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On the number of the non-equivalent Cm-spanning subgraphs of the complete
graph with order mk

Osamu Nakamura

Received October 10, 2002

Abstract. Let m be greater than or equal to 3 and n be a multiple of m. An m-vertex
cycle graph is denoted Cr,. We will call a spanning subgraph whose components are
Cm of the complete graph K, a Cm-spanning subgraph of K. The Dihedral group
Dn acts on the complete graph K, naturally. This action of D, induces the action on
the set of the Ciy-spanning subgraphs of the complete graph Kn . In [4], we calculated
the number of the equivalence classes of the Km-spanning subgraphs of the complete
graph Kn by using Burnside's Lemma. In this paper we calculate the number of the
non-equivalent Cm,-spanning subgraphs of K, for all m and n. In the special case we
have the number of the non-equivalent Hamiltonian cycles of Ky, for all m.

Let m be greater than or equal to 3 and let n be a multiple of m. Let fvg; vq;Vv2; 608 ;v ;10
be the vertices of the complete graph K,. The action to K, of the Dihedral group
Dn = Fho; Y1, 66 Yon 315 Yao; %15 600 ; ¥n ;20 IS de ned by

%i(Vk) = V(k+i) (modny FOr 0 -i-njl;0-k-njl

%i(Vk) = V(n+ijk) (modny for 0 -i-nil;0-k-njl
An m-vertex cycle graph is denoted C,,,. We call a spanning subgraph whose components
are Cn, of the complete graph K, a Cp-spanning subgraph of K. Let X' be the set of
the Cp-spanning subgraphs of K. Then the above action induces the action on X' of
the Dihedral group Dy. In the special case that n = m, X[} is the set of the Hamiltonian
cycles of K.
For example, the equivalence classes of X2 are given with the next ~gure.
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The equivalence classes of X§ are given with the next ~gure.
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We calculate the number of the equivalence classes of X' by this group action. These
computations can be done by using Burnside's lemma.

Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S.
Then the number of orbits induced on S is given by

1 X f
o
SR iX(%4)]
%2G

where fix(%) = fx 2 Sj%(x) = xg.
Notation 1. The Euler function A(m) is de”ned by

A(m) = jfkjo < k - m;(k;m) = 1gj:
Notation 2. An integer function 1(p;q) is de ned by

C
1 ifp” 0 (modq)

1(p: —
(P:0) 0 otherwise
Notation 3. For each integer i such that 0 - i - n, let d = (n;i) and R7}; be
s -~ M T
mi4 m mij?2
Rmi=27 £ > P+ > '
|fn—mandm—2|
_ (di) Tait _om
m — —
Rmi = 5 £ d £ A( d)
if n=m and m & 2i
(@] 1
—_ Yoom Man e o, T
" P, Y g im 4T dm e
d=" j=1SiPj (JORSTT
Sj . Lipjjmforl -j -1 j=1
ifn>m
Notation 4. S7%;0 - n j 1 is given by the following recursive formula:
If n is odd then
Sik=Shpforl -k -njl

If n is even then
ok =Spo forl - k - 5 jland ST, =Sgy forl -k - 5 il
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If m is odd then

mo = 2" £ umzi 11T!
SEnm;l = Zmil £ (m ; 1)_!
no = u;iﬂESrTim;l £STo if nisodd and n _ 2m
2
no = u;iﬂESrTim;o £STo if nisevenand n _ 2m
<2 .

m, = Ar)(l (4! ESom: £M if nisevenand n _ 3m
ML o KM ki D) nizmit 2 -

If m is even then

|
m =2 g T ang
3 - VR ||
Sr'}]1=274£f? 1+ D2 g and

(m i 1) Hzm-,z1T

Sgnm;l = Zmil £ > £Srr:11;1 £Srr:11;1

2 mp
M1
no = m2|_2 £Sim1ESho ifn_ 2m
2
M2 T
ml: m2|_2 £Srr1nim;1£~c"m;1
A !
(23! (mil)!.
N KI(m § k j 1)!(2izm) £Srrpizm;lﬁTlfn,Bm
k=0 1 1 : > !

Our main Theorem is the following:

Theorem 2. The number of the non-equivalent C,-spanning subgraphs of the complete
graph Ky is given by

1 D} ¢
%f RN +Snh O

k=0

We must determine the numbers of the ~xed points of each permutation ¥%; and %; to
prove the Theorem by using Burnside's Lemma.

First of all we consider the special case that n = m.

Lemma 1. The number of the Hamiltonian cycles of Ky, is (m j 1)!=2. This is the number
of the ~xed points of %g.

