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CUSTOMS vs. SMUGGLER GAME WITH A RANDOM AMOUNT OF

CARGO
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�
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Abstract. Customs vs. Smuggler (player I and II, respectively) game where the

amount of cargo is a random variable is discussed. II wants to cross the strait a

motorboat carrying illegal cargo during one of n nights. I wants to stop it, and can

patrol at most k nights. The amount Xi of cargo in the i-th night is supposed to be

U[0;1]-distributed random variable. We suppose that the realized value of Xi in each

night is, by some information agent, communicated to I. Payo� to I is Xi(�Xi), if

patrol-go (no=patrol-go) are chosen. I (II) wants to maximize (minimize) the expected

payo� to I. This game Gn
k is formulated and solved by deriving the triangular recursion

of values V n
k = Val(Gn

k ); 1 � k � n;n = 1; 2; � � �. It is shown that V n
k # �1 as n!1,

for every �xed k.

1 Customs vs. Smuggler Game with a Random Amount of Cargo. Let Xi; i =

1; 2; � � � ; n; be i.i.d. random variables each with uniform distribution on [0; 1]. As each

Xi comes up, each player I and II must choose simultaneously and independently of other

player's choice, either to accept (A) or to reject (R) it. If the choices are R-A (A-A), then

player I gets the amount zero (Xi), and the game terminates. If the choices are R-R or

A-R, then the Xi is rejected, the next Xi+1 is presented and the game continues.

(*) Player

�
II

I

�
must choose A

�
just once

at most k times

�
during the n stages, where 1 � k �

n. Player I (II) aims to maximize (minimize) the expected payo� to I.

Let vnk be the value of the n-stage game (�n
k , say). Then the Optimality Equation is

R A

vnk = E

�
val

�
R

A

�
vn�1k 0

vn�1k�1 X

���
(1.1)

with the boundary conditions

vn0 = 0; 8n � 0;(1.2)

vnn = �n (n � 1; �1 = 1=2) ;(1.3)

where the sequence f�ng is determined by the recursion

�n = �n�1 �
1

2
�2n�1 (n � 1; �1 = 1=2) :(1.4)

There is another closely related game, Gn
k , say. The only one di�erence from the game

�n
k is : If the choices are R-A, then player I pays player II the amount Xi (insted of zero).
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So, denoting by V n
k the value of the game Gn

k , the Optimality Equation is

R A

V n
k = E

�
val

�
R

A

�
vn�1k �X

vn�1k�1 X

���
(1.5)

with the boundary conditions

V n
0 = ��n (n � 1; �1 = 1=2)(1.6)

V n
n = �n (n � 1; �1 = 1=2)(1.7)

where f�ng is so-called Moser's sequence determined by the recursion

�n =
1

2

�
1 + �2n�1

�
(n � 1; �0 = 0):(1.8)

The solutions to the games �n
k and Gn

k are given in Sections 2 and 3, respectively, to-

gether with the proofs of the boundary conditions (1.2)-(1.3) and (1.6)-(1.7) for these games.

These games correspond to the scene found in the Customs vs. Smuggler game, where

Player I (Customs) : A=patrol, R=no patrol.

Player II (Smuggler) : A=go, R=don't go.

II wants to cross the strait by a motorboat carrying illegal cargo during one of n nights.

I wants to stop it, and can patrol at most k nights. The amount of II's cargo is supposed

to be U[0;1]-distributed random variable. We suppose that its realized value in each night,

by some information agent, communicated to I.

Or, another interpretation for �n
k is ; Xi is the probability that I catches II, if I patrols

and II goes in the same i-th night. It randomly changes depending of the weather, etc.

2 Solution to the Game �n
k
. We de�ne state (n; kjx) to mean that (1) the game still

continues, n random values remain to be observed, and player I can choose A at most k

times, and (2) the �rst random variable has just been observed with value x.

lemma 1.1 Game �n
k has the boundary conditions (1:2) and (1:3).

Proof. If I cannot choose A during the whole stages, (1.1) becomes

vn0 = vn�10 ^ 0 = 0; 8n � 1;

since we have evidently vn0 � 0;8n: Player II chooses A in the �rst stage, for any x 2 [0; 1],

terminating the game. This proves (1.2).

