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SUM THEOREMS FOR C-SPACES
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Abstract.

Let X be a space with a hereditarily closure-preserving closed cover F consisting
of C-spaces. In this paper we prove the following: (1) if X is paracompact, then X is
a C-space, (2) if X is hereditarily collectionwise normal, then X is a C-space.

1 Introduction

In this paper we assume that all spaces are normal unless otherwise stated. We refer
the readers to [3] for dimension theory.

If A and B are collections of subsets of a space X , then A < B means that A is a
refinement of B, i.e. for every A ∈ A there exists B ∈ B such that A ⊂ B. Notice that A
need not be a cover even if B is a cover.

Haver [7] introduced the notion of C-spaces for the class of metric spaces. Addis and
Gresham [1] extended this notion to normal spaces. A space X is a C-space if for every
countable collection {Gi : i ∈ N} of open covers of X there exists a countable collection
{Hi : i ∈ N} of collections of pairwise disjoint open subsets of X such that Hi < Gi for
every i ∈ N and

⋃∞
i=1 Hi covers X . We call {Hi : i ∈ N} a C-refinement of {Gi : i ∈ N}.

In particular if all Hi are discrete, then we call {Hi : i ∈ N} a discrete C-refinement of
{Gi : i ∈ N}.

It is well-known that every hereditarily paracompact countable-dimensional space is a
C-space and every C-space is A-weakly infinite-dimensional. Pol [9] constructed a com-
pact metrizable C-space which is not countable-dimensional. However, it is still unknown
whether every compact A-weakly infinite-dimensional metrizable space is a C-space.

Let X be a space with a closed cover F consisting of A-weakly infinite-dimensional
subspaces. Hadziivanov [6] proved that X is A-weakly infinite-dimensional provided that
X is countably paracompact and F is locally finite. Polkowski [10] proved that X is A-
weakly infinite-dimensional provided that X is hereditarily normal and F is hereditarily
closure-preserving. Here a collection {As : s ∈ S} of subsets of a space X is hereditarily
closure-preserving if for every collection {Bs : s ∈ S}, where Bs ⊂ As for every s ∈ S,
we have Cl(

⋃
s∈S Bs) =

⋃
s∈S ClBs. Let us note that every locally finite collection is

hereditarily closure-preserving. By using the same method of Polkowski [10], we can easily
show that Hadziivanov’s result above remains true if ‘F is locally-finite’ is weakened to ‘F
is hereditarily closure-preserving’.

Let X be a space with a closed cover F consisting of C-spaces. Addis and Gresham [1]
proved that X is a C-space provided that X is paracompact and hereditarily collectionwise
normal and F is locally finite.

Hence it is natural to ask whether a hereditarily closure-preserving sum theorem for C-
spaces holds. In this paper we shall prove the following theorem and some related theorems.
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1.1. Theorem. (i) If a paracompact space X can be represented as the union of a heredi-
tarily closure-preserving collection of closed C-spaces, then X is a C-space.
(ii) If a hereditarily collectionwise normal space X can be represented as the union of a
hereditarily closure-preserving collection of closed C-spaces, then X is a C-space.

1.2. Remark. In Theorem 1.1.(i), ‘paracompact’ can be replaced by ‘countably para-
compact’ since a countably paracompact space with a hereditarily closure-preserving closed
cover consisting of C-spaces is paracompact. Indeed, this is a consequence of the following
two facts (1) and (2).
(1) Every countably paracompact C-space is paracompact (see a remark after the proof of
Lemma 2.1 below).
(2) If a space X can be represented as the union of a hereditarily closure-preserving
collection of closed paracompact spaces, then X is paracompact(cf. [4, 5.1.G]).

2 Hereditarily Closure-preserving Sum Theorems for C-spaces

We begin with basic symbols. For a collection A of subsets of a space X and for Y ⊂ X
we write A|Y for {A ∩ Y : A ∈ A}, ClA for {ClA : A ∈ A} and

⋃A for
⋃{A : A ∈ A}.

2.1. Lemma. Let X be a countably paracompact C-space. Then for every collection
{Gi : i ∈ N} of open covers of X there exists a discrete C-refinement of {Gi : i ∈ N}.
Proof. Since X is a C-space, take a C-refinement {Ui : i ∈ N} of {Gi : i ∈ N}. We set
Ui =

⋃Ui for every i ∈ N. Obviously, {Ui : i ∈ N} is a countable open cover of X . Thus
there exists an open cover {Vi : i ∈ N} of X such that ClVi ⊂ Ui for every i ∈ N. Let us
set H(U) = U ∩ Vi for every U ∈ Ui. The collection Hi = {H(U) : U ∈ Ui} is discrete.
Obviously, we have Hi < Gi for every i ∈ N and X =

⋃⋃∞
i=1 Hi. This completes the proof

of Lemma 2.1.

