ONE CLASS OF INVOLUTORY ANTIAUTOMORPHISM OF RATIONAL ROTATION ALGEBRAS

Tan Zhisong \& Hu Yaohua

Received April 16, 2002

Abstract

A rational rotation algebra A_{θ} is a universal C^{*}-algebra generated by two unitaries U, V with relation $V U=\rho U V$, where $\rho=e^{2 \pi i \theta}, 0 \leq \theta \leq 1$ is rational. Any involutary antiautomorphism of a rational rotation algebra is corresponding to an involution of the torus T^{2}, the spectrum of rational rotation algebra. In this paper, we prove that there is no involutory antiautomorphism in A_{θ} associated with the involution $\tau_{1}:(\lambda, \mu) \mapsto(-\lambda, \mu)$ of the torus.

Let A_{θ} be the universal C^{*}-algebra generated by the two unitaries U, V with $V U=\rho U V$, where $\rho=e^{2 \pi i \theta}, 0 \leq \theta \leq 1$. When $\theta=p / q$ is rational, A_{θ} is called rational. A rational rotation algebra can be regarded as an algebra of continuous function from the square \mathbf{I}^{2} to the matrix algebra $M_{q}(\mathbb{C})$. The spectrum of A_{θ} is the torus hence its centre is isomorphic to $C\left(\mathbf{T}^{2}\right)$. Given an antiautomorphism α, it gives rise to a homomorphism $\widetilde{\alpha}$ of \mathbf{T}^{2} with $\alpha f(x)=f(\widetilde{\alpha}(x))$, for any $x \in \mathbf{T}^{2}, f \in A_{\theta}$. For any antiautomorphism α of $A_{\frac{p}{q}}$, let $\sigma(\alpha)$ be the associated homomorphism. Restricting the antiautomorphism α to the centre $C\left(\mathbf{T}^{2}\right)$ of $A_{\frac{p}{q}}$, then it establishes a bijection between the involutory antiautomorphism of $A_{\frac{p}{q}}$ and the involutions (including the identity homomorphism) of \mathbf{T}^{2}. Now any involution of \mathbf{T}^{2} is conjugate to one of the following five ones
$\tau_{1}: \tau_{1}(\lambda, \mu)=(-\lambda, \mu)$,
$\tau_{2}: \tau_{2}(\lambda, \mu)=(\bar{\lambda}, \mu)$,
$\tau_{3}: \tau_{3}(\lambda, \mu)=(-\lambda, \mu)$,
$\tau_{4}: \tau_{4}(\lambda, \mu)=(\lambda, \mu)$,
$\tau_{5}: \tau_{5}(\lambda, \mu)=(\mu, \lambda)$.
For convenience, we will denote the identity homomorphism of \mathbf{T}^{2} by τ_{0}. In [3] we proved briefly there is no involutory antiautomorphism associated with τ_{1}. In this paper we will employ a more general approach, which applys to other cases, to show this theorem.

According to the analysis of the case $q=2$ and $\sigma(\phi)=\tau_{1}$, in [3] and the relation between principal bundles and their associated fibre bundles, to investigate involutory antiautomorphism of $A_{\frac{1}{2}}$ associated with τ_{1}, we can start from studying the principal $P U_{2}^{\prime}$-bundles over \mathbf{T}^{2}. As the first step we give the classification of principal $P U_{2}^{\prime}$-bundles over \mathbf{T} and the conjugacy homotopy classes of their automorphisms.

Lemma 1. Let k be the transformation of \mathbb{C}^{2} with $k(x, y)=(\bar{x}, \bar{y})$. Then each principal $P U_{2}^{\prime}$-bundle over \mathbf{T} is either isomorphic to the trivial $F_{1}=P U_{2}^{\prime} \times \mathbf{T}$ or isomorphic to F_{2} which is obtained from $P U_{2}^{\prime} \times I$ by pasting $([u], 0)$ to $([k u], 1)$.

Proof. There are two connected components, one containing I_{2} and one containing k. By Lemma 3.1 of [3], we obtain the principal $P U_{2}^{\prime}$-bundles F_{1} over \mathbf{T}.

As was shown in Proposition 2.1 and Lemma 3.2 of [2] the conjugacy homotopy classes of the automorphisms of a principal $P U_{2}^{\prime}$-bundle over \mathbf{T} are related to the fundamental group of $P U_{2}^{\prime}$. The following Lemma gives $\pi_{1}\left(P U_{q}^{\prime}\right)$.

