On the number of the non-equivalent Cm-spanning subgraphs of the complete graph with order mk

Osamu Nakamura

Received October 10, 2002

Abstract. Let m be greater than or equal to 3 and n be a multiple of m. An m-vertex cycle graph is denoted C_m . We will call a spanning subgraph whose components are C_m of the complete graph K_n a C_m -spanning subgraph of K_n . The Dihedral group D_n acts on the complete graph K_n naturally. This action of D_n induces the action on the set of the C_m -spanning subgraphs of the complete graph K_n . In [4], we calculated the number of the equivalence classes of the K_m -spanning subgraphs of the complete graph K_n by using Burnside's Lemma. In this paper we calculate the number of the non-equivalent C_m -spanning subgraphs of K_n for all m and n. In the special case we have the number of the non-equivalent Hamiltonian cycles of K_m for all m.

Let m be greater than or equal to 3 and let n be a multiple of m. Let $fv_0; v_1; v_2; \text{ccc}; v_{n_i-1}g$ be the vertices of the complete graph K_n . The action to K_n of the Dihedral group $D_n = fk_0; k_1; \text{ccc}; k_{n_i-1}; k_0; k_1; \text{ccc}; k_{n_i-1}g$ is defined by

$$\begin{split} & \aleph_i(v_k) = v_{(k+i) \pmod{n}} \quad \text{for } 0 \cdot i \cdot n_i \ 1; \ 0 \cdot k \cdot n_i \ 1 \\ & \aleph_i(v_k) = v_{(n+i_j \ k) \pmod{n}} \quad \text{for } 0 \cdot i \cdot n_i \ 1; \ 0 \cdot k \cdot n_i \ 1 \end{split}$$

An m-vertex cycle graph is denoted C_m . We call a spanning subgraph whose components are C_m of the complete graph K_n a C_m -spanning subgraph of K_n . Let X_n^m be the set of the C_m -spanning subgraphs of K_n . Then the above action induces the action on X_n^m of the Dihedral group D_n . In the special case that n = m, X_m^m is the set of the Hamiltonian cycles of K_m .

For example, the equivalence classes of X_5^5 are given with the next ⁻gure.

The equivalence classes of X_6^6 are given with the next ⁻gure.

2000 Mathematics Subject Classi⁻cation. 05C30 05C45. Key words and phrases. enumeration Hamiltonian graph.

We calculate the number of the equivalence classes of X_n^m by this group action. These computations can be done by using Burnside's lemma.

Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S. Then the number of orbits induced on S is given by

where fix(4) = fx 2 Sj4(x) = xg.

Notation 1. The Euler function A(m) is de ned by

$$\hat{A}(m) = jfkj0 < k \cdot m; (k; m) = 1gj:$$

Notation 2. An integer function $^{1}(p;q)$ is de ned by

$${}^{1}(\mathbf{p};\mathbf{q}) = \begin{pmatrix} \mathbf{f} & \text{if } \mathbf{p} \in \mathbf{0} \pmod{\mathbf{q}} \\ \mathbf{0} & \text{otherwise} \end{pmatrix}$$

Notation 3. For each integer i such that $0 \cdot i \cdot n$, let d = (n; i) and $\mathsf{R}^m_{n;i}$ be

$$R_{m;i}^{m} = 2^{\frac{m_{i} 4}{2}} \pounds^{\mu_{3}} \underbrace{\prod_{j=1}^{m} \mu_{j}}_{2} + \frac{m_{i} 2}{2} + \frac{m_{i}$$

Notation 4. $S_{n;i}^m$; $0 \cdot i \cdot n_i$ 1 is given by the following recursive formula: If n is odd then

$$\begin{split} S^m_{n;k} &= S^m_{n;0} \text{ for } 1 \cdot k \cdot n_i \ 1. \\ \text{If } n \text{ is even then} \\ S^m_{n;2k} &= S^m_{n;0} \text{ for } 1 \cdot k \cdot \frac{n}{2} \text{ } i \ 1 \text{ and } S^m_{n;2k+1} = S^m_{n;1} \text{ for } 1 \cdot k \cdot \frac{n}{2} \text{ } i \ 1. \end{split}$$

If m is odd then

$$S_{m;0}^{m} = 2^{\frac{m_{i}-3}{2}} \pounds \frac{\mu_{m i} 1}{2} | !$$

$$S_{2m;1}^{m} = 2^{m_{i}-1} \pounds \frac{(m i - 1)!}{2}$$

$$\mu_{\frac{n_{i}-1}{2}} | !$$

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i}-2}{2}}}{\frac{m_{i}-1}{2}} \pounds S_{n_{i}-m;1}^{m} \pounds S_{m;0}^{m}$$
if n is odd and n , 2m
$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i}-2}{2}}}{\tilde{A}_{n_{i}-2}} | !$$

$$S_{n;1}^{m} = \frac{\mu_{\frac{n_{i}-2}{2}}}{k!(m i - k i - 1)!(\frac{n_{i}-2m}{2})!} !$$

$$\pounds S_{n_{i}-2m;1}^{m} \pounds \frac{(m i - 1)!}{2}$$
if n is even and n , 3m

If m is even then

$$S_{m;0}^{m} = 2^{\frac{m_{i} \cdot 4}{2}} \notin \frac{\mu_{m_{i} \cdot 2}}{2} \stackrel{\text{II}}{!} \text{ and}$$

$$S_{m;1}^{m} = 2^{\frac{m_{i} \cdot 4}{2}} \notin f \frac{m_{i} \cdot 2}{2} \stackrel{\text{II}}{!} \text{ and}$$

$$S_{2m;1}^{m} = 2^{\frac{m_{i} \cdot 4}{2}} \oint f \frac{m_{i} \cdot 2}{2} \stackrel{\text{II}}{!} + \frac{\frac{m_{i} \cdot 2}{2}}{\frac{m_{i} \cdot 2}{2}} \stackrel{\text{II}}{!} \text{g and}$$

$$S_{2m;1}^{m} = 2^{\frac{m_{i} \cdot 1}{2}} \oint \frac{(m_{i} \cdot 1)!}{2} + \frac{\mu_{\frac{2m_{i} \cdot 2}{2}}}{\frac{m_{i} \cdot 2}{2}} \stackrel{\text{II}}{!} \notin S_{m;1}^{m} \notin S_{m;1}^{m}$$

