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INEQUALITIES ON DERIVATIVES OF HARMONIC BERGMAN

FUNCTIONS
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Abstract. We give a necessary and suÆcient condition for positive measures which

satisfy a Carleson type inequality for the harmonic Bergman space on the upper half-

space of Euclidean spaces.

1. Introduction

Let H be the upper half-space of the n-dimensional Euclidean space Rn (n � 2), that

is, H = fz = (x; y) 2 R
n ; y > 0g, where we have written a point z 2 R

n as z = (x; y) with

x = (x1; � � � ; xn�1) 2 R
n�1 and y 2 R. For 0 < p <1, let bp = bp(H;dV ) be the class of

all harmonic functions u on H such that

k u kp=
�Z

H

jujpdV
�1=p

<1

where dV denotes the Lebesgue volume measure on H. The class bp is called the harmonic

Bergman space. Properties of functions in the harmonic Bergman space on the upper half-

space were studied by Ramey and Yi [11] when 1 � p < 1, and by the author [13] when

0 < p � 1.

Let � and � be �-�nite positive Borel measures on H. We consider conditions on � and

� for which there exists a constant C > 0 such that
R
H
jujd� � C

R
H
jDyujd� for all u in b1,

where Dy denotes the di�eretiation operator with respect to y. More generally, we have the

problem of determining conditions on � and � such that
R
H
jD�ujpd� � C

R
H
jDm

y ujpd�,
where � is a multi-index and D� is the corresponding the partial di�erentiation operator.

Such inequalities on the unit disk � in the complex plane were studied by Stegenga, and

multipliers of the Dirichlet space were characterized in [12]. When d� = (1 � j�j)rdA and

r � 1, Stegenga proved that �nite positive Borel measures � and � on the unit disk satisfy

the inequality
R
�
jf j2d� � C

R
�
jf 0j2d� for all holomorphic functions f; f(0) = 0 if and

only if there is a constant K such that �(SI) � KjIjr for any interval I in the unit circle,

where dA denotes the Lebesgue area measure, jIj denotes the normalized arc length of I,

and SI is the corresponding Carleson square over I. It was also proved that when 0 � r < 1

such measures are those satisfying �([SIj ) � KCap([Ij ) for all �nite disjoint collections of
intervals fIjg, where Cap is an appropriate Bessel capacity ( if r < 0 any �nite Borel measure

satis�es this inequality ). It is known that these characterizations can be generalized to the

case of p > 1 ( see also [12] ). When 0 < p � 1, d� = (1�j�j)rdA, and �1 < r � p�1, Ahern

and Jevti�c [1] proved that there is a constant C > 0 such that
R
�
jf jpd� � C

R
�
jf 0jpd�

if and only if �(SI) � KjIj2�p+r. Using this result, Ahern and Jevti�c characterized inner

multipliers of the Besov space in case 0 < p � 1. Such investigations on the unit ball of

C
n are in [3]. In these investigations, when p > 1 necessary and suÆcient conditions were
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not obtained completely. It was also shown that, in general, the above condition is not

necessary. When 0 < p � 1 and d� = yrdV , such a inequality on the upper half-space H

of Rn was studied by author [13]. For the inequality
R
�
jf jpd� � C

R
�
jf jpd� on the unit

disk, the properties of measures satisfying the inequality were studied in [6], [7], and [10],

and partial results were obtained for more general measures � and �.

If � = (�1; � � � ; �n) is a multi-index of nonnegative integers with order `, then D� de-

notes the partial di�erentiation operator @`=@x�11 � � � @x�n�1
n�1 @y�n . We also use the absolute

value symbol j � j to denote the Euclidean norm in R
n. For z = (x; y) 2 H, let �z = (x;�y).

The pseudohyperbolic metric � in H is de�ned by �(z;w) = jw � zj=j �w � zj. It is clear

that � is invariant under horizontal translations. Let D"(w) = fz 2 H ; �(z;w) < "g
when 0 < " < 1. For w = (s; t) 2 H, D"(w) is a Euclidean ball whose center and radius are�
s;
1 + "2

1� "2
t
�
and

2"t

1� "2
respectively. It follows that there is a constant C = C" > 0 such that

C�1tn � V (D"(w)) � Ctn for all w 2 H. Let S(w) = fz = (x; y) 2 H ; jx� sj < t; y < 2tg.
S(w) is called a Carleson box. We now state our main result in this paper.

