INEQUALITIES ON DERIVATIVES OF HARMONIC BERGMAN FUNCTIONS

Masahiro Yamada

Received February 13, 2003; revised May 14, 2003

Abstract

We give a necessary and sufficient condition for positive measures which satisfy a Carleson type inequality for the harmonic Bergman space on the upper halfspace of Euclidean spaces.

1. Introduction

Let H be the upper half-space of the n-dimensional Euclidean space $\mathbb{R}^{n}(n \geq 2)$, that is, $H=\left\{z=(x, y) \in \mathbb{R}^{n} ; y>0\right\}$, where we have written a point $z \in \mathbb{R}^{n}$ as $z=(x, y)$ with $x=\left(x_{1}, \cdots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$. For $0<p<\infty$, let $b^{p}=b^{p}(H, d V)$ be the class of all harmonic functions u on H such that

$$
\|u\|_{p}=\left(\int_{H}|u|^{p} d V\right)^{1 / p}<\infty
$$

where $d V$ denotes the Lebesgue volume measure on H. The class b^{p} is called the harmonic Bergman space. Properties of functions in the harmonic Bergman space on the upper halfspace were studied by Ramey and Yi [11] when $1 \leq p<\infty$, and by the author [13] when $0<p \leq 1$.

Let μ and ν be σ-finite positive Borel measures on H. We consider conditions on μ and ν for which there exists a constant $C>0$ such that $\int_{H}|u| d \mu \leq C \int_{H}\left|D_{y} u\right| d \nu$ for all u in b^{1}, where D_{y} denotes the differetiation operator with respect to y. More generally, we have the problem of determining conditions on μ and ν such that $\int_{H}\left|D^{\alpha} u\right|^{p} d \mu \leq C \int_{H}\left|D_{y}^{m} u\right|^{p} d \nu$, where α is a multi-index and D^{α} is the corresponding the partial differentiation operator. Such inequalities on the unit disk Δ in the complex plane were studied by Stegenga, and multipliers of the Dirichlet space were characterized in [12]. When $d \nu=(1-|\zeta|)^{r} d A$ and $r \geq 1$, Stegenga proved that finite positive Borel measures μ and ν on the unit disk satisfy the inequality $\int_{\Delta}|f|^{2} d \mu \leq C \int_{\Delta}\left|f^{\prime}\right|^{2} d \nu$ for all holomorphic functions $f, f(0)=0$ if and only if there is a constant K such that $\mu\left(S_{I}\right) \leq K|I|^{r}$ for any interval I in the unit circle, where $d A$ denotes the Lebesgue area measure, $|I|$ denotes the normalized arc length of I, and S_{I} is the corresponding Carleson square over I. It was also proved that when $0 \leq r<1$ such measures are those satisfying $\mu\left(\cup S_{I_{j}}\right) \leq K \operatorname{Cap}\left(\cup I_{j}\right)$ for all finite disjoint collections of intervals $\left\{I_{j}\right\}$, where Cap is an appropriate Bessel capacity (if $r<0$ any finite Borel measure satisfies this inequality). It is known that these characterizations can be generalized to the case of $p>1$ (see also [12]). When $0<p \leq 1, d \nu=(1-|\zeta|)^{r} d A$, and $-1<r \leq p-1$, Ahern and Jevtic [1] proved that there is a constant $C>0$ such that $\int_{\Delta}|f|^{p} d \mu \leq C \int_{\Delta}\left|f^{\prime}\right|^{p} d \nu$ if and only if $\mu\left(S_{I}\right) \leq K|I|^{2-p+r}$. Using this result, Ahern and Jevtic characterized inner multipliers of the Besov space in case $0<p \leq 1$. Such investigations on the unit ball of \mathbb{C}^{n} are in [3]. In these investigations, when $p>1$ necessary and sufficient conditions were

[^0]not obtained completely. It was also shown that, in general, the above condition is not necessary. When $0<p \leq 1$ and $d \nu=y^{r} d V$, such a inequality on the upper half-space H of \mathbb{R}^{n} was studied by author [13]. For the inequality $\int_{\Delta}|f|^{p} d \mu \leq C \int_{\Delta}|f|^{p} d \nu$ on the unit disk, the properties of measures satisfying the inequality were studied in [6], [7], and [10], and partial results were obtained for more general measures μ and ν.

