SATISFACTORY FILTERS OF BCK-ALGEBRAS

YOUNG BAE JUN

Received May 4, 2003

ABSTRACT. The notion of satisfactory filters in BCK-algebras is introduced. Characterizations of satisfactory filters are discussed. Extension property for a satisfactory filter is established.

1. INTRODUCTION.

For the general development of BCK-algebra, the filter theory plays an important role as well as ideal theory. In [3], Meng introduced the notion of (prime) filters in BCKalgebras, and then gave a description of the filter generated by a set, and obtained some of fundamental properties of prime filters. In this paper, we introduce the notion of satisfactory filters in BCK-algebras, and investigate some of its properties. We give characterizations of satisfactory filters. We build the extension property of a satisfactory filter.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

- $\forall x, y, z \in X \ (((x * y) * (x * z)) * (z * y) = 0),$
- $\forall x, y \in X \ ((x \ast (x \ast y)) \ast y = 0),$
- $\forall x \in X \ (x * x = 0),$
- $\forall x, y \in X \ (x * y = 0, y * x = 0 \Rightarrow x = y).$

A *BCI*-algebra X satisfying 0 * x = 0 for all $x \in X$ is called a *BCK*-algebra. In any BCK/BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0. In a *BCK*-algebra X, the following hold.

(p1)
$$\forall x \in X \ (x * 0 = x).$$

- (p2) $\forall x, y, z \in X \ ((x * y) * z = (x * z) * y).$
- (p3) $\forall x, y, z \in X \ (x \le y \implies x * z \le y * z, z * y \le z * x).$
- (p4) $\forall x, y, z \in X \ ((x * z) * (y * z) \le x * y).$
- (p5) $\forall x, y, z \in X \ (x * (x * (x * y)) = x * y).$
- (p6) $\forall x, y \in X \ (x * y \le x).$

A BCK-algebra X is said to be positive implicative if (x * z) * (y * z) = (x * y) * z for all $x, y, z \in X$. A BCK-algebra X is positive implicative if and only if it satisfies x*y = (x*y)*y for all $x, y \in X$ (see [1]). A BCK-algebra X is said to be commutative if x*(x*y) = y*(y*x) for all $x, y \in X$. A nonempty subset I of a BCK-algebra X is called an *ideal* of X it it satisfies

(I1) $0 \in I$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. (Positive implicative) ideal, (satisfactory) filter.

The author is an Executive Research Worker of Educational Research Institute in GSNU.

(I2) $\forall x, y \in X \ (x * y \in I, y \in I \Rightarrow x \in I).$

A nonempty subset I of a *BCK*-algebra X is called a *positive implicative ideal* of X it it satisfies (I1) and

(I3) $\forall x, y, z \in X \ ((x * y) * z \in I, y * z \in I \Rightarrow x * z \in I).$

Note that every positive implicative ideal is an ideal (see [2, Proposition 2]). A *BCK*algebra X is said to be *bounded* if there exists a special element $e \in X$ such that $x \leq e$ for all $x \in X$. In this case, we call e the *bound* of X. In what follows let X denote a bounded *BCK*-algebra unless otherwise specified, and we will use the notation e(x) instead of e * xfor all $x \in X$ and the bound e of X. Note that, in a bounded commutative *BCK*-algebra, the equalities e(e(x)) = x and e(x) * e(y) = y * x hold.

Definition 2.1. [3] A nonempty subset F of X is called a *filter* of X if it satisfies:

- (F1) F contains the bound e of X,
- (F2) $\forall x, y \in X \ (e(e(x) * e(y)) \in F, \ y \in F \Rightarrow x \in F).$

Proposition 2.2. [3, Theorem 11] Assume that X is commutative. Then a nonempty subset F of X is a filter of X if and only if it satisfies. (F1) and (F3) $\forall x, y \in X \ (e(x * y) \in F, x \in F \Rightarrow y \in F).$

3. Satisfactory filters

Lemma 3.1. Assume that X is commutative. Let F be a filter of X. If $x \leq y$ and $x \in F$, then $y \in F$.