Theorem 1. Let 0 < p � 1 and `, m be nonnegative integers. Suppose that � is a

�-�nite positive Borel measure on H, d� = !dV and ! satis�es the (Aq)@-condition for

some 1 < q <1. Then, the following (1) � (3) are equivalent.

(1) There is a constant C > 0 such thatZ
H

jD�ujpd� � C

Z
H

jDm

y ujpd�

for all u 2 bp and multi-indices � of order `.

(2) There is a constant C > 0 such thatZ
H

jD`

y
ujpd� � C

Z
H

jDm

y
ujpd�

for all u 2 bp.

(3) There are constants K > 0 and 0 < " < 1 such that �(S(w)) � Kt(`�m)p�(D"(w))

for all w = (s; t) 2 H.

In x2, we give the notation and some preliminary results. In Theorem 1, we assume that

d� = !dV and ! satis�es (Ap)@ -condition. We de�ne and discuss these conditions. The

(Ap)@-condition on the unit disk of the complex plane is de�ned in [10]. In the de�nition of

the (Ap)@ -condition on the unit disk, the normalized reproducing kernel in the holomorphic

Bergman space is used. However, on the upper half-space of Rn, we cannot use arguments

in the complex plane. Therefore, we will extend the notion of the (Ap)@-condition to H

of Rn using another function. In x3, we give a suÆcient condition for measures � and �

which satisfy the inequality in (1) of Theorem 1. A necessary condition for the inequality

in (2) of Theorem 1 is shown in x4. In x3 and x4, we will not assume that ! satis�es the

(Ap)@-condition. In x5, assuming that ! satis�es the (Ap)@-condition, we give the proof of

Theorem 1.

Throughout this paper, C will denote a positive constant whose value is not necessary

the same at each occurrence; it may vary even within a line.
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2. Preliminaries

In this section, we state some preliminary results for our investigations. The following

lemma is in [13].

Lemma 1. Let 0 < " < 1. Then, the following are true.

(1) If z;w; � are in H and �(z;w) < ", then C�1j�� � zj � j�� � wj � Cj�� � zj with a

positive constant C depending only on ".

(2) If z = (x; y); w = (s; t) are in H and �(z;w) < ", then C�1y � t � Cy with a

positive constant C depending only on ".

(3) If 0 < " < 1=2 then there exist a positive integer N and a sequence f�jg in H

satisfying the following conditions : (a) H = [D"(�j), (b) any point in H belongs to at

most N of the sets D2"(�j).

For a function u on H and Æ > 0, let �Æu denote a function on H de�ned by �Æu(x; y) =

u(x; y + Æ), and let T p = f�Æu ; u 2 bp; Æ > 0g. The following lemma is stated in [13].

Lemma 2. Let 0 < p � 1. Then, the following are true.

(1) For any u 2 bp, there is a constant C > 0 such that jD�u(s; t)j � C=tn=p+j�j for all

(s; t) 2 H.

(2) For any u 2 bp, there is a constant C > 0 such that j(D��Æu)(s; t)j � C=(t+Æ)n=p+j�j

for all (s; t) 2 H.

The following lemma is useful and stated in [11, Lemma 3.1]

Lemma 3. Let 0 < c < 1. Then, there is a constant C > 0 depending on c and n such

that Z
H

y�c

j �w � zjn dV (z) � Ct�c

for all w = (s; t) 2 H.

For w = (s; t) 2 H, let Pw be the Poisson kernel on the upper half-space H, that is,

Pw(x) = P (s � x; t) = nt=(js� xj2 + t2)n=2 (x 2 @H) ( where n = 2=(nV (B n)), and Bn

denotes the unit ball in Rn ). The harmonic extension of this function to H is P (s�x; t+y).

If z = (x; y) 2 H, then we may write Pw(z). We note that Pw(z) = n(t + y)=j �w � zjn,
jD�

z
Pw(z)j � C=j �w � zjn+j�j�1, and D�

z
Pw(z) = (�1)�1+���+�n�1D�

w
Pw(z). Let m be a

nonnegative integer and let cm = (�2)m=m!. The following Lemma 4 is given in [13].

Lemma 4. Let 0 < p � 1. If u 2 T p, then

u(w) = �2cm+k
Z
H

ym+k(Dm

y u)(z)Dk+1
y Pw(z)dV (z)

for all m;k � 0 and w 2 H.