Proof. Since the number of the circular permutations of vo; vy;Vvo; 066 ;vm; 1 is (M § 1)! and
the cycles < Vo; Vi, ; Vi 008 5 Vi, 13 Vo = and < Vo; Vi, 13 000 5 Vi, ; Vi, s Vo > represent the
same Hamiltonian cycle, the number of the Hamiltonian cycles of Ky, is (m j 1)!=2. O

Lemma 2. If (m;i) =1 then the number of the ~xed points of %; is A(m)=2.
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Proof. Let V be the set of the vertices of K, and k be an integer such that (m;k) = 1.
Since (m;i) = 1, there is an integer ® such that ® ~ 1 (mod m). Since 1/:? k(vovk) =
V-kmodmV( +1)kmodm;0 = - m j 1 and fv-moamj0 -~ - m j 1g =V, the walk <
Vo, Vk; Vakmodm; Vakmodm: ¢¢¢ 3 V(m j 1)kmodm; Vmkmodm = is @ Hamiltonian cycle. We call this
Hamiltonian cycle H. Since (m; k) = 1, there is an integer © such that °k = ~k+i (mod m).
Then we have that ( + 1)k +i = (° + 1)k (mod m) and %;(V-kmodmV( +1)kmodm) =
V= k+imodmV("+1)k+imodm = V°kmodmV(°+1)kmodm and therefore 1/Zi(H) = H. (_30nver59|y,
let H be a Hamiltonian cycle such that %;j(H) = H and vpvk 2 H. Since 1/2? K(ovk) =
V=kmodmV(+1)kmodm; 0 - S -mijl, V-kmodmV(+1)kmodm 2 H. If (m;k) =d > 1 then
(%)k = (g)m ~ 0 (mod m) and < Vg, Vk; Vokmodm; ¢ ¢ ¢ s V(m)kmodm = Vo > is a cycle. This
is contradict to the fact that H is Hamiltonian cycle. Then we have that (m; k) = 1. In this

case H is determined uniquely by joining V-kmodm and V(—+1ykmoam;0 - - m j 1. Since
the Hamiltonian cycle generated by vgvk is coinside with the Hamiltonian cycle generated
by vovn;k, the number of the ~xed points of %; is A(m)=2. |

Lemma 3. If (m;i) =d > 1 then the number of the ~xed points of %; is given as follow:
If m = 2d then

H3m’ M . 2.”'.”_

mi4 m
— |+
22 £ 5 ! >
If m > 2d then
s -
m dil . m did)!
— £A=)E :
d (d) 2
Proof. We assume that m be equal to 2d. Since (m;i)=d>1and0 - i - m j 1, we have

that i =d. Let H be a Hamiltonian cycle of K, “xed by %;. Then H is point symmetry. If
VjVj+d 2 H forsome 0 - j - djlandH hasapath < vj;Vi,;Vk,; tt¢ ;Vi,,, >, where vy, &
Vj+d, then by the symmetry H has a path < V(j+d)m0dm;V(k1+d)m0dm;v(k2+d)m0dm;¢¢¢ ;
V(ka; 1+d)ymodm - 1fVik, = Vi, 1 +dymodm forsome 1 - p - djlthen < vj;vi,;Vi,; 008 Vi, ,;
V(kpil+d)modm;¢¢¢ 1 V(ko+dymodms V(ky +d)bmodm; Vj+d; Vj > is a CyCIe whose Iength is 2p -
2d j 2. This is contradiction. Then vi, & V(«,,,+dymodm forall 1 - p - dj1. Then H is the
Hamiltonian cycle < Vj; Vi, ; Vi, €60 5 Viey, 15 Vika; 1+dymodms ¢ ¢ ¢ 5 Vik,+dymodm) V(ky +d)bmodm
Vj+d;Vj =>. These Hamiltonian cycles can be composed to join the antipodal points of the
endpoints of the path that are mode with the permutation that took one of each from
Tvog; Tv1; Vg+10; Vo Vga20;¢6¢ ; FVg;1; Vm 3 10 and the point symmetric path. The number
of these Hamiltonian cycles is d! £ 2411=2,

