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INEQUALITIES ON DERIVATIVES OF HARMONIC BERGMAN
FUNCTIONS
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ABSTRACT. We give a necessary and sufficient condition for positive measures which
satisfy a Carleson type inequality for the harmonic Bergman space on the upper half-
space of Fuclidean spaces.

1. Introduction

Let H be the upper half-space of the n-dimensional Euclidean space R™ (n > 2), that
is, H={z = (z,y) € R™; y > 0}, where we have written a point z € R" as z = (z,y) with

v = (1, ,vp_1) ER" T and y € R. For 0 < p < oo, let b* = bP(H,dV) be the class of
all harmonic functions v on H such that

1/p
o= (/ |u|PdV> <o
JH

where dV denotes the Lebesgue volume measure on H. The class P is called the harmonic
Bergman space. Properties of functions in the harmonic Bergman space on the upper half-
space were studied by Ramey and Yi [11] when 1 < p < o0, and by the author [13] when
0<p<l.

Let p and v be o-finite positive Borel measures on H. We consider conditions on p and
v for which there exists a constant C' > 0 such that [}, [u|du < C [, |Dyu|dv for all u in b',
where D, denotes the differetiation operator with respect to y. More generally, we have the
problem of determining conditions on p and v such that [, [D*ulPdy < C [, |DulPdy,
where « is a multi-index and D® is the corresponding the partial differentiation operator.
Such inequalities on the unit disk A in the complex plane were studied by Stegenga, and
multipliers of the Dirichlet space were characterized in [12]. When dv = (1 — |(])"dA and
r > 1, Stegenga proved that finite positive Borel measures p and v on the unit disk satisfy
the inequality [, [f|*du < C [, |f'|*dv for all holomorphic functions f, f(0) = 0 if and
only if there is a constant K such that p(S7) < K|I|” for any interval I in the unit circle,

where dA denotes the Lebesgue area measure, |I| denotes the normalized arc length of I,
and ST is the corresponding Carleson square over I. It was also proved that when 0 < r < 1
such measures are those satisfying (US;) < KCap(UI;) for all finite disjoint collections of
intervals {I;}, where Cap is an appropriate Bessel capacity ( if r < 0 any finite Borel measure
satisfies this inequality ). It is known that these characterizations can be generalized to the
case of p > 1 (seealso[12]). When 0 < p <1,dv = (1—](|)"dA, and —1 < r < p—1, Ahern
and Jevtié¢ [1] proved that there is a constant C' > 0 such that [, [f|?dp < C [, |f'[Pdv
if and only if p(Sy) < K|I]27P*". Using this result, Ahern and Jevti¢ characterized inner
multipliers of the Besov space in case 0 < p < 1. Such investigations on the unit ball of

C" are in [3]. In these investigations, when p > 1 necessary and sufficient conditions were
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not obtained completely. It was also shown that, in general, the above condition is not
necessary. When 0 < p < 1 and dv = y"dV, such a inequality on the upper half-space H
of R™ was studied by author [13]. For the inequality fA |f1Pdp < CfA |f|Pdv on the unit
disk, the properties of measures satisfying the inequality were studied in [6], [7], and [10],
and partial results were obtained for more general measures g and v.

If o =(ay, - ,ay) is a multi-index of nonnegative integers with order ¢, then D de-
notes the partial differentiation operator 8°/9z$" -+ - 9z 7' dy“». We also use the absolute
value symbol | - | to denote the Euclidean norm in R”. For z = (z,y) € H, let z = (z, —y).
The pseudohyperbolic metric p in H is defined by p(z,w) = |w — z|/|® — z|. It is clear
that p is invariant under horizontal translations. Let D.(w) = {z € H ; p(z,w) < ¢}
when 0 < ¢ < 1. For w = (s,t) € H, D.(w) is a Euclidean ball whose center and radius are

142 2¢et
(37 1 i — t) and T respectively. It follows that there is a constant C' = C,; > 0 such that

C 1" <V(D.(w)) <Ct"forallw € H. Let S(w) ={z = (2,y) € H; |z —s| < t,y <2t}

S(w) is called a Carleson box. We now state our main result in this paper.

THEOREM 1. Let 0 < p < 1 and ¢, m be nonnegative integers. Suppose that p s a
o-finite positive Borel measure on H, dv = wdV and w satisfies the (Ay)s-condition for
some 1 < ¢ < oo. Then, the following (1) ~ (3) are equivalent.

(1) There is a constant C > 0 such that

/|Dau|pdp,§C/ |Dy ulPdy
H H

for allw € B and multi-indices o of order (.
(2) There is a constant C > 0 such that

14 v m
/ |DyulPdu < C/ Dy ulPdy
H H

for all u € b7,
(3) There are constants K > 0 and 0 < & < 1 such that p(S(w)) < Kt'"™?y(D_(w))
for allw = (s,t) € H.