We show that Lemma 4 is also valid for u 2 bp when the integer k is suÆciently large.

Lemma 5. Let 0 < p � 1 and k be a nonnegative integer such that k > n=p. If u 2 bp,

then

u(w) = �2cm+k
Z
H

ym+k(Dm

y
u)(z)Dk+1

y
Pw(z)dV (z)
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for all m � 0 and w 2 H.

Proof. Let u 2 bp and k > n=p. Then, Lemma 4 implies that

�Æu(w) = �2cm+k
Z
H

ym+k(Dm

y
�Æu)(z)D

k+1
y

Pw(z)dV (z)

for allm � 0 and w 2 H. We show that the integrand is dominated by a integrable function

y�c=j �w�zjn (0 < c < 1) for all Æ > 0. In fact, (2) of Lemma 2 implies that there is a constant

C > 0 such that jym+k(Dm
y �Æu)(z)D

k+1
y Pw(z)j � Cym+k=f(y + Æ)n=p+mj �w � zjn+kg �

Cyk�n=p=j �w � zjn+k. Since k > n=p, we have there is a constant 0 < c < 1 such that

yk�n=p=j �w � zjn+k � yk�n=p=fj �w � zjn(y + t)kg � yk�n=p=fj �w � zjnyk�n=p+ctn=p�cg �
tc�n=py�c=j �w�zjn. Thus, Lemma 3 implies that tc�n=py�c=j �w�zjn is integrable. If Æ ! 0,

then Lebesgue's dominated convergence theorem implies that

u(w) = �2cm+k
Z
H

ym+k(Dm

y u)(z)Dk+1
y Pw(z)dV (z):

For a nonnegative integrable function ! on the unit circle @� in the complex plane, the

function ! satis�es the Muckenhoupt's A2�condition if there is a constant  > 0 such that

1=jIj R
I
!d�(1=jIj R

I
!�1d�)�1 �  for all intervals I � @�. For w 2 �, let pw(�) (� 2 @�)

be the Poisson kernel on the unit disk. It is well known that ! satis�es the A2�condition
if and only if there is a constant  > 0 such that

R
@�

pw!d�(
R
@�

pw!
�1d�)�1 �  for all

w 2 � (see [5]). In [10], for a nonnegative integrable function ! on �, using the function

pw(z) (z 2 �), (A2)@�condition is de�ned, that is, a function ! on � satis�es the

(A2)@�condition if there is a constant  > 0 such that
R
�
p2w!dA(

R
�
p2w!

�1dA)�1 � 

for all w 2 �. We will consider the condition for a function ! on H. When n = 2, for

w = (s; t) 2 H the Poisson kernel Pw(x) is given by Pw(x) = 2t=jw � (x; 0)j2 (x 2 @H).

Using a function t=jw� zj2 (z 2 H), we will de�ne a (Ap)@�condition on H.

Let 1 < p < 1, and ! be a non-negative L1
loc

function on H of Rn. We say that the

function ! satis�es the (Ap)@�condition on H if there is a constant  > 0 such that

Z
H

�
t

jw � zj2
�n

!dV (z)

�Z
H

�
t

jw � zj2
�n

!
�1

p�1 dV (z)

�p�1

� 

for all w = (s; t) 2 H.

Since an elementary calculation shows that
R
H

1
jw�zj2n

dV (z) = (n2n�1tn)�1, ! is bounded

and bounded below then ! satis�es the (Ap)@�condition. Moreover, since jw� zj �
p
10 t

for z 2 S(w) and there is a constant 0 < " < 1 such that D"(w) � S(w) for all w 2 H,

there are constants C;C 0 > 0 such that

1

V (D"(w))

Z
D"(w)

!dV � C
1

V (S(w))

Z
S(w)

!dV � C 0

Z
H

�
t

jw � zj2
�n

!dV (z)

for all w 2 H. Therefore, the (Ap)@-condition implies the Cp-condition which is de�ned

in [8]. Since ! satis�es the Cp-condition, ! satis�es the doubling condition. Hence, for

0 < "; Æ < 1 there is a constant C > 0 such that
R
D"(w)

!dV � C
R
D"(�)

!dV whenever

�(w; �) < Æ (see Corollary 3.8 in [8]).
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3. SuÆcient condition for the inequality

We give a suÆcient condition for measures � and � which satisfy the inequality in (1)

of Theorem 1, when d� = !dV .