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i} \cdot 2}{2}}}{\frac{m_{i} \cdot 2}{2}} \stackrel{\text{II}}{!} \oint S_{n_{i} \cdot m;1}^{m} \notin S_{m;0}^{m} \text{ if } n \text{ } 2m$$

$$S_{n;1}^{m} = \frac{\mu_{\frac{n_{i} \cdot 2}{2}}}{\frac{m_{i} \cdot 2}{2}} \stackrel{\text{II}}{!} \oint S_{n_{i} \cdot m;1}^{m} \notin S_{m;1}^{m}$$

$$+ \frac{\mu_{\frac{n_{i} \cdot 2}{2}}}{\frac{m_{i} \cdot 2}{k!(m_{i} \cdot k_{i} \cdot 1)!(\frac{n_{i} \cdot 2m}{2})!}} \stackrel{\text{II}}{!} \oint S_{n_{i} \cdot 2m;1}^{m} \oint \frac{(m_{i} \cdot 1)!}{2} \text{ if } n \text{ } 3m$$

-

Our main Theorem is the following:

Theorem 2. The number of the non-equivalent C_m -spanning subgraphs of the complete graph K_n is given by

$$\frac{1}{2n} f_{k=0}^{\mathbf{X}^{1}} \mathbf{i}_{R_{n;i}}^{m} + S_{n;i}^{m} \mathbf{g}$$

We must determine the numbers of the \bar{x} ed points of each permutation $\frac{1}{2}_i$ and $\frac{3}{4}_i$ to prove the Theorem by using Burnside's Lemma.

First of all we consider the special case that n = m.

Lemma 1. The number of the Hamiltonian cycles of K_m is $(m_i \ 1)!=2$. This is the number of the \neg xed points of \aleph_0 .

Proof. Since the number of the circular permutations of $v_0; v_1; v_2; \text{CCC}; v_{m_i-1}$ is $(m_i-1)!$ and the cycles $< v_0; v_{k_1}; v_{k_2}; \text{CCC}; v_{k_{m_i-1}}; v_0 > \text{and} < v_0; v_{k_{m_i-1}}; \text{CCC}; v_{k_2}; v_{k_1}; v_0 > \text{represent the same Hamiltonian cycle, the number of the Hamiltonian cycles of K_m is <math>(m_i-1)!=2$.

Lemma 2. If (m; i) = 1 then the number of the \neg xed points of \aleph_i is $\hat{A}(m)=2$.

Osamu NAKAMURA

Lemma 3. If (m; i) = d > 1 then the number of the $\bar{}$ xed points of ${}^{k}_{i}$ is given as follow: If m = 2d then

$$2^{\frac{m_{i}}{2}} \pm \frac{\mu_{3}}{2} + \frac{\mu_{m_{i}}}{2} + \frac{m_{i}}{2} + \frac{m_{i$$

If m > 2d then

$$\frac{a_{j}}{d} \int \frac{d_{j}}{d} f \cdot \frac{d_{j}}{d} \cdot \frac{d_{j}}{d} = \frac{d_{j}}{2} \frac{d_{j}}{d} \cdot \frac{d_{j}}{d} = \frac{d_{j}}{d} \frac{d_{j}}{d} \frac{d_{j}}{d} = \frac{d_{j}}{d} \frac{d_{j}}{d} \frac{d_{j}}{d} \frac{d_{j}}{d} = \frac{d_{j}}{d} \frac{d_{j}}{d} \frac{d_{j}}{d} \frac{d_{j}}{d} = \frac{d_{j}}{d} \frac{d_{j$$

Proof. We assume that m be equal to 2d. Since (m; i) = d > 1 and $0 \cdot i \cdot m_i$ 1, we have that i = d. Let H be a Hamiltonian cycle of K_m xed by $\frac{1}{2}i$. Then H is point symmetry. If $v_j v_{j+d} = 2$ H for some $0 \cdot j \cdot d_i = 1$ and H has a path $v_j : \frac{1}{2}v_{k_1} : \frac{1}{2}v_{k_2} : \frac{1}{2}(1 + \frac{1}{2})v_{k_1} = \frac{1}{2}($

We assume that $v_j v_{j+d} \mathbf{\hat{2}} H$ for all $0 \cdot \mathbf{j} \cdot d_{\mathbf{i}} 1$. If H has a path $< v_{k_0}; v_{k_1}; v_{k_2}; \mathfrak{lll}; v_{k_p} >$ such that $2 \cdot \mathbf{p} \cdot d_{\mathbf{i}} 1$ and $v_{k_0} 2 V_j$ and $v_{k_p} 2 V_j$ then the cycle $< v_{k_0}; v_{k_1}; v_{k_2}; \mathfrak{lll}; v_{k_p} = v_{(k_0+d) \text{modm}}; v_{(k_1+d) \text{modm}}; v_{(k_2+d) \text{modm}}; \mathfrak{lll}; v_{(k_p+d) \text{modm}} = v_{k_0} >$ is contained in H. This contradicts the fact that H is a Hamilton cycle. Accordingly, H is the Hamiltonian cycle which is the concatenation of the path P from vertex v_0 to vertex v_d through the permutation that took one of each from $fv_1; v_{d+1}g; fv_2; v_{d+2}g; \mathfrak{lll}; fv_{d_{\mathbf{i}}}; v_{m_{\mathbf{i}}} g$ with the point symmetric path of P. The number of these Hamiltonian cycles is $(d_{\mathbf{i}} 1)! \pounds 2^{d_{\mathbf{i}} 1} = 2$.

