CUSTOMS vs. SMUGGLER GAME WITH A RANDOM AMOUNT OF CARGO

Minoru Sakaguchi*

Received April 3, 2003

Abstract

Customs vs. Smuggler (player I and II, respectively) game where the amount of cargo is a random variable is discussed. II wants to cross the strait a motorboat carrying illegal cargo during one of n nights. I wants to stop it, and can patrol at most k nights. The amount X_{i} of cargo in the i-th night is supposed to be $U_{[0,1]}$-distributed random variable. We suppose that the realized value of X_{i} in each night is, by some information agent, communicated to I. Payoff to I is $X_{i}\left(-X_{i}\right)$, if patrol-go (no=patrol-go) are chosen. I (II) wants to maximize (minimize) the expected payoff to I. This game G_{k}^{n} is formulated and solved by deriving the triangular recursion of values $V_{k}^{n}=\operatorname{Val}\left(G_{k}^{n}\right), 1 \leq k \leq n, n=1,2, \cdots$. It is shown that $V_{k}^{n} \downarrow-1$ as $n \rightarrow \infty$, for every fixed k.

1 Customs vs. Smuggler Game with a Random Amount of Cargo. Let $X_{i}, i=$ $1,2, \cdots, n$, be i.i.d. random variables each with uniform distribution on $[0,1]$. As each X_{i} comes up, each player I and II must choose simultaneously and independently of other player's choice, either to accept (A) or to reject (R) it. If the choices are R-A (A-A), then player I gets the amount zero $\left(X_{i}\right)$, and the game terminates. If the choices are $\mathrm{R}-\mathrm{R}$ or A-R, then the X_{i} is rejected, the next X_{i+1} is presented and the game continues.
$\left(^{*}\right)$ Player $\left\{\begin{array}{l}\text { II } \\ \text { I }\end{array}\right\}$ must choose A $\left\{\begin{array}{l}\text { just once } \\ \text { at most } k \text { times }\end{array}\right\}$ during the n stages, where $1 \leq k \leq$ n. Player I (II) aims to maximize (minimize) the expected payoff to I.

Let v_{k}^{n} be the value of the n-stage game (Γ_{k}^{n}, say). Then the Optimality Equation is

$$
v_{k}^{n}=\mathrm{E}\left[\operatorname{val}\left\{\begin{array}{c}
\mathrm{R} \\
\mathrm{R} \tag{1.1}\\
\mathrm{~A}
\end{array}\left(\begin{array}{cc}
v_{k}^{n-1} \\
v_{k-1}^{n-1} & 0 \\
\mathrm{~A}^{2}
\end{array}\right)\right\}\right]
$$

with the boundary conditions

$$
\begin{gather*}
v_{0}^{n}=0, \quad \forall n \geq 0 \tag{1.2}\\
v_{n}^{n}=\nu_{n} \quad\left(n \geq 1, \nu_{1}=1 / 2\right) \tag{1.3}
\end{gather*}
$$

where the sequence $\left\{\nu_{n}\right\}$ is determined by the recursion

$$
\begin{equation*}
\nu_{n}=\nu_{n-1}-\frac{1}{2} \nu_{n-1}^{2} \quad\left(n \geq 1, \nu_{1}=1 / 2\right) \tag{1.4}
\end{equation*}
$$

There is another closely related game, G_{k}^{n}, say. The only one difference from the game Γ_{k}^{n} is : If the choices are R-A, then player I pays player II the amount X_{i} (insted of zero).

[^0]So, denoting by V_{k}^{n} the value of the game G_{k}^{n}, the Optimality Equation is

$$
V_{k}^{n}=\mathrm{E}\left[\operatorname{val}\left\{\begin{array}{c}
\mathrm{R} \\
\mathrm{~A}
\end{array}\left(\begin{array}{cc}
v_{k}^{n-1} & -X \tag{1.5}\\
v_{k-1}^{n-1} & X
\end{array}\right)\right\}\right]
$$

with the boundary conditions

$$
\begin{array}{cc}
V_{0}^{n}=-\mu_{n} & \left(n \geq 1, \mu_{1}=1 / 2\right) \\
V_{n}^{n}=\nu_{n} & \left(n \geq 1, \nu_{1}=1 / 2\right) \tag{1.7}
\end{array}
$$

where $\left\{\mu_{n}\right\}$ is so-called Moser's sequence determined by the recursion

$$
\begin{equation*}
\mu_{n}=\frac{1}{2}\left(1+\mu_{n-1}^{2}\right) \quad\left(n \geq 1, \mu_{0}=0\right) \tag{1.8}
\end{equation*}
$$

The solutions to the games Γ_{k}^{n} and G_{k}^{n} are given in Sections 2 and 3, respectively, together with the proofs of the boundary conditions (1.2)-(1.3) and (1.6)-(1.7) for these games.