Proposition 2. Let 0 < p � 1, 1 < q < 1, and k > n=p. Suppose that `, m

be nonnegative integers. Assume that � is a �-�nite positive Borel measure on H and

d� = !dV such that ! 2 L1
loc
(H;dV ). If there are constants K > 0 and 0 < " < 1 such that

Z
H

tp(m+k+n)�nq

jz � wjp(n+`+k)d�(z) � K

 Z
D"(w)

!
�1

q�1 dV

!
�(q�1)

for all w = (s; t) 2 H, then there is a constant C > 0 such thatZ
H

jD�ujpd� � C

Z
H

jDm

y
ujpd�

for all u 2 bp and multi-indices � of order `.

Proof. Let u 2 bp. By Lemma 5 and the remark above Lemma 4, we have

jD�u(w)j � C

Z
H

jym+k(Dm

y u)(z)D
�

wD
k+1
y Pw(z)jdV (z)

� C

Z
H

ym+k

jw � zjn+`+k jD
m

y
u(z)jdV (z)

For 0 < " < 1=2, by (3) of Lemma 1, we can choose a integer N and a sequence f�jg in H

satisfying the conditions : (a) H = [D"(�j), (b) any point in H belongs to at most N of

the sets D2"(�j). We will write �j = (�j ; �j). Since Dm

y
u is harmonic, Lemma 2 in [4, x9]

implies that jDm

y
u(z)jp=q � C=yn

R
D"(z)

jDm

y
ujp=qdV . Therefore, (1) and (2) of Lemma 1

show that

jD�u(w)j � C
X
j

Z
D"(�j)

ym+k

jw� zjn+`+k jD
m

y
u(z)jdV (z)

� C
X
j

�m+k
j

jw � �j jn+`+k
Z
D"(�j)

 
1

yn

Z
D"(z)

jDm

y ujp=qdV
!q=p

dV (z)

� C
X
j

�m+k
j

jw � �j jn+`+k
Z
D"(�j)

 
1

�n
j

Z
D2"(�j)

jDm

y
ujp=q!1=q!�1=qdV

!q=p

dV (z)

� C
X
j

�
m+k+n�nq=p

j

jw � �j jn+`+k

 Z
D2"(�j)

jDm

y ujp!dV
!1=p Z

D2"(�j)

!
�1

q�1 dV

!(q�1)=p

� C
X
j

0
@Z

D2"(�j)

2
4 yp(m+k+n)�nq

jw � zjp(n+`+k)

 Z
D4"(z)

!
�1

q�1 dV

!q�1
3
5 jDm

y
ujp!dV (z)

1
A
1=p

� C

0
@X

j

Z
D2"(�j)

2
4 yp(m+k+n)�nq

jw � zjp(n+`+k)

 Z
D4"(z)

!
�1

q�1 dV

!q�1
3
5 jDm

y
ujp!dV (z)

1
A
1=p

� C

0
@N Z

H

2
4 yp(m+k+n)�nq

jw � zjp(n+`+k)

 Z
D4"(z)

!
�1

q�1 dV

!q�1
3
5 jDm

y
ujp!dV (z)

1
A
1=p

:
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Thus, integrating p-th power of the inequality with respect to �, Fubini's theorem implies

that

Z
H

jD�u(w)jpd�(w) � C

Z
H

2
4Z

H

yp(m+k+n)�nq

jw � zjp(n+`+k)d�(w)
 Z

D4"(z)

!
�1

q�1 dV

!q�1
3
5 jDm

y ujp!dV (z):

This completes the proof.

4. Necessary condition for the inequality

We give a necessary condition for measures � and � which satisfy the inequality in (2)

of Theorem 1. When w = (s; t) in H, we may write a Carleson box S(w) = S(s; t). We

need the following lemma, and Lemma 6 is stated in [13].

Lemma 6. Let k be a nonnegative integer. Then, there exist constants 0 < � � 1 and

C > 0 such that jDk

y
Pw(z)j � C=tn+k�1 for all w = (s; t) 2 H and z 2 S(s; �t).

In Lemma 6, we do not know that the constant � can be taken � = 1. We give a

necessary condition for the inequality.