If k = n, I doesn't choose R in the �rst stage, since the second row in the payo� matrix

in (1.1) dominates the �rst row. It then follows that choosing A is optimal for I. Hence I

chooses A during the whole stages. Therefore �n � vnn satis�es

�n = E(�n�1 ^X); ( 8n � 2; �1 = EX = 1=2 )

which gives the recursion (1.4). Note that �1 = 1=2 is derived from the condition (*) of the

game. Player II chooses A as soon as the stage (n; njx) satisfying x < �n�1 appears. This

proves that (1.3) is true. 2

We �nd that �n # 0, as n!1, since (1.4) is rewritten as

�n = T (�n�1); with T (y) = y �
1

2
y2;

and T (y); 0 � y � 1, is concave and increasing with T (0) = 0 and T (1) = 1=2.
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Theorem 1 The value vnk of the game �n
k is given by the triangular recursion

vnk =
1

2
b2 +�ba+ a(a � b) log

a

a� b+ 1
(1 � k � n; vn0 = 0; vnn = �n)(2.1)

where a = vn�1k ; b = vn�1k�1 and 0 < b < a < 1.

As n!1; vnk # 0, for every �xed k.

The optimal play in state (n; kjx) is :

Both players choose A, if x < b ;

I and II employ the mixed strategies h��(x); �(x)i and


��(x); �(x)

�
, resp., where

�(x) =
a

x+ a � b
and �(x) =

a � b

x+ a� b
, if x > b.

Proof. By induction on n, it is clear that

0 < b � vn�1k�1 � vn�1k � a < 1; 8n � 1:

Hence in state (n; kjx), we have

val

�
a 0

b x

�
=

8><
>:

x; if x � b (A-A is optimal)

ax

x + a� b
; if x � b:

(2.2)

Therefore, from (1.1),

vnk =

Z b

0

xdx +

Z 1

b

ax

x + a� b
dx =

1

2
b2 + a

�
�b + (a� b) log

a

a� b + 1

�

which is (2.1). Also we have

vnk � vn�1k = vnk � a =
1

2
(a � b)2 �

1

2
a2 + a(a � b) log

a

a � b+ 1
< 0;

since 0 < b < a < 1.

fvnk gn converges. The limit �k satis�es the recursion

0 =
1

2
(�k � �k�1)

2
�

1

2
�2k + �k(�k � �k�1) log

�k

�k � �k�1 + 1
(k = 1; 2; � � � ;�0 = 0)

and induction on k gives that �k � 0; 8k.

The rest part stated in the theorem is evident from (2.2). 2

Table 1. fvnk g, for k; n = 1(1)10.

! n

1 2 3 4 5 6 7 8 9 10

1 500 225 139 99 75 60 50 42 36 32

2 375 253 185 158 124 101 85 73 64

3 305 240 193 164 139 120 104 103

4 258 219 187 162 142 126 113

# 5 225 198 175 156 140 126

k 6 200 178 161 146 134

7 180 163 148 137

8 164 149 138

9 150 139

10 139
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In Table 1 we show fvnk g values computed from (2.1). The �rst row is derived from the

recursion

vn1 = a� a2 log(1 + a�1); (a = vn�11 and b = 0 in (2:1))

and the unit of the �gures is 0.001. They are under rounding errors.

For example, v103 = 0:103, and the optimal play in stay (10; 3jx) is ;

Both players choose A, if x < v92 = 0:073 ;

I and II employ the mixed strategies

�
x� 0:073

x+ 0:031
;

0:104

x+ 0:031

�
and

�
x

x + 0:031
;

0:031

x + 0:031

�
,

resp., if x > 0:073 (since a� b = v93 � v92 = 0:031).

The result in Theorem 1 is well compared with the case where the cargo has the �xed

amount EX = 1
2
. Denote this game by e�n

k . The equation corresponding to (2.2) is

wn
k = val

�
wn�1
k 0

wn�1
k�1 1=2

�
=

1
2
wn�1
k

wn�1
k � wn�1

k�1 + 1=2
;

with wn
0 = 0, and wn

n = 1=2. This gives the very simple solution

wn
k = k=(2n)

and the optimal strategy-pair in state (n; k)

h1� k=n; k=ni for I, and


1� n�1; n�1

�
for II:

We �nd, for example, Val
�e�103 � =

3

20
= 0:15, whereas v103 = 0:103.

3 Solution to the Game Gn

k
.

Lemma 2.1 Game Gn
k has the boundary condition (1:6) and (1:7).

Proof. If I cannot choose A during the whole stages, (1.5) becomes

V n
0 = E

�
V n�1
0 ^ (�X)

�
;

and hence Wn
0 = �V n

0 satis�es Wn
0 = E

�
Wn�1

0 _X
�
; (n � 1;W 0

0 = 0), implying that

fWn
0 g is identical to the Moser's sequence (1.8). Note that V 1

0 = �EX = �
1
2
is derived

from (*). Player II chooses A as soon as the state (n; 0jx) with x > �n�1 appears. This

proves (1.6).

The proof of (1.7) is the same as in the proof of (1.3) made in Lemma 1.1. 2

Theorem 2 (i). The value V n
k of the game Gn

k is given by (3:4)-(3:5), where �1 < b �

V n�1
k�1 < a � V n�1

k < 1.