These games correspond to the scene found in the Customs vs. Smuggler game, where Player I (Customs) : A=patrol, $\mathrm{R}=$ no patrol.
Player II (Smuggler) : $\mathrm{A}=$ go, $\mathrm{R}=$ don't go.
II wants to cross the strait by a motorboat carrying illegal cargo during one of n nights. I wants to stop it, and can patrol at most k nights. The amount of II's cargo is supposed to be $U_{[0,1]}$-distributed random variable. We suppose that its realized value in each night, by some information agent, communicated to I.

Or, another interpretation for Γ_{k}^{n} is; X_{i} is the probability that I catches II, if I patrols and II goes in the same i-th night. It randomly changes depending of the weather, etc.

2 Solution to the Game $\Gamma_{\mathrm{k}}^{\mathrm{n}}$. We define state ($n, k \mid x$) to mean that (1) the game still continues, n random values remain to be observed, and player I can choose A at most k times, and (2) the first random variable has just been observed with value x.
lemma 1.1 Game Γ_{k}^{n} has the boundary conditions (1.2) and (1.3).
Proof. If I cannot choose A during the whole stages, (1.1) becomes

$$
v_{0}^{n}=v_{0}^{n-1} \wedge 0=0, \quad \forall n \geq 1,
$$

since we have evidently $v_{0}^{n} \geq 0, \forall n$. Player II chooses A in the first stage, for any $x \in[0,1]$, terminating the game. This proves (1.2).

If $k=n$, I doesn't choose R in the first stage, since the second row in the payoff matrix in (1.1) dominates the first row. It then follows that choosing A is optimal for I. Hence I chooses A during the whole stages. Therefore $\nu_{n} \equiv v_{n}^{n}$ satisfies

$$
\nu_{n}=\mathrm{E}\left(\nu_{n-1} \wedge X\right), \quad\left(\forall n \geq 2, \nu_{1}=\mathrm{EX}=1 / 2\right)
$$

which gives the recursion (1.4). Note that $\nu_{1}=1 / 2$ is derived from the condition $\left(^{*}\right)$ of the game. Player II chooses A as soon as the stage ($n, n \mid x$) satisfying $x<\nu_{n-1}$ appears. This proves that (1.3) is true.

We find that $\nu_{n} \downarrow 0$, as $n \rightarrow \infty$, since (1.4) is rewritten as

$$
\nu_{n}=T\left(\nu_{n-1}\right), \text { with } T(y)=y-\frac{1}{2} y^{2}
$$

and $T(y), 0 \leq y \leq 1$, is concave and increasing with $T(0)=0$ and $T(1)=1 / 2$.

Theorem 1 The value v_{k}^{n} of the game Γ_{k}^{n} is given by the triangular recursion

$$
\begin{equation*}
v_{k}^{n}=\frac{1}{2} b^{2}+\bar{b} a+a(a-b) \log \frac{a}{a-b+1} \quad\left(1 \leq k \leq n, v_{0}^{n}=0, v_{n}^{n}=\nu_{n}\right) \tag{2.1}
\end{equation*}
$$

where $a=v_{k}^{n-1}, b=v_{k-1}^{n-1}$ and $0<b<a<1$.
As $n \rightarrow \infty, v_{k}^{n} \downarrow 0$, for every fixed k.
The optimal play in state $(n, k \mid x)$ is :
Both players choose A, if $x<b$;
I and II employ the mixed strategies $\langle\bar{\alpha}(x), \alpha(x)\rangle$ and $\langle\bar{\beta}(x), \beta(x)\rangle$, resp., where $\alpha(x)=\frac{a}{x+a-b}$ and $\beta(x)=\frac{a-b}{x+a-b}$, if $x>b$.
Proof. By induction on n, it is clear that

$$
0<b \equiv v_{k-1}^{n-1} \leq v_{k}^{n-1} \equiv a<1, \quad \forall n \geq 1
$$