¿From the above lemma it follows that every countably paracompact C-space is para-
compact.

The following lemma is easily checked.

2.2. Lemma. Let E be a closed subset of a collectionwise normal space X. For every
discrete collection U of open subsets of E there exists a discrete collection V of open subsets
of X which satisfies V|E = U .
2.3. Lemma. Let E be a closed subset of a hereditarily collectionwise normal space X.
For every collection U of pairwise disjoint open subsets of E there exists a collection V of
pairwise disjoint open subsets of X which satisfies V|E = U .

Proof. Let U = {Us : s ∈ S} and Y = (X − E) ∪ ⋃{Us : s ∈ S}. Since ClY U = {ClY Us :
s ∈ S} is a discrete collection of closed subsets of Y , by collectionwise normarity of Y , there
exists a discrete collection V = {Vs : s ∈ S} of open subsets of Y such that ClY Us ⊂ Vs for
every s ∈ S. As Y is an open subset of X , Vs is an open subset of X for every s ∈ S. We
get the required collection V = {Vs : s ∈ S}.
2.4. Lemma. Let X be a countably paracompact and collectionwise normal space which is
the union of a closed subspace E and a C-space F . If {Gi : i ∈ N}, where Gi = {Gλ : λ ∈ Λi},
is a collection of open covers of X and {Hi : i ∈ N}, where Hi = {Hλ : λ ∈ Λi}, is a discrete
C-refinement of {Gi|E : i ∈ N} in E such that Hλ ⊂ Gλ for every λ ∈ Λi, then there exists
a discrete C-refinement {H̃i : i ∈ N}, where H̃i = {H̃λ : λ ∈ Λi}, of {Gi : i ∈ N} in X such
that H̃λ ⊂ Gλ and H̃λ ∩E = Hλ for every λ ∈ Λi.
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Proof. By Lemma 2.2, we can take a discrete collection H′
i = {H ′

λ : λ ∈ Λi} of open
subsets of X for every i ∈ N such that H ′

λ ⊂ Gλ and H ′
λ ∩ E = Hλ for every λ ∈ Λi. Take

a closed Gδ-set Z in X such that E ⊂ Z ⊂ ⋃⋃∞
i=1 H′

i. Let X − Z =
⋃∞

n=1Kn, where Kn

is a closed subset of X . For every n ∈ N take two open subsets Un and Vn of X such that
Z ⊂ Un,Kn ⊂ Vn and ClUn ∩ ClVn = ∅.

Represent the set N of all positive integers as the union
⋃∞

n=1Nn of infinite sets, where
Nn∩Nm = ∅ whenever n �= m. Since Kn is a C-space, by Lemma 2.1, for every i ∈ Nn there
exists a discrete C-refinement {Oi : i ∈ Nn}, where Oi = {Oλ : λ ∈ Λi}, of {Gi|Kn : i ∈ Nn}
in Kn such that Oλ ⊂ Gλ for every λ ∈ Λi. By Lemma 2.2, for every i ∈ Nnthere exists
a discrete collection O′

i = {O′
λ : λ ∈ Λi} of open subsets of X such that O′

λ ∩ Kn = Oλ,
O′

λ ⊂ Gλ and O′
λ ⊂ Vn for every λ ∈ Λi. For every i ∈ N and every λ ∈ Λi, choose

n ∈ N with i ∈ Nn and let H̃λ = (H ′
λ ∩ Un) ∪ O′

λ. Let us set H̃i = {H̃λ : λ ∈ Λi} for
every i ∈ N. Obviously, H̃λ ⊂ Gλ and H̃λ ∩ E = Hλ for every i ∈ N and every λ ∈ Λi,
and

⋃⋃∞
i=1 H̃i = X because X − Z =

⋃∞
n=1Kn. It remains to prove that H̃i is discrete

for every i ∈ N. For every i ∈ N take n ∈ N such that i ∈ Nn. Since the collection
H′′

i = {H ′
λ ∩ Un : λ ∈ Λi} and O′

i are discrete, and since we have
⋃H′′

i ⊂ Un,
⋃O′

i ⊂ Vn

and ClUn ∩ ClVn = ∅, H̃i is discrete. This completes the proof of Lemma 2.4.

Similarly to the proof of Lemma 2.4, we obtain the next lemma by using Lemma 2.3
instead of Lemma 2.2 and by replacing ‘discrete C-refinement’ by ‘C-refinement’.