In §2, we give the notation and some preliminary results. In Theorem 1, we assume that
dv = wdV and w satisfies (4,)s-condition. We define and discuss these conditions. The
(A,)a-condition on the unit disk of the complex plane is defined in [10]. In the definition of
the (A,)s-condition on the unit disk, the normalized reproducing kernel in the holomorphic
Bergman space is used. However, on the upper half-space of R", we cannot use arguments
in the complex plane. Therefore, we will extend the notion of the (4,)s-condition to H
of R™ using another function. In §3, we give a sufficient condition for measures p and v
which satisfy the inequality in (1) of Theorem 1. A necessary condition for the inequality
in (2) of Theorem 1 is shown in §4. In §3 and §4, we will not assume that w satisfies the
(Ap)s-condition. In §5, assuming that w satisfies the (A4, )s-condition, we give the proof of
Theorem 1.

Throughout this paper, C' will denote a positive constant whose value is not necessary
the same at each occurrence; it may vary even within a line.
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2. Preliminaries

In this section, we state some preliminary results for our investigations. The following
lemma is in [13].

LEMMA 1. Let 0 < ¢ < 1. Then, the following are true.

(1) If z,w,C are in H and p(z,w) < &, then C7V( — 2| < | —w| < C|¢ — z| with a
positive constant C' depending only on e.

(2) If = = (z,y),w = (s,t) are in H and p(z,w) < ¢, then C7'y < t < Cy with a
positive constant C' depending only on e.

(3) If 0 < & < 1/2 then there exist a positive integer N and a sequence {(;} in H
satisfying the following conditions : (a) H = UD.((;), (b) any point in H belongs to at
most N of the sets Do.((;).

For a function w on H and ¢ > 0, let 75u denote a function on H defined by 7su(z,y) =
u(z,y +90), and let T2 = {r5u ; u € b, > 0}. The following lemma is stated in [13].

LEMMA 2. Let 0 < p < 1. Then, the following are true.

(1) For any u € b, there is a constant C' > 0 such that |Du(s,t)| < C/t"/P¥lel for all
(s,t) € H.

(2) For any u € b, there is a constant C' > 0 such that |(D®rsu)(s,t)| < C/(t48)"/PHlel
for all (s,t) € H.

The following lemma is useful and stated in [11, Lemma 3.1]

LEMMA 3. Let 0 < ¢ < 1. Then, there is a constant C' > 0 depending on ¢ and n such
that
/ vz <ot
TR
for all w = (s,t) € H.

For w = (s,t) € H, let P, be the Poisson kernel on the upper half-space H, that is,
Py(x) = P(s —2,t) = ynt/(]s — 2| +t*)? (2 € OH) ( where v, = 2/(nV(B,)), and B,
denotes the unit ball in R™ ). The harmonic extension of this function to H is P(s—x,t+y).
If = = (x,y) € H, then we may write P,(z). We note that Py(z) = vn(t + y)/|@ — 2|,
|DEP,(2)] < C/|lw — z|"t1o1=1 and DeP,(2) = (=1)*t+en-1DaP (2). Let m be a
nonnegative integer and let ¢, = (—2)" /m!. The following Lemma 4 is given in [13].

LEMMA 4. Let 0 < p < 1. Ifu & TP, then
u(w) = —2cm+k/ ym+k(DZ7’u)(z)D§+1Pw(z)dV(z)
"
for allm,k >0 and w € H.

We show that Lemma 4 is also valid for u € b” when the integer k is sufficiently large.

LeMMA 5. Let 0 < p < 1 and k be a nonnegative integer such that k > n/p. If u € bP,
then

u(w) = —20m+k/Hym+k(Dme)(2)D’;+1Pq,,(z)dV(z)
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for allm >0 and w € H.
PROOF. Let u € b¥ and k > n/p. Then, Lemma 4 implies that

rsu(w) = —2cm+k/ ym+k(DzTT,;u)(z)D§+1Pw(z)dV(z)
H

for all m > 0 and w € H. We show that the integrand is dominated by a integrable function
y ¢/lo—z" (0 <c < 1)forall§ > 0. Infact, (2) of Lemma 2 implies that there is a constant
C > 0 such that |ym+k(D?TTgu)(z)DS"’le(Zﬂ < Cym"'k/{(y + 5)"/p+m|16 — PR <
Cyk_n/p/\w — z|"**. Since k > n/p, we have there is a constant 0 < ¢ < 1 such that
Pl — T < e (o — 2y £ 4} < A — sfryhenlreni=ey <
te=/Py=¢/|w — z|*. Thus, Lemma 3 implies that t*~"/Py~¢/|w — 2| is integrable. If § — 0,
then Lebesgue’s dominated convergence theorem implies that

u(w) = =2 [ g HDP WD Pue)av ()