Hence in state ($n, k \mid x$), we have

$$
\operatorname{val}\left(\begin{array}{ll}
a & 0 \tag{2.2}\\
b & x
\end{array}\right)=\left\{\begin{array}{cl}
x, & \text { if } x \leq b(\text { A-A is optimal }) \\
\frac{a x}{x+a-b}, & \text { if } x \geq b
\end{array}\right.
$$

Therefore, from (1.1),

$$
v_{k}^{n}=\int_{0}^{b} x d x+\int_{b}^{1} \frac{a x}{x+a-b} d x=\frac{1}{2} b^{2}+a\left\{\bar{b}+(a-b) \log \frac{a}{a-b+1}\right\}
$$

which is (2.1). Also we have

$$
v_{k}^{n}-v_{k}^{n-1}=v_{k}^{n}-a=\frac{1}{2}(a-b)^{2}-\frac{1}{2} a^{2}+a(a-b) \log \frac{a}{a-b+1}<0
$$

since $0<b<a<1$.
$\left\{v_{k}^{n}\right\}_{n}$ converges. The limit α_{k} satisfies the recursion

$$
0=\frac{1}{2}\left(\alpha_{k}-\alpha_{k-1}\right)^{2}-\frac{1}{2} \alpha_{k}^{2}+\alpha_{k}\left(\alpha_{k}-\alpha_{k-1}\right) \log \frac{\alpha_{k}}{\alpha_{k}-\alpha_{k-1}+1} \quad\left(k=1,2, \cdots ; \alpha_{0}=0\right)
$$

and induction on k gives that $\alpha_{k} \equiv 0, \quad \forall k$.
The rest part stated in the theorem is evident from (2.2).
Table 1. $\left\{v_{k}^{n}\right\}$, for $k, n=1(1) 10$.

					$\rightarrow n$					
	1	2	3	4	5	6	7	8	9	10
1	500	225	139	99	75	60	50	42	36	32
2		375	253	185	158	124	101	85	73	64
3			305	240	193	164	139	120	104	103
4				258	219	187	162	142	126	113
$\downarrow 5$					225	198	175	156	140	126
$k 6$						200	178	161	146	134
7							180	163	148	137
8								164	149	138
9									150	139
10										139

In Table 1 we show $\left\{v_{k}^{n}\right\}$ values computed from (2.1). The first row is derived from the recursion

$$
v_{1}^{n}=a-a^{2} \log \left(1+a^{-1}\right), \quad\left(a=v_{1}^{n-1} \text { and } b=0 \text { in }(2.1)\right)
$$

and the unit of the figures is 0.001 . They are under rounding errors.
For example, $v_{3}^{10}=0.103$, and the optimal play in stay $(10,3 \mid x)$ is ; Both players choose A, if $x<v_{2}^{9}=0.073$;
I and II employ the mixed strategies $\left\langle\frac{x-0.073}{x+0.031}, \frac{0.104}{x+0.031}\right\rangle$ and $\left\langle\frac{x}{x+0.031}, \frac{0.031}{x+0.031}\right\rangle$, resp., if $x>0.073$ (since $a-b=v_{3}^{9}-v_{2}^{9}=0.031$).
The result in Theorem 1 is well compared with the case where the cargo has the fixed amount $\mathrm{EX}=\frac{1}{2}$. Denote this game by $\widetilde{\Gamma}_{k}^{n}$. The equation corresponding to (2.2) is

$$
w_{k}^{n}=\operatorname{val}\left(\begin{array}{cc}
w_{k}^{n-1} & 0 \\
w_{k-1}^{n-1} & 1 / 2
\end{array}\right)=\frac{\frac{1}{2} w_{k}^{n-1}}{w_{k}^{n-1}-w_{k-1}^{n-1}+1 / 2}
$$

with $w_{0}^{n}=0$, and $w_{n}^{n}=1 / 2$. This gives the very simple solution

$$
w_{k}^{n}=k /(2 n)
$$

and the optimal strategy-pair in state (n, k)

$$
\langle 1-k / n, k / n\rangle \text { for } \mathrm{I} \text {, and }\left\langle 1-n^{-1}, n^{-1}\right\rangle \text { for II. }
$$

We find, for example, $\operatorname{Val}\left(\widetilde{\Gamma}_{3}^{10}\right)=\frac{3}{20}=0.15$, whereas $v_{3}^{10}=0.103$.

