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Abstract. A rational rotation algebra A� is a universal C�-algebra generated by

two unitaries U; V with relation V U = �UV , where � = e2�i� ; 0 � � � 1 is rational.

Any involutary antiautomorphism of a rational rotation algebra is corresponding to an

involution of the torus T 2, the spectrum of rational rotation algebra. In this paper,

we prove that there is no involutory antiautomorphism in A� associated with the

involution �
1
: (�;�) 7! (��; �) of the torus.

Let A� be the universalC
�-algebra generated by the two unitariesU; V with V U = �UV ,

where � = e2�i�; 0 � � � 1. When � = p=q is rational, A� is called rational. A rational

rotation algebra can be regarded as an algebra of continuous function from the square I2 to

the matrix algebra Mq(C ). The spectrum of A� is the torus hence its centre is isomorphic

to C(T2). Given an antiautomorphism �, it gives rise to a homomorphism e� of T2 with

�f(x) = f(e�(x)), for any x 2 T2; f 2 A�. For any antiautomorphism � of A p

q

, let �(�) be

the associated homomorphism. Restricting the antiautomorphism � to the centre C(T2)

of A p

q

, then it establishes a bijection between the involutory antiautomorphism of A p

q

and

the involutions (including the identity homomorphism) of T2. Now any involution of T2 is

conjugate to one of the following �ve ones

�1 : �1(�; �) = (��; �);

�2 : �2(�; �) = (��; �);

�3 : �3(�; �) = (��; ��);

�4 : �4(�; �) = (�; ��);

�5 : �5(�; �) = (�; �):

For convenience, we will denote the identity homomorphism of T2 by �0. In [3] we

proved briey there is no involutory antiautomorphism associated with �1. In this paper we

will employ a more general approach, which applys to other cases, to show this theorem.

According to the analysis of the case q = 2 and �(�) = �1, in [3] and the relation between

principal bundles and their associated �bre bundles, to investigate involutory antiautomor-

phism of A 1

2

associated with �1, we can start from studying the principal PU 0

2
-bundles over

T2. As the �rst step we give the classi�cation of principal PU 0

2
-bundles over T and the

conjugacy homotopy classes of their automorphisms.

Lemma 1. Let k be the transformation of C 2 with k(x; y) = (�x; �y). Then each principal

PU 0

2
-bundle over T is either isomorphic to the trivial F1 = PU 0

2
� T or isomorphic to F2

which is obtained from PU 0

2
� I by pasting ([u]; 0) to ([ku]; 1).

Proof. There are two connected components, one containing I2 and one containing k.

By Lemma 3.1 of [3], we obtain the principal PU 0

2
-bundles F1 over T.

As was shown in Proposition 2.1 and Lemma 3.2 of [2] the conjugacy homotopy classes

of the automorphisms of a principal PU 0

2
-bundle over T are related to the fundamental

group of PU 0

2
. The following Lemma gives �1(PU

0

q).
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Lemma 2. �1(PU
0

q)
�=Zq.

Proof. From [4,8.12.3] we have �1(Uq) = Z. From the �bration T ! Uq ! PUq we

have �1(T) ! �1(Uq) ! �1(PUq) ! �0(T). The map �1(T) �= Z! Z�= �1(Uq) maps

n = deg(l) to nq = deg(lq) for each loop l. So �1(PUq) �=Z=qZ�=Zp. Hence �1(PU
0

q)
�=Zq.

Lemma 3. De�ne automorphisms of F1 by

(1) �1([u]; �) = ([u]; �);

(2) �2([u]; �) = ([

�
� 0

0 1

�
u]; �);

(3) �3([u]; �) = ([ku]; �);

(4) �4([u]; �) = ([

�
� 0

0 1

�
ku]; �). Then each automorphism � of F1 is homotopic to

�i for some i 2 f1; 2; 3; 4g.

Similarly, if we de�ne automorphisms of F2 by

(5) �1[([u]; s)] = [([u]; s)];

(6) �2[([u]; s)] = [([

�
� 0

0 1

�
u]; s)], where � = e2�is;

(7) �3[([u]; s)] = [([ku]; s)];

(8) �4[([u]; s)] = [([

�
� 0

0 1

�
ku]; s)], where � = e2�is.