(ii). As n!1; V n
k # �1, for every �xed k.

(iii). The optimal play in state (n; kjx) is ; In Case 1 (i.e., a + b < 0),

Both players choose R, if x < �a ;

I and II employ the mixed strategies h��(x); �(x)i and


��(x); �(x)

�
, resp., where �(x) =

x + a

2x + a� b
and �(x) =

a � b

2x + a� b
, if x > �a,

and in Case 2 (i.e., a + b > 0),

Both players choose A, if x < b ;

Players employ the same mixed strategies as in Case 1, if x > b (See Figure 1).
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Proof. (i) : Induction on n gives

�1 � V n
k�1 � V n

k � 1 8n � 1:

So, from (1.5), we have

V n
k = E

�
val

�
V n�1
k �X

V n�1
k�1 X

��
= �

1

2
+ 2E

�
val

�
1
2
(a+X) 0

1
2
(b +X) X

��
;(3.1)

where a = V n�1
k ; b = V n�1

k�1 and �1 � b � a � 1.

Let M(x) =

�
1
2
(a + x) 0

1
2
(b + x) x

�
, then

val M(x) =

8><
>:

1
2
(a + x); if x < �a;

x; if x < b;
x(a + b)

2x + a� b
(� g(x); say); if otherwise:

We consider the two cases ; Case 1. a+ b < 0, and Case 2. a+ b > 0. (see Figure 1)

Case 2

Case 1

-1

1

a

-1

1

b

0

Figure 1. Domain of two cases.

Then we �nd that

val M(x) =

�
1
2
(a + x); if x < �a (R-R is optimal)

g(x); if x > �a;
(3.2)

in Case 1 (since A-A is not optimal), and

=

�
x; if x < b (A-A is optimal)

g(x); if x > b:
(3.3)

in Case 2 (since R-R is not optimal).

By performing the integration and considering (3.1), we �nd that ; In Case 1,

E val M(x) =

8>><
>>:

Z
�a

0

1

2
(a + x)dx +

Z 1

�a

g(x)dx; if a < 0 (i.e.; 0 < �a < 1)Z 1

0

g(x)dx; if a > 0:
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and hence

V n
k =

8>>>>><
>>>>>:

�a2 +
1

2
(a + b)(1 + a)�

1

4
(a2 � b2) log

2 + a� b

�(a + b)
; if a � 0;

1

2
b+

1

4
b2 log

2� b

�b
; if a = 0;

1

2
(a + b) �

1

4
(a2 � b2) log

2 + a� b

a� b
; if a � 0:

(3.4)

In case 2, the analogous computation gives the result ;

E val M(x) =

8>><
>>:

Z 1

0

g(x)dx; if b < 0;Z b

0

xdx +

Z 1

b

g(x)dx; if b > 0

and hence

V n
k =

8>>>><
>>>>:

1

2
(a+ b) �

1

4
(a2 � b2) log

2 + a � b

a� b
; if b � 0;

1

2
a�

1

4
a2 log

2 + a

a
; if b = 0;

1

2
(a+ b � ab) �

1

4
(a2 � b2) log

2 + a� b

a + b
; if b � 0:

(3.5)

For the bordering case of Cases 1 and 2 i.e., a+ b = 0, both of (3.4) and (3.5) give the

same value 0.

(ii) : We want to prove that V n
k is decreasing in n for �xed k.

In Case 1, we have, from (3.4),

V n
k � V n�1

k = V n
k � a(3.6)

=

8><
>:

1

2
(1 + a)(b � a) +

1

4
(a2 � b2) log

�(a+ b)

2 + a � b
; if a � 0;

1

2
(b� a) +

1

4
(a2 � b2) log

a � b

2 + a � b
; if a � 0:

Using the universal inequality � log (�=�) � �� �, we have

1

4
(b � a)(�(a + b)) log

�(a + b)

2 + a� b
�

1

4
(b� a)(�2)(1 + a) =

1

2
(a � b)(1 + a);

1

4
(a + b)(a � b) log

a� b

2 + a� b
�

1

4
(a + b)(�2) = �

1

2
(a + b):

Thus V n
k � V n�1

k < 0, for 8a 2 (�1; 1).

In Case 2, we have, from (3.5),

V n
k � V n�1

k = V n
k � a(3.7)

=

8><
>:

1

2
(b � a) +

1

4
(a2 � b2) log

a� b

2 + a� b
; if b � 0;

1

2
(b � a� ab) +

1

4
(a2 � b2) log

a+ b

2 + a� b
; if b � 0:

Here, a2 � b2 = (a + b)(a � b) > 0, and

b� a� ab < 0; if (�a) _ 0 < b < a:
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Therefore all four terms are negative. So, V n
k < V n�1

k follows. fV n
k gn converges.