We assume that vjvj+q @ H forall0 - j - djl. If H hasapath < vi,; Vi, ; Vi,; $¢¢ vk, >
such that 2 - p - d j 1and vi, 2 Vj and vy, 2 V; then the cycle < vi,; Vi, ; Vi,; 868 Vi, =
V(ko+d)modm; V(ky+dymodm; V(kz+dymodm; ¢ ¢ ¢ ; V(ky+dymodm = Vo = is contained in H. This
contradicts the fact that H is a Hamilton cycle. Accordingly, H is the Hamiltonian cycle
which is the concatenation of the path P from vertex vy to vertex v4 through the permu-
tation that took one of each from fvi;Vg+10; Tva;Vya20;¢¢¢ ; Fvg;1;Vm ;10 With the point
symmetric path of P. The number of these Hamiltonian cycles is (d j 1)! £29i1=2,

Next we assume that m > 2d. Let Vg = fvg; vg; Vad; 660 ; Vimd0; V1 = TV1; Var1; Vag+1; 600 ;
Vmida+10; V2 = TV2iVaao; Vag+2; 660 Vi jd+20, 606 Va1 = Va1 Vadi1iVadiai 660 ;Vm;10.
Let H be a Hamiltonian cycle of K, xed by %;. We assume that vjv, 2 H and v; 2 Vs
and vp 2 V. If p 6 (j + m=2) mod m then F%;(VjVp); %2 (VjVp); %5 (VjVp); et ;Vz?‘zd(vjvp)g
contains a cycle whose length is less than m. This is contradict the fact that H is a
Hamiltonian cycle. If p = (j + m=2) mod m then V(s+tdymodmV(s+td+m=2)modm 2 H for all
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0 -t-m=dijlandH is point symmetry. Let < vj;V,;Vk,;t¢¢ vk, > be a shortest
path from the vertex vj to the vertex in Vs of H which does not pass through the edge
ViVp. If v, = vp then < vj;vi,; Vi, 660 vy, vj > is a cycle in H. Since m=d > 2 and
JVsj > 2, we have that v, & vp. Here we assume that fvi,;V,;¢6¢ ;v ,,g contains the
vertices Vi, and vy, which belong to same V. If f +1 =g then vi, = V(k;+m=2)modm and
< Vji Vg 600 5 Vieg 115 Viee s Vike ; 1+m=2)modm; ¢ ¢¢ 5 V(i +m=2)modm; Vp; Vj > is cycle. This is con-
tradiction. If f+1 & g then let P be the path < vi; Vik,,;¢¢¢ ; vk, =>. Then the union of the
pathes P;%;(P); %2 (P);t¢¢ ;%:“zd i1(P) contains a cycle which does not conatain any vertex
of Vs. Therefore vy, ; Vi,; 06 ;vi,,, are contained to the di®erent vertex set V., respectively.
In this case < Vj; Vi, ; Vi 668 5 Vie; Vke+m=2)modm; V(ke ; 1 +m=2)modm; ¢ ¢¢ 5 V(i +m=2)modm}

V(k;+m=2)modm: Vp; Vj = is a cycle which is not H. Accordingly, for each 0 - j - d j 1,
the edge that joins the vertices of V; does not exist in H. Let Q be a shortest path
< Vo; Vikyi Vioi 608 5V, > from vg to the vertex of Vo such that vo & vy, and vy, 2 Vo.
Here we assume that fvi,;vi,;t0¢ v, ,,g contains the vertices vk, and vy, which be-
long to same V. Let P be the path < vi,;Vke,,;0¢¢ vk, >. Then the union of the
pathes P;%;(P);%2(P);t¢¢ ;Vz?"zdil(P) contains a cycle which does not conatain any ver-
tex of Vy. If there is V. whose vertex does not belong to Q then the union of the pathes
Q; %i(Q); %2 (Q); tet ;Vz{“zd i l(Q) contains a cycle which does not conatain any vertex of V.
Therefore, Q contains one and only one vertex of Vq;V,;06¢ ; Vg 1, respectively. The union
of the pathes Q;%i(Q);%2(Q);¢t¢ ;%" 411(Q) becomes generally the sum of cycles and it

]
becomes the Hamiltonian cycle if and only if (m; ky=d) is equal to one. Therefore, these
H is generated by the path that begins with vo and ends with the vertex vgx such that
(m; k) = 1 and passes through the vertices which are the permutation that took one of each
from Vy;Vy; 066 ;Vq;1. Therefore, the number of such H is

s -
m di
d

Then we have the results. [

' £A(%) £(d; 1)=2

Lemma 4. If m is odd then the number of the ~xed points of % is equal to the number of
the ~xed points of %, forall 1 - k - m j 1.