[^0]Lemma 2. $\pi_{1}\left(P U_{q}^{\prime}\right) \cong \mathbb{Z}_{q}$.
Proof. From [4,8.12.3] we have $\pi_{1}\left(U_{q}\right)=\mathbb{Z}$. From the fibration $\mathbf{T} \rightarrow U_{q} \rightarrow P U_{q}$ we have $\pi_{1}(\mathbf{T}) \rightarrow \pi_{1}\left(U_{q}\right) \rightarrow \pi_{1}\left(P U_{q}\right) \rightarrow \pi_{0}(\mathbf{T})$. The map $\pi_{1}(\mathbf{T}) \cong \mathbb{Z} \rightarrow \mathbb{Z} \cong \pi_{1}\left(U_{q}\right)$ maps $n=\operatorname{deg}(l)$ to $n q=\operatorname{deg}\left(l^{q}\right)$ for each loop l. So $\pi_{1}\left(P U_{q}\right) \cong \mathbb{Z} / q \mathbb{Z} \cong \mathbb{Z}_{p}$. Hence $\pi_{1}\left(P U_{q}^{\prime}\right) \cong \mathbb{Z}_{q}$.

Lemma 3. Define automorphisms of F_{1} by
(1) $\alpha_{1}([u], \lambda)=([u], \lambda)$;
(2) $\alpha_{2}([u], \lambda)=\left(\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) u\right], \lambda\right)$;
(3) $\alpha_{3}([u], \lambda)=([k u], \lambda)$;
(4) $\alpha_{4}([u], \lambda)=\left(\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) k u\right], \lambda\right)$. Then each automorphism α of F_{1} is homotopic to α_{i} for some $i \in\{1,2,3,4\}$.

Similarly, if we define automorphisms of F_{2} by
(5) $\beta_{1}[([u], s)]=[([u], s)]$;
(6) $\beta_{2}[([u], s)]=\left[\left(\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) u\right], s\right)\right]$, where $\lambda=e^{2 \pi i s}$;
(7) $\beta_{3}[([u], s)]=[([k u], s)]$;
(8) $\beta_{4}[([u], s)]=\left[\left(\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) k u\right], s\right)\right]$, where $\lambda=e^{2 \pi i s}$.

Then each automorphism β of F_{2} is homotopic to β_{i} for some $i \in\{1,2,3,4\}$.
Proof. Let E be a principal $P U_{2}^{\prime}$-bundle over T. Then by lemma 3 . 1 of [2] any automorphism α of E corresponds to $\widetilde{\alpha} \in \operatorname{Map}\left(\mathbf{T}, P U_{2}^{\prime}\right)$ with $\widetilde{\alpha}(1)=e$ or k and with $\alpha[([u], s)]=\left[\left(\left[\widetilde{\alpha}_{\lambda} u\right], s\right)\right]$, where $\lambda=e^{2 \pi i s}$. Furthermore for two automorphisms α, β of E, if $\widetilde{\alpha}$ is homotopic to $\widetilde{\beta}$ then α is homotopic to β.

Now $\pi_{1}\left(P U_{2}^{\prime}\right) \cong \mathbb{Z}_{2}$ and $l_{1}: \lambda \mapsto\left[I_{2}\right], l_{2}: \lambda_{1} \mapsto\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)\right]$ are non-homotopic loops based on $\left[I_{2}\right]$. Also $l_{3}: \lambda \mapsto[k], l_{4}: \lambda \mapsto\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) k\right]$ are non-homotopic loops based on $[k]$. The corresponding antomorphisms of F_{1} are $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ respectively, and the corresponding automorphisms of F_{2} are $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ respectively. Given any automorphism α of F_{1} and β of $F_{2}, \widetilde{\alpha}$ or $\widetilde{\beta}$ is homotopic to l_{i} for some $i \in\{1,2,3,4\}$. So α is homotopic to α_{i} for some $i \in\{1,2,3,4\}$ or β is homotopic to β_{i} for some $i \in\{1,2,3,4\}$.

