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CUSTOMS vs. SMUGGLER GAME WITH A RANDOM AMOUNT OF
CARGO

MINORU SAKAGUCHT*
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ABsTRACT. Customs vs. Smuggler (player I and II, respectively) game where the
amount of cargo is a random variable is discussed. II wants to cross the strait a
motorboat carrying illegal cargo during one of n nights. I wants to stop it, and can
patrol at most & nights. The amount X; of cargo in the ¢-th night is supposed to be
Ulo,11-distributed random variable. We suppose that the realized value of X; in each
night is, by some information agent, communicated to I. Payoff to I is X;(—Xj), if
patrol-go (no=patrol-go) are chosen. I (IT) wants to maximize (minimize) the expected
payoff to I. This game G/ is formulated and solved by deriving the triangular recursion
of values V' = Val(G}),1 <k <n,n=1,2,---. It is shown that V| | —1 as n = oo,
for every fixed k.

1 Customs vs. Smuggler Game with a Random Amount of Cargo. Let X;,¢ =
1,2,---,n, be ©.i.d. random variables each with uniform distribution on [0,1]. As each
X, comes up, each player I and IT must choose simultaneously and independently of other
player’s choice, either to accept (A) or to reject (R) it. If the choices are R-A (A-A), then
player I gets the amount zero (X;), and the game terminates. If the choices are R-R or
A-R, then the X; is rejected, the next X,y is presented and the game continues.

just .
(*) Player must choose A { T ONCC during the n stages, where 1 < k <
at most £ times

I
I
n. Player I (II) aims to maximize (minimize) the expected payoff to I.

Let v} be the value of the n-stage game (I'}, say). Then the Optimality Equation is

n ) R ve 0
w2 D)

with the boundary conditions
(1.2) vy =0, Yn >0,

(1.3) v, = Un (n>111 =1/2),

where the sequence {v,} is determined by the recursion

—_

(1.4) Vp = Up—1 — §l/ﬁ_l (n > 1,1 = 1/2).

There is another closely related game, G, say. The only one difference from the game
I'? is : If the choices are R-A, then player I pays player II the amount X; (insted of zero).
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So, denoting by V;* the value of the game G7, the Optimality Equation is
R A

. e . R vt =X
o (2 (E )

with the boundary conditions

(1.6) Vo' = —pin (n>1,u =1/2)

(1.7) Vi=v, (n>1,1n =1/2)

where {p,} is so-called Moser’s sequence determined by the recursion
1

(1.8) pn =5 (Lunoa) (021,000 =0).

The solutions to the games I'} and G} are given in Sections 2 and 3, respectively, to-
gether with the proofs of the boundary conditions (1.2)-(1.3) and (1.6)-(1.7) for these games.

These games correspond to the scene found in the Customs vs. Smuggler game, where
Player I (Customs) : A=patrol, R=no patrol.
Player IT (Smuggler) : A=go, R=don’t go.

IT wants to cross the strait by a motorboat carrying illegal cargo during one of n nights.
I wants to stop it, and can patrol at most &k nights. The amount of IT’s cargo is supposed
to be Ul jj-distributed random variable. We suppose that its realized value in each night,
by some information agent, communicated to I.

Or, another interpretation for I'} is ; X; is the probability that I catches II, if T patrols
and IT goes in the same ¢-th night. It randomly changes depending of the weather, etc.

2 Solution to the Game I'}. We define state (n,k|z) to mean that (1) the game still
continues, n random values remain to be observed, and player I can choose A at most k
times, and (2) the first random variable has just been observed with value z.

lemma 1.1 Game '} has the boundary conditions (1.2) and (1.3).

Proof. If I cannot choose A during the whole stages, (1.1) becomes
vy =vd T A0 =0, Vn > 1,

since we have evidently v > 0,Vn. Player II chooses A in the first stage, for any = € [0, 1],
terminating the game. This proves (1.2).

If £ =n, I doesn’t choose R in the first stage, since the second row in the payoff matrix
in (1.1) dominates the first row. It then follows that choosing A is optimal for I. Hence I
chooses A during the whole stages. Therefore v, = v]! satisfies

vn = E(vn_1 A X), (Vn>2,1n=EX=1/2)

which gives the recursion (1.4). Note that vy = 1/2 is derived from the condition (*) of the
game. Player IT chooses A as soon as the stage (n,n|z) satisfying @ < v,,_; appears. This
proves that (1.3) is true. O

We find that v, | 0, as n — oo, since (1.4) is rewritten as

1
vp =T(vp—1), with T(y) =y — §y2,

and T(y),0 <y <1, is concave and increasing with 7'(0) = 0 and 7'(1) = 1/2.