Then each automorphism � of F2 is homotopic to �i for some i 2 f1; 2; 3; 4g.

Proof. Let E be a principal PU 0

2
-bundle over T. Then by lemma 3 .1 of [2] any

automorphism � of E corresponds to e� 2 Map(T; PU 0

2
) with e�(1) = e or k and with

�[([u]; s)] = [([e��u]; s)], where � = e2�is. Furthermore for two automorphisms �; � of E, ife� is homotopic to e� then � is homotopic to �.

Now �1(PU
0

2
) �= Z2 and l1 : � 7! [I2]; l2 : �1 7! [

�
� 0

0 1

�
] are non-homotopic loops

based on [I2]. Also l3 : � 7! [k]; l4 : � 7! [

�
� 0

0 1

�
k] are non-homotopic loops based

on [k]. The corresponding antomorphisms of F1 are �1; �2; �3; �4 respectively, and the

corresponding automorphisms of F2 are �1; �2; �3; �4 respectively. Given any automorphism

� of F1 and � of F2; e� or e� is homotopic to li for some i 2 f1; 2; 3; 4g. So � is homotopic

to �i for some i 2 f1; 2; 3; 4g or � is homotopic to �i for some i 2 f1; 2; 3; 4g.

Proposition 4. All principal PU 0

2
-bundles over T2 are isomorphic to one of the following

(1) F1�1 = F1 ��1 T = PU 0

2
�T2;

(2) F1�2 = F1 ��2 T which is obtained from PU 0

2
� T � I by pasting ([u]; �; 0) to

([

�
� 0

0 1

�
u]; �; 1);

(3) F1�3 = F1 ��3 T which is obtained from PU 0

2
� T � I by pasting ([u]; �; 0) to

([ku]; �; 1);

(4) F1�4 = F1 ��4 T which is obtained from PU 0

2
� T � I by pasting ([u]; �; 0) to

([

�
� 0

0 1

�
ku]; �; 1);

(5) F2�1 = F2��1T which is obtained from PU 0

2
�I�I by pasting ([u]; 0; t) to ([ku]; 1; t)

and pasting ([u]; s; 0) to ([u]; s; 1);

(6) F2�2 = F2��2T which is obtained from PU 0

2
�I�I by pasting ([u]; 0; t) to ([ku]; 1; t)

and pasting ([u]; s; 0) to ([

�
� 0

0 1

�
u]; s; 1); where � = e2�is;
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(7) F2�3 = F2��3T which is obtained from PU 0

2
�I�I by pasting ([u]; 0; t) to ([ku]; 1; t)

and pasting ([u]; s; 0) to ([ku]; s; 1);

(8) F2�4 = F2��4T which is obtained from PU 0

2
�I�I by pasting ([u]; 0; t) to ([ku]; 1; t)

and pasting ([u]; s; 0) to ([

�
� 0

0 1

�
ku]; s; 1); � = e2�is.

Proof. This is a consequence of Lemma 2.1 of [1] and Lemma 3.2 of [2].

Proposition 5. Let F1�1 ; F1�2 ; F1�3 ; F1�4; F2�1 ; F2�2; F2�3 ; F2�4 be the principal PU 0

2
-

bundles over T2 de�ned in Proposition 4. Then

(1) �(F1�1(M2(C ))) �= C(T2;M2(C )) with complexi�cation isomorphic to C(T2;M2(C ))

� C(T2;M2(C ));

(2) �(F1�2(M2(C ))) �= ff 2 C(T� I;M2(C )) j f(�; 0) =

�
�� 0

0 1

�
f(�; 1)

�
� 0

0 1

�
;

� 2 Tg with complexi�cation isomorphic to A1=2 �A1=2;

(3) �(F1�3(M2(C ))) �= ff 2 C(T� I;M2(C )) j f(�; 0) = f(�; 1); � 2 Tg with complexi-

�cation isomorphic to C(T2;M2(C ));