Next we assume that m > 2d. Let $V_0 = fv_0$; v_{d_1} ; v_{2d} ; $\ell \ell \ell$; $v_{m_i \ d}g$; $V_1 = fv_1$; v_{d+1} ; v_{2d+1} ; $\ell \ell \ell$; $v_{m_i \ d+1}g$; $V_2 = fv_2$; v_{d+2} ; v_{2d+2} ; $\ell \ell \ell$; $v_{m_i \ d+2}g$, $\ell \ell \ell$; $V_{d_i \ 1} = fv_{d_i \ 1}$; $v_{2d_i \ 1}$; $v_{3d_i \ 1}$; $\ell \ell \ell$; $v_{m_i \ d}g$; $V_1 = fv_2$; v_{2d+2} ; $\ell \ell \ell$; $v_{m_i \ d+2}g$, $\ell \ell \ell$; $V_{d_i \ 1} = fv_{d_i \ 1}$; $v_{2d_i \ 1}$; $v_{3d_i \ 1}$; $\ell \ell \ell$; $v_{m_i \ 1}g$. Let H be a Hamiltonian cycle of K_m and $v_p \ 2$, We assume that $v_j \ v_p \ 2$ H and $v_j \ 2$, V_s and $v_p \ 2$, V_s . If p 6 (j + m=2) mod m then $fk_i (v_j \ v_p)$; $k_i^2 (v_j \ v_p)$; $\ell \ell \ell$; $k_i^{m=d} (v_j \ v_p)g$ contains a cycle whose length is less than m. This is contradict the fact that H is a Hamiltonian cycle. If p (j + m=2) mod m then $v_{(s+td)modm}v_{(s+td+m=2)modm} \ 2$ H for all

 $0 \cdot t \cdot m = d_i$ 1 and H is point symmetry. Let $\langle v_j; v_{k_1}; v_{k_2}; \xi \xi$; $v_{k_t} > be a shortest$ path from the vertex \boldsymbol{v}_j to the vertex in \boldsymbol{V}_s of \boldsymbol{H} which does not pass through the edge $jV_sj > 2$, we have that $v_{k_t} \in v_p$. Here we assume that $fv_{k_1}; v_{k_2}; \text{tt}; v_{k_{t_1}}g$ contains the vertices v_{k_f} and v_{k_g} which belong to same V_r . If f + 1 = g then $v_{k_g} = v_{(k_f + m=2)modm}$ and $< v_{j}; v_{k_{1}}; \text{C}(\text{C}; v_{k_{f_{i}-1}}; v_{k_{f}}; v_{(k_{f_{i}-1}+m=2) \text{mod}m}; \text{C}(\text{C}; v_{(k_{1}+m=2) \text{mod}m}; v_{p}; v_{j}) > \text{ is cycle. This is contradiction. If } f + 1 \\ e \text{ g then let P be the path } < v_{k_{f}}; v_{k_{f+1}}; \text{C}(\text{C}; v_{k_{g}}) > \text{ . Then the union of the union union$ pathes P; $\mathcal{H}_i(P)$; $\mathcal{H}_i^2(P)$; $\mathcal{H}_i^{m=d_i 1}(P)$ contains a cycle which does not conatain any vertex of $V_s.$ Therefore $v_{k_1};v_{k_2};\mathfrak{tt}$; $v_{k_{t_i-1}}$ are contained to the di®erent vertex set V_r , respectively. In this case $\langle v_j; v_{k_1}; v_{k_2}; \text{tt}; v_{k_t}; v_{(k_t+m=2) \text{ mod } m}; v_{(k_{t_1}+m=2) \text{ mod } m}; \text{tt}; v_{(k_2+m=2) \text{ mod } m}; v_{(k_1+m=2) \text{ mod } m}; v_{(k_1+m=2) \text{ mod } m}; v_p; v_j \rangle$ is a cycle which is not H. Accordingly, for each $0 \cdot j \cdot d_j = 1$, the edge that joins the vertices of V_j does not exist in H. Let Q be a shortest path $< v_0; v_{k_1}; v_{k_2}; \text{CCC}; v_{k_p} > \text{ from } v_0 \text{ to the vertex of } V_0 \text{ such that } v_0 \text{ e } v_{k_p} \text{ and } v_{k_p} 2 V_0.$ Here we assume that $fv_{k_1}; v_{k_2}; \mathfrak{cc}; v_{k_{p_i-1}}g$ contains the vertices v_{k_f} and v_{k_g} which belong to same V_r . Let P be the path $< v_{k_f}; v_{k_{f+1}}; \mathfrak{cc}; v_{k_g} >$. Then the union of the pathes P; $\frac{1}{2}(P)$; $\frac{1}{2}(P)$; $\frac{1}{2}(P)$; $\frac{1}{2}(P)$; $\frac{1}{2}(P)$ contains a cycle which does not conatain any vertex of V_0 . If there is V_r whose vertex does not belong to Q then the union of the pathes Q; $\aleph_i(Q)$; $\aleph_i^2(Q)$; $\ell \ell \ell$; $\aleph_i^{m=d_i-1}(Q)$ contains a cycle which does not conatain any vertex of V_r . Therefore, Q contains one and only one vertex of V_1 ; V_2 ; \mathfrak{cc} ; $V_{d_1,1}$, respectively. The union of the pathes $Q; \aleph_i(Q); \aleph_i^2(Q); \ell \in \mathcal{K}_i^{m=d_i-1}(Q)$ becomes generally the sum of cycles and it becomes the Hamiltonian cycle if and only if $(m; k_p=d)$ is equal to one. Therefore, these H is generated by the path that begins with v_0 and ends with the vertex v_{dk} such that (m; k) = 1 and passes through the vertices which are the permutation that took one of each from V_1 ; V_2 ; ((); $V_{d_i 1}$. Therefore, the number of such H is

$$\frac{d^{3}}{d} = \frac{d^{3}}{d} + \frac{d^{3}}{d} + \frac{d^{3}}{d} = \frac{d^{3}}{d} + \frac{d^{3}}{d} +$$

Then we have the results.