Proposition 4. All principal $P U_{2}^{\prime}$-bundles over \mathbf{T}^{2} are isomorphic to one of the following
(1) $F_{1 \alpha_{1}}=F_{1} \times_{\alpha_{1}} \mathbf{T}=P U_{2}^{\prime} \times \mathbf{T}^{2}$;
(2) $F_{1 \alpha_{2}}=F_{1} \times{ }_{\alpha_{2}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times \mathbf{T} \times I$ by pasting ($[u], \lambda, 0$) to ($\left.\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) u\right], \lambda, 1\right)$;
(3) $F_{1 \alpha_{3}}=F_{1} \times_{\alpha_{3}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times \mathbf{T} \times I$ by pasting ($[u], \lambda, 0$) to ([ku], $\lambda, 1$);
(4) $F_{1 \alpha_{4}}=F_{1} \times{ }_{\alpha_{4}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times \mathbf{T} \times I$ by pasting ($[u], \lambda, 0$) to ($\left.\left.\left[\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) k u\right], \lambda, 1\right)$;
(5) $F_{2 \beta_{1}}=F_{2} \times{ }_{\beta_{1}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times I \times I$ by pasting $([u], 0, t)$ to ($\left.[k u], 1, t\right)$ and pasting ($[u], s, 0$) to ($[u], s, 1$);
(6) $F_{2 \beta_{2}}=F_{2} \times{ }_{\beta_{2}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times I \times I$ by pasting $([u], 0, t)$ to ($\left.[k u], 1, t\right)$ and pasting ([u],s,0) to ([($\left.\left.\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) u\right], s, 1$); where $\lambda=e^{2 \pi i s}$;
(7) $F_{2 \beta_{3}}=F_{2} \times_{\beta_{3}} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times I \times I$ by pasting $([u], 0, t)$ to ($\left.[k u], 1, t\right)$ and pasting $([u], s, 0)$ to ($[k u], s, 1$);
(8) $F_{2 \beta_{4}}=F_{2} \times \beta_{4} \mathbf{T}$ which is obtained from $P U_{2}^{\prime} \times I \times I$ by pasting $([u], 0, t)$ to $([k u], 1, t)$ and pasting $([u], s, 0)$ to $\left.\left(\left[\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) k u\right], s, 1\right), \lambda=e^{2 \pi i s}$.

Proof. This is a consequence of Lemma 2.1 of [1] and Lemma 3.2 of [2].

Proposition 5. Let $F_{1 \alpha_{1}}, F_{1 \alpha_{2}}, F_{1 \alpha_{3}}, F_{1 \alpha_{4}}, F_{2 \beta_{1}}, F_{2 \beta_{2}}, F_{2 \beta_{3}}, F_{2 \beta_{4}}$ be the principal $P U_{2}^{\prime-}$ bundles over \mathbf{T}^{2} defined in Proposition 4. Then
(1) $\Gamma\left(F_{1 \alpha_{1}}\left(M_{2}(\mathbb{C})\right)\right) \cong C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$ $\oplus C\left(\mathbb{T}^{2}, M_{2}(\mathbb{C})\right) ;$
(2) $\Gamma\left(F_{1 \alpha_{2}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, 0)=\left(\begin{array}{ll}\bar{\lambda} & 0 \\ 0 & 1\end{array}\right) f(\lambda, 1)\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1\end{array}\right)\right.\right.$, $\lambda \in \mathbf{T}\}$ with complexification isomorphic to $A_{1 / 2} \oplus A_{1 / 2}$;
(3) $\Gamma\left(F_{1 \alpha_{3}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \mid f(\lambda, 0)=\overline{f(\lambda, 1)}, \lambda \in \mathbf{T}\right\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$;
(4) $\Gamma=\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, \mu)=\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1\end{array}\right) \overline{f(\lambda,-\mu)}\left(\begin{array}{ll}\bar{\lambda} & 0 \\ 0 & 1\end{array}\right)\right.\right.$, $\lambda, \mu \in \mathbf{T}\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$;
(5) $\Gamma\left(F_{2 \beta_{1}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \mid f(\lambda, 0)=\overline{f(\lambda, 1)} \lambda \in \mathbf{T}\right\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$;
(6) $\Gamma\left(F_{\alpha \beta_{2}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, \mu)=\left(\begin{array}{cc}\bar{\mu} & 0 \\ 0 & 1\end{array}\right) \overline{f(-\lambda, \mu)}\left(\begin{array}{cc}\bar{\mu} & 0 \\ 0 & 1\end{array}\right)\right.\right.$, $\lambda, \mu \in \mathbf{T}\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) ;$
(7) $\Gamma\left(F_{2 \beta_{3}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(s, 0)=\overline{f(s, 1)}, f(0, t)=\overline{f(1, t)}, s, t \in I\right\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$;
(8) $\Gamma\left(F_{2 \beta_{4}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \mid f(0, t)=\overline{f(1, t)}, f(s, 0)=\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1\end{array}\right) \overline{f(s, 1)}\right.$ $\left.\left(\begin{array}{cc}\bar{\lambda} & 0 \\ 0 & 1\end{array}\right), s, t \in I, \lambda=e^{2 \pi i s}\right\}$ with complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$;