If $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a multi-index of nonnegative integers with order ℓ, then D^{α} denotes the partial differentiation operator $\partial^{\ell} / \partial x_{1}^{\alpha_{1}} \cdots \partial x_{n-1}^{\alpha_{n-1}} \partial y^{\alpha_{n}}$. We also use the absolute value symbol $|\cdot|$ to denote the Euclidean norm in \mathbb{R}^{n}. For $z=(x, y) \in H$, let $\bar{z}=(x,-y)$. The pseudohyperbolic metric ρ in H is defined by $\rho(z, w)=|w-z| /|\bar{w}-z|$. It is clear that ρ is invariant under horizontal translations. Let $D_{\varepsilon}(w)=\{z \in H ; \rho(z, w)<\varepsilon\}$ when $0<\varepsilon<1$. For $w=(s, t) \in H, D_{\varepsilon}(w)$ is a Euclidean ball whose center and radius are $\left(s, \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}} t\right)$ and $\frac{2 \varepsilon t}{1-\varepsilon^{2}}$ respectively. It follows that there is a constant $C=C_{\varepsilon}>0$ such that $C^{-1} t^{n} \leq V\left(D_{\varepsilon}(w)\right) \leq C t^{n}$ for all $w \in H$. Let $S(w)=\{z=(x, y) \in H ;|x-s|<t, y<2 t\}$. $S(w)$ is called a Carleson box. We now state our main result in this paper.

Theorem 1. Let $0<p \leq 1$ and ℓ, m be nonnegative integers. Suppose that μ is a σ-finite positive Borel measure on $H, d \nu=\omega d V$ and ω satisfies the $\left(A_{q}\right)_{\partial}$-condition for some $1<q<\infty$. Then, the following (1) (3) are equivalent.
(1) There is a constant $C>0$ such that

$$
\int_{H}\left|D^{\alpha} u\right|^{p} d \mu \leq C \int_{H}\left|D_{y}^{m} u\right|^{p} d \nu
$$

for all $u \in b^{p}$ and multi-indices α of order ℓ.
(2) There is a constant $C>0$ such that

$$
\int_{H}\left|D_{y}^{\ell} u\right|^{p} d \mu \leq C \int_{H}\left|D_{y}^{m} u\right|^{p} d \nu
$$

for all $u \in b^{p}$.
(3) There are constants $K>0$ and $0<\varepsilon<1$ such that $\mu(S(w)) \leq K t^{(\ell-m) p_{\nu}}\left(D_{\varepsilon}(w)\right)$ for all $w=(s, t) \in H$.

In §2, we give the notation and some preliminary results. In Theorem 1, we assume that $d \nu=\omega d V$ and ω satisfies $\left(A_{p}\right)_{\partial}$-condition. We define and discuss these conditions. The $\left(A_{p}\right)_{\partial}$-condition on the unit disk of the complex plane is defined in [10]. In the definition of the $\left(A_{p}\right)_{\partial \text {-condition on the unit disk, the normalized reproducing kernel in the holomorphic }}$ Bergman space is used. However, on the upper half-space of \mathbb{R}^{n}, we cannot use arguments in the complex plane. Therefore, we will extend the notion of the $\left(A_{p}\right)_{\partial}$-condition to H of \mathbb{R}^{n} using another function. In $\S 3$, we give a sufficient condition for measures μ and ν which satisfy the inequality in (1) of Theorem 1. A necessary condition for the inequality in (2) of Theorem 1 is shown in $\S 4$. In $\S 3$ and $\S 4$, we will not assume that ω satisfies the $\left(A_{p}\right)_{\partial \text {-condition. In }}^{<5}$, assuming that ω satisfies the $\left(A_{p}\right)_{\partial \text {-condition, we give the proof of }}$ Theorem 1.

Throughout this paper, C will denote a positive constant whose value is not necessary the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we state some preliminary results for our investigations. The following lemma is in [13].