Proof. Suppose $x \le y$ and $x \in F$. Since $e(x * y) = e(0) = e \in F$, it follows from (F3) that $y \in F$.

Theorem 3.2. Assume that X is commutative. Let F be a nonempty subset of X. Then F is a filter of X if and only if it satisfies

(F4) $\forall x, y \in F, \forall z \in X \ (y \le e(x * z) \implies z \in F).$

Proof. Suppose that F is a filter of X. Let $x, y \in F$ and $z \in X$ be such that $y \leq e(x * z)$. Then $e(x*z) \in F$ by Lemma 3.1, and so $z \in F$ by (F3). Conversely assume that (F4) holds. We can select $x \in F$ because F is nonempty. Since $x \leq e(x * e)$, it follows from (F4) that $e \in F$. Let $x, y \in X$ be such that $e(x * y) \in F$ and $x \in F$. The inequality $e(x * y) \leq e(x * y)$ implies that $y \in F$ by (F4). Hence, by Proposition 2.2, F is a filter of X. This completes the proof.

Definition 3.3. A nonempty subset F of X is called a *satisfactory filter* of X if it satisfies (F1) and

(F5) $\forall x, y, z \in X \ (e(x * e(y * e(y * z))) \in F, x \in F \Rightarrow e(y * z) \in F).$

Example 3.4. Let $X = \{0, a, b, e\}$ be a bounded *BCK*-algebra with Cayley table and Hasse diagram:

*	0	a	b	e	e
0	0	0	0	0	\land
a	a	0	a	0	$a \checkmark b$
b	b	b	0	0	
e	e	b	a	0	V
					0

Then $F_1 := \{e\}, F_2 := \{e, a\}$, and $F_3 := \{e, b\}$ are satisfactory filters of X.

 $\mathbf{2}$

Example 3.5. Let $X = \{0, x, y, z, e\}$ be a bounded *BCK*-algebra with Cayley table and Hasse diagram:

*	0	x	y	z	e	e
0	0	0	0	0	0	\wedge
x	x	0	0	0	0	$y \not\leftarrow z$
y	y	x	0	x	0	\bigvee_{x}
z	z	z	z	0	0	
e	e	z	z	x	0	• 0

Then $F := \{z, e\}$ is a satisfactory filter of X.

Example 3.6. Let $X = \{0, x, y, z, e\}$ be a bounded *BCK*-algebra with Cayley table and Hasse diagram:

0	x	y	z	e	
0	0	0	0	0	$\bullet e$
x	0	x	0	0	λ^z
y	y	0	0	0	$x \checkmark y$
z	z	z	0	0	
e	z	e	x	0	0
	$\begin{array}{c} 0 \\ 0 \\ x \\ y \\ z \\ e \end{array}$	$\begin{array}{cccc} 0 & x \\ 0 & 0 \\ x & 0 \\ y & y \\ z & z \\ e & z \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Then $G := \{z, e\}$ is a satisfactory filter of X.

Theorem 3.7. In a bounded commutative BCK-algebra, every satisfactory filter is a filter.

Proof. Let F be a satisfactory filter of a bounded commutative BCK-algebra X and let $x, y \in X$ be such that $e(x * y) \in F$ and $x \in F$. Since e(e(x)) = x for all $x \in X$, we have $e(x * y) = e(x * e(e(e(e(e(y))))) \in F$. It follows from (F5) that $y = e(e(y)) \in F$. Hence F is a filter of X by Proposition 2.2.

The converse of Theorem 3.7 may not be true as seen in the following example.

Example 3.8. Let $X = \{0, a, b, e\}$ be a set with the following Cayley table and Hasse diagram.

*	0	a	b	e
0	0	0	0	0
a	a	0	0	0
b	b	a	0	0
e	e	b	a	0

Then X is a bounded commutative *BCK*-algebra (see [4]). It is easy to check that $\{e\}$ is a filter of X, but not a satisfactory filter of X because $e(e(e(b * e(b * a)))) = e(b * e(a)) = e(b * b) = e(0) = e \in \{e\}$, but $e(b * a) = e(a) = b \notin \{e\}$.