Proof. (1) The fibre bundle induced from $F_{1 \alpha_{1}}$ with fibres isomorphic to $M_{2}(\mathbb{C})$ is the trivial $M_{2}(\mathbb{C}) \times \mathbf{T}^{2}$ which has cross-section algebra $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$ with complexification $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \oplus C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.
(2) Since $F_{1 \alpha_{2}}$ can be regarded as a principal $P U_{2}^{\prime}$-bundle over \mathbf{T}^{2} obtained from $P U_{2}^{\prime} \times$ $I \times I$ by pasting $([u], 0, t)$ to $([u], 1, t)$ and pasting $([u], s, 0)$ to $\left.\left(\left[\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) u\right], s, 1\right)$, by Lemma 2.2 of [2] we have

$$
\begin{aligned}
& \Gamma\left(F_{1 \alpha_{2}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(I \times I, M_{2}(\mathbb{C})\right) \mid f(0, t)=f(1, t), f(s, 0)\right. \\
& \left.=\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) f(s, 1)\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right), \lambda=e^{2 \pi i s}\right\} \\
\cong & \left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, 0)=\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) f(\lambda, 1)\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right)\right., \lambda \in \mathbf{T}\right\}
\end{aligned}
$$

Define $U: \mathbf{T} \rightarrow \mathcal{U}_{2}$ by $U(\lambda)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)$. Then

$$
A(U)=\left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, 0)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) f(\lambda, 1)\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right)\right., \lambda \in \mathbf{T}\right\}
$$

and $\operatorname{deg}\left(\operatorname{det} U_{\lambda}\right) / 2=1 / 2$ and $\left(\operatorname{deg}\left(\operatorname{det} U_{\lambda}, 2\right)\right)=1$. Thus by Proposition 2.8 of $[1] \Gamma\left(F\left(1 \alpha_{2}\left(M_{2}\right.\right.\right.$ $(\mathbb{C})))\left(\cong A_{1 / 2}\right.$ which has complexification $A_{1 / 2} \oplus A_{1 / 2}$.
(3) Similarly, $F_{1 \alpha_{3}}$ can be regarded as a principal $P U_{2}^{\prime}$-bundle over \mathbf{T}^{2} obtained from $P U_{2}^{\prime} \times I \times I$ by pasting ($[u], 0, t$) to ($[u], 1, t$) and pasting $([u], s, 0)$ to ($\left.[k u], s, 1\right)$. Making the homeomoephic transformation $(x, y) \mapsto(y, x)$ on \mathbf{T}^{2} we get a weakly isomorphic principal $P U_{2}^{\prime}$-bundle over \mathbf{T}^{2} obtained from $P U_{2}^{\prime} \times I \times I$ by pasting ($[u], s, 0$) to ($[u], s, 1$) and pasting ([u], 0,t) to $([k u], 1, t)$. By Lemma 2.2 of $[2]$ we have

$$
\begin{aligned}
& \Gamma\left(F_{1 \alpha_{3}}\left(M_{2}(\mathbb{C})\right)\right) \cong\left\{f \in C\left(I \times I, M_{2}(\mathbb{C})\right) \mid f(s, 0)=f(s, 1), f(0, t)=k^{-1} f(1, t) k\right\} \\
\cong & \left\{f \in C\left(I \times \mathbf{T}, M_{2}(\mathbb{C})\right) \mid f(0, \lambda)=k^{-1} f(1, \lambda) k\right\} \\
\cong & \left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \mid f(\lambda, 0)=\overline{f(\lambda, 1)}\right. \\
\cong & \{f \in C(I) \mid f(0)=\overline{f(1)}\} \otimes_{\mathbb{R}} C(\mathbf{T}, \mathbb{R}) \otimes_{\mathbb{R}} M_{2}(\mathbb{R}) \\
\cong & \{f \in C(\mathbf{T}) \mid f(-\lambda)=\overline{f(\lambda)}\} \otimes_{\mathbb{R}} C(\mathbf{T}, \mathbb{R}) \otimes_{\mathbb{R}} M_{2}(\mathbb{R})
\end{aligned}
$$