Proof. We assume that k is even. Let H be a Hamiltonian cycle of K, “xed by %. Then it
is easily veri ed that 1/2§(H) is @ Hamiltonian cycle of Ky, “xed by %. Conversely, if H is

a Hamiltonian cycle of K, ~xed by % then %gl(H) is a Hamiltonian cycle of K, ~xed by

Y. Next we assume that k is odd. Let H be a Hamiltonian cycle of K., “xed by %g. Then
it is easily veri ed that 1/zmT+k(H) is a Hamiltonian cycle of K, ~xed by %x. Conversely, if
H is a Hamiltonian cycle of K, “xed by ¥ then %&(H) is a Hamiltonian cycle of K,

2

“xed by ¥%g. Then we have the results. O
Similarly, we have the next Lemma.

Lemma 5. If m is even then the number of the ~xed points of %o is equal to the number of
the ~xed points of %,q for all 1 - d - m=2 j 1 and the number of the ~xed points of %, is
equal to the number of the ~xed points of %4+, forall 1 - d - m=2 j 1.

Lemma 6. If m is odd then the number of the ~xed points of %g is
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Proof. Let H be a Hamiltonian cycle of K., “xed by %g. Since m is odd, the axis of the
line symmetry is passing only vertex vo. Let < Vo;Vk,;Vk,; 666 Vi, 1,-, > e a path in H.
Then, by the symmetry, there is another path < vo;Vmjky: Vmiks: 660 Vim; Kemsy=z = inH.
And therefore H must be < Vo; Vi, ; Vi €66 5 Vi 1925 Vm i kemg 1920 £ 66 5 Vm i ko s Vm i ke s Vo >
Therefore, the number of H is able to calculate in the following manner. The number of
the ways to choose one ver_tfx from each Vi = fvi;vim;10; V2 = fvy; vmizg&¢¢¢ Vmin= =
TV(m; 1)=2; V(m+1)=20 IS 272~ and the number of its permutations is ﬂzl—l 1. Additionally,
the cycle < vp; Vi, Vk,; 060 Vi =z YMikemsn=z) 60 1 Vmikoi Vmikes Vo = and the cycle
< Vo;Vmika Vmikas 660 5 Vim i kem s 1y=2 7 Vkem 1y=2s 6 06 ?\ﬁzivkli‘ﬁ > are the same Hamiltonian

mil " -2 Then we have the

cycle. Then the number of the ~xed points of ¥ is

results. 0

Lemma 7. If m is even then the number of the ~xed points of ¥%g is
VR |
'.

2m2i4£ m|2

2

Proof. Let H be a Hamiltonian cycle of K., “xed by %g. Since m is even, the axis of the
line symmetry is passing vertices Vo and Vpm=p. Let < vg; Vi, ; Vk,; 066 ;v _, = be a path
in H. Then, by the symmetry, there is another path < Vo;Vm ki Vmika: 0085 Vicn s mes =
in H. And therefore H must be < Vo; Vi, ; Vi, 606 5 Vi o 608 Vim i kas Vm i kes Vo =. There-
fore, the number of H is able to calculate in the following manner. The number of the
ways to choose one vertex from each Vi = fvi;vm;10; Ve = fvg;vmizg;¢¢¢¢ Vimiz=2 =
V(mi2)=2: V(m+2)=20 IS 2"2% and the number of its permutations is lﬂzi—z 1. Additionally,
the cycle < Vo;Viky; Vias 688 5 Vicin s a9m20 Vm=2: Vm i kem 29=25 000 s Vmii ko Vmiky; Vo > and the
cycle < Vo;Vmijkys Vmiks: 600 T Vm i ke 2y=20 Ym=23 Vkm ; 2y=25 066 i\/&zivkli\ﬁa > are the same

mi?2 -7 Then

Hamiltonian cycle. Then the number of the ~ xed points of ¥ is

we have the results. |

Lemma 8. If m is even then the number of the ~xed points of %, is

2m2i4£”3m'|+”m i Zﬂﬂ-
2 2

Proof. Let H be a Hamiltonian cycle of K, ~xed by %;. Since m is even, the axis of the line
symmetry is not passing any vertices. We assume that VjV(m+1; j)modam 2 H for some 1 -
J - M=2. Let < Vj; Vi, Vio; 888 5 Vi, oy, > DE@pathin H. Then, by the symmetry, there is
another path < V(m+1 .J)modmaV(m+l kl)modmaV(m+l kz)modmr¢¢¢ V(m+1 K(m j 2)=2)modm =>.
And therefore H must be < Vj; Vi, ; Vi s 600 5 Vi 2y-os Vim+1 Kem s 2y=2)modm; €¢¢