For a nonnegative integrable function w on the unit circle A in the complex plane, the
function w satisfies the Muckenhoupt’s A; —condition if there is a constant v > 0 such that
1/|I] [, wdé(1/|I| [;w™"df)~" < ~for all intervals I C OA. Forw € A, let p,(¢) (¢ € 9A)
be the Poisson kernel on the unit disk. It is well known that w satisfies the A; —condition
if and only if there is a constant v > 0 such that faA pwz,ud@(faA pww 1df)"1 <~ for all
w € A (see [5]). In [10], for a nonnegative integrable function w on A, using the function
pw(z) (2 € A), (Az)s—condition is defined, that is, a function w on A satisfies the
(Az)p—condition if there is a constant v > 0 such that [, pZwdA([, prw 'dA)™" < 5
for all w € A. We will consider the condition for a function w on H. When n = 2, for
w = (s,t) € H the Poisson kernel P,(z) is given by Py (z) = y2t/[w — (2,0)]> (x € 9H).
Using a function ¢/[w — z|* (2 € H), we will define a (A4,)s—condition on H.

Let 1 < p < 0o, and w be a non-negative L} _ function on H of R". We say that the

loc
function w satisfies the (4, )s—condition on H if there is a constant v > 0 such that

/H (ﬁ)n“dv(” (/H (ﬁ)nw%d‘/@)pl <~

for all w = (s,t) € H.

Since an elementary calculation shows that IH WdV(z) = (2"~ "™~ wis bounded

and bounded below then w satisfies the (A,)s—condition. Moreover, since [w — z| < /10 ¢
for z € S(w) and there is a constant 0 < ¢ < 1 such that D.(w) C S(w) for all w € H,
there are constants C,C’ > 0 such that

1 / ) 1 / i ,/ < t >”
- wdV < C——r wdV < C —_— wdV (z
VD) o “" = V) Jouy S o == (2)

for all w € H. Therefore, the (A,)s-condition implies the C)-condition which is defined
in [8]. Since w satisfies the C),-condition, w satisfies the doubling condition. Hence, for
0 < ¢,6 < 1 there is a constant C' > 0 such that st(w) wdV < CfD ©) wdV whenever

p(w,() < ¢ (see Corollary 3.8 in [8]).
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3. Sufficient condition for the inequality

We give a sufficient condition for measures g and v which satisfy the inequality in (1)

of Theorem 1, when dv = wdV.

PROPOSITION 2. Let 0 < p < 1,1 < g < oo, and k > n/p. Suppose that {, m
be nonnegative integers. Assume that p is a o-finite positive Borel measure on H and
dv = wdV such that w € L], _(H,dV). If there are constants K > 0 and 0 < ¢ < 1 such that

loc

4p(mtktn)—ng ) . —(a1)
|7 — w[plntth) D.(w)

for all w = (s,t) € H, then there is a constant C' > 0 such that

/ | DYu|Pdp < C’/ |D, ulPdv
JH H

for all uw € b and multi-indices o of order £.
PRrROOF. Let u € bP. By Lemma 5 and the remark above Lemma 4, we have

Du(w)| < C /H |y (D u)(2) DS DA Py (2)]dV (2)

ym—l—k

For 0 < e < 1/2, by (3) of Lemma 1, we can choose a integer N and a sequence {(;} in H
satisfying the conditions : (a) H = UD ((;), (b) any point in H belongs to at most N of
the sets Da.((j). We will write ¢; = ({j,7;). Since D}'u is harmonic, Lemma 2 in [4, §9]
implies that [D}"u(z yple < CJyn JDS(z) |D3’Inu|p/‘1dv. Therefore, (1) and (2) of Lemma 1
show that

pru(w) < €Y / (mmmm (v (z)
< CZ il L | DM w|P/1dv " /(=
- |“'C|"”+’“/Da<cj> <y_"/Ds<z> o L) e
< cz i / <i/ Dmu|7’/f’w1/‘7w_1/qu)q/pdV(z)
- |“'*C " Tpaen \0F Ipacey !
m+k+'n ngq/p 1/p B (¢=1)/p

< X g ([ et ) (] =)

[ p(mthtn)—n 1]
: Czj: /Dgs(cn %(L“(Z)wﬁdV’) Dy ulredVz)

[ p(mtktn)—n =11 e
< () | ([, =ma) | mpararcs

yp(metEn) =g A\ ) Hr

< C N/H W</1745<3>M1dv) 1D ulPwdV (2)

1/p
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Thus, integrating p-th power of the inequality with respect to p, Fubini’s theorem implies
that

N yp(m+k+n) ngq - ! .
/ D u(w)f dulw) < C/ o w— Z|p(n+l+k)d () /D (2) vy 1Dy ulfwdV(z).
This completes the proof.

