On the number of the non-equivalent Cm -spanning subgraphs of the complete graph with order mk

O samu Nakamura

Received October 10, 2002

Abstract

A bst r act. Let m be greater than or equal to 3 and n be a multiple of m. An m-vertex cycle graph is denoted C_{m}. We will call a spanning subgraph whose components are C_{m} of the complete graph K_{n} a C_{m}-spanning subgraph of K_{n}. The Dihedral group D_{n} acts on the complete graph K_{n} naturally. This action of D_{n} induces the action on the set of the C_{m}-spanning subgraphs of the complete graph K_{n}. In [4], we calculated the number of the equivalence classes of the K_{m}-spanning subgraphs of the complete graph K_{n} by using Burnside's Lemma. In this paper we calculate the number of the non-equivalent C_{m}-spanning subgraphs of K_{n} for all m and n . In the special case we have the number of the non-equivalent Hamiltonian cycles of K_{m} for all m.

Let m be greater than or equal to 3 and let n be a multiple of m. Let $f v_{0} ; v_{1} ; v_{2} ; \Varangle \Varangle \Varangle ; v_{n_{i}} g$ be the vertices of the complete graph K_{n}. The action to K_{n} of the Dihedral group

$$
\begin{aligned}
& 1 / 2\left(v_{k}\right)=v_{(k+i)} \quad(\bmod n) \text { for } 0 \cdot i \cdot n_{i} 1 ; 0 \cdot k \cdot n_{i} 1 \\
& 3 / 4\left(v_{k}\right)=v_{(n+i ; k)} \quad(\bmod n) \text { for } 0 \cdot i \cdot n_{i} 1 ; 0 \cdot k \cdot n_{i} 1
\end{aligned}
$$

An m-vertex cycle graph is denoted C_{m}. We call a spanning subgraph whose components are C_{m} of the complete graph K_{n} a C_{m}-spanning subgraph of K_{n}. Let X_{n}^{m} be the set of the C_{m}-spanning subgraphs of K_{n}. Then the above action induces the action on X_{n}^{m} of the Dihedral group D_{n}. In the special case that $n=m, X m$ is the set of the Hamiltonian cycles of K_{m}.

For example, the equivalence classes of X_{5}^{5} are given with the next ${ }^{-}$gure.

The equivalence classes of X_{6}^{6} are given with the next ' gure.

2000 M athematics Subject Classi ${ }^{-}$cation. 05C30 05C45. Key words and phrases. enumeration Hamiltonian graph.

We calculate the number of the equivalence classes of X_{n}^{m} by this group action. These computations can be done by using Burnside's lemma.

Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S. Then the number of orbits induced on S is given by

$$
\frac{1}{j G j}_{1 / 2 G}^{X} j f i x(1 / 4 j
$$

where $\operatorname{fix}^{1}\left(1 / 4=\mathrm{fx} 2 \mathrm{Sj}^{1} / 4 \mathrm{x}\right)=\mathrm{xg}$.

N otation 1. The Euler function $A(m)$ is de ${ }^{-}$ned by

$$
A ́(m)=j f k j 0<k \cdot m ;(k ; m)=1 g j:
$$

N otation 2. An integer function ${ }^{1}(p ; q)$ is de $^{-}$ned by

$$
{ }^{1}(p ; q)=\begin{array}{ll}
1 & \text { if } p^{\prime} 0 \quad(\bmod q) \\
0 & \text { otherwise }
\end{array}
$$

N otation 3. For each integer i such that 0 - $i \cdot n$, let $d=(n ; i)$ and $R_{n ; i}^{m}$ be

$$
\begin{aligned}
& R_{m ; i}^{m}=2^{\frac{m_{i} 4}{2}} £ \frac{\mu_{3}}{2}!+{\frac{m_{i} 2}{2}}^{\text {ๆा ๆ }} \text { ! } \\
& \text { if } n=m \text { and } m=2 i \\
& R_{m ; i}^{m}=\frac{\left(d_{i} 1\right)!}{2} £ \frac{m}{d}^{d_{i} 1} £ A ́\left(\frac{m}{d}\right) \\
& \text { if } n=m \text { and } m \in 2 i \\
& 0
\end{aligned}
$$

N otation 4. $\mathrm{S}_{\mathrm{n} ; \mathrm{i}}^{\mathrm{m}} ; 0 \cdot \mathrm{i} \cdot \mathrm{n}_{\mathrm{i}} 1$ is given by the following recursive formula:
If n is odd then

$$
\mathrm{S}_{\mathrm{n} ; \mathrm{k}}^{m}=\mathrm{S}_{\mathrm{n} ; 0}^{m} \text { for } 1 \cdot \mathrm{k} \cdot \mathrm{n}_{\mathrm{i}} 1
$$