2.5. Lemma. Let X be a hereditarily collectionwise normal space which is the union of
a closed subspace E and a C-space F . If {Gi : i ∈ N}, where Gi = {Gλ : λ ∈ Λi}, is
a collection of open covers of X and {Hi : i ∈ N}, where Hi = {Hλ : λ ∈ Λi}, is a C-
refinement of {Gi|E : i ∈ N} in E such that Hλ ⊂ Gλ for every λ ∈ Λi, then there exists
a C-refinement {H̃i : i ∈ N}, where H̃i = {H̃λ : λ ∈ Λi}, of {Gi : i ∈ N} in X such that
H̃λ ⊂ Gλ and H̃λ ∩E = Hλ for every λ ∈ Λi.

2.6. Proof of Theorem 1.1.(i) Suppose that X is paracompact and is the union of a
hereditarily closure-preserving cover {Fα : α < ξ} such that Fα is a closed C-space. Let
{Gi : i ∈ N}, where Gi = {Gλ : λ ∈ Λi}, be a collection of open covers of X for every
i ∈ N. Let Eα =

⋃
β<α Fβ for every α ≤ ξ. For every α ≤ ξ, inductively, we shall construct

a collection Hα
i = {Hα

λ : λ ∈ Λi} of open subsets of Eα for every i ∈ N satisfying the
following conditions:

{Hα
i : i ∈ N} is a discrete C-refinement of {Gi|Eα : i ∈ N} such that, for every

λ ∈ Λi and every i ∈ N, Hα
λ ⊂ Gλ and if β < α, then Hα

λ ∩ Eβ = Hβ
λ .

The space X will be a C-space if we complete the induction, since {Hξ
i : i ∈ N} is then a

C-refinement of {Gi : i ∈ N}.
First we set H0

i = {∅} for every i ∈ N. Assume that a sequence {Hβ
i : i ∈ N} has been

constructed for every β < α. We shall construct a sequence {Hα
i : i ∈ N}. If α = β+1, then

applying Lemma 2.4 to the case where X = Eα, E = Eβ , F = Fα,Gi = Gi|Eα and Hi = Hβ
i ,

we obtain the required sequence {Hα
i : i ∈ N}.

In the case when α is a limit number, let us set

Hα
λ =

⋃

β<α

Hβ
λ for every λ ∈ Λi and Hα

i = {Hα
λ : λ ∈ Λi}.
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Since {Fβ : β < α} is hereditarily closure-preserving, Hα
λ = Eα − ⋃

β<α(Fβ −Hβ+1
λ ) is

open in Eα. Thus Hα
i is a collection of open subsets of Eα.

As Hβ
λ ⊂ Gλ for every β < α, we have Hα

λ =
⋃

β<α H
β
λ ⊂ Gλ for every λ ∈ Λi.

Clearly Eα ⊃ ⋃⋃∞
i=1 Hα

i . Consider an arbitrary point x ∈ Eα. Take β0 < α such that
x ∈ Eβ0 . Since

⋃∞
i=1 Hβ0

i is a cover of Eβ0 , there are i ∈ N and λ ∈ Λi such that x ∈ Hβ0
λ

Since x ∈ Hβ0
λ ⊂ Hα

λ ∈ Hα
i , we have Eα ⊂ ⋃⋃∞

i=1 Hα
i . Thus the equality Eα =

⋃⋃∞
i=1 Hα

i

holds.
It is easy to see that Hα

λ ∩Eβ = Hβ
λ for every β < α.

It remains to prove that Hα
i is discrete in Eα for every i ∈ N. First, we show that

ClHα
i is pairwise disjoint. Assume on the contrary that there exist x ∈ X and λ, λ′ ∈ Λi

such that λ′ �= λ and x ∈ ClHα
λ ∩ ClHα

λ′ . We have ClHα
λ = Cl(

⋃
β<α(H

α
λ ∩ Fβ)) =⋃

β<α Cl(H
α
λ ∩ Fβ), because {Fβ : β < α} is hereditarily closure-preserving. Take β < α