4. Necessary condition for the inequality

We give a necessary condition for measures ¢ and v which satisfy the inequality in (2)
of Theorem 1. When w = (s,t) in H, we may write a Carleson box S(w) = S(s,t). We
need the following lemma, and Lemma 6 is stated in [13].

LEMMA 6. Let k be a nonnegative integer. Then, there exist constants 0 < o <1 and
C > 0 such that |D§Pu(2)\ > C/t" T for allw = (s,t) € H and 2 € S(s,0t).

In Lemma 6, we do not know that the constant ¢ can be taken ¢ = 1. We give a
necessary condition for the inequality.

PROPOSITION 3. Let 0 < p < 1, and k be a nonnegative integer which is sufficiently
large. Suppose that £, m be nonnegative integers. Assume that (1 and v are o-finite positive
Borel measures on H. If there is a constant C > 0 such that

/ |D§u|pd,u§C/ Dy ulPdy
H H

for all w € bP, then there are constants 0 < o <1 and K = K, > 0 such that

1
) 1P (+n+k)
u(S(s,ot)) < Kt /H —|w ) dv

for all w = (s,t) € H.
PROOF. Suppose that the inequality in (2) of Theorem 1 is satisfied. We can choose a
nonnegative integer k such that u(z) = (D,’;“Pw)(z) is in b?. Then, we have

1
m, |p _ m+k+1 p -
/H|Dy ul du—/H|Dy P, dUSC/H|w_Zp(n+m+k)dU

Moreover, Lemma 6 implies that

/|D§u|pdu /|D§+k+1Pw|Pdp2/ | Dy P |Pdp
JH H S(s,ot)

Co C,
= m[m o = Sl o).

Therefore, it follows that

Cs 1
7tp([+n+k)/l(5(s,at)) < C/H—|E—Z\P("+m+’“)du
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5. Proof of Theorem 1

We give a proof of Theorem 1. The implication (1) = (2) is trivial. Therefore, we show
that (2) = (3) and (3) = (1).

(2) = (3). We suppose that the inequality in (2) of Theorem 1 is hold. Then,
Proposition 3 implies that there are constants 0 < ¢ < 1 and K = K, > 0 such that
((S(s,0t)) < Krtntk=b [ 1/jw — z|ptmthn=Dgy for all w = (s,t) € H. Since
| — 2| > t, We have u(S(s,ot)) < Ktrtt—mi+nr Sy t"/w — z|*"dv. Moreover, since w
satisfies the (A,)a-condition, we obtain u(S(s,ot)) < KtP=™y (D, (s,0t)). Since s and t
are arbitrary, we can replace ¢ by t/o. This implies that u(S(w)) < CtP=™y(D_(w)).

(3) = (1). Let ¢ = p(¢ — m) and suppose that x(S(¢)) < Kn°v(D.(()) for all ( =
(£,m) € H. Since w satisfies the (A44)s-condition, the sufficient condition in Proposition 2
is equivalent to a condition [, tP("+m+K) /jzp — z|P(n+HK) gy (2) < Kv(D.(w)). Therefore, it
is enough to prove that [, 1/[w — z|7du(z) < Ct*""v(D.(w)) for all w = (s,t) € H, where
v = p(n+{+ k) and k is sufficiently large. Let w € H. Clearly, if z ¢ S(s,2/71¢), then
|w — Z| > 2971t (j > 1). Therefore, the hypothesis implies that

1 —~ 1
————du(z) < tiV/ dpu+1t7 7/ du
./; lw —z]7 (=) S(s,1) ;;; 27071 Jg (5,20 0\8(s,20-10)
_ o 1 :
< tT7u(S(s,1)) + 72£;§;Gt51451&2jﬂ)
J:
Fpe—"y p—" - 1 11\ C ]
< Kt u(D.(s,t)) + Kt /Zlm(%) v(D.(s,27t))
i=
T4 C—y DY - 1 ¢ ]
= Kt | v(D.(s,1)) +2/2m1/(l)5($,2]t))
]:

Since w satisfies the (A,)s-condition, w satisfies the C,-condition. Therefore, Corollary 3.8
in [8] implies that there is a constant A > 0 such that v(D.(s,2t)) < 2 v(D.(s,t)). Hence,

we have
L) = ke (w0 4273 LMD ()
ATEER : > o
=
= Kt 1—&—27%# v(D.(w))
2 56— :
=

If we choose an integer k such that v — ¢ — A = p(n + m + k) — X > 0, then we obtain
Sy /1w — z7du(z) < Ct~Tw(D(w)).
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