V(m+1j ko)modm: Y(m+1j ky)modm: V(m+1j j)modm: Vj =. Therefore, the number of H is able
to calculate in the following manner. The number of the ways to choose one vertex
from each V; = fVl,Vog Vo = ;v 10006 S Vimi=2 = TVipiz)=2i Vim+4)=29; Vm=2 =
TVm=2; V(m+2)=20 is 27 and the number of its permutations is g‘ I. Additionally, the cycle
< Vg Vky s Vi 6CC ; Vi(m s 2y=2) Ym+1 k(mi2)=2’¢¢¢ Vm+1iks: Vm+1iks: Vm+1iko: Vko = and the
cycle < Vi Vim+1ikos Vm+1 ke Vm+1j ko 600 s Vm+1ikensoy=21 YK 2)=27 €60 Vics Viey s Vio = and
the cycle < Vmatikem;zy=a) $00 5 Vm+likas Vm+1ikes Vm+Likos Vkos Vikas Vias €60 5 Vi 2z
Vm+1ikems 2=z = aNA the CYCle < Va1 ik, 29=20 Vkems 2920 608 5 Vi Vir s Vio s Vm+1 i kos Vm+1 i ky s
Vm+1 s b0 Vmal jkem g 290 > T€ the same Hamiltonian cycle. Then the number of such

.m m .
H is > I'£272=4. Next we assume that VjVim+1;jymoam & H forall 1 - j - 2. Let
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< Vp; Vi, Vi, 008 5 Vi s V1 = be a path in H. Then, by the symmetry, there is another path
< V1;V(m+1j ki)modms V(m+1 ka)modm: ¢ ¢ 3 Vim+1 ke)modm; Vo = in H. Since the walk <
Vi Viy i Vi s 68 5 Vig s VI3 Vim+1 i ky)modms Vim+1 j kaymodmi €6 5 Vim-+1 j ks)modmi Vo = contains
a cycle, we have s = (m j 2)=2 and therefore H must be < vg; Vi, ; Vi,; ¢¢¢ Vim s 2y=25 V13
V(m+1iki)ymodm: V(m+1k2)modm: ¢¢¢ 5 Vim+1 K¢m 3 2y=2)modm; Vo = Therefore, the number of
H is able to calculate in the following manner. The number of the ways to choose one vertex
from each Vo = V2, Vm;10;060 ;V(mi2)=2 = f.V(mi%):Z;V(m+4):29;Vm:2 = Vm=2; V(m+2)=20
is 222 and the number of its permutations is ﬂzl—z I. Additionally, the cycle < vop; Vi, ; Vk,;
C00  Vikgm; 29=2s VI VT ikes Vm+1ikos 60 S Vmat jkem; 29=2s VO = and the cycle < vp;
Vm+1iKem;2y=zs 046 ;Vm+1ikz;vm+1ikl;vl;vk(miz)ﬂmw Vg Via s Vo > are the same Hamil-

Mi2 ) £2™2 5 Then we have the

tonian cycle. Then the number of such H is

results. 0

The analysis of Hamiltonian cycles of K, has been completed. Next we do the analysis
of general Cy,-spanning subgraphs of K.

Lemma 9. The number of the C,-spanning subgraphs of K, is
Him i 1)!ﬂ”:m£“§’””mk i1
2 mijl °
k=1

This is the number of the ~xed points of %jg.

n . . . .
Proof. The number of ways to select - groups of size m from a collection of n items is

rﬁmumi i 1‘”
by Lemma 1 in [4]. By Lemma 1, the number of applying C,, to m-set is

=g Mi 1
H |

w. Then we have the results. O

K ﬂn:m l\‘-ﬁ‘\ 81 ﬂ

. . . m j 1)! mk j 1
Remark 1. It is easily checked that R, is equal to % £ m _'1 .
1
k=1

Lemma 10. The ~xed points of %; for each 0 <i <nis Rio-

Proof. Let d = (n;i) and Vo = fvo; Vg; Vad; 666 ; Va0 V1 = V1, Vg1, Vad+1; 660 5 Vi ja+a0,
Vo = TV2; Va2, Vad+2; 600 Vi a+20, 060, Va1 = Vg 15 Vadi15 V315660 ;Vn;a0.