CUSTOMS vs. SMUGGLER GAME 103

Theorem 1 The value vi of the game I'} 1s given by the triangular recursion

: 1 - ,
(2.1) vg:5#+m+a@—mbg (1<k<n,of=00"=u,)

a
a—b+1
where a = UZ_ljb = Lzl__ll and 0 <b<a< 1.
Asn — oo,vf |0, for every fized k.

The optimal play in state (n,k|v) is :
Both players choose A, if x <b ;
I and 11 employ the mized strategies (a(z), a(z)) and <,

; a a—
V) = —— 7 q —
alz) P— and B(x)

r+a—0b
Proof. By induction on n, it is clear that

(x)ﬁ(f)> resp., where
if @ > 0.

0<bE‘vZ:11§1)271£a<17 Vn > 1.

Hence in state (n, k|2), we have

x, if @ <b (A-A is optimal)
0
(2.2) Val( “ ) =
b M ifa>,
T+ a—

Therefore, from (1.1),

b 1
ax 1 - a
w = [ ad ——dr = b’ b+ (a—b)log ———
vy /Orr—l—/b Tra =5 —I—a{ + (a )Oga—b—l—l}

which is (2.1). Also we have

1 1
vp —vp T = —a = 5(@—6)2—5a2—|—a(a—b)10g 0,

a <
a—b+1
since 0 < b<a <L

{v}}n converges. The limit oy satisfies the recursion

1 1

0= §(ak — ak_1)2 — 504% + ag(ar — ag—1)log

ag
_ kE=1,2,---;ap=0
ap —oap—1 +1 ( %0 =0)
and induction on k gives that o =0, Vk.
The rest part stated in the theorem is evident from (2.2). O

Table 1. {v}}, for k,n = 1(1)10.
—n

1 2 3 4 5) 6 7 8 9 10

1 {500 | 225 | 139 | 99 7 | 60 | 30 | 42 | 36 | 32

2 375 | 253 | 185 | 158 | 124 | 101 | 85 73 | 64

3 305 | 240 | 193 | 164 | 139 | 120 | 104 | 103

4 258 | 219 | 187 | 162 | 142 | 126 | 113
b5 225 | 198 | 175 | 156 | 140 | 126
k6 200 | 178 | 161 | 146 | 134
7 180 | 163 | 148 | 137

8 164 | 149 | 138

9 150 | 139

10 139
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In Table 1 we show {v'} values computed from (2.1). The first row is derived from the
recursion

v =a—a*log(l+a™t), (a=o]"" and b=0 in (2.1))

and the unit of the figures is 0.001. They are under rounding errors.

For example, v1? = 0.103, and the optimal play in stay (10, 3|z) is ;
Both players choose A, if ¥ < v = 0.073 ;

. . x—0.073  0.104 x 0.031
I and IT employ the mixed strategies <x L 0.031 2 + 0'031> and <"c £ 0.031" = 4 0.031 >,
resp., if x > 0.073 (since a — b = v] — v) = 0.031).

The result in Theorem 1 is well compared with the case where the cargo has the fixed

amount EX = % Denote this game by I'?. The equation corresponding to (2.2) is

S

n—1 1,n=1
v = Val( i) 1(/)2 ) ETa
with wl = 0, and w] = 1/2. This gives the very simple solution
wy = k/(2n)
and the optimal strategy-pair in state (n, k)

(1-=k/n,k/n) for I, and <1—n_1,n_1> for II.
. . v 710 3 10
We find, for example, Val (F3 ) =50 = 0.15, whereas v5~ = 0.103.

3 Solution to the Game GJ.
Lemma 2.1 Game G} has the boundary condition (1.6) and (1.7).

Proof. If T cannot choose A during the whole stages, (1.5) becomes

and hence W' = —V* satisfies W = E (I’T/’O"_1 \/X) , (n > 1, WY = 0), implying that
{W} is identical to the Moser’s sequence (1.8). Note that Vil = —EX = —1 is derived
from (*). Player II chooses A as soon as the state (n,0|z) with # > p,_; appears. This
proves (1.6).

