x=$ $y * x$. If $\alpha, \beta \in Z(X)$, then

$$
\begin{array}{rlr}
(\alpha * \beta) *(0 * x) & =\alpha *((0 * x) *(0 * \beta)) & {[\text { by }(\mathrm{III})]} \tag{III}\\
& =\alpha *(\beta *(0 *(0 * x)) & {[\beta \in Z(X)]} \\
& =\alpha *(\beta * x) & {[\text { by Proposition } 4.2]} \\
& =(\alpha *(0 * x)) * \beta & {[\text { by (IV)] }} \\
& =(x *(0 * \alpha)) * \beta & {[\alpha \in Z(X)]} \\
& =x *(\beta *(0 *(0 * \alpha))) & {[\text { by }(\mathrm{III})]} \\
& =x *(\beta * \alpha) & {[\text { by Proposition 4.2] }} \\
& =x *(0 *(\alpha * \beta)) &
\end{array}
$$

for any $x \in X$. Hence $Z(X)$ is a subalgebra of X.
J. Neggers and H. S. Kim ([12]) introduced the notion of a normal subalgebra, i.e., a non-empty subset N of X is normal if and only if $(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$. It is not known that the notion of a normal subalgebra is equivalent to the normal subgroup of the derived group. It is also interesting to prove or disprove that the center $Z(X)$ of X is a normal subalgebra of X.

References

1. Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
2. Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
3. Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
4. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
5. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
6. Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematicae 1 (1998), 347-354.
7. M. Kondo and Y. B. Jun, The class of B-algebras coincides with the class of groups, Sci. Math. Japo. Online 7 (2002), 175-177.
8. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
9. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
10. J. Neggers and H. S. Kim, On analytic T-algebras, Sci. Math. Japonica 53 (2001), 25-31.
11. J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
12. J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 207-214.

P. J. Allen and J. Neggers

Department of Mathematics
University of Alabama
Tuscaloosa, AL 35487-0350
U. S. A.
\{pallen\}\{jneggers\}@gp.as.ua.edu
Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
heekim@hanyang.ac.kr