Since (n;i) = d, the equation xi = m (mod n) has a solution if and only if d divides
m. Then we have %;(Vx) = Vi for 0 - k - d j 1. Let H be a Cr-spanning subgraph of
K, which is “xed by %; and let G be a K,,-spanning subgraph of K,, which change each
component Cr, of H into Ki,. Then G is also ~ xed by %;. We divide fVo;Vy1;V2;t¢¢ ;Vg;10
into the subsets W1; W; W3;tt¢ ; Ws in the following manner: ) )

If W = fvg;V{;tee ;v ;19 then each component of GjVy [V{ [t [V} ;4 is Km
and any component of the restriction to the proper subset of Wj of G is not Ky, for each
1-j-s

By the proof of Lemma 3 in [4] we have that m = 0 (mod px) and § ~ 0 (mod pmk)

Y 3pkn Tpeil

for 1 - k - s and the number of such G is am . Each component C,, of
k=1

Hjvd [VJ [et¢ [V ;1 is "xed by %, when we change the name of vertices properly.
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The number of the way %cln taking of such Cr is RR.,.. Then the number of such H is

Yu3pkn'Pki1 m . X . .
—_— ERqp. - IN this case we have that pk = d and pg is a divisor of m

dm
k=1 k=1
and 5§~ 0 (mod pﬂk)forl -k - s
X
Letd =  s;jp; be a representation of d as the sum of divisors p; of m. The number of
=1

ways to divide fVp; V1; Va; t¢t ; Vg, 10 into s; pieces of pi-element set, s, pieces of pz-element
set, s3 pieces of pz-element set, ¢¢¢, s, pieces of p;-element set is

d!
(JDREST
j=1
Accordingly, the number of all the possibilities of H is

O 1

> d! Yln.m Hzpj”’pjil m T .
v gu) gm  Rme &

j— Pl Sj j:l pJ
d= j:lSjpj (pj!)JSj!
Sj . Lipjimforl -j -1 j=1
We have the results. O

Notation 5. Let S{7; be the number of the “xed points of %; for XT".

Remark 2. By the following lemmas we will see that ST; agrees with the one which is
given in Notation 4.

Lemma 11. If n is odd then the number of the ~xed points of ¥%g is equal to the number of
the ~xed points of %, forall 1 - k - n j 1.

Proof. We assume that k is even. Let H be a C,-spanning subgraph of Ky, ~xed by ¥%. Then
it is easily veri ed that %%(H) is a Cyy-spanning subgraph of K, ~xed by ¥x. Conversely, if
H is a Cpy-spanning subgraph of K, ~xed by % then 1/zgl(H) is a C-spanning subgraph
of K, “xed by %. Next we assume that k is odd. Let 2I—I be a Cy-spanning subgraph of
Kn ~xed by %g. Then it is easily veri ed that %%k(H) is a Cy-spanning subgraph of K,
“xed by %k. Conversely, if H is a Cy-spanning subgraph of K, ~xed by % then %&(H)

is a Cm-spanning subgraph of K, ~xed by %. Then we have the results. ’ |

Similarly, we have the next Lemma.

Lemma 12. If n is even then the number of the ~xed points of % is equal to the number
of the ~xed points of %4 for all 1 - d - n=2 j 1 and the number of the ~xed points of ¥; is
equal to the number of the ~xed points of %pq+1 forall 1 - d - n=2 j 1.

Lemma 13. If n is odd and m is odd then

M T
mi mijl
mo = e 2' ! and
TR
m= £SN m1£SH if n _ 2m:
n;0 mjl nim;l m;0 = :

2



On the number of the non-equivalent Cm-spanning subgraphs 547

Proof. By Lemma 6 we have that

mo=22 £ >

We assume that n _ 2m. Let H be a Cp-spanning subgraph of K, ~xed by %g. Let C
be the component of H which contains vertex vo. H j C naturally becomes C,-spanning
subgraph of Kn;m ~xed by ¥ when we change the name of the vertices. Conversely, let
H be a Cry-spanning subgraph of Kn;m ~Xxed by %;. Since n j m is even, the axis of the
line symmetry is not passing any vertices. If we take one vertex of Cy, in the position of vg
of the graph which we will construct and divide the remaining vertices of C,, into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Cr,-spanning subgraph of K, ~xed
by %o when we join the vertices of Cr, 51r|ch that it is ~xed by %g. The number of ways

njl

to distribute the vertices of C, is m2-1 and the number of the way of joinning of new
LLLY )
2
vertices is Sf.o. Then we have the results. O