Lemma 1. Let $0<\varepsilon<1$. Then, the following are true.
(1) If z, w, ζ are in H and $\rho(z, w)<\varepsilon$, then $C^{-1}|\bar{\zeta}-z| \leq|\bar{\zeta}-w| \leq C|\bar{\zeta}-z|$ with a positive constant C depending only on ε.
(2) If $z=(x, y), w=(s, t)$ are in H and $\rho(z, w)<\varepsilon$, then $C^{-1} y \leq t \leq C y$ with a positive constant C depending only on ε.
(3) If $0<\varepsilon<1 / 2$ then there exist a positive integer N and a sequence $\left\{\zeta_{j}\right\}$ in H satisfying the following conditions : (a) $H=\cup D_{\varepsilon}\left(\zeta_{j}\right)$, (b) any point in H belongs to at most N of the sets $D_{2 \varepsilon}\left(\zeta_{j}\right)$.

For a function u on H and $\delta>0$, let $\tau_{\delta} u$ denote a function on H defined by $\tau_{\delta} u(x, y)=$ $u(x, y+\delta)$, and let $\mathcal{T}^{p}=\left\{\tau_{\delta} u ; u \in b^{p}, \delta>0\right\}$. The following lemma is stated in [13].

Lemma 2. Let $0<p \leq 1$. Then, the following are true.
(1) For any $u \in b^{p}$, there is a constant $C>0$ such that $\left|D^{\alpha} u(s, t)\right| \leq C / t^{n / p+|\alpha|}$ for all $(s, t) \in H$.
(2) For any $u \in b^{p}$, there is a constant $C>0$ such that $\left|\left(D^{\alpha} \tau_{\delta} u\right)(s, t)\right| \leq C /(t+\delta)^{n / p+|\alpha|}$ for all $(s, t) \in H$.

The following lemma is useful and stated in [11, Lemma 3.1]
Lemma 3. Let $0<c<1$. Then, there is a constant $C>0$ depending on c and n such that

$$
\int_{H} \frac{y^{-c}}{|\bar{w}-z|^{n}} d V(z) \leq C t^{-c}
$$

for all $w=(s, t) \in H$.
For $w=(s, t) \in H$, let P_{w} be the Poisson kernel on the upper half-space H, that is, $P_{w}(x)=P(s-x, t)=\gamma_{n} t /\left(|s-x|^{2}+t^{2}\right)^{n / 2} \quad(x \in \partial H)\left(\right.$ where $\gamma_{n}=2 /\left(n V\left(\mathbb{B}_{n}\right)\right)$, and \mathbb{B}_{n} denotes the unit ball in $\left.\mathbb{R}^{n}\right)$. The harmonic extension of this function to H is $P(s-x, t+y)$. If $z=(x, y) \in H$, then we may write $P_{w}(z)$. We note that $P_{w}(z)=\gamma_{n}(t+y) /|\bar{w}-z|^{n}$, $\left|D_{z}^{\alpha} P_{w}(z)\right| \leq C /|\bar{w}-z|^{n+|\alpha|-1}$, and $D_{z}^{\alpha} P_{w}(z)=(-1)^{\alpha_{1}+\cdots+\alpha_{n-1}} D_{w}^{\alpha} P_{w}(z)$. Let m be a nonnegative integer and let $c_{m}=(-2)^{m} / m$!. The following Lemma 4 is given in [13].

Lemma 4. Let $0<p \leq 1$. If $u \in \mathcal{T}^{p}$, then

$$
u(w)=-2 c_{m+k} \int_{H} y^{m+k}\left(D_{y}^{m} u\right)(z) D_{y}^{k+1} P_{w}(z) d V(z)
$$

for all $m, k \geq 0$ and $w \in H$.
We show that Lemma 4 is also valid for $u \in b^{p}$ when the integer k is sufficiently large.
Lemma 5. Let $0<p \leq 1$ and k be a nonnegative integer such that $k>n / p$. If $u \in b^{p}$, then

$$
u(w)=-2 c_{m+k} \int_{H} y^{m+k}\left(D_{y}^{m} u\right)(z) D_{y}^{k+1} P_{w}(z) d V(z)
$$

for all $m \geq 0$ and $w \in H$.
Proof. Let $u \in b^{p}$ and $k>n / p$. Then, Lemma 4 implies that

$$
\tau_{\delta} u(w)=-2 c_{m+k} \int_{H} y^{m+k}\left(D_{y}^{m} \tau_{\delta} u\right)(z) D_{y}^{k+1} P_{w}(z) d V(z)
$$

