ON BH-RELATIONS IN BH-ALGEBRAS

YOUNG BAE JUN, HEE SIK KIM AND MICHIRO KONDO*

Received April 11, 2003

ABSTRACT. As a generalization of a BH-homomorphism, the notion of a relation on BH-algebras, called a BH-relation, is introduced. Some fundamental properties related to BH-subalgebras are discussed.

1. INTRODUCTION

It is well-known that the class of BCH-algebras is a generalization of the class of BCK/BCI-algebras. It is important for us to generalize some algebraic structures. Jun, Roh and Kim [2] introduced a new notion, called a BH-algebra, which is a generalization of BCK/BCI/BCH-algebras. In this paper, we introduce the notion of a relation on BH-algebras, called a BH-relation, which is a generalization of a BH-homomorphism, and then we discuss the fundamental properties related to BH-subalgebras.

2. Preliminaries

A *BH*-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

- (I) x * x = 0,
- (II) x * y = 0 and y * x = 0 imply x = y
- (III) x * 0 = x

for all $x, y \in X$. A nonempty subset S of a BH-algebra X is called a BH-subalgebra of X if $x * y \in S$ for all $x, y \in S$. A nonempty subset J of a BH-algebra X is called a BH-ideal of X if it satisfies

- $0 \in J$.
- $\forall x, y \in X, x * y \in J, y \in J \Rightarrow x \in J.$

A mapping $f: X \to Y$ of *BH*-algebras is called a *BH*-homomorphism if f(x*y) = f(x)*f(y)for all $x, y \in X$. Note that if $f: X \to Y$ is a *BH*-homomorphism, then $f(0_X) = 0_Y$, where 0_X and 0_Y are constants of X and Y, respectively.

3. BH-relations

Definition 3.1. Let X and Y be BH-algebras. A nonempty relation $\mathcal{H} \subseteq X \times Y$ is called a BH-relation if

(R1) for every $x \in X$ there exists $y \in Y$ such that $x\mathcal{H}y$,

(R2) $x\mathcal{H}a$ and $y\mathcal{H}b$ imply $(x*y)\mathcal{H}(a*b)$.

We usually denote such relation by $\mathcal{H}: X \to Y$. It is clear from (R1) and (R2) that $0_X \mathcal{H} 0_Y$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BH-subalgebra, BH-relation, BH-homomorphism, kernel, zero image.

^{*}Corresponding author. Tel.: +81-476-46-8457; fax: +81-476-46-8038

Example 3.2. Consider a proper *BH*-algebra $X = \{0, a, b\}$ having the following Cayley table (see [2]):

*	0	a	b
0	0	a	b
a	a	0	a
b	b	a	0

Define a relation $\mathcal{H} : X \to X$ as follows: $0\mathcal{H}0$, $a\mathcal{H}a$, $b\mathcal{H}b$. It is easy to verify that \mathcal{H} is a *BH*-relation. A relation $\mathcal{D} : X \to X$ given by $0\mathcal{D}0$, $0\mathcal{D}a$, $a\mathcal{D}0$, $a\mathcal{D}a$, $b\mathcal{D}0$, and $b\mathcal{D}a$ is a *BH*-relation.

Theorem 3.3. Every BH-homomorphism is a BH-relation.

Proof. Let $\mathcal{H} : X \to Y$ be a *BH*-homomorphism. Clearly, \mathcal{H} satisfies conditions (R1) and (R2).

Note that every diagonal BH-relation on a BH-algebra X (i.e., a BH-relation satisfying $x\mathcal{H}x$ for all $x \in X$ in which $x\mathcal{H}y$ is false whenever $x \neq y$) is clearly a BH-homomorphism. But, in general, the converse of Theorem 3.3 need not be true as seen in the following example.

Example 3.4. The *BH*-relation \mathcal{D} in Example 3.2 is not a *BH*-homomorphism.

Let $\mathcal{H}: X \to Y$ be a *BH*-relation. For any $x \in X$ and $y \in Y$, let

$$\mathcal{H}[x] := \{ y \in H \mid x\mathcal{H}y \} \text{ and } \mathcal{H}^{-1}[y] := \{ x \in X \mid x\mathcal{H}y \}.$$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not *BH*-subalgebras of *Y* and *X*, respectively, as seen in the following example:

Example 3.5. Let \mathcal{H} be a *BH*-relation in Example 3.2(1). Then $\mathcal{H}^{-1}[b] = \{b\}$ (resp. $\mathcal{H}[a] = \{a\}$) is not a *BH*-subalgebra of X (resp. Y).

Theorem 3.6. For any BH-relation $\mathcal{H}: X \to Y$, we have

- (i) $\mathcal{H}[0_X]$, called the zero image of \mathcal{H} , is a BH-subalgebra of Y.
- (ii) $\mathcal{H}^{-1}[0_Y]$, called the kernel of \mathcal{H} and denoted by Ker \mathcal{H} , is a BH-subalgebra of X.

Proof. (i) Let $y_1, y_2 \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H} y_1$ and $0_X \mathcal{H} y_2$. It follows from (R2) and (I) that $0_X \mathcal{H}(y_1 * y_2)$, that is, $y_1 * y_2 \in \mathcal{H}[0_X]$.

(ii) Let $x_1, x_2 \in \text{Ker}\mathcal{H}$. Then $x_1\mathcal{H}0_Y$ and $x_2\mathcal{H}0_Y$. By using (R2) and (I), we get $(x_1 * x_2)\mathcal{H}0_Y$ and so $x_1 * x_2 \in \text{Ker}\mathcal{H}$. This completes the proof.

Proposition 3.7. Let $\mathcal{H} : X \to Y$ be a BH-relation.

(i) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$ where $a, b \in X$, then $a * b \in \text{Ker}\mathcal{H}$.