The limit �k satis�es the recursion Dk = 0; (k � 0; �0 = �1), where Dk is given by the

r.h.s. of (3.6)-(3.7), with a; b replaced by �k; �k�1. Suppose that �k�1 = �1. Then

�k + �k�1 = �k � 1 < 0. So, Case 1 applies, and

Dk =

8>><
>>:

�(1 + �k)

�
1

2
(1 + �k) +

1

4
(1� �k) log

1� �k

3 + �k

�
; if �k � 0;

�(1 + �k)

�
1

2
+

1

4
(1� �k) log

1 + �k

3 + �k

�
; if �k � 0:

Then Dk = 0 gives a unique root �k = �1, since the equation (1� t) log
1 + t

3 + t
= �2 has

no root in t � 0. It follows by induction arguments, that �k = �1;8k � 0.

(iii) : Evident from (3.1)�(3.3) in the proof of part (i).

Thus we have completed the proof of Theorem 2. 2

Table 2. fV n
k g, for k; n = 1(1)10:

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

n

k

-500 -625 -695 -742 -775 -800 -820 -836 -850 -861

500 0 -172 -268 -334 -385 -427 -460 -487 -513

375 123 -17 -103 -166 -215 -256 -291 -321

305 161 56 -43 -87 -127 -162 -193

258 172 94 21 -28 -66 -99

225 171 114 58 13 -23

200 164 123 81 42

180 155 125 93

164 145 123

150 136

In Table 2, we show the values of fV n
k g, computed from (3.4)-(3.5). They are decreasing in

n, for every �xed k, and increasing in k for every �xed n. The �gures are in 0.001 unit, and

subject to rounding errors. The upper(lower) part of the bold line in the table corresponds

to Case 1(Case 2). V 2
1 = 0 is on the bordering case.

We see that, for example, V 10
3 = �0:193, and the optimal play in state (10; 3jx) is :

Both players choose R, if x < �V 9
3 = 0:162 ;�

I

II

�
employs the mixed strategy

�
h��(x); �(x)i ; �(x) = x�0:162

2x+0:129

��(x); �(x)

�
; �(x) = 0:129

2x+0:129

�
, if x > 0:162,

(since a� b = V 9
3 � V 9

2 = 0:129)

The result in Theorem 2 is well compared with the case where the cargo carries the �xed

amount 1. Then the equation corresponding to (1.5) is

V n
k = val

�
V n�1
k �1

V n�1
k�1 1

�
(3.8)
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with V n
0 = �1, and V n

n = 0. Let Wn
k =

1

2
(1� V n

k ). Then (3.8) becomes

Wn
k = val

�
Wn�1

k Wn�1
k�1

1 0

�
(3.9)

with Wn
0 = 1 and Wn

n = 1
2
. Baston and Bostock [1], Garnaev [3] and Sakaguchi [5] suggest

that

Wn
k = sn�1k =snk ; where snk =

kX
j=0

�
n

j

�
(3.10)

is the solution of (3.9) which satis�es the two boundary conditions. Proof is as follows :

Equation (3.9) gives

Wn
k =

Wn�1
k�1

1�Wn�1
k +Wn�1

k�1

;

which is rewritten as

1

Wn�1
k

�
1

Wn
k

� 1

�
=

1

Wn�1
k�1

�
1

Wn�1
k

� 1

�
:(3.11)

By using the identity snk = sn�1k + sn�1k�1 , we �nd that both sides of (3.11) substituted by

(3.10) are equal to the same sn�1k�1=s
n�2
k .

Summarizing the above we arrive at : The solution of the equation (3.6) is

V n
k = 1� 2Wn

k = 1� 2sn�1k =snk = �

�
n� 1

k

� . kX
j=0

�
n

j

�
:

Denote by eGn
k the game Gn

k with Xi replaced by a �xed constant
1

2
. Then

Val eG10
3 = �

1

2

�
9

3

� . 3X
j=0

�
10

j

�
�= �0:2386;

whereas ValG10
3 = V 10

3
�= �0:193.

4 Final Remarks.

1. As n!1, Val �n
k # 0, and Val Gn

k # �1 for every �xed k. The same is true for non-

random version, i.e., Val e�n
k # 0 and Val eGn

k # �
1
2
.

2. Multistage games discussed in the present paper has some variants. One of the open
problem is the case where Smuggler must cross the strait twice (or more generally m � 2

times). Let (1 �)�1 � �2(� n) be II's \go" stages. Payo� to I is
X
i=1;2

X�i . The games e�n
k

along this line of extension are investigated in [2, 4, 5].
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