SOME RESULTS ON IDEALS OF $B C K$-ALGEBRAS

Zhan Jianming and Tan Zhisong

Received August 16, 2002

Abstract

In this paper, we introduce a special set in a $B C K$-algebra, and we give an example in which special set is not an ideal. We obtain a condition for this special set to be an ideal. Using this special set, we establish an equivalent condition of an ideal.

1. Introduction and Preliminaries The notion of $B C K$-algebras was proposed by Imai and Ieski in 1966. For the general development of $B C K$-algebras, the ideal theory plays an important role. In this paper, we introduce a special set in a $B C K$-algebra, and give an example in which special set is not an ideal. We obtain a condition for this special set to be an ideal. Using this special set, we establish an equivalent condition of an ideal.

By a $B C K$-algebra we mean algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$
(II) $(x *(x * y)) * y=0$
(III) $x * x=0$
(IV) $0 * x=0$
(V) $x * y=0$ and $y * x=0$ imply $x=y$
for all $x, y, z \in X$.
We can define a partial ordering " \leq " on X by $x \leq y$ if and only if $x * y=0$. Let \mathbb{N} denote the set of all positive integers. For any x and y of a $B C K$-algebra X, let $x * y^{k}$ denote $(\cdots \cdots((x * y) * y) \cdots \cdots) * y$ in which y occurs k times, where $k \in \mathbb{N}$. A $B C K$-algebra X is said to be K-fold positive implicative if $\left(x * z^{k}\right) *\left(y * z^{k}\right)=(x * y) * z^{k}$ for all $x, y, z \in X$ and $k \in \mathbb{N}$. A nonempty subset S of a $B C K$-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$

A nonempty subset I of a $B C K$-algebra X is called an ideal of X if
(I1) $0 \in I$
(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

2. Main Results

Definition 2.1 For any $a, b \in X$ and $k \in \mathbb{N}$, we define $\left(a^{k} ; b^{k}\right)=\left\{x \in X \mid\left(x * a^{k}\right) * b^{k}=0\right\}$ Obviously, $0 \in\left(a^{k} ; b^{k}\right)$ for all $a, b \in X$ and $k \in \mathbb{N}$.

Proposition 2.2 Let $a, b \in X$ and $k \in \mathbb{N}$. If $x \in\left(a^{k} ; b^{k}\right)$, then $x * y \in\left(a^{k} ; b^{k}\right)$ for all $y \in X$, and so $\left(a^{k} ; b^{k}\right)$ is a subalgebra of X.

Proof. Assume that $x \in\left(a^{k} ; b^{k}\right)$. Then $\left((x * y) * a^{k}\right) * b^{k}=\left(\left(x * a^{k}\right) * y\right) * b^{k}=0 * y=0$ for all $y \in X$. Hence $x * y \in\left(a^{k} ; b^{k}\right)$ for all $y \in X$.

The following example shows that there exist $a, b \in X$ and $k \in \mathbb{N}$ such that $\left(a^{k} ; b^{k}\right)$ is not an ideal of X.

[^0]Example 2.3 Consider a $B C K$-algebra $X=\{0, a, b, c, d\}$ with the following Cayley table

0	0	0	0	0	0
a	a	0	a	0	0
b	b	b	0	b	b
c	c	a	c	0	a
d	d	d	d	d	0

Then $(d ; b)=\{0, a, b, d\}$ is not an ideal of X because $c * d=a \in(d ; b)$ and $d \in(d ; b)$, but $c \notin(d ; b)$.

We state a condition for a set $\left(a^{k} ; b^{k}\right)$ to be an ideal.
Theorem 2.4 If X is K-fold positive implicative $B C K$-algebra, then $\left(a^{k} ; b^{k}\right)$ is an ideal of X for all $a, b \in X$ and $k \in \mathbb{N}$.

Proof. Let $x, y \in X$ be such that $x * y \in\left(a^{k} ; b^{k}\right)$ and $y \in\left(a^{k} ; b^{k}\right)$. Then $0=\left((x * y) * a^{k}\right) *$ $b^{k}=\left(\left(x * a^{k}\right) *\left(y * a^{k}\right)\right) * b^{k}=\left(\left(x * a^{k}\right) * b^{k}\right) *\left(\left(y * a^{k}\right) * b^{k}\right)=\left(\left(x * a^{k}\right) * b^{k}\right) * 0=\left(x * a^{k}\right) * b^{k}$ and so $x \in\left(a^{k} ; b^{k}\right)$. Therefore $\left(a^{k} ; b^{k}\right)$ is an ideal of X.