Let $R=\{f \in C(\mathbf{T}) \mid f(-\lambda)=\overline{f(\lambda)}\}$. Thus it is to show that the complexification of R is isomorphic to $C(\mathbf{T})$. Thus $\Gamma\left(F_{1 \alpha_{3}}\left(M_{2}(\mathbb{C})\right)\right.$) has complexification isomorphic to $C(\mathbf{T}) \otimes C(\mathbf{T}) \otimes M_{2}(\mathbb{C}) \cong C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.
(4) The same argument as in (3) shows that

$$
\begin{aligned}
& \Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right) \\
\cong & \left\{f \in C\left(I \times I, M_{2}(\mathbb{C})\right) \mid f(s, 0)=f(s, 1), f(0, t)=k^{-1}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) f(1, t)\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) k,\right. \\
& \left.\lambda=e^{2 \pi i t} \in \mathbf{T}\right\} \\
\cong & \left\{f \in C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, 0)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda, 1)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right., \lambda \in \mathbf{T}\right\} \\
& \text { Let } R=\left\{f \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, \mu)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda,-\mu)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right.\right\} .
\end{aligned}
$$

Define $\Phi: R \rightarrow C\left(\mathbf{T} \times I, M_{2}(\mathbb{C})\right)$ by $\Phi f(\lambda, t)=f\left(\lambda, e^{\pi t}\right)$. Then

$$
\Phi f(\lambda, 0)=f(\lambda, 1)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda,-1)}\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)
$$

and $\Phi f(\lambda, 1)=f(\lambda,-1)$. So $\Phi f(\lambda, 0)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right) \overline{\Phi f(\lambda, 1)}\left(\begin{array}{ll}\bar{\lambda} & 0 \\ 0 & 1\end{array}\right)$.
Hence $\Phi f \in \Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right.$). Obviously Φ is injective. To show that Φ is onto $\Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right)$, let $g \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$ be defined by
for any element $f \in \Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right)$. Then

$$
g\left(\lambda, e^{\pi i 0}\right)=f(\lambda, 0)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda, 1)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)=g\left(\lambda,-e^{\pi i 1}\right)
$$

and

$$
g\left(\lambda, e^{\pi i 1}\right)=f(\lambda, 1)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda, 0)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)=g\left(\lambda,-e^{\pi i 0}\right)
$$

So g is well-defined. As a function of μ, g is continuous at ± 1 and also we have $\Phi g(\lambda, t)=$ $g\left(\lambda, e^{\pi i t}\right)=f(\lambda, t)$. So we are left to show $g \in R$. However, when $\mu=e^{\pi i t}$, we have

$$
g(\lambda, \mu)=f(\lambda, t)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{g(\lambda,-\mu)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)
$$

and when $\mu=-e^{\pi i t}$, we have

$$
g(\lambda, \mu)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda, t)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{g(\lambda,-\mu)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)
$$

Therefore $\Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right)$ is isomorphic to

$$
\left\{f \in C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(\lambda, \mu)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda,-\mu)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right.\right\}
$$

Define an autiantomorphism φ of $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$ by

$$
\varphi f(\lambda, \mu)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) f(\lambda,-\mu)^{\operatorname{tr}}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
\varphi^{2} f(\lambda, \mu) & =\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \varphi f(\lambda,-\mu)^{\operatorname{tr}}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right)\left(\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) f(\lambda, \mu)^{t r}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right)^{t r}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \\
& =f(\lambda, \mu)
\end{aligned}
$$

So φ is involutory and $\varphi f(\lambda, \mu)=f^{*}(\lambda, \mu)$ if and only if

$$
f(\lambda, \mu)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(\lambda,-\mu)}\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right)
$$

Hence the complexification of $\Gamma\left(F_{1 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right)$ is isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.
(5) By Lemma 2.2 of [2] we have

$$
\begin{aligned}
\Gamma\left(F_{2 \beta_{1}}\left(M_{2}(\mathbb{C})\right)\right) & \cong\left\{f \in C\left(I \times I, M_{2}(\mathbb{C})\right) \mid f(s, 0)=f(s, 1), f(0, t)=k^{-1} f(1, t) k\right\} \\
& \cong \Gamma\left(F_{1 \alpha_{3}}\left(M_{2}(\mathbb{C})\right)\right)
\end{aligned}
$$

which has complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.
(6) By Lemma 2.2 of [2] we have

$$
\begin{aligned}
\Gamma\left(F_{2 \beta_{2}}\left(M_{2}(\mathbb{C})\right)\right) \cong & \left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(s, 0)=\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) f(s, 1)\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) f(0, t)\right.\right. \\
& \left.=k^{-1} f(1, t) k, \lambda=e^{2 \pi i s}\right\}
\end{aligned}
$$