(4) � = (F1�4(M2(C ))) �= ff 2 C(T2;M2(C )) j f(�; �) =

�
� 0

0 1

�
f(�;��)

�
�� 0

0 1

�
;

�; � 2 Tg with complexi�cation isomorphic to C(T2;M2(C ));

(5) �(F2�1(M2(C ))) �= ff 2 C(T� I;M2(C )) j f(�; 0) = f(�; 1)� 2 Tg with complexi�-

cation isomorphic to C(T2;M2(C ));

(6) �(F��2(M2(C ))) �= ff 2 C(T2;M2(C )) j f(�; �) =

�
�� 0

0 1

�
f(��; �)

�
�� 0

0 1

�
;

�; � 2 Tg with complexi�cation isomorphic to C(T2;M2(C ));

(7) �(F2�3(M2(C ))) �= ff 2 C(I2;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = f(1; t); s; t 2 Ig

with complexi�cation isomorphic to C(T2;M2(C ));

(8) �(F2�4(M2(C ))) �= ff 2 C(T2;M2(C )) j f(0; t) = f(1; t); f(s; 0) =

�
� 0

0 1

�
f(s; 1)�

�� 0

0 1

�
; s; t 2 I; � = e2�isg with complexi�cation isomorphic to C(T2;M2(C ));

Proof. (1) The �bre bundle induced from F1�1 with �bres isomorphic to M2(C ) is the

trivial M2(C ) � T2 which has cross-section algebra C(T2;M2(C )) with complexi�cation

C(T2;M2(C )) � C(T2;M2(C )).

(2) Since F1�2 can be regarded as a principal PU 0

2
-bundle over T2 obtained from PU 0

2
�

I�I by pasting ([u]; 0; t) to ([u]; 1; t) and pasting ([u]; s; 0) to ([

�
� 0

0 1

�
u]; s; 1), by Lemma

2.2 of [2] we have

�(F1�2 (M2(C ))) �=

(
f 2 C(I � I;M2(C )) j f(0; t) = f(1; t); f(s; 0)

=

�
�� 0

0 1

�
f(s; 1)

�
� 0

0 1

�
; � = e2�is

)

�=

(
f 2 C(T� I;M2(C )) j f(�; 0) =

�
�� 0

0 1

�
f(�; 1)

�
� 0

0 1

�
; � 2 T

)
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De�ne U : T! U 2 by U(�) =

�
� 0

0 1

�
. Then

A(U) =

(
f 2 C(T� I;M2(C )) j f(�; 0) =

�
� 0

0 1

�
f(�; 1)

�
� 0

0 1

�
; � 2 T

)

and deg(detU�)=2 = 1=2 and (deg(detU�; 2)) = 1. Thus by Proposition 2.8 of [1] �(F (1�2 (M2

(C )))) �= A1=2 which has complexi�cation A1=2 �A1=2.

(3) Similarly, F1�3 can be regarded as a principal PU 0

2
-bundle over T2 obtained from

PU 0

2
�I�I by pasting ([u]; 0; t) to ([u]; 1; t) and pasting ([u]; s; 0) to ([ku]; s; 1). Making the

homeomoephic transformation (x; y) 7! (y; x) on T2 we get a weakly isomorphic principal

PU 0

2
-bundle over T2 obtained from PU 0

2
�I�I by pasting ([u]; s; 0) to ([u]; s; 1) and pasting

([u]; 0; t) to ([ku]; 1; t). By Lemma 2.2 of [2]we have

�(F1�3(M2(C ))) �= ff 2 C(I � I;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = k�1f(1; t)kg

�= ff 2 C(I �T;M2(C )) j f(0; �) = k�1f(1; �)kg

�= ff 2 C(T� I;M2(C )) j f(�; 0) = f(�; 1)

�= ff 2 C(I) j f(0) = f(1)g 
R C(T;R)
R M2(R)

�= ff 2 C(T) j f(��) = f(�)g 
R C(T;R)
R M2(R)

Let R = ff 2 C(T) j f(��) = f(�)g. Thus it is to show that the complexi�cation

of R is isomorphic to C(T). Thus �(F1�3(M2(C ))) has complexi�cation isomorphic to

C(T)
 C(T)
M2(C ) �= C(T2;M2(C )).