Using the set $\left(a^{k} ; b^{k}\right)$, we establish a condition for a subset I of X to be an ideal of X.
Theorem 2.5 Let I be a nonempty subset of X. Then I is an ideal of X if and only if $\left(a^{k} ; b^{k}\right) \subseteq I$ for every $a, b \in I$ and $k \in \mathbb{N}$.

Proof. Assume that I is an ideal of X and let $a, b \in I$ and $k \in \mathbb{N}$. If $x \in\left(a^{k} ; b^{k}\right)$, then $\left(x * a^{k}\right) * b^{k}=0 \in I$. Since $a, b \in I$, by using (I2) repeatedly we get $x \in I$. Hence $\left(a^{k} ; b^{k}\right) \subseteq I$.

Conversely, suppose that $\left(a^{k} ; b^{k}\right) \subseteq I$ for all $a, b \in I$ and $k \in \mathbb{N}$. Note that $0 \in\left(a^{k} ; b^{k}\right) \subseteq$ I. Let $x, y \in X$ be such that $x * y \in \bar{I}$ and $y \in I$. Then

$$
\begin{aligned}
\left(x *(x * y)^{k}\right) * y^{k} & =\left(\left(x *(x * y)^{k}\right) * y\right) * y^{k-1} \\
& =\left((x * y) *(x * y)^{k}\right) * y^{k-1} \\
& =\left(((x * y) *(x * y)) *(x * y)^{k-1}\right) * y^{k-1} \\
& =\left(0 *(x * y)^{k-1}\right) * y^{k-1}=0
\end{aligned}
$$

and thus $x \in\left((x * y)^{k} ; y^{k}\right) \subseteq I$. Hence I is an ideal of X. This completes the proof.
We use the notation $x \wedge y$ instead of $y *(y * x)$ for all $x, y \in X$.
Definition 2.6([5]) A nonempty subset I of X is called a quasi-ideal of X if
(i) $0 \in I$
(ii) $x \in I$ and $y \in X$ imply $y \wedge x \in I$ and $x \wedge y \in I$

Theorem 2.7 For every $a, b \in X$ and $k \in \mathbb{N}$, the set $\left(a^{k} ; b^{k}\right)$ is a quasi-ideal of X.
Proof. Note that $0 \in\left(a^{k} ; b^{k}\right)$. Let $x \in\left(a^{k} ; b^{k}\right)$ and $y \in X$. Then $\left((y \wedge x) * a^{k}\right) * b^{k}=$ $\left((x *(x * y)) * a^{k}\right) * b^{k}=\left(\left(x * a^{k}\right) * b^{k}\right) *(x * y)=0 *(x * y)=0$, and so $y \wedge x \in\left(a^{k} ; b^{k}\right)$. Now we get

$$
\begin{aligned}
\left((x \wedge y) * a^{k}\right) * b^{k} & =\left((y *(y * x)) * a^{k}\right) * b^{k} \\
& =\left(\left(y * a^{k}\right) *(y * x)\right) * b^{k} \\
& =\left(((y * a) *(y * x)) * a^{k-1}\right) * b^{k} \\
& \leq\left((x * a) * a^{k-1}\right) * b^{k} \\
& =\left(x * a^{k}\right) * b^{k}=0
\end{aligned}
$$

and hence $\left((x \wedge y) * a^{k}\right) * b^{k}=0$ which shows that $x \wedge y \in\left(a^{k} ; b^{k}\right)$. Therefore $\left(a^{k} ; b^{k}\right)$ is a quasi-ideal of X. This completes the proof.

References

[1] Y. B. Jun, Some results on ideals of BC K-algebras, Sci. Math. Japon online, 4(2001), 411-414.
[2] J. Meng, On ideals in BCK-algebras, Math. Japon. 40(1994), 143-154
[3] Zhan Jianming \& Tan Zhisong, On the BCK-KG part in BCI-algebras, Sci Math. Japon. 55 (2002), 149-152
[4] Zhan Jianmimg \& Tan Zhisong. On n-maps of BCK-algebras, Sci. Math. Japon. 56 (2002), 387-390
[5] T. Sakuragi. On fuzzy quasi-ideals and their radicals in a commutative BCK-algebras, Math. Japon. 46(1997), 485-490

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000,P.R.China
E-mail:zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 06F 35, 03G25.
 Key words and phrases. K-fold positive implicative $B C K$-algebras, ideal, quasi-ideal.