If n is even then

$$
S_{n ; 2 k}^{m}=S_{n ; 0}^{m} \text { for } 1 \cdot k \cdot \frac{n}{2} i 1 \text { and } S_{n ; 2 k+1}^{m}=S_{n ; 1}^{m} \text { for } 1 \cdot k \cdot \frac{n}{2} i 1 .
$$

If m is odd then

$$
\begin{aligned}
& S_{m ; 0}^{m}=2^{\frac{m_{i} 3}{2}} £{\frac{m_{i} 1}{2}}^{\text {ๆl }} \text { ! } \\
& \mathrm{S}_{2 \mathrm{~m} ; 1}^{m}=2^{m_{i} 1} £ \frac{\left(\mathrm{~m}_{\mathrm{i}} 1\right)!}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } n \text { is odd and } n, 2 m \\
& \text { if } n \text { is even and } n, 2 m
\end{aligned}
$$

If m is even then

$$
\begin{aligned}
& S_{m ; 0}^{m}=2^{\frac{m_{i} 4}{2}} £{\frac{m_{i} 2^{\text {q }}}{2}}^{\mu} \text { !and } \\
& S_{m ; 1}^{m}=2^{\frac{m_{i} 4}{2}} £ f^{3} \frac{m^{\prime}}{2}!+{\frac{m_{i} 2}{2}}^{\text {q }}!g \text { and } \\
& S_{2 m ; 1}^{m}=2^{m_{i} 1} £ \frac{\left(m_{i} 1\right)!}{2}+\frac{\mu_{2 m_{i} 2}^{2}}{\frac{m_{i} 2}{2}} £ S_{m ; 1}^{m} £ S_{m ; 1}^{m} \\
& S_{n ; 0}^{m}=\mu_{\frac{\mu_{\frac{n_{i} 2}{}}^{2}}{\frac{m_{i} 2}{2}} \text { q }}^{\frac{n_{i}^{2}}{}} £ S_{n_{i} m ; 1}^{m} £ S_{m ; 0}^{m} \text { if } n, 2 m
\end{aligned}
$$

$$
\begin{aligned}
& £ S_{n_{i} 2 m ; 1}^{m} £ \frac{\left(m_{i} 1\right)!}{2} \text { if } n, 3 m
\end{aligned}
$$

Our main Theorem is the following:
Theorem 2. The number of the non-equivalent C_{m}-spanning subgraphs of the complete graph K_{n} is given by

$$
\frac{1}{2 n} f_{k=0}^{x i{ }^{1}} R_{n ; i}^{m}+S_{n ; i}^{m}{ }^{\phi} g:
$$

We must determine the numbers of the ${ }^{-}$xed points of each permutation $1 / R$ and $3 / \notin$ to prove the T heorem by using Burnside's Lemma.

First of all we consider the special case that $\mathrm{n}=\mathrm{m}$.
Lemma 1. The number of the Hamiltonian cycles of K_{m} is $\left(m_{i} 1\right)!=2$. This is the number of the ${ }^{-}$xed points of $1 / 2$.

Proof. Since the number of the circular permutations of $\mathrm{v}_{0} ; \mathrm{v}_{1} ; \mathrm{v}_{2} ; \Varangle \Varangle \Phi ; \mathrm{v}_{\mathrm{m}_{\mathrm{i}}}$ is $\left(\mathrm{m}_{\mathrm{i}} 1\right)$) and
 same Hamiltonian cycle, the number of the Hamiltonian cycles of K_{m} is $(m ; 1)!=2$.
Lemma 2. If $(\mathrm{m} ; \mathrm{i})=1$ then the number of the ${ }^{-}$xed points of $1 / 2$ is $A(m)=2$.

Proof. Let V be the set of the vertices of K_{m} and k be an integer such that ($m ; k$) $=1$. Since $(\mathrm{m} ; \mathrm{i})=1$, there is an integer \circledR such that $\circledR^{\circledR} 1(\bmod m)$. Since $11_{2}^{®^{-} k}\left(\mathrm{v}_{0} \mathrm{~V}_{\mathrm{k}}\right)=$
 $\mathrm{V}_{0} ; \mathrm{V}_{\mathrm{k}} ; \mathrm{V}_{2 \mathrm{kmodm}} ; \mathrm{V}_{3 \mathrm{kmodm}} ; ~ \Phi \not \subset 母 ; \mathrm{V}_{\left(\mathrm{m}_{\mathrm{i}} 1\right) \mathrm{kmodm}} ; \mathrm{V}_{\mathrm{mkmodm}}>$ is a Hamiltonian cycle. We call this Hamiltonian cycle H. Since $(m ; k)=1$, there is an integer ${ }^{\circ}$ such that ${ }^{\circ} k^{\prime}{ }^{-} k+i(\bmod m)$. Then we have that $\left(^{-}+1\right) \mathrm{k}+\mathrm{i}^{\prime}\left({ }^{\circ}+1\right) \mathrm{k}(\bmod \mathrm{m})$ and $\left.1 / \mathrm{R}\left(\mathrm{V}^{-} \mathrm{kmodm} \mathrm{V}_{(-}+1\right) \mathrm{kmodm}\right)=$
 let H be a Hamiltonian cycle such that $1 / 2(H)=H$ and $v_{0} v_{k} 2 H$. Since $1_{2}^{\mathbb{R}^{-}}{ }^{k}\left(v_{0} v_{k}\right)=$
 $\left(\frac{m}{d}\right) k=\left(\frac{k}{d}\right) m^{\prime} 0(\bmod m)$ and $<v_{0} ; v_{k} ; v_{2 k \operatorname{modm}} ; \phi \phi \Phi ; v_{\left(\frac{m}{d}\right) k \operatorname{modm}}=v_{0}>$ is a cycle. This is contradict to the fact that H is Hamiltonian cycle. Then we have that ($\mathrm{m} ; \mathrm{k}$) $=1$. In this
 the Hamiltonian cycle generated by $\mathrm{v}_{0} \mathrm{v}_{\mathrm{k}}$ is coinside with the Hamiltonian cycle generated by $v_{0} v_{n_{i}}$, the number of the ${ }^{-}$xed points of $1 / 2$ is $A(m)=2$.