such that x ∈ Cl(Hα
λ ∩Fβ) ⊂ Cl(Hα

λ ∩Eβ+1) = ClHβ+1
λ . Similarly, we can take β′ < α such

that x ∈ ClHβ′+1
λ′ . Thus x ∈ ClHβ′′

λ ∩ClHβ′′
λ′ , where β′′ = max{β, β′}+1, which contradicts

the discreteness of Hβ′′
i . Next, we show that ClHα

i is closure-preserving. It suffices to show
that the set

F =
⋃

{ClHα
λ : λ ∈M}

is closed in Eα for every M ⊂ Λi. We have

F =
⋃

{
⋃

β<α

Cl(Hα
λ ∩ Fβ) : λ ∈M}

=
⋃

β<α

⋃
{Cl(Hα

λ ∩ Fβ) : λ ∈M}

=
⋃

β<α

⋃
{Cl(Hβ+1

λ ∩ Fβ) : λ ∈M}

because the equalities Hα
λ ∩Fβ = Hα

λ ∩ (Eβ+1 ∩Fβ) = (Hα
λ ∩Eβ+1)∩Fβ = Hβ+1

λ ∩Fβ hold.
Hβ+1

λ being discrete in Eβ+1,
⋃{Cl(Hβ+1

λ ∩Fβ) : λ ∈ M} is closed in Fβ . Since {Fβ : β < α}
is hereditarily closure-preserving, F is closed in Eα. Since a closure-preserving, pairwise
disjoint collection of closed sets is discrete, Hα

i is discrete in Eα. This completes the proof
of Theorem 1.1.(i).

Similarly, we can prove (ii) by using Lemma 2.5 instead of Lemma 2.4 and by omitting
the discussion on discreteness.

3 Countable Sum Theorems for C-spaces

Let X be a space with a countable closed cover F . Levšenko [8] proved that X is
A-weakly infinite-dimensional provided that X is countably paracompact (or hereditarily
normal) and each F ∈ F is A-weakly infinite-dimensional. On the other hand, Addis
and Gresham [1] proved that X is a C-space provided that X is hereditarily collectionwise
normal and each F ∈ F is a C-space. This result is a counterpart for C-spaces of Levšenko’s
result in the case when X is hereditarily normal.

As an application of a selection theorem to sum theorems, Gutev and Valov [5] obtained
the following countable sum theorem for C-spaces.

3.1. Theorem (Gutev and Valov [5]). If a paracompact space X can be represented as
the union of a countable collection of closed C-spaces, then X is a C-space.
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As stated in Remark 1.2, every countably paracompact C-space is paracompact. It is
also easily proved that a collectionwise normal space is paracompact if it is the union of
countably many paracompact closed subspaces. Thus, Theorem 3.1 can be restated as the
following corollary; here, we give a direct proof as an application of our arguments.

3.2. Corollary. If a countably paracompact and collectionwise normal space X can be
represented as the union of a countable collection of closed C-spaces, then X is a C-space.

Proof. Suppose that X is the union of a countable cover {Fi : i ∈ N} such that Fi is a
closed C-space. Let {Gi : i ∈ N} be a collection of open covers of X . Represent the set N

of all positive integers as the union
⋃∞

j=1 Nj of infinite sets, where Nj ∩Nk = ∅ whenever
j �= k. As Fj is a C-space, by Lemma 2.1, there exists a discrete C-refinement {Hi : i ∈ Nj}
of {Gi|Fj : i ∈ Nj}. By Lemma 2.2, there exists a discrete collection H̃i of open subsets of
X for every i ∈ Nj such that H̃i < Gi and H̃i|Fj = Hi. Then Fj ⊂ ⋃⋃

i∈Nj
H̃i, and thus

{H̃i : i ∈ N} is a C-refinement of {Gi : i ∈ N}. Corollary 3.2 has been proved.

Corollary 3.2 is a counterpart for C-spaces of Levšenko’s result in the case when X is
countably paracompact.

In Corollary 3.2 the assumption of collectionwise normality of X can not be dropped.

3.3. Example. Bing [2] constructed a perfectly normal space X which is not collectionwise
normal. What we need is the fact that X has an uncountable discrete closed subset F0 such
that X − F0 is discrete. Since X is perfectly normal, there are countably many closed
subsets Fn, n ∈ N, such that X − F0 =

⋃∞
n=1 Fn. As Fn is discrete for every n < ω, Fn

is a C-space for every n < ω. As X =
⋃

n<ω Fn, X is the union of countably many closed
C-spaces. On the other hand, since X is perfectly normal, X is countably paracompact.
Since X is not collectionwise normal, X is not a C-space (see Remark 1.2.(1)).

4 Sum Theorems for Cf -spaces

Not all finite-dimensional spaces are C-spaces(See [1]). We introduce the notion of the
class of Cf -spaces which contains all finite-dimensional spaces. A space X is a Cf -space if
for every countable collection {Gi : i ∈ N} of finite open covers of X there exists a countable
collection {Hi : i ∈ N} of pairwise disjoint collections of open subsets ofX such thatHi < Gi

for every i ∈ N and
⋃∞

i=1 Hi covers X . We call {Hi : i ∈ N} a Cf -refinement of {Gi : i ∈ N}.
In particular if all Hi are discrete, then we call {Hi : i ∈ N} a discrete Cf -refinement of
{Gi : i ∈ N}.