Lemma 4. If m is odd then the number of the \neg xed points of $\frac{3}{0}$ is equal to the number of the \neg xed points of $\frac{3}{4}$ for all $1 \cdot k \cdot m_i$ 1.

Proof. We assume that k is even. Let H be a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_0}$. Then it is easily veri⁻ed that $\frac{1}{k_{\underline{k}}}(H)$ is a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_k}$ then $\frac{1}{k_{\underline{k}}}^1(H)$ is a Hamiltonian cycle of K_n ⁻xed by $\frac{3}{4_0}$. Next we assume that k is odd. Let H be a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_0}$. Then it is easily veri⁻ed that $\frac{1}{2}\frac{m+k}{2}(H)$ is a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{4_k}$ then $\frac{1}{2}\frac{1}{m+k}(H)$ is a Hamiltonian cycle of K_n ⁻xed by $\frac{3}{4_0}$. Then we have the results.

Similarly, we have the next Lemma.

Lemma 5. If m is even then the number of the ⁻xed points of $\frac{3}{40}$ is equal to the number of the ⁻xed points of $\frac{3}{2d}$ for all $1 \cdot d \cdot m=2_i$ 1 and the number of the ⁻xed points of $\frac{3}{41}$ is equal to the number of the ⁻xed points of $\frac{3}{2d+1}$ for all $1 \cdot d \cdot m=2_i$ 1.

Lemma 6. If m is odd then the number of the $\bar{x}ed$ points of $\frac{3}{40}$ is

$$2^{\frac{m_{i}}{2}} \pm \frac{\mu_{m_{i}}}{2}!:$$

Osamu NAKAMURA

Proof. Let H be a Hamiltonian cycle of $K_m^- xed$ by $\frac{3}{0}$. Since m is odd, the axis of the line symmetry is passing only vertex v_0 . Let $< v_0; v_{k_1}; v_{k_2}; \mathfrak{cc}; v_{k_{(m_1-1)=2}} >$ be a path in H. Then, by the symmetry, there is another path $< v_0; v_{m_1}; v_{m_2}; \mathfrak{cc}; v_{m_1}; v_{m_1$

Lemma 7. If m is even then the number of the -xed points of $\frac{3}{40}$ is

$$2^{\frac{m_{i} 4}{2}} \in \frac{\mu_{m_{i} 2}}{2}!$$

Proof. Let H be a Hamiltonian cycle of K_m xed by $\frac{3}{4}_0$. Since m is even, the axis of the line symmetry is passing vertices v_0 and $v_{m=2}$. Let $< v_0$; v_{k_1} ; v_{k_2} ; $\frac{1}{5}$; $v_{k_{m=2}} >$ be a path in H. Then, by the symmetry, there is another path $< v_0$; v_{m_1} ; v_{k_2} ; $\frac{1}{5}$; $v_{k_{m_1}}$; v_{m_2} in H. And therefore H must be $< v_0$; v_{k_1} ; v_{k_2} ; $\frac{1}{5}$; v_{m_1} ; v_2 ; v_{m_1} ; v_1 ; v_0 . Therefore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_1 = fv_1$; v_{m_1} ; $v_2 = fv_2$; v_{m_1} ; v_2 ; $\frac{2}{5}$; $\frac{1}{5}$; $\frac{1}$

Lemma 8. If m is even then the number of the -xed points of $\frac{3}{1}$ is

$$2^{\frac{m_{i} 4}{2}} f = \frac{\mu_{3}}{2} + \frac{m_{i} 2}{2} + \frac{m_{i} 2}{2}$$

Proof. Let H be a Hamiltonian cycle of K_m ⁻xed by $\frac{3}{1}$. Since m is even, the axis of the line symmetry is not passing any vertices. We assume that $v_j v_{(m+1_i j)modm} 2$ H for some 1 · j · m=2. Let < v_j ; v_{k_1} ; v_{k_2} ; $\frac{1}{1}$; $v_{k_{(m_i 2)=2}} >$ be a path in H. Then, by the symmetry, there is another path < $v_{(m+1_i j)modm}$; $v_{(m+1_i k_1)modm}$; $v_{(m+1_i k_2)modm}$; $\frac{1}{1}$; $v_{(m+1_i k_{(m_i 2)=2})modm} >$. And therefore H must be < v_j ; v_{k_1} ; v_{k_2} ; $\frac{1}{1}$; $v_{k_{(m_i 2)=2}}$; $v_{(m+1_i k_{(m_i 2)=2})modm}$; $\frac{1}{1}$; $v_{(m+1_i k_2)modm}$; $v_{(m+1_i k_1)modm}$; $v_{(m+1_i j)modm}$; $v_j >$. Therefore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_1 = fv_1$; v_{0g} ; $V_2 = fv_2$; $v_{m_1} g$; $\frac{1}{1}$; $v_{(m_1 2)=2} = fv_{(m_1 2)=2}$; $v_{(m+4)=2}g$; $v_{m=2} = fv_{m=2}$; $v_{(m+2)=2}g$ is $2^{\frac{m}{2}}$ and the number of its permutations is $\frac{m}{2}$!. Additionally, the cycle < v_{k_0} ; v_{k_1} ; v_{k_2} ; $\frac{1}{1}$; $v_{m+1_i k_2}$; $\frac{1}{1}$; $v_{m+1_i k_2}$; $\frac{1}{1}$; $v_{m+1_i k_2}$; $\frac{1}{1}$;