(4) The same argument as in (3) shows that

�(F1�
4
(M2(C )))

�=

(
f 2 C(I � I;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = k�1

�
�� 0

0 1

�
f(1; t)

�
� 0

0 1

�
k;

� = e2�it 2 T

)

�=

(
f 2 C(T� I;M2(C )) j f(�; 0) =

�
� 0

0 1

�
f(�; 1)

�
�� 0

0 1

�
; � 2 T

)

Let R =

(
f 2 C(T2;M2(C )) j f(�; �) =

�
� 0

0 1

�
f(�;��)

�
�� 0

0 1

�)
.

De�ne � : R! C(T� I;M2(C )) by �f(�; t) = f(�; e�t). Then

�f(�; 0) = f(�; 1) =

�
� 0

0 1

�
f(�;�1)

�
�� 0

0 1

�

and �f(�; 1) = f(�;�1). So �f(�; 0) =

�
� 0

0 1

�
�f(�; 1)

�
�� 0

0 1

�
.

Hence �f 2 �(F1�4 (M2(C ))). Obviously � is injective. To show that � is onto

�(F1�4 (M2(C ))), let g 2 C(T2;M2(C )) be de�ned by

g(�; �) =

8<:
f(�; t) if � = e2�t t 2 I�

� 0

0 1

�
f(�; t)

�
�� 0

0 1

�
if � = �e2�t t 2 I:
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for any element f 2 �(F1�4 (M2(C ))). Then

g(�; e�i0) = f(�; 0) =

�
� 0

0 1

�
f(�; 1)

�
�� 0

0 1

�
= g(�;�e�i1)

and

g(�; e�i1) = f(�; 1) =

�
� 0

0 1

�
f(�; 0)

�
�� 0

0 1

�
= g(�;�e�i0)

So g is well-de�ned. As a function of �; g is continuous at �1 and also we have �g(�; t) =

g(�; e�it) = f(�; t). So we are left to show g 2 R. However, when � = e�it, we have

g(�; �) = f(�; t) =

�
� 0

0 1

�
g(�;��)

�
� 0

0 1

�
and when � = �e�it, we have

g(�; �) =

�
� 0

0 1

�
f(�; t)

�
�� 0

0 1

�
=

�
� 0

0 1

�
g(�;��)

�
�� 0

0 1

�
:

Therefore �(F1�4(M2(C ))) is isomorphic to(
f 2 C(T2;M2(C )) j f(�; �) =

�
� 0

0 1

�
f(�;��)

�
�� 0

0 1

�)

De�ne an autiantomorphism ' of C(T2;M2(C )) by

'f(�; �) =

�
� 0

0 1

�
f(�;��)tr

�
�� 0

0 1

�
Then

'2f(�; �) =

�
� 0

0 1

�
'f(�;��)tr

�
�� 0

0 1

�

=

�
� 0

0 1

� �
� 0

0 1

�
f(�; �)tr

�
�� 0

0 1

�!tr �
�� 0

0 1

�
= f(�; �)

So ' is involutory and 'f(�; �) = f�(�; �) if and only if

f(�; �) =

�
� 0

0 1

�
f(�;��)

�
� 0

0 1

�
Hence the complexi�cation of �(F1�4(M2(C ))) is isomorphic to C(T2;M2(C )).

