ON $B H$-RELATIONS IN $B H$-ALGEBRAS

young bae jun, hee sik kim and michiro kondo*

Received April 11, 2003

Abstract

As a generalization of a $B H$-homomorphism, the notion of a relation on $B H$-algebras, called a $B H$-relation, is introduced. Some fundamental properties related to $B H$-subalgebras are discussed.

1. Introduction

It is well-known that the class of $B C H$-algebras is a generalization of the class of $B C K / B C I$-algebras. It is important for us to generalize some algebraic structures. Jun, Roh and Kim [2] introduced a new notion, called a $B H$-algebra, which is a generalization of $B C K / B C I / B C H$-algebras. In this paper, we introduce the notion of a relation on $B H$ algebras, called a $B H$-relation, which is a generalization of a $B H$-homomorphism, and then we discuss the fundamental properties related to $B H$-subalgebras.

2. Preliminaries

A $B H$-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following conditions:
(I) $x * x=0$,
(II) $x * y=0$ and $y * x=0$ imply $x=y$
(III) $x * 0=x$
for all $x, y \in X$. A nonempty subset S of a $B H$-algebra X is called a $B H$-subalgebra of X if $x * y \in S$ for all $x, y \in S$. A nonempty subset J of a $B H$-algebra X is called a $B H$-ideal of X if it satisfies

- $0 \in J$.
- $\forall x, y \in X, x * y \in J, y \in J \Rightarrow x \in J$.

A mapping $f: X \rightarrow Y$ of BH-algebras is called a BH-homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a $B H$-homomorphism, then $f\left(0_{X}\right)=0_{Y}$, where 0_{X} and 0_{Y} are constants of X and Y, respectively.

3. $B H$-RELATIONS

Definition 3.1. Let X and Y be $B H$-algebras. A nonempty relation $\mathcal{H} \subseteq X \times Y$ is called a $B H$-relation if
(R1) for every $x \in X$ there exists $y \in Y$ such that $x \mathcal{H} y$,
(R2) $x \mathcal{H} a$ and $y \mathcal{H} b$ imply $(x * y) \mathcal{H}(a * b)$.
We usually denote such relation by $\mathcal{H}: X \rightarrow Y$. It is clear from (R1) and (R2) that $0_{X} \mathcal{H} 0_{Y}$.

[^0]Example 3.2. Consider a proper $B H$-algebra $X=\{0, a, b\}$ having the following Cayley table (see [2]):

$*$	0	a	b
0	0	a	b
a	a	0	a
b	b	a	0

Define a relation $\mathcal{H}: X \rightarrow X$ as follows: $0 \mathcal{H} 0, a \mathcal{H} a, b \mathcal{H} b$. It is easy to verify that \mathcal{H} is a $B H$-relation. A relation $\mathcal{D}: X \rightarrow X$ given by $0 \mathcal{D} 0,0 \mathcal{D} a, a \mathcal{D} 0, a \mathcal{D} a, b \mathcal{D} 0$, and $b \mathcal{D} a$ is a $B H$-relation.

Theorem 3.3. Every $B H$-homomorphism is a $B H$-relation.
Proof. Let $\mathcal{H}: X \rightarrow Y$ be a $B H$-homomorphism. Clearly, \mathcal{H} satisfies conditions (R1) and (R2).

Note that every diagonal $B H$-relation on a $B H$-algebra X (i.e., a $B H$-relation satisfying $x \mathcal{H} x$ for all $x \in X$ in which $x \mathcal{H} y$ is false whenever $x \neq y$) is clearly a $B H$-homomorphism. But, in general, the converse of Theorem 3.3 need not be true as seen in the following example.