3 Solution to the Game $\mathrm{G}_{\mathrm{k}}^{\mathrm{n}}$.

Lemma 2.1 Game G_{k}^{n} has the boundary condition (1.6) and (1.7).
Proof. If I cannot choose A during the whole stages, (1.5) becomes

$$
V_{0}^{n}=\mathrm{E}\left[V_{0}^{n-1} \wedge(-X)\right]
$$

and hence $W_{0}^{n}=-V_{0}^{n}$ satisfies $W_{0}^{n}=\mathrm{E}\left(W_{0}^{n-1} \vee X\right),\left(n \geq 1, W_{0}^{0}=0\right)$, implying that $\left\{W_{0}^{n}\right\}$ is identical to the Moser's sequence (1.8). Note that $V_{0}^{1}=-\mathrm{EX}=-\frac{1}{2}$ is derived from $\left({ }^{*}\right)$. Player II chooses A as soon as the state ($\left.n, 0 \mid x\right)$ with $x>\mu_{n-1}$ appears. This proves (1.6).

The proof of (1.7) is the same as in the proof of (1.3) made in Lemma 1.1.
Theorem 2 (i). The value V_{k}^{n} of the game G_{k}^{n} is given by (3.4)-(3.5), where $-1<b \equiv$ $V_{k-1}^{n-1}<a \equiv V_{k}^{n-1}<1$.
(ii). As $n \rightarrow \infty, V_{k}^{n} \downarrow-1$, for every fixed k.
(iii). The optimal play in state $(n, k \mid x)$ is ; In Case 1 (i.e., $a+b<0$),

Both players choose R , if $x<-a$;
I and II employ the mixed strategies $\langle\bar{\alpha}(x), \alpha(x)\rangle$ and $\langle\bar{\beta}(x), \beta(x)\rangle$, resp., where $\alpha(x)=$ $\frac{x+a}{2 x+a-b}$ and $\beta(x)=\frac{a-b}{2 x+a-b}$, if $x>-a$,
and in Case 2 (i.e., $a+b>0$),
Both players choose A, if $x<b$;
Players employ the same mixed strategies as in Case 1, if $x>b$ (See Figure 1).

Proof. (i): Induction on n gives

$$
-1 \leq V_{k-1}^{n} \leq V_{k}^{n} \leq 1 \quad \forall n \geq 1
$$

So, from (1.5), we have

$$
V_{k}^{n}=\mathrm{E}\left[\operatorname{val}\left(\begin{array}{cc}
V_{k}^{n-1} & -X \tag{3.1}\\
V_{k-1}^{n-1} & X
\end{array}\right)\right]=-\frac{1}{2}+2 \mathrm{E}\left[\operatorname{val}\left(\begin{array}{cc}
\frac{1}{2}(a+X) & 0 \\
\frac{1}{2}(b+X) & X
\end{array}\right)\right]
$$

where $a=V_{k}^{n-1}, b=V_{k-1}^{n-1}$ and $-1 \leq b \leq a \leq 1$.
Let $M(x)=\left(\begin{array}{cc}\frac{1}{2}(a+x) & 0 \\ \frac{1}{2}(b+x) & x\end{array}\right)$, then

$$
\text { val } M(x)= \begin{cases}\frac{1}{2}(a+x), & \text { if } x<-a \\ x, & \text { if } x<b \\ \frac{x(a+b)}{2 x+a-b}(\equiv g(x), \text { say }), & \text { if otherwise }\end{cases}
$$

We consider the two cases ; Case 1. $a+b<0$, and Case 2. $a+b>0$. (see Figure 1)