Lemma 14. If nis even and m is odd then

Moo T
rTO = mzl_l £SrrPim;O£Srr:11;O:
2
Proof. Let H be a Cm-spanning subgraph of K, ~xed by %g. Since n is even, the axis of ¥%g
passes Vo and va. Let C be the component of H which contains vertex va. Since m is odd,
C does not contain the vertex vo. H j C naturally becomes Cy,-spanning subgraph of Kp ; m
“xed by %o when we change the name of the vertices. Conversely, let H be a C,-spanning
subgraph of Kn,;m ~xed by %o. Since n j m is odd, the axis of %y passes the vertex vo. If
we take one vertex of Cr, in the position of vo of the graph which we will construct and
divide the remaining vertices of C, into halves and distribute them between the vertices
of H permitting redundancy and symmetrically regarding the axis then the resulting graph
becomes a C-spanning subgraph of K, ~xed by %o when we join the verticespof Cm”such
nj2

that it is ~ xed by %g. The number of ways to distribute the vertices of Cy, is mzx_l and
2
the number of the way of joining of new vertices is S\.,. Then we have the results. O
Lemma 15. If nis even and m is odd then
- i!
Somi1 = 2m'1£7(m£ ) and
> ng27 (m i 1)! .
m = — 2 EST L, E———— ifn _ 4m:
K=o KI(m j k § )I(&)! 2

Proof. We assume that n = 2m. If we take one vertex of Cr, in the position of vy and
one vertex of another Cp, in the position of va.; of the graph which we will construct
and distribute the remaining vertices of two Cp, to both sides of the perpendicular bisector
of v ;1 and va ;1 permitting redundancy and symmetrically regarding the perpendicular
bisector then the resulting graph becomes a Cp-spanning subgraph of Koy, ~Xed by ¥
when we join the vertices of two Cy, as it becomes symmetric regarding the perpendicular
bisector of vo ;1 and vao ;1. The number of ways to distribute the vertices of two Cp, is
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> (mj !
o KM i ki 1)

miD! Then we have that

=2Mil and the number of the way to joining the vertices of two Cp, is

Soma = 2milge (m i1t 2i l)!:

We assume that n _ 4m. Let H be a C,-spanning subgraph of K, ~xed by %;. Since n
is even, the axis of %; does not pass any vertices. Since m is odd, there is no component
which contains both Vo and Vo, Let Lo be the component which contains vertex Vo
and L; be the component which contains vertex vo4;. H i Lo i L1 naturally becomes
Cm-spanning subgraph of Kn;2m ~xed by %; when we change the name of the vertices.
Conversely, let H be a Cr-spanning subgraph of Kn;2m ~ xed by %;. Since n j 2m is even,
the axis of ¥%; does not pass any vertices. If we take one vertex of Cy, in the position of Vo
and one vertex of another Cp, in the position of vo..; of the graph which we will construct
and distribute the remaining vertices of two Cp, between the vertices of H permitting
redundancy and symmetrically regarding the axis then the resulting graph becomes a Cy,-
spanning subgraph of K, ~xed by %; when we join the vertices of two C,,, as it becomes
symmetric regard@wg the axis. The number of ways to distribute the vertices of two Cp, is
™l '15_2 I

Lo KM i ki D)I(REZm)!

is (M1 Then we have the results. O

and the number of the ways to joining the vertices of two Cr,

Lemma 16. If n is even and m is even then

TR |
mi m-2
m:o = 2 £ 2' ! and
THL |
m = k3 £38m £38m ifn _ 2m
n;0 mi2 niml m,O S

We assume that n _ 2m. Let H be a C,,-spanning subgraph of K, “xed by %g. Since n
is even, the axis of %o passes vo and vo. Let C be the component of H which contains
vertex Vo and va. H j C naturally becomes Cry-spanning subgraph of Kn;m xed by ¥%;
when we change the name of the vertices. Conversely, let H be a C,-spanning subgraph of
Knim xed by %;. Since n j m is even, the axis of %; does not pass any vertices. If we take
two vertices of C, in the positions of vy and Vo of the graph which we will construct and
divide the remaining vertices of Cy, into halves and distribute them between the vertices
of H permitting redundancy and symmetrically regarding the axis then the resulting graph
becomes a Cr,-spanning subgraph of K,, ~xed by %y when we join the vertices of C,, as it
becomﬁf symﬁnetric regarding the axis. The number of ways to distribute the vertices of
ni2

2

Cmis 2, and the number of the ways to joining the vertices of Cr, is S{l.;. Then we

2
have the results. O
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Lemma 17. If n is even and m is even then
Us - 91 T