Theorem 3.9. If X is commutative and positive implicative, then every filter of X is a satisfactory filter of X.

Proof. Let F be a filter of X and let $x, y, z \in X$ be such that $e(x * e(y * e(y * z))) \in F$ and $x \in F$. Using (F3), we get

$$e(y * z) = e(e(z) * e(y)) = e((e(z) * e(y)) * e(y)) = e((y * z) * e(y)) = e(y * e(y * z)) \in F.$$

Hence F is a satisfactory filter of X.

Corollary 3.10. If X is implicative, then the notion of filters and satisfactory filters coincide. **Theorem 3.11.** Assume that X is commutative and let F be a filter of X. Then F is a satisfactory filter of X if and only if it satisfies

(F6) $\forall x, y \in X \ (e(x * e(x * y)) \in F \Rightarrow e(x * y) \in F).$

Proof. Assume that F is a satisfactory filter of X and $e(x * e(x * y)) \in F$ for all $x, y \in X$. Then $e(e(e(x * e(x * y)))) = e(x * e(x * y)) \in F$. Since $e \in F$, it follows from (F5) that $e(x * y) \in F$. Conversely, let F be a filter of X that satisfies (F6). Let $x, y, z \in X$ be such that $e(x * e(y * e(y * z))) \in F$ and $x \in F$. Then, by (F3), we get $e(y * e(y * z)) \in F$. Hence $e(y * z) \in F$ by (F6), which shows that (F5) holds. Therefore F is a satisfactory filter of X.

Lemma 3.12. [2, Theorem 2] Let I be an ideal of a BCK-algebra X. Then the following are equivalent.

- (i) I is a positive implicative ideal of X.
- (ii) $\forall x, y \in X \ ((x * y) * y \in I \implies x * y \in I).$
- (iii) $\forall x, y, z \in X \ ((x * y) * z \in I \Rightarrow (x * z) * (y * z) \in I).$

Theorem 3.13. Let X be commutative and let $e(G) := \{e(x) \mid x \in G\}$ for every nonempty subset G of X. Then e(G) is a satisfactory filter of X if and only if G is a positive implicative ideal of X.

Proof. Assume that G is a positive implicative ideal of X. Since $0 \in G$, it follows that $e = e(0) \in e(G)$. Let $x, y, z \in X$ be such that $e(x * e(y * e(y * z))) \in e(G)$ and $x \in e(G)$. Then there exist $u, v \in X$ such that e(x * e(y * e(y * z))) = e(u) and x = e(v). It follows that $e(x) = e(e(v)) = v \in G$ and

$$x * e(y * e(y * z)) = e(e(x * e(y * e(y * z)))) = e(e(u)) = u \in G,$$

so that $e(x) \in G$ and $(y * e(y * z)) * e(x) \in G$. Since G is a positive implicative ideal and hence an ideal, it follows that

$$(e(z) * e(y)) * e(y) = y * e(e(z) * e(y)) = y * e(y * z) \in G$$

so from Lemma 3.12(ii) that $y * z = e(z) * e(y) \in G$. Thus $e(y * z) \in e(G)$, and so e(G) is a satisfactory filter of X. Conversely suppose that e(G) is a satisfactory filter of X. Since $e \in e(G)$, we have $0 = e(e) \in e(e(G)) = G$. Let $x, y \in X$ be such that $x * y \in G$ and $y \in G$. Then $e(e(y) * e(x)) = e(x * y) \in e(G)$ and $e(y) \in e(G)$. Using (F3), we get $e(x) \in e(G)$ and thus $x \in G$. Hence G is an ideal of X. Now let $x, y \in X$ be such that $(x * y) * y \in G$. Then $e((x * y) * y) \in e(G)$, which implies that $e(e(e(e(y) * e(e(y) * e(x))))) \in e(G)$. Using (F5), we have $e(x * y) = e(e(y) * e(x)) \in e(G)$, and so $x * y \in G$. Therefore, by Lemma 3.12(ii), G is a positive implicative ideal of X.

Theorem 3.14. Let X be commutative and F a filter of X. Then the following are equivalent.

(i) F is a satisfactory filter of X.