Figure 1. Domain of two cases.
Then we find that

$$
\operatorname{val} M(x)=\left\{\begin{array}{cl}
\frac{1}{2}(a+x), & \text { if } x<-a \text { (R-R is optimal) } \tag{3.2}\\
g(x), & \text { if } x>-a
\end{array}\right.
$$

in Case 1 (since A-A is not optimal), and

$$
=\left\{\begin{array}{cl}
x, & \text { if } x<b \tag{3.3}\\
g(x), & \text { if } x>b
\end{array}\right. \text { (A-A is optimal) }
$$

in Case 2 (since $\mathrm{R}-\mathrm{R}$ is not optimal).
By performing the integration and considering (3.1), we find that ; In Case 1,

$$
\text { E val } M(x)= \begin{cases}\int_{0}^{-a} \frac{1}{2}(a+x) d x+\int_{-a}^{1} g(x) d x, & \text { if } a<0(\text { i.e. }, 0<-a<1) \\ \int_{0}^{1} g(x) d x, & \text { if } a>0\end{cases}
$$

and hence

$$
V_{k}^{n}= \begin{cases}-a^{2}+\frac{1}{2}(a+b)(1+a)-\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{2+a-b}{-(a+b)}, & \text { if } a \leq 0, \tag{3.4}\\ \frac{1}{2} b+\frac{1}{4} b^{2} \log \frac{2-b}{-b}, & \text { if } a=0, \\ \frac{1}{2}(a+b)-\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{2+a-b}{a-b}, & \text { if } a \geq 0 .\end{cases}
$$

In case 2, the analogous computation gives the result ;

$$
\mathrm{E} \text { val } M(x)= \begin{cases}\int_{0}^{1} g(x) d x, & \text { if } b<0 \\ \int_{0}^{b} x d x+\int_{b}^{1} g(x) d x, & \text { if } b>0\end{cases}
$$

and hence

$$
V_{k}^{n}= \begin{cases}\frac{1}{2}(a+b)-\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{2+a-b}{a-b}, & \text { if } b \leq 0, \tag{3.5}\\ \frac{1}{2} a-\frac{1}{4} a^{2} \log \frac{2+a}{a}, & \text { if } b=0, \\ \frac{1}{2}(a+b-a b)-\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{2+a-b}{a+b}, & \text { if } b \geq 0 .\end{cases}
$$

For the bordering case of Cases 1 and 2 i.e., $a+b=0$, both of (3.4) and (3.5) give the same value 0 .
(ii) : We want to prove that V_{k}^{n} is decreasing in n for fixed k.

In Case 1, we have, from (3.4),

$$
\begin{align*}
V_{k}^{n}-V_{k}^{n-1} & =V_{k}^{n}-a \tag{3.6}\\
& = \begin{cases}\frac{1}{2}(1+a)(b-a)+\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{-(a+b)}{2+a-b}, & \text { if } a \leq 0, \\
\frac{1}{2}(b-a)+\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{a-b}{2+a-b}, & \text { if } a \geq 0 .\end{cases}
\end{align*}
$$

Using the universal inequality $\alpha \log (\alpha / \beta) \geq \alpha-\beta$, we have

$$
\begin{gathered}
\frac{1}{4}(b-a)(-(a+b)) \log \frac{-(a+b)}{2+a-b} \leq \frac{1}{4}(b-a)(-2)(1+a)=\frac{1}{2}(a-b)(1+a), \\
\frac{1}{4}(a+b)(a-b) \log \frac{a-b}{2+a-b} \leq \frac{1}{4}(a+b)(-2)=-\frac{1}{2}(a+b) .
\end{gathered}
$$

Thus $V_{k}^{n}-V_{k}^{n-1}<0$, for $\forall a \in(-1,1)$.
In Case 2, we have, from (3.5),

$$
\begin{align*}
V_{k}^{n}-V_{k}^{n-1} & =V_{k}^{n}-a \tag{3.7}\\
& = \begin{cases}\frac{1}{2}(b-a)+\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{a-b}{2+a-b}, & \text { if } b \leq 0, \\
\frac{1}{2}(b-a-a b)+\frac{1}{4}\left(a^{2}-b^{2}\right) \log \frac{a+b}{2+a-b}, & \text { if } b \geq 0 .\end{cases}
\end{align*}
$$