Proposition 3. Let 0 < p � 1, and k be a nonnegative integer which is suÆciently

large. Suppose that `, m be nonnegative integers. Assume that � and � are �-�nite positive

Borel measures on H. If there is a constant C > 0 such thatZ
H

jD`

y
ujpd� � C

Z
H

jDm

y
ujpd�

for all u 2 bp, then there are constants 0 < � � 1 and K = K� > 0 such that

�(S(s; �t)) � Ktp(`+n+k)
Z
H

1

jw � zjp(n+m+k)d�

for all w = (s; t) 2 H.

Proof. Suppose that the inequality in (2) of Theorem 1 is satis�ed. We can choose a

nonnegative integer k such that u(z) = (Dk+1
y

Pw)(z) is in bp. Then, we haveZ
H

jDm

y ujpd� =

Z
H

jDm+k+1
y Pwjpd� � C

Z
H

1

jw � zjp(n+m+k)d�:

Moreover, Lemma 6 implies thatZ
H

jD`

y
ujpd� =

Z
H

jD`+k+1
y

Pwjpd� �
Z
S(s;�t)

jD`+k+1
y

Pwjpd�

� C�

tp(`+n+k)

Z
S(s;�t)

d� =
C�

tp(`+n+k)
�(S(s; �t)):

Therefore, it follows that

C�

tp(`+n+k)
�(S(s; �t)) � C

Z
H

1

jw � zjp(n+m+k)d�:
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5. Proof of Theorem 1

We give a proof of Theorem 1. The implication (1)) (2) is trivial. Therefore, we show

that (2) ) (3) and (3)) (1).

(2) ) (3). We suppose that the inequality in (2) of Theorem 1 is hold. Then,

Proposition 3 implies that there are constants 0 < � � 1 and K = K� > 0 such that

�(S(s; �t)) � Ktp(`+n+k�1)
R
H
1=jw � zjp(m+k+n�1)d� for all w = (s; t) 2 H. Since

jw � zj � t, We have �(S(s; �t)) � Ktp(`�m)+n
R
H
tn=jw � zj2nd�. Moreover, since !

satis�es the (Aq)@-condition, we obtain �(S(s; �t)) � Ktp(`�m)�(D"(s; �t)). Since s and t

are arbitrary, we can replace t by t=�. This implies that �(S(w)) � Ctp(`�m)�(D"(w)).

(3) ) (1). Let c = p(` � m) and suppose that �(S(�)) � K�c�(D"(�)) for all � =

(�; �) 2 H. Since ! satis�es the (Aq)@ -condition, the suÆcient condition in Proposition 2

is equivalent to a condition
R
H
tp(n+m+k)=jw� zjp(n+`+k)d�(z) � K�(D"(w)). Therefore, it

is enough to prove that
R
H
1=jw� zjd�(z) � Ctc��(D"(w)) for all w = (s; t) 2 H, where

 = p(n + ` + k) and k is suÆciently large. Let w 2 H. Clearly, if z =2 S(s; 2j�1t), then

jw � �zj � 2j�1t (j � 1). Therefore, the hypothesis implies that

Z
H

1

jw � �zj d�(z) � t�
Z
S(s;t)

d�+ t�
1X
j=1

1

2(j�1)

Z
S(s;2jt)nS(s;2j�1t)

d�

� t��(S(s; t)) + t�
1X
j=1

1

2(j�1)
�(S(s; 2jt))

� Ktc��(D"(s; t)) +Kt�
1X
j=1

1

2(j�1)
(2jt)c�(D"(s; 2

j t))

= Ktc�

0
@�(D"(s; t)) + 2

1X
j=1

1

2(�c)j
�(D"(s; 2

jt))

1
A

Since ! satis�es the (Aq)@ -condition, ! satis�es the Cq-condition. Therefore, Corollary 3.8

in [8] implies that there is a constant � > 0 such that �(D"(s; 2t)) � 2��(D"(s; t)). Hence,

we have

Z
H

1

jw � �zj d�(z) � Ktc�

0
@�(D"(w)) + 2

1X
j=1

1

2(�c)j
2�j�(D"(w))

1
A

= Ktc�

0
@1 + 2

1X
j=1

1

2(�c��)j

1
A �(D"(w)):

If we choose an integer k such that  � c � � = p(n +m + k) � � > 0, then we obtainR
H
1=jw � zjd�(z) � Ctc��(D"(w)).
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