 $< v_0; v_{k_1}; v_{k_2}; \emptyset (\emptyset ; v_{k_s}; v_1 > be a path in H. Then, by the symmetry, there is another path$ $v_0; v_{k_1}; v_{k_2}; \texttt{CC}; v_{k_s}; v_1; v_{(m+1_i \ k_1) \text{mod}m}; v_{(m+1_i \ k_2) \text{mod}m}; \texttt{CC}; v_{(m+1_i \ k_s) \text{mod}m}; v_0 > \text{contains}$ a cycle, we have $s = (m_1 2)=2$ and therefore H must be $\langle v_0; v_{k_1}; v_{k_2}; \text{CC}; v_{k_{(m_1 2)}=2}; v_1;$ $v_{(m+1_i \ k_1) modm}; v_{(m+1_i \ k_2) modm}; \mathfrak{ccc}; v_{(m+1_i \ k_{(m_i \ 2)=2}) modm}; v_0 >$. Therefore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_2 = fv_2$; $v_{m_1-1}g$; \mathfrak{cc} ; $V_{(m_1-2)=2} = fv_{(m_1-2)=2}$; $v_{(m+4)=2}g$; $V_{m=2} = fv_{m=2}$; $v_{(m+2)=2}g$ is $2^{\frac{m_1-2}{2}}$ and the number of its permutations is $\frac{i_{m_1-2}}{2}$!. Additionally, the cycle $< v_0$; v_{k_1} ; v_{k_2} ; $\begin{array}{l} (\label{eq:constraint}, \label{eq:co$ results.

The analysis of Hamiltonian cycles of K_m has been completed. Next we do the analysis of general C_m-spanning subgraphs of K_n.

Lemma 9. The number of the C_m -spanning subgraphs of K_n is

$$\frac{\mu_{(m_{i} 1)!}}{2} \stackrel{\P_{n=m}}{=} \frac{\Psi_{m}}{4} \stackrel{\P_{mk_{i}}}{\underset{k=1}{\overset{R}{\longrightarrow}}} \stackrel{\P}{=} \frac{1}{m_{i}} \stackrel{\Pi_{n=m}}{=}$$

This is the number of the \neg xed points of \aleph_0 .

Proof. The number of ways to select $\frac{n}{m}$ groups of size m from a collection of n items is

 $\mathbf{r}_{m} \mathbf{\mu}_{mi} \begin{bmatrix} 1 \\ m \end{bmatrix}$ by Lemma 1 in [4]. By Lemma 1, the number of applying C_m to m-set is

 $\frac{(m_i 1)!}{2}$. Then we have the results.

Remark 1. It is easily checked that $R_{n;0}^m$ is equal to $\frac{\mu_{(m_i, 1)!}}{2} \int_{k=1}^{n_{m_i}} \frac{\Psi_{mk_i, 1}}{m_i} \int_{k=1}^{n_{m_i}} \frac{\Psi_{mk_i, 1}}{m_i}$

Lemma 10. The ⁻xed points of \aleph_i for each 0 < i < n is $R_{n;0}^m$.

Proof. Let d = (n; i) and $V_0 = fv_0; v_d; v_{2d}; \text{ for } i, v_{n_i} dg; V_1 = fv_1; v_{d+1}; v_{2d+1}; \text{ for } i, v_{n_i} d_{+1}g$, $V_2 = fv_2; v_{d+2}; v_{2d+2}; \mathfrak{cc}; v_{n_i \ d+2g}, \mathfrak{cc}; v_{d_i \ 1} = fv_{d_i \ 1}; v_{2d_i \ 1}; v_{3d_i \ 1}; \mathfrak{cc}; v_{n_i \ 1g}.$ Since (n; i) = d, the equation xi f m (mod n) has a solution if and only if d divides

m. Then we have $\mathbb{M}_i(V_k) = V_k$ for $0 \cdot k \cdot d_i$ 1. Let H be a C_m-spanning subgraph of K_n which is \bar{k}_i and let G be a K_m -spanning subgraph of K_n which change each component C_m of H into K_m. Then G is also \neg xed by $\frac{1}{2}$. We divide fV_0 ; V_1 ; V_2 ; $\xi \xi \xi$; V_{d_1} and Y_0

into the subsets $W_1; W_2; W_3; \mathfrak{cc}; W_s$ in the following manner: If $W_j = fV_0^j; V_1^j; \mathfrak{cc}; V_{p_{j\,i}}^j$ then each component of GjV_0^j [V_1^j [$\mathfrak{cc} [V_{p_{j\,i}}^j]$ is K_m and any component of the restriction to the proper subset of W_j of G is not K_m for each 1 · j · s.

By the proof of Lemma 3 in [4] we have that $m \stackrel{\frown}{} 0 \pmod{p_k}$ and $\frac{n}{d} \stackrel{\frown}{} 0 \pmod{\frac{m}{p_k}}$ for $1 \cdot k \cdot s$ and the number of such G is $\sum_{k=1}^{4} \frac{p_k n}{dm} p_{ki} \frac{1}{k}$. Each component C_m of HjV_0^j [V_1^j [\mathfrak{cc} [$V_{p_{i,1}}^j$ is -xed by \underline{k}_{p_j} when we change the name of vertices properly.