Let $u(s, t)=\left(\begin{array}{ll}e^{-2 \pi i s t} & 0 \\ 0 & 1\end{array}\right)$ and let $g(s, t)=u(s, t) f(s, t) u(s, t)^{*}$ for any $f \in \Gamma\left(F_{2 \beta_{2}}\left(M_{2}\right.\right.$ $(\mathbb{C}))$). Then

$$
\begin{aligned}
g(0, t) & =u(0, t) f(0, t) u(0, t)^{*} \\
& =\frac{f(0, t)=\overline{f(1, t)}}{u(1, t)^{*} g(1, t) u(1, t)} \\
& =\left(\begin{array}{cc}
e^{-2 \pi i t} & 0 \\
0 & 1
\end{array}\right) \overline{g(1, t)}\left(\begin{array}{cc}
e^{2 \pi i t} & 0 \\
0 & 1
\end{array}\right) \\
g(s, 0) & =u(s, 0) f(s, 0) u(s, 0)^{*} \\
& =f(s, 0)=\left(\begin{array}{cc}
e^{-2 \pi i s} & 0 \\
0 & 1
\end{array}\right) f(s, 1)\left(\begin{array}{cc}
e^{2 \pi i s} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-2 \pi i s} & 0 \\
0 & 1
\end{array}\right) u(s, 1)^{*} g(s, 1) u(s, 1)\left(\begin{array}{cc}
e^{2 \pi i s} & 0 \\
0 & 1
\end{array}\right) \\
& =g(s, 1)
\end{aligned}
$$

Conversely, if $g \in C\left(I \times I, M_{2}(\mathbb{C})\right)$ with $g(s, 0)=g(s, 1)$ and $g(0, t)=\left(\begin{array}{cc}e^{-2 \pi i t} & 0 \\ 0 & 1\end{array}\right)$ $\overline{g(1, t)}\left(\begin{array}{cc}e^{2 \pi i t} & 0 \\ 0 & 1\end{array}\right)$, let

$$
f(s, t)=u(s, t)^{*} g(s, t) u(s, t)
$$

then

$$
\begin{aligned}
f(0, t) & =u(0, t)^{*} g(0, t) u(0, t) \\
& =g(0, t)=u(1, t) \overline{g(1, t)} u(1, t)^{*} \\
& =u(1, t) \overline{u(1, t) f(1, t) u(1, t)^{*} u(1, t)^{*}} \\
& =\overline{f(1, t)}
\end{aligned}
$$

$$
\begin{aligned}
f(s, 0) & =u(s, 0)^{*} g(s, 0) u(s, 0)=g(s, 0)=g(s, 1) \\
& =u(s, 1) f(s, 1) u(s, 1)^{*} \\
& =\left(\begin{array}{cc}
e^{-2 \pi i s} & 0 \\
0 & 1
\end{array}\right) f(s, 1)\left(\begin{array}{cc}
e^{2 \pi i s} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \Gamma\left(F_{2 \beta_{2}}\left(M_{2}(\mathbb{C})\right)\right) \\
\cong & \left\{f \in C\left(I \times I, M_{2}(\mathbb{C})\right) \mid f(s, 0)=f(s, 1), f(0, t)=\left(\begin{array}{cc}
e^{-2 \pi i t} & 0 \\
0 & 1
\end{array}\right) \overline{f(1, t)}\left(\begin{array}{cc}
e^{2 \pi i t} & 0 \\
0 & 1
\end{array}\right)\right\} \\
\cong & \left\{f \in C\left(I \times \mathbf{T}, M_{2}(\mathbb{C})\right) \left\lvert\, f(0, \lambda)=\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \overline{f(1, \lambda)}\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right)\right.\right\} \\
\cong & \Gamma\left(F_{2 \alpha_{4}}\left(M_{2}(\mathbb{C})\right)\right.
\end{aligned}
$$

which has complexification isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$).
(7) By Lemma 2.2 of [2] we have

$$
\begin{aligned}
\Gamma\left(F_{2 \beta_{3}}\left(M_{2}(\mathbb{C})\right)\right) & \cong\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(s, 0)=k^{-1} f(s, 1) k, f(0, t)=k^{-1} f(1, t) k\right\} \\
& \cong\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(s, 0)=\overline{f(s, 1)}, f(0, t)=\overline{f(1, t)}\right\}
\end{aligned}
$$

Let $C=\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(s, 0)=f(s, 1), f(0, t)=f(1, t)\right\}$. For any $f \in C$, define a function g by

$$
g(s, t)=\left\{\begin{array}{lll}
f\left(s+\frac{1}{2}, t\right)^{t r} & \text { if } \quad s \leq \frac{1}{2} \\
f\left(s-\frac{1}{2}, t\right)^{t r} & \text { if } \quad s \geq \frac{1}{2}
\end{array}\right.
$$

Then $f(s, 0)=f(s, 1), f(0, t)=f(1, t)$ shows that g is continuous and $g(s, 0)=f(s \pm$ $1 / 2,0)^{t r}=f(s \pm 1 / 2,1)=g(s, 1), g(0, t)=f(1 / 2, t)^{t r}=g(1, t)$. So $g \in C$.