It is easily seen that every C-space is a Cf -space and every Cf -space is A-weakly infinite-
dimensional. Addis and Gresham [1] proved that all finite-dimensional, paracompact spaces
are C-spaces. By the same proof, we can show that all finite-dimensional spaces are Cf -
spaces.

4.1. Proposition. All finite-dimensional spaces are Cf -spaces.

Proof. Let X be a space with dimX = n. Consider a collection {Gi : i ∈ N} of finite
open covers of X . Applying Ostrand’s theorem (see [4, p.184]) to the finite open cover
G = {G1 ∩ G2 ∩ ... ∩Gn+1 : Gi ∈ Gi for i = 1, 2, ..., n+ 1} of X we obtain a refinement U
of the cover G which can be represented as the union of n+1 collections U1, U2,..., Un+1 of
pairwise disjoint open sets. Letting

Hi = Ui for i ≤ n+ 1 and Hi = {∅} for i > n+ 1

we get the required collection {Hi : i ∈ N}.
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The following Lemmas 4.2, 4.3 and 4.4 are parallel to Lemmas 2.1, 2.2 and 2.3 respec-
tively, and Lemma 4.5 is parallel to Lemmas 2.4 and 2.5. The proofs are left to the reader
since they are similar.

4.2. Lemma. Let X be a countably paracompact Cf -space. Then for every collection
{Gi : i ∈ N} of finite open covers of X there exists a discrete Cf -refinement of {Gi : i ∈ N}.
4.3. Lemma. Let E be a closed subset of a space X. For every finite discrete collection U
of open subsets of E there exists a discrete collection V of open subsets of X which satisfies
V|E = U .

4.4. Lemma. Let E be a closed subset of a hereditarily normal space X. For every
finite collection U of pairwise disjoint open subsets of E there exists a finite collection V of
pairwise disjoint open subsets of X which satisfies V|E = U .

4.5. Lemma. Let X be a countably paracompact (resp. hereditarily normal) space which is
the union of a closed subspace E and a Cf -space F . If {Gi : i ∈ N}, where Gi = {Gλ : λ ∈
Λi}, is a collection of finite open covers of X and {Hi : i ∈ N}, where Hi = {Hλ : λ ∈ Λi},
is a discrete Cf -refinement (resp. Cf -refinement) of {Gi|E : i ∈ N} such that Hλ ⊂ Gλ for
every λ ∈ Λi, then there exists a discrete Cf -refinement (resp. Cf -refinement) {H̃i : i ∈ N}
of {Gi : i ∈ N}, where H̃i = {H̃λ : λ ∈ Λi}, such that H̃λ ⊂ Gλ and H̃λ ∩E = Hλ for every
λ ∈ Λi.

By using the same methods as the proofs of Theorem 1.1 and Corollary 3.2, we obtain the
hereditarily closure-preserving sum theorem and the countable sum theorem for Cf -spaces.

4.6. Theorem. (i) If a space X is either countably paracompact or hereditarily normal,
and can be represented as the union of a hereditarily closure-preserving collection of closed
Cf -spaces, then X is a Cf -space.
(ii) If a space X is either countably paracompact or hereditarily normal, and can be repre-
sented as the union of a countable collection of closed Cf -spaces, then X is a Cf -space.

4.7. Remark. It is unknown whether hereditarily normal case of Theorem 4.6.(i) remains
true if ‘Cf ’ is replaced by ‘C’, while Theorem 4.6.(ii) is not true for C-spaces as we showed
in Example 3.4 above. Both Theorem 4.6.(i) and (ii) are parallel to the results for A-weakly
infinite dimensional spaces stated in the introduction.

References

[1] D. F. Addis and J. H. Gresham, A class of infinite-dimensional spaces, Part I: Dimension
theory and Alexandroff’s Problem, Fund. Math. 101(1978), 195-205.

[2] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3(1951), 175-186.

[3] R. Engelking, General Topology, Heldermann Verlag, Lemgo, 1989.

[4] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995.

[5] V. Gutev and V. Valov, Continuous selections and C-spaces, Proc. Amer. Math. Soc. 130
(2002), 233-242.

[6] N. G. Hadziivanov, On infinite-dimensional spaces, Bull. Acad. Pol. Sci. Sér. Math. 19(1971),
491-500.

[7] W. E. Haver, A covering property for metric spaces, Topology Conference at Virginia Poly-
technic Institute 1973, Lecture Notes in Math. 375(1974), 108-113.
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