The number of the way to taking of such C_m is $R_{m;p_i}^m$. Then the number of such H is $\mathbf{Y} \stackrel{\mu_3}{\xrightarrow{p_k n}} \stackrel{p_{k\,i}}{\xrightarrow{p_{k\,1}}} \stackrel{1}{\underset{k=1}{\overset{m}{\underset{m:p_k}}} \cdot \text{In this case we have that} \quad \mathbf{x}_{k=1} p_k = d \text{ and } p_k \text{ is a divisor of } m$ k=1and $\frac{n}{d} \stackrel{\cdot}{\xrightarrow{}} 0 \pmod{\frac{m}{p_k}}$ for $1 \cdot k \cdot s$.

Let $d = \bigvee_{j=1}^{j=1} s_j p_j$ be a representation of d as the sum of divisors p_j of m. The number of

$$\frac{d!}{\mathbf{Y}_{(p_j !)^{s_j} s_j !}}$$
:

Accordingly, the number of all the possibilities of H is

$$\mathbf{X}_{\substack{d = \sum_{j=1}^{p} S_{j} p_{j} \\ S_{j} \downarrow 1; p_{j} jm \text{ for } 1 \cdot j \cdot l}} \prod_{j=1}^{p} \frac{d!}{\mathbf{Y}_{(p_{j} l)}^{S_{j}} S_{j} l} \prod_{j=1}^{j} (\frac{n}{d}; \frac{m}{p_{j}}) \prod_{j=1}^{p} \frac{p_{j} n}{dm} \prod_{j=1}^{p_{j+1}} \mathbb{R}_{m;p_{j}}^{m} \prod_{j=1}^{q} \mathbb{R}_{m;p_{j}}^{S_{j}} \prod_{j=1}^{p} \mathbb{R}_{m;p_{j}}^{S$$

We have the results.

Notation 5. Let $S_{n;i}^m$ be the number of the \bar{x} points of $\frac{3}{4}_i$ for X_n^m .

Remark 2. By the following lemmas we will see that $S^m_{n;i}$ agrees with the one which is given in Notation 4.

Lemma 11. If n is odd then the number of the \bar{k}_0 is equal to the number of the number of

Proof. We assume that k is even. Let H be a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_0$. Then it is easily veried that $\frac{3}{k_2}(H)$ is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_k$. Conversely, if H is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_k$ then $\frac{3}{k_2}^{1}(H)$ is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_0$. Next we assume that k is odd. Let H be a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_0$. Then it is easily veried that $\frac{3}{2}_{n+k}(H)$ is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_k$. Conversely, if H is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_k$ then $\frac{3}{2}_{n+k}^{1}(H)$ is a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_0$. Then we have the results.

Similarly, we have the next Lemma.

Lemma 12. If n is even then the number of the \bar{x} ed points of $\frac{3}{0}$ is equal to the number of the \bar{x} ed points of $\frac{3}{2d}$ for all $1 \cdot d \cdot n=2_i$ 1 and the number of the \bar{x} ed points of $\frac{3}{1}$ is equal to the number of the \bar{x} ed points of $\frac{3}{2d+1}$ for all $1 \cdot d \cdot n=2_i$ 1.

Lemma 13. If n is odd and m is odd then

$$S_{m;0}^{m} = 2^{\frac{m_{i}}{2}} \underbrace{E}_{m_{i}}^{m} \frac{m_{i}}{2}^{1} \underbrace{1}_{2}^{n}$$
 and

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i}}{2}}}{\frac{m_{i}}{2}} \underbrace{E}_{n_{i}}^{m} \underbrace{S_{m;1}}_{n_{i}} \underbrace{E}_{m;0}^{m}$$
 if n 2m:

Proof. By Lemma 6 we have that

$$S_{m;0}^{m} = 2^{\frac{m_{i}^{3}}{2}} \pm \frac{\mu_{m_{i}^{1}}}{2} !:$$

We assume that n $_{2}$ 2m. Let H be a C_m-spanning subgraph of K_n $_{n}$ xed by $\frac{3}{4}_{0}$. Let C be the component of H which contains vertex v₀. H_i C naturally becomes C_m-spanning subgraph of K_{nim} $_{xed}$ by $\frac{3}{4}_{1}$ when we change the name of the vertices. Conversely, let H be a C_m-spanning subgraph of K_{nim} $_{xed}$ by $\frac{3}{4}_{1}$. Since n_i m is even, the axis of the line symmetry is not passing any vertices. If we take one vertex of C_m in the position of v₀ of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n $_{xed}$ by $\frac{3}{4}_{0}$ when we join the vertices of C_m is $\frac{C_{m}}{m_{i}}$ and the number of the way of joinning of new vertices is S^m_{m0}. Then we have the results.

Lemma 14. If n is even and m is odd then

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i}}{2}}}{\frac{m_{i}}{1}} E S_{n_{i}}^{m} = E S_{m;0}^{m}:$$

Proof. Let H be a C_m -spanning subgraph of K_n $\bar{}xed$ by $\frac{3}{4}_0$. Since n is even, the axis of $\frac{3}{4}_0$ passes v_0 and $v_{\frac{n}{2}}$. Let C be the component of H which contains vertex $v_{\frac{n}{2}}$. Since m is odd, C does not contain the vertex v_0 . H_i C naturally becomes C_m -spanning subgraph of $K_{n_i m}$ $\bar{}xed$ by $\frac{3}{4}_0$ when we change the name of the vertices. Conversely, let H be a C_m -spanning subgraph of $K_{n_i m}$ $\bar{}xed$ by $\frac{3}{4}_0$. Since n_i m is odd, the axis of $\frac{3}{4}_0$ passes the vertex v_0 . If we take one vertex of C_m in the position of $v_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m -spanning subgraph of K_n $\bar{}xed$ by $\frac{3}{4}_0$ when we join the vertices of C_m is $\frac{n_i 2}{m_i 1}$ and the number of the way of joining of new vertices is $S_{m;0}^m$. Then we have the results.