Example 3.4. The $B H$-relation \mathcal{D} in Example 3.2 is not a $B H$-homomorphism.
Let $\mathcal{H}: X \rightarrow Y$ be a $B H$-relation. For any $x \in X$ and $y \in Y$, let

$$
\mathcal{H}[x]:=\{y \in H \mid x \mathcal{H} y\} \quad \text { and } \quad \mathcal{H}^{-1}[y]:=\{x \in X \mid x \mathcal{H} y\} .
$$

Note that $\mathcal{H}[x]$ and $\mathcal{H}^{-1}[y]$ are not $B H$-subalgebras of Y and X, respectively, as seen in the following example:

Example 3.5. Let \mathcal{H} be a $B H$-relation in Example 3.2(1). Then $\mathcal{H}^{-1}[b]=\{b\}$ (resp. $\mathcal{H}[a]=\{a\})$ is not a $B H$-subalgebra of $X($ resp. $Y)$.
Theorem 3.6. For any BH-relation $\mathcal{H}: X \rightarrow Y$, we have
(i) $\mathcal{H}\left[0_{X}\right]$, called the zero image of \mathcal{H}, is a BH-subalgebra of Y.
(ii) $\mathcal{H}^{-1}\left[0_{Y}\right]$, called the kernel of \mathcal{H} and denoted by $\operatorname{Ker\mathcal {H}}$, is a $B H$-subalgebra of X.

Proof. (i) Let $y_{1}, y_{2} \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} y_{1}$ and $0_{X} \mathcal{H} y_{2}$. It follows from (R2) and (I) that $0_{X} \mathcal{H}\left(y_{1} * y_{2}\right)$, that is, $y_{1} * y_{2} \in \mathcal{H}\left[0_{X}\right]$.
(ii) Let $x_{1}, x_{2} \in \operatorname{Ker\mathcal {H}}$. Then $x_{1} \mathcal{H} 0_{Y}$ and $x_{2} \mathcal{H} 0_{Y}$. By using (R2) and (I), we get ($x_{1} *$ $\left.x_{2}\right) \mathcal{H} 0_{Y}$ and so $x_{1} * x_{2} \in \operatorname{Ker} \mathcal{H}$. This completes the proof.

Proposition 3.7. Let $\mathcal{H}: X \rightarrow Y$ be a $B H$-relation.
(i) If $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$ where $a, b \in X$, then $a * b \in \operatorname{Ker} \mathcal{H}$.
(ii) If $\mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v] \neq \emptyset$ where $u, v \in Y$, then $u * v \in \mathcal{H}\left[0_{X}\right]$.

Proof. (i) Let $a, b \in X$ be such that $\mathcal{H}[a] \cap \mathcal{H}[b] \neq \emptyset$. Taking $y \in \mathcal{H}[a] \cap \mathcal{H}[b]$, we have $a \mathcal{H} y$ and $b \mathcal{H} y$. It follows from (R2) and (I) that $(a * b) \mathcal{H}(y * y)=(a * b) \mathcal{H} 0_{Y}$ so that $a * b \in \operatorname{Ker\mathcal {H}}$.
(ii) Let $x \in \mathcal{H}^{-1}[u] \cap \mathcal{H}^{-1}[v]$. Then $x \mathcal{H} u$ and $x \mathcal{H} v$. Using (R2) and (I), we obtain $(x * x) \mathcal{H}(u * v)=0_{X} \mathcal{H}(u * v)$, i.e., $u * v \in \mathcal{H}\left[0_{X}\right]$. This completes the proof.

Theorem 3.8. Let $\mathcal{H}: X \rightarrow Y$ be a BH-relation and let S be a BH-subalgebra of X. Then

$$
\mathcal{H}[S]:=\{y \in H \mid x \mathcal{H} y \text { for some } x \in S\}
$$

is a $B H$-subalgebra of Y.

Proof. Clearly, $\mathcal{H}[S] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $y_{1}, y_{2} \in \mathcal{H}[S]$. Then $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$ for some $x_{1}, x_{2} \in S$. Using (R2), we obtain $\left(x_{1} * x_{2}\right) \mathcal{H}\left(y_{1} * y_{2}\right)$ which implies that $y_{1} * y_{2} \in \mathcal{H}[S]$ since $x_{1} * x_{2} \in S$. Therefore $\mathcal{H}[S]$ is a $B H$-subalgebra of Y.

Corollary 3.9. Let $\mathcal{H}: X \rightarrow Y$ be a $B H$-relation. Then
(i) $\mathcal{H}[X]$ is a $B H$-subalgebra of Y.
(ii) $\mathcal{H}[X]=\bigcup_{x \in X} \mathcal{H}[x]$.
(iii) The zero image of \mathcal{H} is a $B H$-subalgebra of $\mathcal{H}[X]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $a, b \in \mathcal{H}\left[0_{X}\right]$. Then $0_{X} \mathcal{H} a$ and $0_{X} \mathcal{H} b$, and hence $0_{X} \mathcal{H}(a * b)$, i.e., $a * b \in \mathcal{H}\left[0_{X}\right]$. Therefore $\mathcal{H}\left[0_{X}\right]$ is a $B H$-subalgebra of $\mathcal{H}[X]$.