- (ii) $\forall x, y, z \in X \ (e(z * e(x * y)) \in F \implies e(e(z * x) * e(z * y)) \in F).$
- (iii) $\forall x, y, z, u \in X \ (e(u * e(z * e(x * y))) \in F, u \in F \Rightarrow e(e(z * x) * e(z * y)) \in F).$

Proof. (i) \Rightarrow (ii). Let F be a satisfactory filter of X and let $x, y, z \in X$ be such that $e(z * e(x * y)) \in F$. Then $(e(y) * e(x)) * e(z) = (x * y) * e(z) = z * e(x * y) \in e(F)$. It follows from Lemma 3.12(iii) that

$$e(z * x) * e(z * y) = (z * y) * (z * x) = (e(y) * e(z)) * (e(x) * e(z)) \in e(F)$$

so that $e(e(z * x) * e(z * y)) \in e(e(F)) = F$. (ii) \Rightarrow (iii). Trivial. (iii) \Rightarrow (i). Let $x, y, z \in X$ be such that $x \in F$ and $e(x * e(y * e(y * z))) \in F$. Using (iii), we have $e(y * z) = e(e(0) * e(y * z)) = e(e(y * y) * e(y * z)) \in F$. Hence F is a satisfactory filter of X.

Theorem 3.15. (Extension property for a satisfactory filter) Assume that X is commutative and let F and G be filters of X such that $F \subseteq G$. If F is a satisfactory filter of X, then so is G.

Proof. Suppose that F is a satisfactory filter of X and $e(x * e(x * y)) \in G$ for all $x, y \in X$. If we put w = e(x * e(x * y)), then

$$\begin{aligned} e(x * e(x * e(w * y))) &= e((x * e(w * y)) * e(x)) \\ &= e(((w * y) * e(x)) * e(x)) = e(((e(y) * e(w)) * e(x)) * e(x)) \\ &= e(((e(y) * e(x)) * e(x)) * e(w)) = e((x * e(x * y)) * e(w)) \\ &= e(w * e(x * e(x * y))) = e(0) = e \in F. \end{aligned}$$

It follows from (F6) that $e(x * e(w * y)) \in F \subseteq G$ so that

$$\begin{aligned} e(w * e(x * y)) &= e((x * y) * e(w)) = e((x * e(w)) * y) \\ &= e((w * e(x)) * y) = e((w * y) * e(x)) = e(x * e(w * y)) \in G \end{aligned}$$

Since G is a filter, we get $e(x * y) \in G$ by using (F3). Hence, by Theorem 3.11, G is a satisfactory filter of X.

Theorem 3.16. Let X be commutative and F a filter of X. Then F is a satisfactory filter of X if and only if for every $w \in X$, the set $F_w := \{x \in X \mid e(w * x) \in F\}$ is a filter of X.

Proof. Assume that F is a satisfactory filter of X. Obviously, $e \in F_w$. Let $x, y \in X$ be such that $e(x * y) \in F_w$ and $x \in F_w$. Then $e(w * e(x * y)) \in F$ and $e(w * x) \in F$. Note that

$$\begin{aligned} e(w * e(x * y)) * e(w * e(w * y)) &= (w * e(w * y)) * (w * e(x * y)) \\ &\leq e(x * y) * e(w * y) &= (w * y) * (x * y) \leq w * x. \end{aligned}$$

It follows from (p3) that $e(w * x) \leq e(e(w * e(x * y)) * e(w * e(w * y)))$ so from Theorem 3.2 that $e(w * e(w * y)) \in F$. By Theorem 3.11, we get $e(w * y) \in F$, that is, $y \in F_w$. Hence F_w is a filter of X by Proposition 2.2. Conversely, suppose that for any $w \in X$, the set F_w is a filter of X. Let $x, y \in X$ be such that $e(x * e(x * y)) \in F$. Then $e(x * y) \in F_x$. Since $x \in F_x$, it follows from (F3) that $y \in F_x$, that is, $e(x * y) \in F$. Hence, by Theorem 3.11, F is a satisfactory filter of X.