Lemma 15. If n is even and m is odd then

$$S_{2m;1}^{m} = 2^{m_{i} \ 1} \underbrace{f_{i}}_{k=0}^{m_{i} \ 1} \underbrace{f_{i}}_{k=0}^{m_{i} \ 1} \underbrace{f_{i}}_{k=0}^{m_{i} \ 2} \underbrace{f_{i}}_{k=0}^{m$$

Proof. We assume that n = 2m. If we take one vertex of C_m in the position of $v_{\frac{n}{2}+1}$ and one vertex of another C_m in the position of $v_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two C_m to both sides of the perpendicular bisector of $v_{\frac{n}{2}i}$ and $v_{\frac{n}{2}i}$ permitting redundancy and symmetrically regarding the perpendicular bisector then the resulting graph becomes a C_m -spanning subgraph of K_{2m} -xed by $\frac{3}{4}$ when we join the vertices of two C_m as it becomes symmetric regarding the perpendicular bisector of $v_{\frac{n}{2}i}$ and $v_{\frac{n}{2}i}$. The number of ways to distribute the vertices of two C_m is n**x** 1 (m i 1)! $= 2^{m_i 1}$ and the number of the way to joining the vertices of two C_m is k!(m | k | 1)! $\frac{(m_i 1)!}{2}$. Then we have that

$$S_{2m;1}^{m} = 2^{m_i \ 1} \pm \frac{(m_i \ 1)!}{2}$$
:

We assume that n \downarrow 4m. Let H be a C_m-spanning subgraph of K_n $\overline{}$ xed by $\frac{3}{41}$. Since n is even, the axis of $\frac{3}{1}$ does not pass any vertices. Since m is odd, there is no component which contains both $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$. Let L_0 be the component which contains vertex $v_{\frac{n}{2}}$ and L₁ be the component which contains vertex $v_{\frac{n}{2}+1}$. H_i L_{0 i} L₁ naturally becomes Conversely, let H be a C_m-spanning subgraph of $K_{n_i \ 2m}$ -xed by $\frac{1}{1}$. Since n_i 2m is even, the axis of $\frac{3}{1}$ does not pass any vertices. If we take one vertex of C_m in the position of $v_{\mathfrak{P}}$ and one vertex of another C_m in the position of $v_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two C_m between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_mspanning subgraph of K_n -xed by ${\tt \%}_1$ when we join the vertices of two C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_m is <u>n; 2</u> ! r**X** 1

 $\frac{2}{k!(m_i k_i^{-1})!(\frac{n_i^{-2m}}{2})!}$ and the number of the ways to joining the vertices of two C_m

is $\frac{(m_i 1)!}{2}$. Then we have the results.

Lemma 16. If n is even and m is even then

$$S_{m;0}^{m} = 2^{\frac{m_{i} 4}{2}} \underbrace{E}_{2}^{m} \underbrace{\frac{m_{i} 2}{2}}_{2}^{n} \underbrace{H}_{2}$$
 and

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i} 2}{2}}}{\frac{m_{i} 2}{2}} \underbrace{E}_{n_{i} m;1} \underbrace{E}_{m;0}^{m} \qquad \text{if } n_{2} 2m:$$

Proof. By Lemma 7 we have that

$$S_{m;0}^{m} = 2^{\frac{m_{i} \cdot 4}{2}} \pm \frac{\mu_{m_{i} \cdot 2}}{2}$$
!:

We assume that n $_{\rm s}$ 2m. Let H be a C_m-spanning subgraph of K_n $_{\rm xed}$ by $\frac{3}{40}$. Since n is even, the axis of $\frac{3}{40}$ passes v_0 and $v_{\frac{n}{2}}$. Let C be the component of H which contains vertex v_0 and $v_{\underline{n}}$. H i C naturally becomes C_m-spanning subgraph of K_{ni} m⁻xed by $\frac{3}{41}$ when we change the name of the vertices. Conversely, let H be a C_m-spanning subgraph of $K_{n_i m}$ red by $\frac{3}{1}$. Since $n_i m$ is even, the axis of $\frac{3}{1}$ does not pass any vertices. If we take two vertices of C_m in the positions of v_0 and $v_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m -spanning subgraph of K_n \overline{xed} by $\frac{3}{40}$ when we join the vertices of C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of and the number of the ways to joining the vertices of C_m is $S_{m;0}^m$. Then we C_m is <u>mi 2</u>

have the results.

Lemma 17. If n is even and m is even then

$$S_{m;1}^{m} = 2^{\frac{m_{i}}{2}} \underbrace{f}_{m} \frac{\mu_{3}}{2} \underbrace{f}_{m} \frac{\mu_{3}}{2$$

$$S_{2m;1}^{m} = 2^{m_{i} 1} \pounds \frac{(m_{i} 1)!}{2} + \frac{2}{m_{i} 2} \pounds S_{m;1}^{m} \pounds S_{m;1}^{m}$$
and
$$\mu_{n_{i} 2} \P$$

$$S_{n;1}^{m} = \frac{\overline{2}}{M_{i}^{2}} \quad \pounds S_{n_{i}}^{m} \\ + \frac{\widetilde{A}_{i}^{m}}{M_{i}^{2}} \frac{1}{k!(m_{i} + k_{i} - 1)!(\frac{n_{i} - 2m}{2})!} \quad \pounds S_{n_{i} - 2m;1}^{m} \\ \pounds S_{n_{i} - 2m;1}^{m} \\ \pounds \frac{(m_{i} - 1)!}{2} \qquad \text{if } n_{i} - 3m:$$

Proof. By Lemma 8 we have that

$$S_{m;1}^{m} = 2^{\frac{m_{i} 4}{2}} \pounds \frac{\mu_{3}}{2} \frac{\mu_{3}}{2} + \frac{\mu_{m_{i} 2}}{2} \frac{\eta_{1}}{2} + \frac{m_{i} 2}{2} \frac{\eta_{1}}{2} + \frac{m_{i} 2}{2} \frac{\eta_{1}}{2} + \frac{\eta_{1}}{2} + \frac{\eta_{1}}{2} \frac{\eta_{1}}{2} + \frac{\eta_{1}}{2} \frac{\eta_{1}}{2} + \frac{$$

The rst method is the following:

Let H be a C_m-spanning subgraph of K_{nim} ⁻ xed by $\frac{3}{41}$. Since n_i m is even, the axis of $\frac{3}{41}$ does not pass any vertices. If we take two vertices of C_m in the positions of v_n and v_{n+1} of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n ⁻ xed by $\frac{3}{41}$ when we join the vertices of C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_m is $\frac{i \frac{n+2}{m_1}}{m_1^2}$ and the number of the ways to joining the vertices of C_m is S^m_{m:1}. Similarly, if we take two vertices of C_m in the positions of v₀ and v₁ of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n ⁻ xed by $\frac{3}{41}$ when we join the vertices of C_m as it becomes symmetric regarding the axis. The number of the graph which we will construct and divide the remaining vertices of C_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n ⁻ xed by $\frac{3}{41}$ when we join the vertices of C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_m is $\frac{i \frac{n+2}{m_1^2}}{m_2^2}$ and the number of the ways to joining the axis. The symmetric regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n ⁻ xed by $\frac{3}{41}$ when we join the vertices of C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_m is $\frac{i \frac{n+2}{m_2^2}}{m_2^2}$ and the number of the ways to joining the vertices of C_m is $\frac{S_{m,1}}{m_2^2}$. Accordi

The second method is the following:

Let H be a C_m-spanning subgraph of K_{ni 2m} -xed by $\frac{3}{41}$. Since n_i m is even, the axis of $\frac{3}{41}$ does not pass any vertices. If we take one vertex of C_m in the position of v_n and one vertex of another C_m in the position of v_{n+1} of the graph which we will construct and distribute the remaining vertices of two C_m between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_m-spanning subgraph of K_n -xed by $\frac{3}{41}$ when we join the vertices of two C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_m is $\binom{m_i 1}{k=0} \frac{\binom{m_i 2}{k!(m_i k_i 1)!(\frac{m_i 2}{2}m)!}{k!(m_i k_i 1)!(\frac{m_i 2}{2}m)!}$ and the number of the ways to joining the vertices of two C_m is $\frac{(m_i 1)!}{2}$. Similarly, if we take one vertex of C_m in the position of v₀ and one vertex of another C_m in the position of v₁ of the graph which we will construct and distribute the remaining vertices of two C_m between the vertices of H permitting redundancy and symmetrically regarding the axis.

Osamu NAKAMURA

then the resulting graph becomes a C_m -spanning subgraph of K_n -xed by $\frac{3}{4}_1$ when we join the vertices of two C_m as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_m is $P_{k=0}^{m_i \ 1} \frac{\binom{n_i \ 2}{2}!}{k!(m_i \ k_i \ 1)!(\frac{n_i \ 2}{2}m_i)!}$ and the number of the ways to joining the vertices of two C_m is $\frac{\binom{m_i \ 1}{2}!}{2}$. Therefore, by this construction, we can construct $2 \ \epsilon \frac{\sqrt[m]{4}}{k!(m_i \ k_i \ 1)!(\frac{n_i \ 2m_i}{2})!} \ \epsilon \frac{(m_i \ 1)!}{2} C_m$ -spanning subgraph of K_n -xed by $\frac{3}{4}_1$. By these two constructions, we can construct

$$2 \not \in \frac{\mu_{\frac{n_{i}^{2}}{2}}}{\frac{m_{i}^{2}}{2}} S_{n_{i}^{m} m;1}^{m} S_{m;1}^{m} + 2 \not \in \frac{\bar{A}}{k=0} \frac{!}{k!(m_{i}^{m} k_{i}^{2})!} \not \in S_{n_{i}^{m} 2m;1}^{m} \not \in \frac{(m_{i}^{m} 1)!}{2}$$

 C_m -spanning subgraphs of K_n read by $\frac{3}{1}$. Clearly there are doubling two pieces of each. Also, it is clear to be able to compose all the C_m -spanning subgraphs of K_n read by $\frac{3}{1}$ by these methods. Next we assume that n is equal to 2m. Then we can similarly construct all C_m -spanning subgraphs of K_{2m} read by $\frac{3}{1}$ by these two constructions if we set H be a empty graph in the case of the second constitution. We have the results.

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent Hamiltonian cycles of K_m , $m \cdot 11$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

n=3	1
n=4	2
n=5	4
n=6	12
n=7	39
n=8	202
n=9	1219
n=10	9468
n=11	83435

Remark 4. We calculated the non-equivalent C₄-spanning subgraphs of K_n, $n \cdot 12$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

n=4	2
n=8	39
n=12	7003

References

- Jonathan Gross and Jay Yellen, Graph Theory and Its Applications, CRC Press, Boca Raton, 1999
- [2] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill Book Company, New York Japanese translation: Kyouritu Publishing Co., Tokyo, 1972.
- [3] Osamu Nakamura, On the number of the non-equivalent 1-regular spanning subgraphs of the complete graphs of even order, to appear in SCMJ

[4] Osamu Nakamura, On the number of the non-equivalent K_m-spanning subgraphs of the complete graphs with order km, to appear in SCMJ

Department of Mathematics Faculty of Education Kochi University AKEBONOCHO 2-5-1 KOCHI, JAPAN osamu@cc:kochi-u:ac:jp