Here, $a^{2}-b^{2}=(a+b)(a-b)>0$, and

$$
b-a-a b<0 \text {, if }(-a) \vee 0<b<a .
$$

Therefore all four terms are negative. So, $V_{k}^{n}<V_{k}^{n-1}$ follows. $\left\{V_{k}^{n}\right\}_{n}$ converges. The limit α_{k} satisfies the recursion $D_{k}=0,\left(k \geq 0, \alpha_{0}=-1\right)$, where D_{k} is given by the r.h.s. of (3.6)-(3.7), with a, b replaced by α_{k}, α_{k-1}. Suppose that $\alpha_{k-1}=-1$. Then $\alpha_{k}+\alpha_{k-1}=\alpha_{k}-1<0$. So, Case 1 applies, and

$$
D_{k}= \begin{cases}-\left(1+\alpha_{k}\right)\left\{\begin{array}{ll}
\left.\frac{1}{2}\left(1+\alpha_{k}\right)+\frac{1}{4}\left(1-\alpha_{k}\right) \log \frac{1-\alpha_{k}}{3+\alpha_{k}}\right\}, & \text { if } \alpha_{k} \leq 0 \\
-\left(1+\alpha_{k}\right)
\end{array}\left\{\frac{1}{2}+\frac{1}{4}\left(1-\alpha_{k}\right) \log \frac{1+\alpha_{k}}{3+\alpha_{k}}\right\},\right. & \text { if } \alpha_{k} \geq 0\end{cases}
$$

Then $D_{k}=0$ gives a unique root $\alpha_{k}=-1$, since the equation $(1-t) \log \frac{1+t}{3+t}=-2$ has no root in $t \geq 0$. It follows by induction arguments, that $\alpha_{k}=-1, \forall k \geq 0$.
(iii) : Evident from (3.1) $\sim(3.3)$ in the proof of part (i).

Thus we have completed the proof of Theorem 2.
Table 2. $\left\{V_{k}^{n}\right\}$, for $k, n=1(1) 10$.

	1	2	3	4	5	6	7	8	9	10
0	-500	-625	-695	-742	-775	-800	-820	-836	-850	-861
1	500	0	-172	-268	-334	-385	-427	-460	-487	-513
2		375	123	-17	-103	-166	-215	-256	-291	-321
3			305	161	56	-43	-87	-127	-162	-193
4				258	172	94	21	28	-66	-99
5					225	171	114	58	13	-23
$\downarrow 6$						200	164	123	81	42
k 7							180	155	125	93
8								164	145	123
9									150	136
10										

In Table 2, we show the values of $\left\{V_{k}^{n}\right\}$, computed from (3.4)-(3.5). They are decreasing in n, for every fixed k, and increasing in k for every fixed n. The figures are in 0.001 unit, and subject to rounding errors. The upper(lower) part of the bold line in the table corresponds to Case 1 (Case 2). $V_{1}^{2}=0$ is on the bordering case.

We see that, for example, $V_{3}^{10}=-0.193$, and the optimal play in state $(10,3 \mid x)$ is : Both players choose R , if $x<-V_{3}^{9}=0.162$;
$\left\{\begin{array}{c}\text { I } \\ \text { II }\end{array}\right\}$ employs the mixed strategy $\left\{\begin{array}{ll}\langle\bar{\alpha}(x), \alpha(x)\rangle, & \alpha(x)=\frac{x-0.162}{2 x+0.129} \\ \langle\bar{\beta}(x), \beta(x)\rangle, & \beta(x)=\frac{0.129}{2 x+0.129}\end{array}\right\}$, if $x>0.162$, (since $a-b=V_{3}^{9}-V_{2}^{9}=0.129$)