(ii) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$ where $u, v \in Y$, then $u * v \in \mathcal{H}[0_X]$.

Proof. (i) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a\mathcal{H}y$ and $b\mathcal{H}y$. It follows from (R2) and (I) that $(a * b)\mathcal{H}(y * y) = (a * b)\mathcal{H}0_Y$ so that $a * b \in \text{Ker}\mathcal{H}$. (ii) Let $x \in \mathcal{H}^{-1}[a] \cap \mathcal{H}^{-1}[a]$. Then $x\mathcal{H}y$ and $x\mathcal{H}y$. Using (R2) and (I) we obtain

(ii) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x\mathcal{H}u$ and $x\mathcal{H}v$. Using (R2) and (I), we obtain $(x * x)\mathcal{H}(u * v) = 0_X\mathcal{H}(u * v)$, i.e., $u * v \in \mathcal{H}[0_X]$. This completes the proof.

Theorem 3.8. Let $\mathcal{H} : X \to Y$ be a BH-relation and let S be a BH-subalgebra of X. Then

$$\mathcal{H}[S] := \{ y \in H \mid x \mathcal{H} y \text{ for some } x \in S \}$$

is a BH-subalgebra of Y.

Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $y_1, y_2 \in \mathcal{H}[S]$. Then $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$ for some $x_1, x_2 \in S$. Using (R2), we obtain $(x_1 * x_2)\mathcal{H}(y_1 * y_2)$ which implies that $y_1 * y_2 \in \mathcal{H}[S]$ since $x_1 * x_2 \in S$. Therefore $\mathcal{H}[S]$ is a *BH*-subalgebra of *Y*.

Corollary 3.9. Let $\mathcal{H}: X \to Y$ be a BH-relation. Then

- (i) $\mathcal{H}[X]$ is a BH-subalgebra of Y.
- (ii) $\mathcal{H}[X] = \bigcup_{x \in X} \mathcal{H}[x].$
- (iii) The zero image of \mathcal{H} is a BH-subalgebra of $\mathcal{H}[X]$.

Proof. (i) and (ii) are straightforward.

(iii) Let $a, b \in \mathcal{H}[0_X]$. Then $0_X \mathcal{H}a$ and $0_X \mathcal{H}b$, and hence $0_X \mathcal{H}(a * b)$, i.e., $a * b \in \mathcal{H}[0_X]$. Therefore $\mathcal{H}[0_X]$ is a *BH*-subalgebra of $\mathcal{H}[X]$.

For any *BH*-relation $\mathcal{H} : X \to Y$, we know that there is a *BH*-ideal *J* of *X* in which $\mathcal{H}[J]$ is not a *BH*-ideal of *Y*. Indeed, consider the *BH*-relation \mathcal{D} in Example 3.2. Note that $J := \{0, 2\}$ is a *BH*-ideal of *X*, but $\mathcal{H}[J] = \{0, 1\}$ is not a *BH*-ideal of *X*.

Theorem 3.10. Let $\mathcal{H} : X \to Y$ be a BH-relation and let T be a BH-subalgebra of Y. Then

$$\mathcal{H}^{-1}[T] := \{ x \in X \mid x \mathcal{H} y \text{ for some } y \in T \}$$

is a BH-subalgebra of X.

Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_X \mathcal{H} 0_Y$. Let $x_1, x_2 \in \mathcal{H}^{-1}[T]$. Then there exist $y_1, y_2 \in T$ such that $x_1 \mathcal{H} y_1$ and $x_2 \mathcal{H} y_2$. Note that $y_1 * y_2 \in T$ since T is a subalgebra of Y. It follows from (R2) that $(x_1 * x_2) \mathcal{H}(y_1 * y_2)$ so that $x_1 * x_2 \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a BH-subalgebra of X.

Corollary 3.11. Let $\mathcal{H}: X \to Y$ be a BH-relation. Then

- (i) $\mathcal{H}^{-1}[Y]$ is a BH-subalgebra of X.
- (ii) $\mathcal{H}^{-1}[Y] = \bigcup_{y \in Y} \mathcal{H}^{-1}[y].$
- (iii) The kernel of \mathcal{H} is a BH-subalgebra of $\mathcal{H}^{-1}[Y]$.

Proof. (i) and (ii) are straightforward.

(iii) Let $x, y \in \text{Ker}\mathcal{H}$. Then $x\mathcal{H}0_Y$ and $y\mathcal{H}0_Y$. It follows from (R2) and (I) that

$$(x*y)\mathcal{H}(0_Y*0_Y) = (x*y)\mathcal{H}0_Y$$

so that $x * y \in \text{Ker}\mathcal{H}$. Hence $\text{Ker}\mathcal{H}$ is a *BH*-subalgebra of $\mathcal{H}^{-1}[Y]$. This completes the proof.

Open Problem 3.12. In Theorem 3.10, if T is a BH-ideal of Y, then is $\mathcal{H}^{-1}[T]$ a BH-ideal of X?

References

- [1] Y. B. Jun, BCK/BCI-algebras, Scientiae Mathematicae Japonicae Online 4 (2001), 857–860.
- [2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1(1) (1998), 347–354.
- [3] Q. G. Yu, Y. B. Jun and E. H. Roh, Special subsets in BH-algebras, Scientiae Mathematicae 2(3) (1999), 311–314.
- [4] Q. Zhang, Y. B. Jun and E. H. Roh, On the branch of BH-algebras, Scientiae Mathematicae Japonicae 54(2) (2001), 363–367.

Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea $E\text{-}mail\ address:\ \texttt{heekim@hanyang.ac.kr}$

M. Kondo, School of Information Environment, Tokyo Denki University, Inzai, 270-1382, Japan

E-mail address: kondo@sie.dendai.ac.jp