Let $\Phi f=g$. Then

$$
\begin{aligned}
\Phi^{2} f & =\Phi g=\left\{\begin{array}{lll}
g\left(s+\frac{1}{2}, t\right)^{t r} & \text { if } \quad 0 \leq s \leq \frac{1}{2} \\
g\left(s-\frac{1}{2}, t\right)^{t r} & \text { if } \quad \frac{1}{2} \leq s \leq 1
\end{array}\right. \\
& =f(s, t)
\end{aligned}
$$

So $\Phi f=g$ defines an involutory anti-homomorphism, hence surjective, from C onto itself. Clearly Φ is injective. Thus Φ is an involutory antiautomorphism of C. The associated real algebra is

$$
R(\Phi)=\left\{f \in C \left\lvert\, f(s, t)=\left\{\begin{array}{lll}
\overline{f\left(s+\frac{1}{2}, t\right)} & \text { if } & s \leq \frac{1}{2} \\
\overline{f\left(s-\frac{1}{2}, t\right)} & \text { if } & s \geq \frac{1}{2}
\end{array}\right\}\right.\right.
$$

Let $\Delta=\left\{(s, t) \in I^{2} \mid 1 \leq 2 s+t \leq 2,0 \leq t \leq 1\right\}$, and note that the map $(s, t) \mapsto(2 s+t-1, t)$ is a homomorphism from Δ onto I^{2}. Then, noting that restriction to Δ is an isomorphism on $R(\Phi)$.

$$
\begin{aligned}
R(\Phi) & \cong\left\{f \in C\left(\Delta, M_{2}(\mathbb{C})\right) \left\lvert\, f(s, 0)=\overline{f\left(s-\frac{1}{2}, 1\right)}\right., f\left(\frac{1-t}{2}, t\right)=\overline{f\left(1-\frac{1}{2}, t\right)}\right\} \\
& \cong\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(s, 0)=\overline{f(s, 1)}, f(0, t)=\overline{f(1, t)}\right\} \\
& \cong \Gamma\left(F_{2 \beta_{3}}\left(M_{2}(\mathbb{C})\right)\right)
\end{aligned}
$$

Thus the complexifiction of $\Gamma\left(F_{2 \beta_{3}}\left(M_{2}(\mathbb{C})\right)\right)$ is isomorphic to C which is isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.
(8) By Lemma 2.2 of [2] we have

$$
\begin{aligned}
& \Gamma\left(F_{2 \beta_{4}}\left(M_{2}(\mathbb{C})\right)\right) \\
\cong & \left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \mid f(0, t)\right. \\
& \left.=k^{-1} f(1, t) k, f(s, 0)=k^{-1}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) f(s, 1)\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) k, \lambda=e^{2 \pi i s}\right\} \\
\cong & \left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(s, 0)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(s, 1)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right., f(0, t)=\overline{f(1, t)}\right\} .
\end{aligned}
$$

Let C as in (7), let $\Delta=\left\{(s, t) \in I^{2} \mid 1 \leq s+2 t \leq 2,0 \leq s \leq 1\right\}$ and note that the map $(s, t) \mapsto(s, s+2 t-1)$ is a homomorphism from Δ onto I^{2}. For any $f \in C$, define a function g by

$$
g(s, t)=\left\{\begin{array}{l}
\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1 \\
\lambda & 0 \\
0 & 1
\end{array}\right) f\left(t, t+\frac{1}{2}\right)^{\operatorname{tr}}\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \quad \text { if } \quad t \leq \frac{1}{2} \\
\bar{\lambda} \\
0 \\
0
\end{array} 1 . \frac{1}{2}\right)^{\operatorname{tr}\left(\begin{array}{ll}
& \text { if }
\end{array} \quad t \geq \frac{1}{2}\right.}
$$

Where $\lambda=e^{2 \pi i s}$. Then $f(s, 0)=f(s, 1), f(0, t)=f(1, t)$ show that g is continuous and

$$
g(s, 0)=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) f\left(s, \frac{1}{2}\right)^{\operatorname{tr}}\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)=g(s, 1), g(0, t)=f\left(0, t \pm \frac{1}{2}\right)^{t r}=g(1, t)
$$