(5) By Lemma 2.2 of [2] we have

�(F2�1(M2(C ))) �= ff 2 C(I � I;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = k�1f(1; t)kg

�= �(F1�3(M2(C )))

which has complexi�cation isomorphic to C(T2;M2(C )).
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(6) By Lemma 2.2 of [2] we have

�(F2�2(M2(C ))) �=

(
f 2 C(I2;M2(C )) j f(s; 0) =

�
�� 0

0 1

�
f(s; 1)

�
� 0

0 1

�
f(0; t)

= k�1f(1; t)k; � = e2�is

)

Let u(s; t) =

�
e�2�ist 0

0 1

�
and let g(s; t) = u(s; t)f(s; t)u(s; t)� for any f 2 �(F2�2(M2

(C ))). Then

g(0; t) = u(0; t)f(0; t)u(0; t)�

= f(0; t) = f(1; t)

= u(1; t)�g(1; t)u(1; t)

=

�
e�2�it 0

0 1

�
g(1; t)

�
e2�it 0

0 1

�

g(s; 0) = u(s; 0)f(s; 0)u(s; 0)�

= f(s; 0) =

�
e�2�is 0

0 1

�
f(s; 1)

�
e2�is 0

0 1

�
=

�
e�2�is 0

0 1

�
u(s; 1)�g(s; 1)u(s; 1)

�
e2�is 0

0 1

�
= g(s; 1)

Conversely, if g 2 C(I � I;M2(C )) with g(s; 0) = g(s; 1) and g(0; t) =

�
e�2�it 0

0 1

�
g(1; t)

�
e2�it 0

0 1

�
, let

f(s; t) = u(s; t)�g(s; t)u(s; t);

then

f(0; t) = u(0; t)�g(0; t)u(0; t)

= g(0; t) = u(1; t)g(1; t)u(1; t)�

= u(1; t)u(1; t)f(1; t)u(1; t)�u(1; t)�

= f(1; t)

f(s; 0) = u(s; 0)�g(s; 0)u(s; 0) = g(s; 0) = g(s; 1)

= u(s; 1)f(s; 1)u(s; 1)�

=

�
e�2�is 0

0 1

�
f(s; 1)

�
e2�is 0

0 1

�
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Therefore

�(F2�2(M2(C )))

�=

(
f 2 C(I � I;M2(C )) j f(s; 0) = f(s; 1); f(0; t) =

�
e�2�it 0

0 1

�
f(1; t)

�
e2�it 0

0 1

�)

�=

(
f 2 C(I �T;M2(C )) j f(0; �) =

�
�� 0

0 1

�
f(1; �)

�
� 0

0 1

�)
�= �(F2�4(M2(C ))

which has complexi�cation isomorphic to C(T2;M2(C ))).

(7) By Lemma 2.2 of [2] we have

�(F2�3(M2(C ))) �= ff 2 C(I2;M2(C )) j f(s; 0) = k�1f(s; 1)k; f(0; t) = k�1f(1; t)kg

�= ff 2 C(I2;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = f(1; t)g

Let C = ff 2 C(I2;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = f(1; t)g. For any f 2 C, de�ne

a function g by

g(s; t) =

�
f(s + 1

2
; t)tr if s � 1

2

f(s � 1

2
; t)tr if s � 1

2

Then f(s; 0) = f(s; 1); f(0; t) = f(1; t) shows that g is continuous and g(s; 0) = f(s �

1=2; 0)tr = f(s � 1=2; 1) = g(s; 1); g(0; t) = f(1=2; t)tr = g(1; t). So g 2 C.

Let �f = g. Then

�2f = �g =

�
g(s+ 1

2
; t)tr if 0 � s � 1

2

g(s� 1

2
; t)tr if 1

2
� s � 1

= f(s; t)

So �f = g de�nes an involutory anti-homomorphism, hence surjective, from C onto itself.

Clearly � is injective. Thus � is an involutory antiautomorphism of C. The associated real

algebra is

R(�) =

(
f 2 C j f(s; t) =

(
f(s + 1

2
; t) if s � 1

2

f(s � 1

2
; t) if s � 1

2

)

Let � = f(s; t) 2 I2 j 1 � 2s+t � 2; 0 � t � 1g, and note that the map (s; t) 7! (2s+t�1; t)

is a homomorphism from � onto I2. Then, noting that restriction to � is an isomorphism

on R(�).