Sm;1=22_ £ ?!4' > ! and
Mom;2 T
- : 1)! amj<
Som1 = 2mitE w * ﬂzlé £5m1£Sn and
2
M2 T
S = mz.z £Sim1 £ Sma
Ana :
(252)! (m i 1)!
N i E£SNiomi1 £ —F— if n _ 3m
ko KI(M i Kk j 1)1(Rizmy; niz2m;1 > .
Proof. By Lemma 8 we have that
m _ ,mi4 M3m'| Hmiz‘ﬂ"ﬂ-
m1=22 £ > + > ]

We assume that n _ 3m. We study two kinds of constitutions that compose C,-spanning
subgraphs of K, ~xed by %; inductively.
The “rst method is the following:

Let H be a Cy-spanning subgraph of Kn;m ~ xed by %;. Since n j m is even, the axis of %;
does not pass any vertices. If we take two vertices of Cr, in the positions of va and vo.g
of the graph which we will construct and divide the remaining vertices of C, into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a C,-spanning subgraph of K, ~xed by
Y1 when we join the vertices of Cy, as it bec_omgs symmetric regarding the axis. The number
of ways to distribute the vertices of Cn, is ' ,:Tz and the number of the ways to joining the
vertices of C, is Sf}.;. Similarly, if we take two vertices of Cm in the positions of vp and v
of the graph which we will construct and divide the remaining vertices of C,, into halves
and distribute them between the vertices of H permitting redundancy and symmetrically

regarding the axis then the resulting graph becomes a Cn,-spanning subgraph of K, ~xed
by ¥ when we join the vertices of Cy, as it becomes symmetric regarding the axis. The

ni2
number of ways to distribute the vertices of Cp, is 'mTiz and the number of the ways to
-z

joining the vertices of Cr, is Sf.;. Accordingly, it is possible 2 £ ':i'izf £Sim1£SM1
Cm-spanning subgraph of K,, ~xed by %; as a whole with these constitutions.
The second method is the following:

Let H be a Cy-spanning subgraph of Ki;2m  Xed by %;. Since n j m is even, the axis of %,
does not pass any vertices. If we take one vertex of Cn, in the position of va and one vertex
of another C, in the position of Vo of the graph which we will construct and distribute
the remaining vertices of two C, between the vertices of H permitting redundancy and
symmetrically regarding the axis then the resulting graph becomes a C,-spanning subgraph
of K, ~ xed by %; when we join the vertices of two Cy, as it becomes %mmetric regarding the

. . . . . mil (n—i2)|
axis. The number of ways to distribute the vertices of two Cp, is | [ k!(m;kii)!("ﬂm)!

2
L . . i .
and the number of the ways to joining the vertices of two C, is M Similarly, if we

take one vertex of Cy, in the position of vy and one vertex of another Cp, in the position
of v1 of the graph which we will construct and distribute the remaining vertices of two
Cm between the vertices of H permitting redundancy and symmetrically regarding the axis
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then the resulting graph becomes a Cr-spanning subgraph of K, ~xed by %; when we join
the vertices of two Cp, as it becomes symmetric regarding the axis. The number of ways to

L . . mijl (nizy;
distribute the vertices of two Cr, is | % T kii)!(”ifm)! and the number of the ways to
L . . (m ! . .
joining the vertices of two Cy, is ( ; ) . Therefore, by this construction, we can construct
™l (2i2) (mij 1!
2£ A AR ! =) Cm-spanning subgraph of K, ~xed by %;. B
KM ik 1))(Tizm), > m-SP g grap n y 7. BY
these two constructions, we can construct
A !
”153.” m o em EaS (M2)! . (m i 1)
2E mzl_z Snim:lsm;1+2£ o Ki(m i K i l)!(niZZm)! £Sni2m;1£T

Cm-spanning subgraphs of K, “xed by %;. Clearly there are doubling two pieces of each.
Also, it is clear to be able to compose all the C,-spanning subgraphs of K, ~xed by ¥%; by
these methods. Next we assume that n is equal to 2m. Then we can similarly construct
all Cy,-spanning subgraphs of K., ~xed by %; by these two constructions if we set H be a
empty graph in the case of the second constitution. We have the results. O

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent Hamiltonian cycles of K,, m - 11 by com-
puter. The numbers agreed with the numbers that are given by Theorem 2. The results is
as follows:

n=3 1
n=4 2
n=>5 4
n=6 12
n=7 39
n==8 202
n=9 1219
=10 9468
=11 83435

Remark 4. We calculated the non-equivalent C4-spanning subgraphs of K,, n - 12 by
computer. The numbers agreed with the numbers that are given by Theorem 2. The results
is as follows:

n=4 2
n==8 39
n=12 7003
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