Corollary 3.17. Let X be commutative and F a satisfactory filter of X. For any $w \in X$, the set F_w is the least filter of X containing F and w.

Proof. By Theorem 3.16, F_w is a filter of X. Obviously $w \in F_w$. Let $u \in F$. Then

$$u * e(w * u) = (w * u) * e(u) \le w * e = 0,$$

and so u * e(w * u) = 0, i.e., $u \le e(w * u)$. Using Lemma 3.1, we get $e(w * u) \in F$, and so $u \in F_w$. This shows that $F \subseteq F_w$. Let G be a filter of X containing F and w. If $x \in F_w$, then $e(w * x) \in F \subseteq G$ and thus $x \in G$ by (F3). Hence $F_w \subseteq G$, completing the proof. \Box

Theorem 3.18. Let X be commutative and F a filter of X. Then the following are equivalent.

- (i) F is a satisfactory filter of X.
- (ii) $\forall x, y \in X \ (e(e(x * y) * x) \in F \Rightarrow x \in F).$
- (iii) $\forall x, y, z \in X \ (e(x * e(e(y * z) * y)) \in F, x \in F \Rightarrow y \in F).$

Proof. (i) \Rightarrow (ii). Suppose that F is a satisfactory filter of X and let $x, y \in X$ be such that $e(e(x * y) * x) \in F$. Note that

$$\begin{aligned} e(e(x*y)*x)*e(e(x*y)*e(e(x*y)*y)) \\ &= (e(x*y)*e(e(x*y)*y))*(e(x*y)*x) \\ &\leq x*e(e(x*y)*y) = (e(x*y)*y)*e(x) \\ &= (e(y)*(x*y))*e(x) = (e(y)*e(x))*(x*y) = 0 \end{aligned}$$

Thus e(e(x * y) * x) * e(e(x * y) * e(e(x * y) * y)) = 0, that is,

$$e(e(x * y) * x) \le e(e(x * y) * e(e(x * y) * y))$$

which implies from Lemma 3.1 that $e(e(x * y) * e(e(x * y) * y)) \in F$. Using Theorem 3.11, we have $e(e(x * y) * y) \in F$. Note that

$$\begin{aligned} e(e(e(x*y)*y)*x) &= e(e(e(y)*(e(y)*e(x)))*x) \\ &= e(e(e(x)*(e(x)*e(y)))*x) = e(e(x)*(e(x)*(e(x)*e(y)))) \\ &= e(e(x)*e(y)) = e(y*x) \end{aligned}$$

and

$$e(e(x * y) * x) * e(y * x) = (y * x) * (e(x * y) * x)$$

$$\leq y * e(x * y) = (x * y) * e(y) \leq x * e = 0.$$

Hence $e(e(x * y) * x) \le e(e(e(x * y) * y) * x)$, and so $e(e(e(x * y) * y) * x) \in F$ by Lemma 3.1. Using Proposition 2.2, we get $x \in F$.

(ii) \Rightarrow (iii). Assume that (ii) is true. Let $x, y, z \in X$ be such that $e(x * e(e(y * z) * y)) \in F$ and $x \in F$. Then $e(e(y * z) * y) \in F$ by Proposition 2.2, and hence $y \in F$ by (ii). (iii) \Rightarrow (i). Summary that (iii) holds. We first show that

(iii) \Rightarrow (i). Suppose that (iii) holds. We first show that

(1)
$$\forall x, y \in X \ (e(e(x * y) * x) \in F \implies x \in F)$$

In fact, if $e(e(x * y) * x) \in F$, then since e(e(x * y) * x) = e(e(e(e(x * y) * x))) it follows from (iii) that $x \in F$. Now let $x, y \in X$ be such that $e(x * e(x * y)) \in F$. Note that

$$\begin{aligned} e(e(e(x*y)*y)*e(x*y)) &= e((x*y)*(e(x*y)*y)) \\ &= e((e(y)*e(x))*(e(y)*(x*y))) = e((e(y)*(e(y)*(x*y)))*e(x)) \\ &= e(((x*y)*((x*y)*e(y)))*e(x)) \\ &= e(((e(y)*e(x))*((e(y)*e(x))*e(y)))*e(x)) \\ &= e(((e(y)*e(x))*e(x))*((e(y)*e(x))*e(y))) \\ &= e(((e(y)*e(x))*e(x))*((e(y)*e(y))*e(x)) \\ &= e(((e(y)*e(x))*e(x))*((e(y)*e(y))*e(x)) \\ &= e(((e(y)*e(x))*e(x))*e(x)) = e(x*e(x*y)) \in F, \end{aligned}$$

which implies from (1) that $e(x * y) \in F$. Thus, by Theorem 3.11, F is a satisfactory filter of X.