The result in Theorem 2 is well compared with the case where the cargo carries the fixed amount 1. Then the equation corresponding to (1.5) is

$$
V_{k}^{n}=\operatorname{val}\left(\begin{array}{cc}
V_{k}^{n-1} & -1 \tag{3.8}\\
V_{k-1}^{n-1} & 1
\end{array}\right)
$$

with $V_{0}^{n}=-1$, and $V_{n}^{n}=0$. Let $W_{k}^{n}=\frac{1}{2}\left(1-V_{k}^{n}\right)$. Then (3.8) becomes

$$
W_{k}^{n}=\operatorname{val}\left(\begin{array}{cc}
W_{k}^{n-1} & W_{k-1}^{n-1} \tag{3.9}\\
1 & 0
\end{array}\right)
$$

with $W_{0}^{n}=1$ and $W_{n}^{n}=\frac{1}{2}$. Baston and Bostock [1], Garnaev [3] and Sakaguchi [5] suggest that

$$
\begin{equation*}
W_{k}^{n}=s_{k}^{n-1} / s_{k}^{n}, \quad \text { where } s_{k}^{n}=\sum_{j=0}^{k}\binom{n}{j} \tag{3.10}
\end{equation*}
$$

is the solution of (3.9) which satisfies the two boundary conditions. Proof is as follows: Equation (3.9) gives

$$
W_{k}^{n}=\frac{W_{k-1}^{n-1}}{1-W_{k}^{n-1}+W_{k-1}^{n-1}}
$$

which is rewritten as

$$
\begin{equation*}
\frac{1}{W_{k}^{n-1}}\left(\frac{1}{W_{k}^{n}}-1\right)=\frac{1}{W_{k-1}^{n-1}}\left(\frac{1}{W_{k}^{n-1}}-1\right) \tag{3.11}
\end{equation*}
$$

By using the identity $s_{k}^{n}=s_{k}^{n-1}+s_{k-1}^{n-1}$, we find that both sides of (3.11) substituted by (3.10) are equal to the same $s_{k-1}^{n-1} / s_{k}^{n-2}$.

Summarizing the above we arrive at : The solution of the equation (3.6) is

$$
V_{k}^{n}=1-2 W_{k}^{n}=1-2 s_{k}^{n-1} / s_{k}^{n}=-\binom{n-1}{k} / \sum_{j=0}^{k}\binom{n}{j}
$$

Denote by \widetilde{G}_{k}^{n} the game G_{k}^{n} with X_{i} replaced by a fixed constant $\frac{1}{2}$. Then

$$
\operatorname{Val} \widetilde{G}_{3}^{10}=-\frac{1}{2}\binom{9}{3} / \sum_{j=0}^{3}\binom{10}{j} \cong-0.2386
$$

whereas $\operatorname{Val}_{3}^{10}=V_{3}^{10} \cong-0.193$.

4 Final Remarks.

1. As $n \rightarrow \infty$, Val $\Gamma_{k}^{n} \downarrow 0$, and $\operatorname{Val} G_{k}^{n} \downarrow-1$ for every fixed k. The same is true for nonrandom version, i.e., Val $\widetilde{\Gamma}_{k}^{n} \downarrow 0$ and Val $\widetilde{G}_{k}^{n} \downarrow-\frac{1}{2}$.
2. Multistage games discussed in the present paper has some variants. One of the open problem is the case where Smuggler must cross the strait twice (or more generally $m \geq 2$ times). Let $(1 \leq) \tau_{1} \leq \tau_{2}(\leq n)$ be II's "go" stages. Payoff to I is $\sum_{i=1,2} X_{\tau_{i}}$. The games $\widetilde{\Gamma}_{k}^{n}$ along this line of extension are investigated in $[2,4,5]$.

References

[1] Baston, V. J. and Bostock, F. A., A generalized inspection game, Naval Res. Logist. Quart., 38(1991), 171-182.
[2] Furguson, T.S. and Melolidakis, C., On the inspection game, Naval Res. Logist., 45(1998), 327-334.
[3] Garnaev, A., Seach games and other applications of game theory, Springer-Verlag, New York, 1999.
[4] Sakaguchi M., A sequential allocation game for targets with varying values, J. Oper. Res. Japan, 20(1977), 182-193.
[5] Sakaguchi M., A sequential game of multi-opportunity infiltration, Sci. Math. Japonicae, $\mathbf{3 9}$ (1994), 157-166.
Among which [2] and [3] contain further references.
*3-26-4 Midorigaoka, Toyonaka, Osaka, 560-0002, Japan, FAX: +81-6-6856-2314 E-MAIL: smf@mc.kcom.ne.jp

[^0]: 2000 Mathematics Subject Classification. 60G40, 90C39, 90D15.
 Key words and phrases. Multistage game, dynamic programming, two-person competitive game, optimal strategy.