The proof of (1.7) is the same as in the proof of (1.3) made in Lemma 1.1. O

Theorem 2 (i). The value V" of the game G} is given by (3.4)-(3.5), where —1 < b =
Vil <a=V <1

(i). Asn — o0,V | —1, for every fized k.

(iii). The optimal play in state (n,k|x) is ; In Case 1 (i.e., a+ b <0),

Both players choose R, if v < —a ;

I and 11 employ the mized strategies (a(zx),a(z)) and <B("r),6(7’)> resp., where a(z) =
r+a a—>b
Mﬁ and B(z) = ST if ¥ > —a,

and in Case 2 (t.e., a+b>0),

Both players choose A, if x < b ;
Players employ the same mized strategies as in Case 1, if ¥ > b (See Figure 1).
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Proof. (i) : Induction on n gives
—1<V, << Yn > 1.

So, from (1.5), we have

n ‘//’n—l -X 1
(3.1) Vi'=E |:Va1 ( V];n__11 b >] =3 + 2E |:Va1 (

where a = Vk"_l,b = Vk"__ll and —1<b<a<1.

Let M(z) = ( iiii;"; 2 ) then

Gy v

B[ [ —

-

%(a + ), if ¢ < —a,
x

val M(z) = ic(a ) if x <0,

2r +a—0>
We consider the two cases ; Case 1. a+ b < 0, and Case 2. a4+ b > 0. (see Figure 1)

(= g(x),say), if otherwise.

}b
1
0 Case 2—F}—> 2
1 1
Case 1
1

Figure 1. Domain of two cases.

Then we find that

(3.2) val M(z) =

15(& +2), if v <—a (R-Ris optimal)
g(z), if > —a,

in Case 1 (since A-A is not optimal), and

(3.3) _ z, if ¥ <b (A-A is optimal)
' | g(w), if x>0

in Case 2 (since R-R is not optimal).
By performing the integration and considering (3.1), we find that ; In Case 1,

1

| )
/ 5((1 + z)dx +/ g(z)dz, if a <0 (ie.,0<—a<1)
E val M(x) = 0,7 —a

g(x)dz, if a>0.
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and hence
1, 1, . 24a—-0b .
—a? + = b)(1 — —(a® = b*)log ———, if a <0
la —|—12(a-|—2)( b+a) 4(a )log Py if « <0,
(3.4) Vi = S0+ 152 log ;b if a =0,
i 1, o, 24a-b ,
S(a4b) = ~(a® — cre—o > 0.
2(a+b) 4(a b*)log P if a>0
In case 2, the analogous computation gives the result ;
1
/ g(x)dz, if b<0,
E val M(z) = 9, 1
/ xdx—l—/ g(x)dz, i b>0
0 b
and hence
1 1 . 2+4+a—5b
j(a—)—b)—;(az—bz)logi, if <0,
_ . o1, Yeta a=b .
(3.5) Vi = 3¢~ 79 log , if b=0,
a
1 1 . 2 —b
S(a+b—ab) — (o> — 1) log % it b> 0.

For the bordering case of Cases 1 and 2 i.e., a4+ b = 0, both of (3.4) and (3.5) give the
same value 0.

(i) : We want to prove that V)" is decreasing in n for fixed k.

In Case 1, we have, from (3.4),

36) V-Vt = VP—u
k k k
1 1 . —(a+b
_ %(1 +(1)(b —1 (l) + E(GQ _bz)log %: lf a S 0.}
“(b—a)+ (a2 —bv)log — if a>0.
2( 0)+4(0 )0g2+a_b, if a >

Using the universal inequality alog (a/3) > «a — 3, we have

L0t tox D < 20— (-1 @) = J(a— b1+ a),
Z(a+b)(a —b)log 2i — < %(a +b)(—2) = 7%(61, +b).

Thus V;* — V;* 7' <0, for Ya € (—1,1).
In Case 2, we have, from (3.5),

(3.7 V-Vt = V' —a
1 1 a—>b
~(b—a)+ ~(a® — b*)log =——— if b<0,
_ %( a)+4(a 1 )Og2+a_b7 1 -~ )
5(b—a,—ab)+z(a2—b2)log%7 it 5> 0.
Z a —

Here, a®> — b? = (a + b)(a — b) > 0, and

b—a—ab<0, if (—a)VO<b<a.
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Therefore all four terms are negative. So, Vi < V;'~' follows. {V;"}, converges.