for all $m \geq 0$ and $w \in H$. We show that the integrand is dominated by a integrable function $y^{-c} /|\bar{w}-z|^{n} \quad(0<c<1)$ for all $\delta>0$. In fact, (2) of Lemma 2 implies that there is a constant $C>0$ such that $\left|y^{m+k}\left(D_{y}^{m} \tau_{\delta} u\right)(z) D_{y}^{k+1} P_{w}(z)\right| \leq C y^{m+k} /\left\{(y+\delta)^{n / p+m}|\bar{w}-z|^{n+k}\right\} \leq$ $C y^{k-n / p} /|\bar{w}-z|^{n+k}$. Since $k>n / p$, we have there is a constant $0<c<1$ such that $y^{k-n / p} /|\bar{w}-z|^{n+k} \leq y^{k-n / p} /\left\{|\bar{w}-z|^{n}(y+t)^{k}\right\} \leq y^{k-n / p} /\left\{|\bar{w}-z|^{n} y^{k-n / p+c} t^{n / p-c}\right\} \leq$ $t^{c-n / p} y^{-c} /|\bar{w}-z|^{n}$. Thus, Lemma 3 implies that $t^{c-n / p} y^{-c} /|\bar{w}-z|^{n}$ is integrable. If $\delta \rightarrow 0$, then Lebesgue's dominated convergence theorem implies that

$$
u(w)=-2 c_{m+k} \int_{H} y^{m+k}\left(D_{y}^{m} u\right)(z) D_{y}^{k+1} P_{w}(z) d V(z)
$$

For a nonnegative integrable function ω on the unit circle $\partial \Delta$ in the complex plane, the function ω satisfies the Muckenhoupt's A_{2}-condition if there is a constant $\gamma>0$ such that $1 /|I| \int_{I} \omega d \theta\left(1 /|I| \int_{I} \omega^{-1} d \theta\right)^{-1} \leq \gamma$ for all intervals $I \subset \partial \Delta$. For $w \in \Delta$, let $p_{w}(\zeta) \quad(\zeta \in \partial \Delta)$ be the Poisson kernel on the unit disk. It is well known that ω satisfies the A_{2}-condition if and only if there is a constant $\gamma>0$ such that $\int_{\partial \Delta} p_{w} \omega d \theta\left(\int_{\partial \Delta} p_{w} \omega^{-1} d \theta\right)^{-1} \leq \gamma$ for all $w \in \Delta$ (see [5]). In [10], for a nonnegative integrable function ω on Δ, using the function $p_{w}(z) \quad(z \in \Delta),\left(A_{2}\right)_{\partial}$-condition is defined, that is, a function ω on Δ satisfies the $\left(A_{2}\right)_{\partial}$-condition if there is a constant $\gamma>0$ such that $\int_{\Delta} p_{w}^{2} \omega d A\left(\int_{\Delta} p_{w}^{2} \omega^{-1} d A\right)^{-1} \leq \gamma$ for all $w \in \Delta$. We will consider the condition for a function ω on H. When $n=2$, for $w=(s, t) \in H$ the Poisson kernel $P_{w}(x)$ is given by $P_{w}(x)=\gamma_{2} t / / \bar{w}-\left.(x, 0)\right|^{2} \quad(x \in \partial H)$. Using a function $t /|\bar{w}-z|^{2} \quad(z \in H)$, we will define a $\left(A_{p}\right)_{\partial}$-condition on H.

Let $1<p<\infty$, and ω be a non-negative $L_{l o c}^{1}$ function on H of \mathbb{R}^{n}. We say that the function ω satisfies the $\left(A_{p}\right)_{\partial}$-condition on H if there is a constant $\gamma>0$ such that

$$
\int_{H}\left(\frac{t}{|\bar{w}-z|^{2}}\right)^{n} \omega d V(z)\left(\int_{H}\left(\frac{t}{|\bar{w}-z|^{2}}\right)^{n} \omega^{\frac{-1}{p-1}} d V(z)\right)^{p-1} \leq \gamma
$$

for all $w=(s, t) \in H$.
Since an elementary calculation shows that $\int_{H} \frac{1}{|\bar{w}-z|^{2 n}} d V(z)=\left(n 2^{n-1} t^{n}\right)^{-1}, \omega$ is bounded and bounded below then ω satisfies the $\left(A_{p}\right)_{\partial}$-condition. Moreover, since $|\bar{w}-z| \leq \sqrt{10} t$ for $z \in S(w)$ and there is a constant $0<\varepsilon<1$ such that $D_{\varepsilon}(w) \subset S(w)$ for all $w \in H$, there are constants $C, C^{\prime}>0$ such that

$$
\frac{1}{V\left(D_{\varepsilon}(w)\right)} \int_{D_{\varepsilon}(w)} \omega d V \leq C \frac{1}{V(S(w))} \int_{S(w)} \omega d V \leq C^{\prime} \int_{H}\left(\frac{t}{|\bar{w}-z|^{2}}\right)^{n} \omega d V(z)
$$

for all $w \in H$. Therefore, the $\left(A_{p}\right)_{\partial}$-condition implies the C_{p}-condition which is defined in [8]. Since ω satisfies the C_{p}-condition, ω satisfies the doubling condition. Hence, for $0<\varepsilon, \delta<1$ there is a constant $C>0$ such that $\int_{D_{\varepsilon}(w)} \omega d V \leq C \int_{D_{\varepsilon}(\zeta)} \omega d V$ whenever $\rho(w, \zeta)<\delta$ (see Corollary 3.8 in [8]).

3. Sufficient condition for the inequality

We give a sufficient condition for measures μ and ν which satisfy the inequality in (1) of Theorem 1, when $d \nu=\omega d V$.

Proposition 2. Let $0<p \leq 1,1<q<\infty$, and $k>n / p$. Suppose that ℓ, m be nonnegative integers. Assume that μ is a σ-finite positive Borel measure on H and $d \nu=\omega d V$ such that $\omega \in L_{\text {loc }}^{1}(H, d V)$. If there are constants $K>0$ and $0<\varepsilon<1$ such that

$$
\int_{H} \frac{t^{p(m+k+n)-n q}}{|\bar{z}-w|^{p(n+\ell+k)}} d \mu(z) \leq K\left(\int_{D_{\varepsilon}(w)} \omega^{\frac{-1}{q-1}} d V\right)^{-(q-1)}
$$

for all $w=(s, t) \in H$, then there is a constant $C>0$ such that

$$
\int_{H}\left|D^{\alpha} u\right|^{p} d \mu \leq C \int_{H}\left|D_{y}^{m} u\right|^{p} d \nu
$$

for all $u \in b^{p}$ and multi-indices α of order ℓ.
Proof. Let $u \in b^{p}$. By Lemma 5 and the remark above Lemma 4, we have

$$
\begin{aligned}
\left|D^{\alpha} u(w)\right| & \leq C \int_{H}\left|y^{m+k}\left(D_{y}^{m} u\right)(z) D_{w}^{\alpha} D_{y}^{k+1} P_{w}(z)\right| d V(z) \\
& \leq C \int_{H} \frac{y^{m+k}}{|\bar{w}-z|^{n+\ell+k}}\left|D_{y}^{m} u(z)\right| d V(z)
\end{aligned}
$$

For $0<\varepsilon<1 / 2$, by (3) of Lemma 1, we can choose a integer N and a sequence $\left\{\zeta_{j}\right\}$ in H satisfying the conditions : (a) $H=\cup D_{\varepsilon}\left(\zeta_{j}\right),(\mathrm{b})$ any point in H belongs to at most N of the sets $D_{2 \varepsilon}\left(\zeta_{j}\right)$. We will write $\zeta_{j}=\left(\xi_{j}, \eta_{j}\right)$. Since $D_{y}^{m} u$ is harmonic, Lemma 2 in [4, §9] implies that $\left|D_{y}^{m} u(z)\right|^{p / q} \leq C / y^{n} \int_{D_{\varepsilon}(z)}\left|D_{y}^{m} u\right|^{p / q} d V$. Therefore, (1) and (2) of Lemma 1 show that

$$
\begin{aligned}
\left|D^{\alpha} u(w)\right| & \leq C \sum_{j} \int_{D_{\varepsilon}\left(\zeta_{j}\right)} \frac{y^{m+k}}{\bar{w}-\left.z\right|^{n+\ell+k}}\left|D_{y}^{m} u(z)\right| d V(z) \\
& \leq C \sum_{j} \frac{\eta_{j}^{m+k}}{\bar{w}-\left.\zeta_{j}\right|^{n+\ell+k}} \int_{D_{\varepsilon}\left(\zeta_{j}\right)}\left(\frac{1}{y^{n}} \int_{D_{\varepsilon}(z)}\left|D_{y}^{m} u\right|^{p / q} d V\right)^{q / p} d V(z) \\
& \leq C \sum_{j} \frac{\eta_{j}^{m+k}}{\left|\bar{w}-\zeta_{j}\right|^{n+\ell+k}} \int_{D_{\varepsilon}\left(\zeta_{j}\right)}\left(\frac{1}{\eta_{j}^{n}} \int_{D_{2 \varepsilon}\left(\zeta_{j}\right)}\left|D_{y}^{m} u\right|^{p / q} \omega^{1 / q} \omega^{-1 / q} d V\right)^{q / p} d V(z) \\
& \leq C \sum_{j} \frac{\eta_{j}^{m+k+n-n q / p}}{\left|\bar{w}-\zeta_{j}\right|^{n+\ell+k}\left(\int_{D_{2 \varepsilon}\left(\zeta_{j}\right)}\left|D_{y}^{m} u\right|^{p} \omega d V\right)^{1 / p}\left(\int_{D_{2 \varepsilon}\left(\zeta_{j}\right)} \omega^{\frac{-1}{q-1}} d V\right)^{(q-1) / p}} \\
& \leq C \sum_{j}\left(\int_{D_{2 \varepsilon}\left(\zeta_{j}\right)}\left[\frac{y^{p(m+k+n)-n q}}{|\bar{w}-z|^{p(n+\ell+k)}}\left(\int_{D_{4 \varepsilon}(z)} \omega^{\frac{-1}{q-1}} d V\right)^{q-1}\right]\left|D_{y}^{m} u\right|^{p} \omega d V(z)\right)^{1 / p} \\
& \leq C\left(\sum_{j} \int_{D_{2 \varepsilon}\left(\zeta_{j}\right)}\left[\frac{y^{p(m+k+n)-n q}}{|\bar{w}-z|^{p(n+\ell+k)}}\left(\int_{D_{4 \varepsilon}(z)} \omega^{\frac{-1}{q-1}} d V\right)^{q-1}\right]\left|D_{y}^{m} u\right|^{p} \omega d V(z)\right)^{1 / p} \\
& \leq C\left(N \int_{H}\left[\frac{y^{p(m+k+n)-n q}}{|\bar{w}-z|^{p(n+\ell+k)}}\left(\int_{D_{4 \varepsilon}(z)} \omega^{\frac{-1}{q-1}} d V\right)^{q-1}\right]\left|D_{y}^{m} u\right|^{p} \omega d V(z)\right)^{1 / p}
\end{aligned}
$$

Thus, integrating p -th power of the inequality with respect to μ, Fubini's theorem implies that
$\int_{H}\left|D^{\alpha} u(w)\right|^{p} d \mu(w) \leq C \int_{H}\left[\int_{H} \frac{y^{p(m+k+n)-n q}}{|\bar{w}-z|^{p(n+\ell+k)}} d \mu(w)\left(\int_{D_{4 \varepsilon}(z)} \omega^{\frac{-1}{q-1}} d V\right)^{q-1}\right]\left|D_{y}^{m} u\right|^{p} \omega d V(z)$.
This completes the proof.

4. Necessary condition for the inequality

We give a necessary condition for measures μ and ν which satisfy the inequality in (2) of Theorem 1. When $w=(s, t)$ in H, we may write a Carleson box $S(w)=S(s, t)$. We need the following lemma, and Lemma 6 is stated in [13].

LEMMA 6. Let k be a nonnegative integer. Then, there exist constants $0<\sigma \leq 1$ and $C>0$ such that $\left|D_{y}^{k} P_{w}(z)\right| \geq C / t^{n+k-1}$ for all $w=(s, t) \in H$ and $z \in S(s, \sigma t)$.

In Lemma 6, we do not know that the constant σ can be taken $\sigma=1$. We give a necessary condition for the inequality.

Proposition 3. Let $0<p \leq 1$, and k be a nonnegative integer which is sufficiently large. Suppose that ℓ, m be nonnegative integers. Assume that μ and ν are σ-finite positive Borel measures on H. If there is a constant $C>0$ such that

$$
\int_{H}\left|D_{y}^{\ell} u\right|^{p} d \mu \leq C \int_{H}\left|D_{y}^{m} u\right|^{p} d \nu
$$

for all $u \in b^{p}$, then there are constants $0<\sigma \leq 1$ and $K=K_{\sigma}>0$ such that

$$
\mu(S(s, \sigma t)) \leq K t^{p(\ell+n+k)} \int_{H} \frac{1}{|\bar{w}-z|^{p(n+m+k)}} d \nu
$$

for all $w=(s, t) \in H$.
Proof. Suppose that the inequality in (2) of Theorem 1 is satisfied. We can choose a nonnegative integer k such that $u(z)=\left(D_{y}^{k+1} P_{w}\right)(z)$ is in b^{p}. Then, we have

$$
\int_{H}\left|D_{y}^{m} u\right|^{p} d \nu=\int_{H}\left|D_{y}^{m+k+1} P_{w}\right|^{p} d \nu \leq C \int_{H} \frac{1}{|\bar{w}-z|^{p(n+m+k)}} d \nu
$$

Moreover, Lemma 6 implies that

$$
\begin{aligned}
\int_{H}\left|D_{y}^{\ell} u\right|^{p} d \mu & =\int_{H}\left|D_{y}^{\ell+k+1} P_{w}\right|^{p} d \mu \geq \int_{S(s, \sigma t)}\left|D_{y}^{\ell+k+1} P_{w}\right|^{p} d \mu \\
& \geq \frac{C_{\sigma}}{t^{p(\ell+n+k)}} \int_{S(s, \sigma t)} d \mu=\frac{C_{\sigma}}{t^{p(\ell+n+k)}} \mu(S(s, \sigma t))
\end{aligned}
$$

Therefore, it follows that

$$
\frac{C_{\sigma}}{t^{p(\ell+n+k)}} \mu(S(s, \sigma t)) \leq C \int_{H} \frac{1}{|\bar{w}-z|^{p(n+m+k)}} d \nu
$$

5. Proof of Theorem 1

We give a proof of Theorem 1. The implication (1) $\Rightarrow(2)$ is trivial. Therefore, we show that $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$.
$(2) \Rightarrow(3)$. We suppose that the inequality in (2) of Theorem 1 is hold. Then, Proposition 3 implies that there are constants $0<\sigma \leq 1$ and $K=K_{\sigma}>0$ such that $\mu(S(s, \sigma t)) \leq K t^{p(\ell+n+k-1)} \int_{H} 1 /|\bar{w}-z|^{p(m+k+n-1)} d \nu$ for all $w=(s, t) \in H$. Since $|\bar{w}-z| \geq t$, We have $\mu(S(s, \sigma t)) \leq K t^{p(\ell-m)+n} \int_{H} t^{n} /|\bar{w}-z|^{2 n} d \nu$. Moreover, since ω satisfies the $\left(A_{q}\right)_{\partial}$-condition, we obtain $\mu(S(s, \sigma t)) \leq K t^{p(\ell-m)} \nu\left(D_{\varepsilon}(s, \sigma t)\right)$. Since s and t are arbitrary, we can replace t by t / σ. This implies that $\mu(S(w)) \leq C t^{p(\ell-m)} \nu\left(D_{\varepsilon}(w)\right)$.
$(3) \Rightarrow(1)$. Let $c=p(\ell-m)$ and suppose that $\mu(S(\zeta)) \leq K \eta^{c} \nu\left(D_{\varepsilon}(\zeta)\right)$ for all $\zeta=$ $(\xi, \eta) \in H$. Since ω satisfies the $\left(A_{q}\right)_{\partial}$-condition, the sufficient condition in Proposition 2 is equivalent to a condition $\int_{H} t^{p(n+m+k)} / / \bar{w}-\left.z\right|^{p(n+\ell+k)} d \mu(z) \leq K \nu\left(D_{\varepsilon}(w)\right)$. Therefore, it is enough to prove that $\int_{H} 1 /|\bar{w}-z|^{\gamma} d \mu(z) \leq C t^{c-\gamma} \nu\left(D_{\varepsilon}(w)\right)$ for all $w=(s, t) \in H$, where $\gamma=p(n+\ell+k)$ and k is sufficiently large. Let $w \in H$. Clearly, if $z \notin S\left(s, 2^{j-1} t\right)$, then $|w-\bar{z}| \geq 2^{j-1} t(j \geq 1)$. Therefore, the hypothesis implies that

$$
\begin{aligned}
\int_{H} \frac{1}{|w-\bar{z}|^{\gamma}} d \mu(z) & \leq t^{-\gamma} \int_{S(s, t)} d \mu+t^{-\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{\gamma(j-1)}} \int_{S\left(s, 2^{j} t\right) \backslash S\left(s, 2^{j-1} t\right)} d \mu \\
& \leq t^{-\gamma} \mu(S(s, t))+t^{-\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{\gamma((j-1)}} \mu\left(S\left(s, 2^{j} t\right)\right) \\
& \leq K t^{c-\gamma} \nu\left(D_{\varepsilon}(s, t)\right)+K t^{-\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{\gamma(j-1)}}\left(2^{j} t\right)^{c} \nu\left(D_{\varepsilon}\left(s, 2^{j} t\right)\right) \\
& =K t^{c-\gamma}\left(\nu\left(D_{\varepsilon}(s, t)\right)+2^{\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{(\gamma-c) j}} \nu\left(D_{\varepsilon}\left(s, 2^{j} t\right)\right)\right)
\end{aligned}
$$

Since ω satisfies the $\left(A_{q}\right)_{\partial}$-condition, ω satisfies the C_{q}-condition. Therefore, Corollary 3.8 in [8] implies that there is a constant $\lambda>0$ such that $\nu\left(D_{\varepsilon}(s, 2 t)\right) \leq 2^{\lambda} \nu\left(D_{\varepsilon}(s, t)\right)$. Hence, we have

$$
\begin{aligned}
\int_{H} \frac{1}{|w-\bar{z}|^{\gamma}} d \mu(z) & \leq K t^{c-\gamma}\left(\nu\left(D_{\varepsilon}(w)\right)+2^{\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{(\gamma-c) j}} 2^{\lambda j} \nu\left(D_{\varepsilon}(w)\right)\right) \\
& =K t^{c-\gamma}\left(1+2^{\gamma} \sum_{j=1}^{\infty} \frac{1}{2^{(\gamma-c-\lambda) j}}\right) \nu\left(D_{\varepsilon}(w)\right) .
\end{aligned}
$$

If we choose an integer k such that $\gamma-c-\lambda=p(n+m+k)-\lambda>0$, then we obtain $\int_{H} 1 /|\bar{w}-z|^{\gamma} d \mu(z) \leq C t^{c-\gamma} \nu\left(D_{\varepsilon}(w)\right)$.

References

[1] P.Ahern and M.Jevtić, Inner multipliers of the Besov space, $0<p \leq 1$, Rocky Mountain J. Math. 20(1990), 753-764.
[2] S.Axler, P.Bourdon and W.Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
[3] C.Cascante and J.Ortega, Carleson measures on spaces of Hardy-Sobolev type, Can. J. Math. 47 (1995), 1177-1200.
[4] C.Fefferman and E.Stein, H^{p}-Spaces of several variables, Acta Math. 129(1972), 137-193.
[5] R.Hunt, B.Muckenhoupt, and R.Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
[6] D.Luecking, Inequalities on Bergman spaces, Illinois. J. Math. 25 (1981), 1-11.
[7] D.Luecking, Forword and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85-111.
[8] D.Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34(1985), 319-336.
[9] D.Luecking, Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. London Math. Soc. 63(1991), 595-619.
[10] T.Nakazi and M.Yamada, $\left(A_{2}\right)$-conditions and Carleson inequalities in Bergman spaces, Pacific J. Math. $\mathbf{1 7 3}$ (1996), 151-171.
[11] W.Ramey and H.Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), 633-660.
[12] D.Stegenga, Multipliers of the Dirichlet space, Ill. J. Math. 24(1980), 113-139.
[13] M.Yamada, Carleson inequalities in classes of derivatives of harmonic Bergman functions with $0<p \leq 1$, Hiroshima Math. J. 29(1999), 161-174.
[14] K.Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

> Department of Mathematics
> Faculty of Education
> Gifu University
> Yanagido 1-1, Gifu 501-1193, Japan
> yamada33@cc.gifu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46 E 30.
 Key words and phrases. Bergman space, Carleson inequality, harmonic function, A_{p}-condition.