Theorem 3.19. If X is commutative, then the following are equivalent.

- (i) X is positive implicative.
- (ii) Every filter of X is a satisfactory filter.
- (iii) The trivial filter $\{e\}$ of X is a satisfactory filter.
- (iv) For every $w \in X$, the set $X(w) := \{x \in X \mid e(w * x) = e\}$ is a filter of X.
- (v) For every filter F of X and $w \in X$, the set $F_w := \{x \in X \mid e(w * x) \in F\}$ is a filter of X.

Proof. (i) \Rightarrow (ii). It follows from Theorem 3.9.

(ii) \Rightarrow (iii). Trivial.

(iii) \Rightarrow (iv). Assume that $\{e\}$ is a satisfactory filter of X. For $w \in X$, let $x, y \in X$ be such that $e(x * y) \in X(w)$ and $x \in X(w)$. Then $e(w * e(x * y)) = e \in \{e\}$ and $e(w * x) = e \in \{e\}$. Using the similar method to the proof of Theorem 3.16, we obtain $e(w * e(w * y)) \in \{e\}$. Since $\{e\}$ is a satisfactory filter, it follows from Theorem 3.11 that $e(w * y) \in \{e\}$, i.e., $y \in X(w)$. Hence X(w) is a filter of X by Proposition 2.2.

(iv) \Rightarrow (i). Assume that (iv) holds and let $x, y \in X$ be such that $x * y \leq y$. Then $e(y) \leq e(x * y)$, that is, e(y) * e(x * y) = 0. Hence e = e(0) = e(e(y) * e(x * y)), and so $e(e(y) * e(x)) = e(x * y) \in X(e(y))$. Since X(e(y)) is a filter of X and $e(y) \in X(e(y))$, it follows from (F3) that $e(x) \in X(e(y))$, that is, e(x * y) = e(e(y) * e(x)) = e. Thus x * y = e(e) = 0, and thus $x \leq y$. This shows that

(2)
$$\forall x, y \in X \ (x * y \le y \implies x \le y).$$

To show that (x * y) * y = x * y for all $x, y \in X$, let u = (x * y) * y. Then ((x * u) * y) * y = ((x * y) * y) * u = 0, and so (x * y) * ((x * y) * y) = (x * ((x * y) * y)) * y = (x * u) * y = 0 by (2). Since ((x * y) * y) * (x * y) = 0 by (p6), we conclude that (x * y) * y = x * y. Therefore X is positive implicative.

(i) \Rightarrow (v). This is by Theorems 3.9 and 3.16.

 $(v) \Rightarrow (iii)$. Suppose that (v) is true. Let $x, y \in X$ be such that $e(x * e(x * y)) \in \{e\}$. Note that the set $\{e\}_x := \{z \in X \mid e(x * z) \in \{e\}\}$ is a filter of X by assumption. Since $e(x * y) \in \{e\}_x$ and $x \in \{e\}_x$, it follows from (F3) that $y \in \{e\}_x$ so that $e(x * y) \in \{e\}$. Therefore $\{e\}$ is a satisfactory filter of X by Theorem 3.11. This completes the proof. \Box

References

- K. Iséki and S. Tanaka, An introduction to the ideal theory of BCK-algebras, Math. Japonica 23(1) (1978), 1–26.
- [2] J. Meng, On ideals in BCK-algebras, Math. Japonica 40(1) (1994), 143–154.
- [3] J. Meng, BCK-filters, Math. Japonica 44(1) (1996), 119–129.
- [4] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Korea, 1994.

Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr