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On the number of the non-equivalent Cm-spanning subgraphs of the complete
graph with order mk

Osamu Nakamura
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Abstract. Let m be greater than or equal to 3 and n be a multiple of m. An m-vertex
cycle graph is denoted Cm. We will call a spanning subgraph whose components are
Cm of the complete graph Kn a Cm-spanning subgraph of Kn. The Dihedral group
Dn acts on the complete graph Kn naturally. This action of Dn induces the action on
the set of the Cm-spanning subgraphs of the complete graph Kn . In [4], we calculated
the number of the equivalence classes of the Km-spanning subgraphs of the complete
graph Kn by using Burnside's Lemma. In this paper we calculate the number of the
non-equivalent Cm-spanning subgraphs of Kn for all m and n. In the special case we
have the number of the non-equivalent Hamiltonian cycles of Km for all m.

Let m be greater than or equal to 3 and let n be a multiple of m. Let fv0; v1; v2; ¢ ¢ ¢ ; vn¡1g
be the vertices of the complete graph Kn. The action to Kn of the Dihedral group
Dn = f½0; ½1; ¢ ¢ ¢ ; ½n¡1; ¾0; ¾1; ¢ ¢ ¢ ; ¾n¡1g is de¯ned by

½i(vk) = v(k+i) (mod n) for 0 · i · n ¡ 1; 0 · k · n ¡ 1

¾i(vk) = v(n+i¡k) (mod n) for 0 · i · n ¡ 1; 0 · k · n ¡ 1

An m-vertex cycle graph is denoted Cm. We call a spanning subgraph whose components
are Cm of the complete graph Kn a Cm-spanning subgraph of Kn. Let Xm

n be the set of
the Cm-spanning subgraphs of Kn. Then the above action induces the action on Xm

n of
the Dihedral group Dn. In the special case that n = m, Xm

m is the set of the Hamiltonian
cycles of Km.

For example, the equivalence classes of X5
5 are given with the next ¯gure.

The equivalence classes of X6
6 are given with the next ¯gure.

2000 Mathematics Subject Classi¯cation. 05C30 05C45.
Key words and phrases. enumeration Hamiltonian graph.



540 Osamu NAKAMURA

We calculate the number of the equivalence classes of Xm
n by this group action. These

computations can be done by using Burnside's lemma.

Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S.
Then the number of orbits induced on S is given by

1
jGj

X

¼2G

jfix(¼)j

where fix(¼) = fx 2 Sj¼(x) = xg.

Notation 1. The Euler function Á(m) is de¯ned by

Á(m) = jfkj0 < k · m; (k; m) = 1gj:

Notation 2. An integer function ¹(p; q) is de¯ned by

¹(p; q) =

(
1 if p ´ 0 (mod q)
0 otherwise

Notation 3. For each integer i such that 0 · i · n , let d = (n; i) and Rm
n;i be
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if n = m and m 6= 2i
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sj ¸ 1; pj jm for1 · j · l

0
BBBBB@

d!
lY

j=1

(pj!)sj sj !

lY

j=1

¹(
n
d

;
m
pj

)
µ³pjn

dm

´(pj¡1)
£ Rm

m;pj

¶sj

1
CCCCCA

if n > m

Notation 4. Sm
n;i; 0 · i · n ¡ 1 is given by the following recursive formula:

If n is odd then
Sm

n;k = Sm
n;0 for 1 · k · n ¡ 1.

If n is even then
Sm

n;2k = Sm
n;0 for 1 · k · n

2 ¡ 1 and Sm
n;2k+1 = Sm

n;1 for 1 · k · n
2 ¡ 1.
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If m is odd then

Sm
m;0 = 2

m¡3
2 £

µ
m ¡ 1

2

¶
!

Sm
2m;1 = 2m¡1 £ (m ¡ 1)!

2

Sm
n;0 =

µ n¡1
2

m¡1
2

¶
£ Sm

n¡m;1 £ Sm
m;0 if n is odd and n ¸ 2m

Sm
n;0 =

µ n¡2
2

m¡1
2

¶
£ Sm

n¡m;0 £ Sm
m;0 if n is even and n ¸ 2m

Sm
n;1 =

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 £ (m ¡ 1)!
2

if n is even and n ¸ 3m

If m is even then

Sm
m;0 = 2

m¡4
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m ¡ 2

2

¶
! and
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m;1 = 2
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2 £ f
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¶
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2m;1 = 2m¡1 £ (m ¡ 1)!

2
+

µ 2m¡2
2

m¡2
2

¶
£ Sm

m;1 £ Sm
m;1

Sm
n;0 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 £ Sm
m;0 if n ¸ 2m

Sm
n;1 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 £ Sm
m;1

+

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 £ (m ¡ 1)!
2

if n ¸ 3m

Our main Theorem is the following:

Theorem 2. The number of the non-equivalent Cm-spanning subgraphs of the complete
graph Kn is given by

1
2n

f
n¡1X

k=0

¡
Rm

n;i + Sm
n;i

¢
g:

We must determine the numbers of the ¯xed points of each permutation ½i and ¾i to
prove the Theorem by using Burnside's Lemma.

First of all we consider the special case that n = m.

Lemma 1. The number of the Hamiltonian cycles of Km is (m¡1)!=2. This is the number
of the ¯xed points of ½0.

Proof. Since the number of the circular permutations of v0; v1; v2; ¢ ¢ ¢ ; vm¡1 is (m ¡ 1)! and
the cycles < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vkm¡1 ; v0 > and < v0; vkm¡1 ; ¢ ¢ ¢ ; vk2 ; vk1 ; v0 > represent the
same Hamiltonian cycle, the number of the Hamiltonian cycles of Km is (m ¡ 1)!=2.

Lemma 2. If (m; i) = 1 then the number of the ¯xed points of ½i is Á(m)=2.
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Proof. Let V be the set of the vertices of Km and k be an integer such that (m; k) = 1.
Since (m; i) = 1, there is an integer ® such that ®i ´ 1 (mod m). Since ½®¯k

i (v0vk) =
v¯kmodmv(¯+1)kmodm; 0 · ¯ · m ¡ 1 and fv¯kmodmj0 · ¯ · m ¡ 1g = V , the walk <
v0; vk; v2kmodm; v3kmodm; ¢ ¢ ¢ ; v(m¡1)kmodm; vmkmodm > is a Hamiltonian cycle. We call this
Hamiltonian cycle H . Since (m; k) = 1, there is an integer ° such that °k ´ ¯k+i (mod m).
Then we have that (¯ + 1)k + i ´ (° + 1)k (mod m) and ½i(v¯kmodmv(¯+1)kmodm) =
v¯k+imodmv(¯+1)k+imodm = v°kmodmv(°+1)kmodm and therefore ½i(H) = H . Conversely,
let H be a Hamiltonian cycle such that ½i(H) = H and v0vk 2 H . Since ½®¯k

i (v0vk) =
v¯kmodmv(¯+1)kmodm; 0 · ¯ · m ¡ 1, v¯kmodmv(¯+1)kmodm 2 H. If (m; k) = d > 1 then
(m

d )k = (k
d )m ´ 0 (mod m) and < v0; vk; v2kmodm; ¢ ¢ ¢ ; v( m

d )kmodm = v0 > is a cycle. This
is contradict to the fact that H is Hamiltonian cycle. Then we have that (m; k) = 1. In this
case H is determined uniquely by joining v¯kmodm and v(¯+1)kmodm; 0 · ¯ · m ¡ 1. Since
the Hamiltonian cycle generated by v0vk is coinside with the Hamiltonian cycle generated
by v0vn¡k, the number of the ¯xed points of ½i is Á(m)=2.

Lemma 3. If (m; i) = d > 1 then the number of the ¯xed points of ½i is given as follow:
If m = 2d then

2
m¡4

2 £
µ³m

2

´
! +

µ
m ¡ 2

2

¶
!
¶

:

If m > 2d then

³m
d

´d¡1
£ Á(

m
d

) £ (d ¡ 1)!
2

:

Proof. We assume that m be equal to 2d. Since (m; i) = d > 1 and 0 · i · m ¡ 1, we have
that i = d. Let H be a Hamiltonian cycle of Km ¯xed by ½i. Then H is point symmetry. If
vjvj+d 2 H for some 0 · j · d¡1 and H has a path < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkd¡1 >, where vk1 6=
vj+d, then by the symmetry H has a path < v(j+d)modm; v(k1+d)modm; v(k2+d)modm; ¢ ¢ ¢ ;
v(kd¡1+d)modm >. If vkp = v(kp¡1+d)modm for some 1 · p · d¡1 then < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkp¡1 ;
v(kp¡1+d)modm; ¢ ¢ ¢ ; v(k2+d)modm; v(k1+d)bmodm; vj+d; vj > is a cycle whose length is 2p ·
2d¡2. This is contradiction. Then vkp 6= v(kp¡1+d)modm for all 1 · p · d¡1. Then H is the
Hamiltonian cycle < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkd¡1 ; v(kd¡1+d)modm; ¢ ¢ ¢ ; v(k2+d)modm; v(k1+d)bmodm;
vj+d; vj >. These Hamiltonian cycles can be composed to join the antipodal points of the
endpoints of the path that are mode with the permutation that took one of each from
fv0g; fv1; vd+1g; fv2; vd+2g; ¢ ¢ ¢ ; fvd¡1; vm¡1g and the point symmetric path. The number
of these Hamiltonian cycles is d! £ 2d¡1=2.

We assume that vjvj+d 62 H for all 0 · j · d¡1. If H has a path < vk0 ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkp >
such that 2 · p · d ¡ 1 and vk0 2 Vj and vkp 2 Vj then the cycle < vk0 ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkp =
v(k0+d)modm; v(k1+d)modm; v(k2+d)modm; ¢ ¢ ¢ ; v(kp+d)modm = vk0 > is contained in H. This
contradicts the fact that H is a Hamilton cycle. Accordingly, H is the Hamiltonian cycle
which is the concatenation of the path P from vertex v0 to vertex vd through the permu-
tation that took one of each from fv1; vd+1g; fv2; vd+2g; ¢ ¢ ¢ ; fvd¡1; vm¡1g with the point
symmetric path of P . The number of these Hamiltonian cycles is (d ¡ 1)! £ 2d¡1=2.

Next we assume that m > 2d. Let V0 = fv0; vd; v2d; ¢ ¢ ¢ ; vm¡dg; V1 = fv1; vd+1; v2d+1; ¢ ¢ ¢ ;
vm¡d+1g; V2 = fv2; vd+2; v2d+2; ¢ ¢ ¢ ; vm¡d+2g, ¢ ¢ ¢ ; Vd¡1 = fvd¡1; v2d¡1; v3d¡1; ¢ ¢ ¢ ; vm¡1g.
Let H be a Hamiltonian cycle of Km ¯xed by ½i. We assume that vjvp 2 H and vj 2 Vs

and vp 2 Vs. If p 6´ (j + m=2) mod m then f½i(vjvp); ½2
i (vjvp); ½3

i (vjvp); ¢ ¢ ¢ ; ½m=d
i (vjvp)g

contains a cycle whose length is less than m. This is contradict the fact that H is a
Hamiltonian cycle. If p ´ (j + m=2) mod m then v(s+td)modmv(s+td+m=2)modm 2 H for all
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0 · t · m=d ¡ 1 and H is point symmetry. Let < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkt > be a shortest
path from the vertex vj to the vertex in Vs of H which does not pass through the edge
vjvp. If vkt = vp then < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkt ; vj > is a cycle in H. Since m=d > 2 and
jVsj > 2, we have that vkt 6= vp. Here we assume that fvk1 ; vk2 ; ¢ ¢ ¢ ; vkt¡1g contains the
vertices vkf and vkg which belong to same Vr. If f + 1 = g then vkg = v(kf +m=2)modm and
< vj ; vk1 ; ¢ ¢ ¢ ; vkf¡1 ; vkf ; v(kf¡1+m=2)modm; ¢ ¢ ¢ ; v(k1+m=2)modm; vp; vj > is cycle. This is con-
tradiction. If f+1 6= g then let P be the path < vkf ; vkf+1 ; ¢ ¢ ¢ ; vkg > . Then the union of the
pathes P; ½i(P ); ½2

i (P ); ¢ ¢ ¢ ; ½m=d¡1
i (P ) contains a cycle which does not conatain any vertex

of Vs. Therefore vk1 ; vk2 ; ¢ ¢ ¢ ; vkt¡1 are contained to the di®erent vertex set Vr, respectively.
In this case < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vkt ; v(kt+m=2)modm; v(kt¡1+m=2)modm; ¢ ¢ ¢ ; v(k2+m=2)modm;
v(k1+m=2)modm; vp; vj > is a cycle which is not H . Accordingly, for each 0 · j · d ¡ 1,
the edge that joins the vertices of Vj does not exist in H . Let Q be a shortest path
< v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vkp > from v0 to the vertex of V0 such that v0 6= vkp and vkp 2 V0.
Here we assume that fvk1 ; vk2 ; ¢ ¢ ¢ ; vkp¡1g contains the vertices vkf and vkg which be-
long to same Vr. Let P be the path < vkf ; vkf+1 ; ¢ ¢ ¢ ; vkg >. Then the union of the
pathes P; ½i(P ); ½2

i (P ); ¢ ¢ ¢ ; ½m=d¡1
i (P ) contains a cycle which does not conatain any ver-

tex of V0. If there is Vr whose vertex does not belong to Q then the union of the pathes
Q; ½i(Q); ½2

i (Q); ¢ ¢ ¢ ; ½m=d¡1
i (Q) contains a cycle which does not conatain any vertex of Vr.

Therefore, Q contains one and only one vertex of V1; V2; ¢ ¢ ¢ ; Vd¡1, respectively. The union
of the pathes Q; ½i(Q); ½2

i (Q); ¢ ¢ ¢ ; ½m=d¡1
i (Q) becomes generally the sum of cycles and it

becomes the Hamiltonian cycle if and only if (m; kp=d) is equal to one. Therefore, these
H is generated by the path that begins with v0 and ends with the vertex vdk such that
(m; k) = 1 and passes through the vertices which are the permutation that took one of each
from V1; V2; ¢ ¢ ¢ ; Vd¡1. Therefore, the number of such H is

³m
d

´d¡1
£ Á(

m
d

) £ (d ¡ 1)!=2

Then we have the results.

Lemma 4. If m is odd then the number of the ¯xed points of ¾0 is equal to the number of
the ¯xed points of ¾k for all 1 · k · m ¡ 1.

Proof. We assume that k is even. Let H be a Hamiltonian cycle of Km ¯xed by ¾0. Then it
is easily veri¯ed that ½ k

2
(H) is a Hamiltonian cycle of Km ¯xed by ¾k. Conversely, if H is

a Hamiltonian cycle of Km ¯xed by ¾k then ½¡1
k
2

(H) is a Hamiltonian cycle of Kn ¯xed by
¾0. Next we assume that k is odd. Let H be a Hamiltonian cycle of Km ¯xed by ¾0. Then
it is easily veri¯ed that ½ m+k

2
(H) is a Hamiltonian cycle of Km ¯xed by ¾k. Conversely, if

H is a Hamiltonian cycle of Km ¯xed by ¾k then ½¡1
m+k

2
(H) is a Hamiltonian cycle of Kn

¯xed by ¾0. Then we have the results.

Similarly, we have the next Lemma.

Lemma 5. If m is even then the number of the ¯xed points of ¾0 is equal to the number of
the ¯xed points of ¾2d for all 1 · d · m=2 ¡ 1 and the number of the ¯xed points of ¾1 is
equal to the number of the ¯xed points of ¾2d+1 for all 1 · d · m=2 ¡ 1.

Lemma 6. If m is odd then the number of the ¯xed points of ¾0 is

2
m¡3

2 £
µ

m ¡ 1
2

¶
!:
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Proof. Let H be a Hamiltonian cycle of Km ¯xed by ¾0. Since m is odd, the axis of the
line symmetry is passing only vertex v0. Let < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡1)=2 > be a path in H.
Then, by the symmetry, there is another path < v0; vm¡k1 ; vm¡k2 ; ¢ ¢ ¢ ; vm¡k(m¡1)=2 > in H.
And therefore H must be < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡1)=2 ; vm¡k(m¡1)=2 ; ¢ ¢ ¢ ; vm¡k2 ; vm¡k1 ; v0 >.
Therefore, the number of H is able to calculate in the following manner. The number of
the ways to choose one vertex from each V1 = fv1; vm¡1g; V2 = fv2; vm¡2g; ¢ ¢ ¢ ; V(m¡1)=2 =
fv(m¡1)=2; v(m+1)=2g is 2

m¡1
2 and the number of its permutations is

¡ m¡1
2

¢
!. Additionally,

the cycle < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡1)=2 ; vm¡k(m¡1)=2 ; ¢ ¢ ¢ ; vm¡k2 ; vm¡k1 ; v0 > and the cycle
< v0; vm¡k1 ; vm¡k2 ; ¢ ¢ ¢ ; vm¡k(m¡1)=2 ; vk(m¡1)=2 ; ¢ ¢ ¢ ; vk2 ; vk1 ; v0 > are the same Hamiltonian

cycle. Then the number of the ¯xed points of ¾0 is
µ

m ¡ 1
2

¶
! £ 2

m¡1
2 =2 Then we have the

results.

Lemma 7. If m is even then the number of the ¯xed points of ¾0 is

2
m¡4

2 £
µ

m ¡ 2
2

¶
!:

Proof. Let H be a Hamiltonian cycle of Km ¯xed by ¾0. Since m is even, the axis of the
line symmetry is passing vertices v0 and vm=2. Let < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vkm=2 > be a path
in H . Then, by the symmetry, there is another path < v0; vm¡k1 ; vm¡k2 ; ¢ ¢ ¢ ; vkm¡m=2 >
in H . And therefore H must be < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vkm=2 ; ¢ ¢ ¢ ; vm¡k2 ; vm¡k1 ; v0 >. There-
fore, the number of H is able to calculate in the following manner. The number of the
ways to choose one vertex from each V1 = fv1; vm¡1g; V2 = fv2; vm¡2g; ¢ ¢ ¢ ; V(m¡2)=2 =
fv(m¡2)=2; v(m+2)=2g is 2

m¡2
2 and the number of its permutations is

¡ m¡2
2

¢
!. Additionally,

the cycle < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 ; vm=2; vm¡k(m¡2)=2 ; ¢ ¢ ¢ ; vm¡k2 ; vm¡k1 ; v0 > and the
cycle < v0; vm¡k1 ; vm¡k2 ; ¢ ¢ ¢ ; vm¡k(m¡2)=2 ; vm=2; vk(m¡2)=2 ; ¢ ¢ ¢ ; vk2 ; vk1 ; v0 > are the same

Hamiltonian cycle. Then the number of the ¯xed points of ¾0 is
µ

m ¡ 2
2

¶
!£2

m¡2
2 =2. Then

we have the results.

Lemma 8. If m is even then the number of the ¯xed points of ¾1 is

2
m¡4

2 £
µ³m

2

´
! +

µ
m ¡ 2

2

¶
!
¶

:

Proof. Let H be a Hamiltonian cycle of Km ¯xed by ¾1. Since m is even, the axis of the line
symmetry is not passing any vertices. We assume that vjv(m+1¡j)modm 2 H for some 1 ·
j · m=2. Let < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 > be a path in H . Then, by the symmetry, there is
another path < v(m+1¡j)modm; v(m+1¡k1)modm; v(m+1¡k2)modm; ¢ ¢ ¢ ; v(m+1¡k(m¡2)=2)modm >.
And therefore H must be < vj ; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 ; v(m+1¡k(m¡2)=2)modm; ¢ ¢ ¢ ;
v(m+1¡k2)modm; v(m+1¡k1)modm; v(m+1¡j)modm; vj >. Therefore, the number of H is able
to calculate in the following manner. The number of the ways to choose one vertex
from each V1 = fv1; v0g; V2 = fv2; vm¡1g; ¢ ¢ ¢ ; V(m¡2)=2 = fv(m¡2)=2; v(m+4)=2g; Vm=2 =
fvm=2; v(m+2)=2g is 2

m
2 and the number of its permutations is

¡ m
2

¢
!. Additionally, the cycle

< vk0 ; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 ; vm+1¡k(m¡2)=2 ; ¢ ¢ ¢ ; vm+1¡k2 ; vm+1¡k1 ; vm+1¡k0 ; vk0 > and the
cycle < vk0 ; vm+1¡k0 ; vm+1¡k1 ; vm+1¡k2 ; ¢ ¢ ¢ ; vm+1¡k(m¡2)=2 ; vk(m¡2)=2 ; ¢ ¢ ¢ ; vk2 ; vk1 ; vk0 > and
the cycle < vm+1¡k(m¡2)=2 ; ¢ ¢ ¢ ; vm+1¡k2 ; vm+1¡k1 ; vm+1¡k0 ; vk0 ; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 ;
vm+1¡k(m¡2)=2 > and the cycle < vm+1¡k(m¡2)=2 ; vk(m¡2)=2 ; ¢ ¢ ¢ ; vk2 ; vk1 ; vk0 ; vm+1¡k0 ; vm+1¡k1 ;
vm+1¡k2 ; ¢ ¢ ¢ ; vm+1¡k(m¡2)=2 > are the same Hamiltonian cycle. Then the number of such

H is
³m

2

´
! £ 2

m
2 =4. Next we assume that vjv(m+1¡j)modm 62 H for all 1 · j · m

2 . Let
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< v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vks ; v1 > be a path in H . Then, by the symmetry, there is another path
< v1; v(m+1¡k1)modm; v(m+1¡k2)modm; ¢ ¢ ¢ ; v(m+1¡ks)modm; v0 > in H . Since the walk <
v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vks ; v1; v(m+1¡k1)modm; v(m+1¡k2)modm; ¢ ¢ ¢ ; v(m+1¡ks)modm; v0 > contains
a cycle, we have s = (m ¡ 2)=2 and therefore H must be < v0; vk1 ; vk2 ; ¢ ¢ ¢ ; vk(m¡2)=2 ; v1;
v(m+1¡k1)modm; v(m+1¡k2)modm; ¢ ¢ ¢ ; v(m+1¡k(m¡2)=2)modm; v0 >. Therefore, the number of
H is able to calculate in the following manner. The number of the ways to choose one vertex
from each V2 = fv2; vm¡1g; ¢ ¢ ¢ ; V(m¡2)=2 = fv(m¡2)=2; v(m+4)=2g; Vm=2 = fvm=2; v(m+2)=2g
is 2

m¡2
2 and the number of its permutations is

¡ m¡2
2

¢
!. Additionally, the cycle < v0; vk1 ; vk2 ;

¢ ¢ ¢ ; vk(m¡2)=2 ; v1; vm+1¡k1 ; vm+1¡k2 ; ¢ ¢ ¢ ; vm+1¡k(m¡2)=2 ; v0 > and the cycle < v0;
vm+1¡k(m¡2)=2 ; ¢ ¢ ¢ ; vm+1¡k2 ; vm+1¡k1 ; v1; vk(m¡2)=2 ; ¢ ¢ ¢ ; vk2 ; vk1 ; v0 > are the same Hamil-

tonian cycle. Then the number of such H is
µ

m ¡ 2
2

¶
! £ 2

m¡2
2 =2. Then we have the

results.

The analysis of Hamiltonian cycles of Km has been completed. Next we do the analysis
of general Cm-spanning subgraphs of Kn.

Lemma 9. The number of the Cm-spanning subgraphs of Kn is

µ
(m ¡ 1)!

2

¶n=m

£
n=mY

k=1

µ
mk ¡ 1
m ¡ 1

¶
:

This is the number of the ¯xed points of ½0.

Proof. The number of ways to select
n
m

groups of size m from a collection of n items is
n=mY

i=1

µ
mi ¡ 1
m ¡ 1

¶
by Lemma 1 in [4]. By Lemma 1, the number of applying Cm to m-set is

(m ¡ 1)!
2

. Then we have the results.

Remark 1. It is easily checked that Rm
n;0 is equal to

µ
(m ¡ 1)!

2

¶n=m

£
n=mY

k=1

µ
mk ¡ 1
m ¡ 1

¶
.

Lemma 10. The ¯xed points of ½i for each 0 < i < n is Rm
n;0.

Proof. Let d = (n; i) and V0 = fv0; vd; v2d; ¢ ¢ ¢ ; vn¡dg; V1 = fv1; vd+1; v2d+1; ¢ ¢ ¢ ; vn¡d+1g,
V2 = fv2; vd+2; v2d+2; ¢ ¢ ¢ ; vn¡d+2g, ¢ ¢ ¢ , Vd¡1 = fvd¡1; v2d¡1; v3d¡1; ¢ ¢ ¢ ; vn¡1g.

Since (n; i) = d, the equation xi ´ m (mod n) has a solution if and only if d divides
m. Then we have ½i(Vk) = Vk for 0 · k · d ¡ 1. Let H be a Cm-spanning subgraph of
Kn which is ¯xed by ½i and let G be a Km-spanning subgraph of Kn which change each
component Cm of H into Km. Then G is also ¯xed by ½i. We divide fV0; V1; V2; ¢ ¢ ¢ ; Vd¡1g
into the subsets W1; W2; W3; ¢ ¢ ¢ ; Ws in the following manner:

If Wj = fV j
0 ; V j

1 ; ¢ ¢ ¢ ; V j
pj¡1g then each component of GjV j

0 [ V j
1 [ ¢ ¢ ¢ [ V j

pj¡1 is Km
and any component of the restriction to the proper subset of Wj of G is not Km for each
1 · j · s.

By the proof of Lemma 3 in [4] we have that m ´ 0 (mod pk) and n
d ´ 0 (mod m

pk
)

for 1 · k · s and the number of such G is
sY

k=1

³pkn
dm

´pk¡1
. Each component Cm of

HjV j
0 [ V j

1 [ ¢ ¢ ¢ [ V j
pj¡1 is ¯xed by ½pj when we change the name of vertices properly.
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The number of the way to taking of such Cm is Rm
m;pj

. Then the number of such H is
sY

k=1

µ³pkn
dm

´pk¡1
£ Rm

m;pk

¶
. In this case we have that

sX

k=1

pk = d and pk is a divisor of m

and n
d ´ 0 (mod m

pk
) for 1 · k · s.

Let d =
lX

j=1

sjpj be a representation of d as the sum of divisors pj of m. The number of

ways to divide fV0; V1; V2; ¢ ¢ ¢ ; Vd¡1g into s1 pieces of p1-element set, s2 pieces of p2-element
set, s3 pieces of p3-element set, ¢ ¢ ¢ , sl pieces of pl-element set is

d!
lY

j=1

(pj !)sj sj !

:

Accordingly, the number of all the possibilities of H is

X

d =
Pl

j=1 sjpj

sj ¸ 1; pjjm for1 · j · l

0
BBBBB@

d!
lY

j=1

(pj !)sj sj !

lY

j=1

¹(
n
d

;
m
pj

)
µ³pjn

dm

´pj¡1
Rm

m;pj

¶sj

1
CCCCCA

:

We have the results.

Notation 5. Let Sm
n;i be the number of the ¯xed points of ¾i for Xm

n .

Remark 2. By the following lemmas we will see that Sm
n;i agrees with the one which is

given in Notation 4.

Lemma 11. If n is odd then the number of the ¯xed points of ¾0 is equal to the number of
the ¯xed points of ¾k for all 1 · k · n ¡ 1.

Proof. We assume that k is even. Let H be a Cm-spanning subgraph of Kn ¯xed by ¾0. Then
it is easily veri¯ed that ½ k

2
(H) is a Cm-spanning subgraph of Kn ¯xed by ¾k. Conversely, if

H is a Cm-spanning subgraph of Kn ¯xed by ¾k then ½¡1
k
2

(H) is a Cm-spanning subgraph
of Kn ¯xed by ¾0. Next we assume that k is odd. Let H be a Cm-spanning subgraph of
Kn ¯xed by ¾0. Then it is easily veri¯ed that ½ n+k

2
(H) is a Cm-spanning subgraph of Kn

¯xed by ¾k. Conversely, if H is a Cm-spanning subgraph of Kn ¯xed by ¾k then ½¡1
n+k

2
(H)

is a Cm-spanning subgraph of Kn ¯xed by ¾0. Then we have the results.

Similarly, we have the next Lemma.

Lemma 12. If n is even then the number of the ¯xed points of ¾0 is equal to the number
of the ¯xed points of ¾2d for all 1 · d · n=2 ¡ 1 and the number of the ¯xed points of ¾1 is
equal to the number of the ¯xed points of ¾2d+1 for all 1 · d · n=2 ¡ 1.

Lemma 13. If n is odd and m is odd then

Sm
m;0 = 2

m¡3
2 £

µ
m ¡ 1

2

¶
! and

Sm
n;0 =

µ n¡1
2

m¡1
2

¶
£ Sm

n¡m;1 £ Sm
m;0 if n ¸ 2m:
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Proof. By Lemma 6 we have that

Sm
m;0 = 2

m¡3
2 £

µ
m ¡ 1

2

¶
!:

We assume that n ¸ 2m. Let H be a Cm-spanning subgraph of Kn ¯xed by ¾0. Let C
be the component of H which contains vertex v0. H ¡ C naturally becomes Cm-spanning
subgraph of Kn¡m ¯xed by ¾1 when we change the name of the vertices. Conversely, let
H be a Cm-spanning subgraph of Kn¡m ¯xed by ¾1. Since n ¡ m is even, the axis of the
line symmetry is not passing any vertices. If we take one vertex of Cm in the position of v0
of the graph which we will construct and divide the remaining vertices of Cm into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Cm-spanning subgraph of Kn ¯xed
by ¾0 when we join the vertices of Cm such that it is ¯xed by ¾0. The number of ways

to distribute the vertices of Cm is
µ n¡1

2
m¡1

2

¶
and the number of the way of joinning of new

vertices is Sm
m;0. Then we have the results.

Lemma 14. If n is even and m is odd then

Sm
n;0 =

µ n¡2
2

m¡1
2

¶
£ Sm

n¡m;0 £ Sm
m;0:

Proof. Let H be a Cm-spanning subgraph of Kn ¯xed by ¾0. Since n is even, the axis of ¾0
passes v0 and v n

2
. Let C be the component of H which contains vertex v n

2
. Since m is odd,

C does not contain the vertex v0. H ¡C naturally becomes Cm-spanning subgraph of Kn¡m
¯xed by ¾0 when we change the name of the vertices. Conversely, let H be a Cm-spanning
subgraph of Kn¡m ¯xed by ¾0. Since n ¡ m is odd, the axis of ¾0 passes the vertex v0. If
we take one vertex of Cm in the position of v n

2
of the graph which we will construct and

divide the remaining vertices of Cm into halves and distribute them between the vertices
of H permitting redundancy and symmetrically regarding the axis then the resulting graph
becomes a Cm-spanning subgraph of Kn ¯xed by ¾0 when we join the vertices of Cm such

that it is ¯xed by ¾0. The number of ways to distribute the vertices of Cm is
µ n¡2

2
m¡1

2

¶
and

the number of the way of joining of new vertices is Sm
m;0. Then we have the results.

Lemma 15. If n is even and m is odd then

Sm
2m;1 = 2m¡1 £ (m ¡ 1)!

2
and

Sm
n;1 =

Ã
m¡1X

k=0

¡ n¡2
2

¢
!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 £ (m ¡ 1)!
2

if n ¸ 4m:

Proof. We assume that n = 2m. If we take one vertex of Cm in the position of v n
2

and
one vertex of another Cm in the position of v n

2 +1 of the graph which we will construct
and distribute the remaining vertices of two Cm to both sides of the perpendicular bisector
of v n

2 ¡1 and v n
2 ¡1 permitting redundancy and symmetrically regarding the perpendicular

bisector then the resulting graph becomes a Cm-spanning subgraph of K2m ¯xed by ¾1
when we join the vertices of two Cm as it becomes symmetric regarding the perpendicular
bisector of v n

2 ¡1 and v n
2 ¡1. The number of ways to distribute the vertices of two Cm is
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m¡1X

k=0

(m ¡ 1)!
k!(m ¡ k ¡ 1)!

= 2m¡1 and the number of the way to joining the vertices of two Cm is

(m¡1)!
2 . Then we have that

Sm
2m;1 = 2m¡1 £ (m ¡ 1)!

2
:

We assume that n ¸ 4m. Let H be a Cm-spanning subgraph of Kn ¯xed by ¾1. Since n
is even, the axis of ¾1 does not pass any vertices. Since m is odd, there is no component
which contains both v n

2
and v n

2 +1. Let L0 be the component which contains vertex v n
2

and L1 be the component which contains vertex v n
2 +1. H ¡ L0 ¡ L1 naturally becomes

Cm-spanning subgraph of Kn¡2m ¯xed by ¾1 when we change the name of the vertices.
Conversely, let H be a Cm-spanning subgraph of Kn¡2m ¯xed by ¾1. Since n ¡ 2m is even,
the axis of ¾1 does not pass any vertices. If we take one vertex of Cm in the position of v n

2

and one vertex of another Cm in the position of v n
2 +1 of the graph which we will construct

and distribute the remaining vertices of two Cm between the vertices of H permitting
redundancy and symmetrically regarding the axis then the resulting graph becomes a Cm-
spanning subgraph of Kn ¯xed by ¾1 when we join the vertices of two Cm as it becomes
symmetric regarding the axis. The number of ways to distribute the vertices of two Cm is
m¡1X

k=0

¡ n¡2
2

¢
!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

and the number of the ways to joining the vertices of two Cm

is (m¡1)!
2 . Then we have the results.

Lemma 16. If n is even and m is even then

Sm
m;0 = 2

m¡4
2 £

µ
m ¡ 2

2

¶
! and

Sm
n;0 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 £ Sm
m;0 if n ¸ 2m:

Proof. By Lemma 7 we have that

Sm
m;0 = 2

m¡4
2 £

µ
m ¡ 2

2

¶
!:

We assume that n ¸ 2m. Let H be a Cm-spanning subgraph of Kn ¯xed by ¾0. Since n
is even, the axis of ¾0 passes v0 and v n

2
. Let C be the component of H which contains

vertex v0 and v n
2
. H ¡ C naturally becomes Cm-spanning subgraph of Kn¡m ¯xed by ¾1

when we change the name of the vertices. Conversely, let H be a Cm-spanning subgraph of
Kn¡m ¯xed by ¾1. Since n¡m is even, the axis of ¾1 does not pass any vertices. If we take
two vertices of Cm in the positions of v0 and v n

2
of the graph which we will construct and

divide the remaining vertices of Cm into halves and distribute them between the vertices
of H permitting redundancy and symmetrically regarding the axis then the resulting graph
becomes a Cm-spanning subgraph of Kn ¯xed by ¾0 when we join the vertices of Cm as it
becomes symmetric regarding the axis. The number of ways to distribute the vertices of

Cm is
µ n¡2

2
m¡2

2

¶
and the number of the ways to joining the vertices of Cm is Sm

m;0. Then we

have the results.
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Lemma 17. If n is even and m is even then

Sm
m;1 = 2

m¡4
2 £

µ³m
2

´
! +

µ
m ¡ 2

2

¶
!
¶

and

Sm
2m;1 = 2m¡1 £ (m ¡ 1)!

2
+

µ 2m¡2
2

m¡2
2

¶
£ Sm

m;1 £ Sm
m;1 and

Sm
n;1 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 £ Sm
m;1

+

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 £ (m ¡ 1)!
2

if n ¸ 3m:

Proof. By Lemma 8 we have that

Sm
m;1 = 2

m¡4
2 £

µ³m
2

´
! +

µ
m ¡ 2

2

¶
!
¶

:

We assume that n ¸ 3m. We study two kinds of constitutions that compose Cm-spanning
subgraphs of Kn ¯xed by ¾1 inductively.

The ¯rst method is the following:
Let H be a Cm-spanning subgraph of Kn¡m ¯xed by ¾1. Since n ¡m is even, the axis of ¾1
does not pass any vertices. If we take two vertices of Cm in the positions of v n

2
and v n

2 +1
of the graph which we will construct and divide the remaining vertices of Cm into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Cm-spanning subgraph of Kn ¯xed by
¾1 when we join the vertices of Cm as it becomes symmetric regarding the axis. The number
of ways to distribute the vertices of Cm is

¡ n¡2
2

m¡2
2

¢
and the number of the ways to joining the

vertices of Cm is Sm
m;1. Similarly, if we take two vertices of Cm in the positions of v0 and v1

of the graph which we will construct and divide the remaining vertices of Cm into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Cm-spanning subgraph of Kn ¯xed
by ¾1 when we join the vertices of Cm as it becomes symmetric regarding the axis. The
number of ways to distribute the vertices of Cm is

¡ n¡2
2

m¡2
2

¢
and the number of the ways to

joining the vertices of Cm is Sm
m;1. Accordingly, it is possible 2 £

¡ n¡2
2

m¡2
2

¢
£ Sm

n¡m;1 £ Sm
m;1

Cm-spanning subgraph of Kn ¯xed by ¾1 as a whole with these constitutions.
The second method is the following:

Let H be a Cm-spanning subgraph of Kn¡2m ¯xed by ¾1. Since n¡m is even, the axis of ¾1
does not pass any vertices. If we take one vertex of Cm in the position of v n

2
and one vertex

of another Cm in the position of v n
2 +1 of the graph which we will construct and distribute

the remaining vertices of two Cm between the vertices of H permitting redundancy and
symmetrically regarding the axis then the resulting graph becomes a Cm-spanning subgraph
of Kn ¯xed by ¾1 when we join the vertices of two Cm as it becomes symmetric regarding the
axis. The number of ways to distribute the vertices of two Cm is

Pm¡1
k=0

( n¡2
2 )!

k!(m¡k¡1)!( n¡2m
2 )!

and the number of the ways to joining the vertices of two Cm is
(m ¡ 1)!

2
. Similarly, if we

take one vertex of Cm in the position of v0 and one vertex of another Cm in the position
of v1 of the graph which we will construct and distribute the remaining vertices of two
Cm between the vertices of H permitting redundancy and symmetrically regarding the axis
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then the resulting graph becomes a Cm-spanning subgraph of Kn ¯xed by ¾1 when we join
the vertices of two Cm as it becomes symmetric regarding the axis. The number of ways to
distribute the vertices of two Cm is

Pm¡1
k=0

( n¡2
2 )!

k!(m¡k¡1)!( n¡2m
2 )!

and the number of the ways to

joining the vertices of two Cm is
(m ¡ 1)!

2
. Therefore, by this construction, we can construct

2 £
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

£ (m ¡ 1)!
2

Cm-spanning subgraph of Kn ¯xed by ¾1. By

these two constructions, we can construct

2 £
µ n¡2

2
m¡2

2

¶
Sm

n¡m;1Sm
m;1 + 2 £

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 £ (m ¡ 1)!
2

Cm-spanning subgraphs of Kn ¯xed by ¾1. Clearly there are doubling two pieces of each.
Also, it is clear to be able to compose all the Cm-spanning subgraphs of Kn ¯xed by ¾1 by
these methods. Next we assume that n is equal to 2m. Then we can similarly construct
all Cm-spanning subgraphs of K2m ¯xed by ¾1 by these two constructions if we set H be a
empty graph in the case of the second constitution. We have the results.

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent Hamiltonian cycles of Km, m · 11 by com-
puter. The numbers agreed with the numbers that are given by Theorem 2. The results is
as follows:

n=3 1
n=4 2
n=5 4
n=6 12
n=7 39
n=8 202
n=9 1219
n=10 9468
n=11 83435

Remark 4. We calculated the non-equivalent C4-spanning subgraphs of Kn, n · 12 by
computer. The numbers agreed with the numbers that are given by Theorem 2. The results
is as follows:

n=4 2
n=8 39
n=12 7003
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