R(�) �=

�
f 2 C(�;M2(C )) j f(s; 0) = f(s �

1

2
; 1); f(

1 � t

2
; t) = f(1 �

1

2
; t)

�
�= ff 2 C(I2;M2(C )) j f(s; 0) = f(s; 1); f(0; t) = f(1; t)g

�= �(F2�3(M2(C )))

Thus the complexi�ction of �(F2�3(M2(C ))) is isomorphic to C which is isomorphic to

C(T2;M2(C )).
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(8) By Lemma 2.2 of [2] we have

�(F2�4(M2(C )))

�=

�
f 2 C(I2;M2(C )) j f(0; t)

= k�1f(1; t)k; f(s; 0) = k�1

�
�� 0

0 1

�
f(s; 1)

�
� 0

0 1

�
k; � = e2�is

�
�=

�
f 2 C(I2;M2(C )) j f(s; 0) =

�
� 0

0 1

�
f(s; 1)

�
�� 0

0 1

�
; f(0; t) = f(1; t)

�
:

Let C as in (7), let � = f(s; t) 2 I2 j 1 � s + 2t � 2; 0 � s � 1g and note that the map

(s; t) 7! (s; s+2t�1) is a homomorphism from � onto I2. For any f 2 C, de�ne a function

g by

g(s; t) =

8>><>>:
�

� 0

0 1

�
f(t; t + 1

2
)tr
�

�� 0

0 1

�
if t � 1

2�
� 0

0 1

�
f(s; t � 1

2
)tr
�

�� 0

0 1

�
if t � 1

2

Where � = e2�is. Then f(s; 0) = f(s; 1); f(0; t) = f(1; t) show that g is continuous and

g(s; 0) =

�
� 0

0 1

�
f(s;

1

2
)tr
�

�� 0

0 1

�
= g(s; 1); g(0; t) = f(0; t �

1

2
)tr = g(1; t):

So g 2 C. Let �f = g, then

�2f = �g =

8>><>>:
�

� 0

0 1

�
g(s; t+ 1

2
)tr
�

�� 0

0 1

�
if 0 � t � 1

2�
� 0

0 1

�
g(s; t� 1

2
)tr
�

�� 0

0 1

�
if 1

2
� t � 1

=

�
� 0

0 1

� �
� 0

0 1

�
f(s; t)tr

�
�� 0

0 1

�!tr �
�� 0

0 1

�
= f(s; t)

So, �f = g de�ne as involutory anti-homomorphism hence surjective, from C onto itself.

Clearly � is injective. Thus � is an involulory antiantomorphism of C. The associated real

algebra is

R(�) = ff 2 C j f(s; t) =

8>><>>:
�

� 0

0 1

�
f(s; t + 1

2
)

�
�� 0

0 1

�
if t � 1

2�
� 0

0 1

�
f(s; t � 1

2
)

�
�� 0

0 1

�
if t � 1

2

9>>=>>;
�=

(
f 2 C(�;M2(C )) j f(s;

1� s

2
) =

�
� 0

0 1

�
f(s; 1 �

s

2
)

�
�� 0

0 1

�
;

f(0; t) = f(1; t �
1

2
)

)

�=

(
f 2 C(I2;M2(C )) j f(s; 0) =

�
� 0

0 1

�
f(s; 1)

�
�� 0

0 1

�
; f(0; t) = f(1; t)

)
= �(F2�4(M2(C )))
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Thus the complexi�cation of �(F2�4(M2(C ))) is isomorphic to C which is isomorphic to

C(T2;M2(C )).

So all the cross-section algebras of �bre bundles over T2 with �bres ismorphic to M2(C )

and with group PU 0

2
have complexi�cation not isomorphic to A1=2. Hence we have the

following corollary.

Corollary 6. There is no involutory antiautomorphism in A1=2 associated with �1 :

(�; �) 7! (��; �).

Proof. Let � be an involutory antiautomorphism in A1=2 associated with �1. Since �1
has no �xed point, by Proposition 2.7 of [3], R(�) is a complex type algebra with spectrum

T2=�1 which is homomorphic to T2. So, by Proposition 2.5 of [3], R(�) �= �(R) for

some �bre bundle over T2 with �bres isomorphic to M2(C ) and with group PU 0

2
and the

complexi�cation of R(�) is isomorphic to A1=2. This contradicts Proposition 5.
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