For any $B H$-relation $\mathcal{H}: X \rightarrow Y$, we know that there is a $B H$-ideal J of X in which $\mathcal{H}[J]$ is not a $B H$-ideal of Y. Indeed, consider the $B H$-relation \mathcal{D} in Example 3.2. Note that $J:=\{0,2\}$ is a $B H$-ideal of X, but $\mathcal{H}[J]=\{0,1\}$ is not a $B H$-ideal of X.

Theorem 3.10. Let $\mathcal{H}: X \rightarrow Y$ be a BH-relation and let T be a $B H$-subalgebra of Y. Then

$$
\mathcal{H}^{-1}[T]:=\{x \in X \mid x \mathcal{H} y \text { for some } y \in T\}
$$

is a $B H$-subalgebra of X.
Proof. Obviously, $\mathcal{H}^{-1}[T] \neq \emptyset$ since $0_{X} \mathcal{H} 0_{Y}$. Let $x_{1}, x_{2} \in \mathcal{H}^{-1}[T]$. Then there exist $y_{1}, y_{2} \in$ T such that $x_{1} \mathcal{H} y_{1}$ and $x_{2} \mathcal{H} y_{2}$. Note that $y_{1} * y_{2} \in T$ since T is a subalgebra of Y. It follows from (R2) that $\left(x_{1} * x_{2}\right) \mathcal{H}\left(y_{1} * y_{2}\right)$ so that $x_{1} * x_{2} \in \mathcal{H}^{-1}[T]$. Hence $\mathcal{H}^{-1}[T]$ is a $B H$-subalgebra of X.

Corollary 3.11. Let $\mathcal{H}: X \rightarrow Y$ be a $B H$-relation. Then
(i) $\mathcal{H}^{-1}[Y]$ is a $B H$-subalgebra of X.
(ii) $\mathcal{H}^{-1}[Y]=\bigcup_{y \in Y} \mathcal{H}^{-1}[y]$.
(iii) The kernel of \mathcal{H} is a $B H$-subalgebra of $\mathcal{H}^{-1}[Y]$.

Proof. (i) and (ii) are straightforward.
(iii) Let $x, y \in \operatorname{Ker} \mathcal{H}$. Then $x \mathcal{H} 0_{Y}$ and $y \mathcal{H} 0_{Y}$. It follows from (R2) and (I) that

$$
(x * y) \mathcal{H}\left(0_{Y} * 0_{Y}\right)=(x * y) \mathcal{H} 0_{Y}
$$

so that $x * y \in \operatorname{Ker} \mathcal{H}$. Hence $\operatorname{Ker} \mathcal{H}$ is a $B H$-subalgebra of $\mathcal{H}^{-1}[Y]$. This completes the proof.

Open Problem 3.12. In Theorem 3.10, if T is a $B H$-ideal of Y, then is $\mathcal{H}^{-1}[T]$ a $B H$ ideal of X ?

References

[1] Y. B. Jun, $B C K / B C I$-algebras, Scientiae Mathematicae Japonicae Online 4 (2001), 857-860.
[2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematicae 1(1) (1998), 347-354.
[3] Q. G. Yu, Y. B. Jun and E. H. Roh, Special subsets in BH-algebras, Scientiae Mathematicae 2(3) (1999), 311-314.
[4] Q. Zhang, Y. B. Jun and E. H. Roh, On the branch of BH-algebras, Scientiae Mathematicae Japonicae 54(2) (2001), 363-367.
Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr
H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea

E-mail address: heekim@hanyang.ac.kr
M. Kondo, School of Information Environment, Tokyo Denki University, Inzai, 270-1382, JAPAN

E-mail address: kondo@sie.dendai.ac.jp

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. $B H$-subalgebra, $B H$-relation, $B H$-homomorphism, kernel, zero image.
 ${ }^{*}$ Corresponding author. Tel.: +81-476-46-8457; fax: +81-476-46-8038