The limit o satisfies the recursion Dy = 0,(k > 0,00 = —1), where Dy is given by the
r.hs. of (3.6)-(3.7), with a,b replaced by og,ar—;. Suppose that ar_; = —1. Then
ap 4+ ap—1 =ap —1<0. So, Case 1 applies, and
, 1 1 ; 1— oy
~ —(14 o) 5(1+ak)+1(1—ak)log3+32}, if ap <0,
Dy = Y ENE PR, S a0
— a ~+=(1—ax)lo if ayg .
k D) 4 k g 3+ ag ) k=
. . . . 1+t
Then D;, = 0 gives a unique root ap = —1, since the equation (1 —t)log 511 = —2 has
no root in ¢ > 0. It follows by induction arguments, that o = —1,Vk > 0. c
(iil) : Evident from (3.1)~(3.3) in the proof of part (i).
Thus we have completed the proof of Theorem 2. O
Table 2. {V'}, for k,n = 1(1)10.
- -
1 2 3 4 5 6 7 8 9 10
0 [ -500 | -625 | -695 | -742 | -775 | -800 | -820 | -836 | -850 | -861
1 | 500 0 -172 -268 | -334 | -385 | -427 | -460| -487| -513
2 375 123 -17 -103 | -166 | -215| -256| -291| -321
3 305 161 56 -43 -87 -127 | -162 | -193
4 258 172 94 21 =28 -66 -99
5 225 171 114 58 13 -23
6 200 164 123 81 42
k 7 180 155 125 93
8 164 145 123
9 150 136
10

In Table 2, we show the values of {V,*}, computed from (3.4)-(3.5). They are decreasing in
n, for every fixed k, and increasing in k for every fixed n. The figures are in 0.001 unit, and
subject to rounding errors. The upper(lower) part of the bold line in the table corresponds
to Case 1(Case 2). V}? = 0 is on the bordering case.
We see that, for example, V3!® = —0.193, and the optimal play in state (10,3|z) is :

Both players choose R, if # < —V) = 0.162 ;

) elr) = 53515 } if @ > 0.162
D). Bla) = pidthy poife > 0162

I o (ale)ala)
{ 1 }employs the mixed strategy { <B(3«")m

(since a — b=Vy — V3 =0.129)
The result in Theorem 2 is well compared with the case where the cargo carries the fixed
amount 1. Then the equation corresponding to (1.5) is

o ‘/kn,—l -1
(3.8) = Val( yrt >

(
(

=
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1
with V' = =1, and V;» = 0. Let W[ = =(1 = V}*). Then (3.8) becomes

2
o (W W
(3.9) W = val ( ] 0

with W' = 1 and W = }. Baston and Bostock [1], Garnaev [3] and Sakaguchi [5] suggest
that

k
(3.10) Wi =s.""/si, where s} = Z( " )

= N7
is the solution of (3.9) which satisfies the two boundary conditions. Proof is as follows :
Equation (3.9) gives
Wi

I/I/’n = rn—1 n—1"
- W+ W

which is rewritten as

(3.11) ! <1 1) ! <1 1)
’ I/Vlzlfl I’VI? - I/V,?:II I/Vlzlfl )

By using the identity s? = s}~ ' + s}, we find that both sides of (3.11) substituted by
(3.10) are equal to the same s}~ /sp 2.
Summarizing the above we arrive at : The solution of the equation (3.6) is

k
. o n—1 n
VA=l oW =1 25" Lyn = ) > ( )
k k k /k < ]{‘ /]-_O J

~ 1
Denote by G} the game G} with X; replaced by a fixed constant 5 Then

3
~ 1/09 10
/. w__- ~_ 0.2
Val G; 2<3)/§<]> 0.2386,

7=0

whereas ValGi® = V10 =~ —0.193.

4 Final Remarks.

1. Asn — o0, Val I} | 0, and Val G} | —1 for every fixed k. The same is true for non-
random version, t.e., Val I'} | 0 and Val G} | f%.

2. Multistage games discussed in the present paper has some variants. One of the open

problem is the case where Smuggler must cross the strait twice (or more generally m > 2

times). Let (1 <)r; < 7(< n) be I’s “go” stages. Payoff to I is Z Xr,. The games I'}?
1=1,2

along this line of extension are investigated in [2, 4, 5].
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