So $g \in C$. Let $\Phi f=g$, then

$$
\begin{aligned}
& \Phi^{2} f=\Phi g=\left\{\begin{array}{l}
\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1 \\
\lambda & 0 \\
0 & 1
\end{array}\right) g\left(s, t+\frac{1}{2}\right)^{\operatorname{tr}}\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1 \\
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \quad \text { if } \quad 0 \leq t \leq \frac{1}{2} \\
\text { if }
\end{array} \quad \frac{1}{2} \leq t \leq 1\right. \\
& =\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right)\left(\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) f(s, t)^{\operatorname{tr}}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right)^{\operatorname{tr}}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \\
& =f(s, t)
\end{aligned}
$$

So, $\Phi f=g$ define as involutory anti-homomorphism hence surjective, from C onto itself. Clearly Φ is injective. Thus Φ is an involulory antiantomorphism of C. The associated real algebra is

$$
\begin{aligned}
& R(\Phi)=\left\{f \in C \left\lvert\, f(s, t)=\left\{\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1 \\
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f\left(s, t+\frac{1}{2}\right)} \overline{f\left(s, t-\frac{1}{2}\right)}\left(\begin{array}{ll}
\bar{\lambda} & 0 \\
0 & 1 \\
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
\text { if } \quad t \leq \frac{1}{2} \\
\text { if } \quad t \geq \frac{1}{2}
\end{array}\right\}\right.\right. \\
& \cong\left\{f \in C\left(\Delta, M_{2}(\mathbb{C})\right) \left\lvert\, f\left(s, \frac{1-s}{2}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f\left(s, 1-\frac{s}{2}\right)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right.,\right. \\
& \left.f(0, t)=\overline{f\left(1, t-\frac{1}{2}\right)}\right\} \\
& \cong\left\{f \in C\left(I^{2}, M_{2}(\mathbb{C})\right) \left\lvert\, f(s, 0)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \overline{f(s, 1)}\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & 1
\end{array}\right)\right., f(0, t)=\overline{f(1, t)}\right\} \\
& =\Gamma\left(F_{2 \beta_{4}}\left(M_{2}(\mathbb{C})\right)\right)
\end{aligned}
$$

Thus the complexification of $\Gamma\left(F_{2 \beta_{4}}\left(M_{2}(\mathbb{C})\right)\right)$ is isomorphic to C which is isomorphic to $C\left(\mathbf{T}^{2}, M_{2}(\mathbb{C})\right)$.

So all the cross-section algebras of fibre bundles over \mathbf{T}^{2} with fibres ismorphic to $M_{2}(\mathbb{C})$ and with group $P U_{2}^{\prime}$ have complexification not isomorphic to $A_{1 / 2}$. Hence we have the following corollary.

Corollary 6. There is no involutory antiautomorphism in $A_{1 / 2}$ associated with τ_{1} : $(\lambda, \mu) \mapsto(-\lambda, \mu)$.

Proof. Let Φ be an involutory antiautomorphism in $A_{1 / 2}$ associated with τ_{1}. Since τ_{1} has no fixed point, by Proposition 2.7 of $[3], R(\Phi)$ is a complex type algebra with spectrum $\mathbf{T}^{2} / \tau_{1}$ which is homomorphic to \mathbf{T}^{2}. So, by Proposition 2.5 of $[3], R(\Phi) \cong \Gamma(R)$ for some fibre bundle over \mathbf{T}^{2} with fibres isomorphic to $M_{2}(\mathbb{C})$ and with group $P U_{2}^{\prime}$ and the complexification of $R(\Phi)$ is isomorphic to $A_{1 / 2}$. This contradicts Proposition 5 .

References

[1] S. Disney and I. Raeburn, Homogeneous C^{*}-algebra whose spectra are tori, J. Austral. Math. Soc. (Series A), 38, 1985, 9-39
[2] Y. Hu and Z. Tan, Real structures of rational rotation algebra associated with the identity of the torus, to appear
[3] Y. Hu, Two Classes of Involutory autiautomorphisms of rational rotation algebra, to appear in J. of Operator Theory.
[4] D. Husemoller, Fibre Bundles, Springer-verlag, NewYork, 1994
Dept. of Math., Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, China e_mail address: es-tzs@263.net

[^0]: 2000 Mathematics Subject Classification. 46L05, 46L40.
 Key words and phrases. Involutory, Antiautomorphism, Rational Rotation Algebras.