Lemma 3. If $(\mathrm{m} ; \mathrm{i})=\mathrm{d}>1$ then the number of the ${ }^{-}$xed points of $1 / \mathrm{R}$ is given as follow: If $m=2 d$ then

$$
2^{\frac{m_{i} 4}{2}} £ \frac{\mu_{3}}{\frac{m}{2}}!+{\frac{m_{i} 2}{2}}^{\text {ๆी ी }}!:
$$

If $m>2 d$ then

$$
{ }^{3} \mathrm{~m}^{\prime}{ }^{d_{i} 1} £ \hat{A}\left(\frac{m}{d}\right) £ \frac{\left(d_{i} 1\right)!}{2}:
$$

Proof. We assume that m be equal to $2 d$. Since $(m ; i)=d>1$ and $0 \cdot i \cdot m_{i} 1$, we have that $\mathrm{i}=\mathrm{d}$. Let H be a Hamiltonian cycle of K_{m} - xed by $1 /$. Then H is point symmetry. If
 $\mathrm{v}_{\mathrm{j}+\mathrm{d}}$, then by the symmetry H has a path $<\mathrm{V}_{(\mathrm{j}+\mathrm{d}) \operatorname{modm}} ; \mathrm{V}_{\left(\mathrm{k}_{1}+\mathrm{d}\right) \operatorname{modm}} ; \mathrm{V}_{\left(\mathrm{k}_{2}+\mathrm{d}\right) \operatorname{modm}}$; ФФФ;
 $\mathrm{V}_{\left(\mathrm{k}_{\mathrm{p}}{ }_{1}+\mathrm{d}\right) \operatorname{modm}} ; \$ \not \subset \Phi ; \mathrm{V}_{\left(\mathrm{K}_{2}+\mathrm{d}\right) \operatorname{modm}} ; \mathrm{V}_{\left(\mathrm{k}_{1}+\mathrm{d}\right) \operatorname{bmodm}} ; \mathrm{V}_{\mathrm{j}+\mathrm{d}} ; \mathrm{V}_{\mathrm{j}}>$ is a cycle whose length is 2 p . $2 d_{i}$ 2. This is contradiction. Then $v_{k_{p}} \in v_{\left(k_{p i 1}+d\right) \operatorname{modm}}$ for all 1•p. $d_{i} 1$. Then H is the
 $v_{j+d} ; v_{j}>$. These Hamiltonian cycles can be composed to join the antipodal points of the endpoints of the path that are mode with the permutation that took one of each from $f v_{0} g ; f v_{1} ; v_{d+1} g ; f v_{2} ; v_{d+2} g ; \Varangle \Varangle \Varangle ; f v_{d_{i}} ; v_{m_{i}} g$ and the point symmetric path. The number of these Hamiltonian cycles is $\mathrm{d}!£ 2^{\mathrm{d}_{\mathrm{i}}}{ }^{1}=2$.

We assume that $\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+\mathrm{d}} \mathrm{B} \mathrm{H}$ for all $0 \cdot \mathrm{j} \cdot \mathrm{d}_{\mathrm{i}} 1$. If H has a path $\left\langle\mathrm{v}_{\mathrm{k}_{0}} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; 4 \not \subset \Phi ; \mathrm{v}_{\mathrm{k}_{\mathrm{p}}}>\right.$ such that $2 \cdot \mathrm{p} \cdot \mathrm{d}_{\mathrm{i}} 1$ and $\mathrm{v}_{\mathrm{k}_{0}} 2 \mathrm{~V}_{\mathrm{j}}$ and $\mathrm{v}_{\mathrm{k}_{\mathrm{p}}} 2 \mathrm{~V}_{\mathrm{j}}$ then the cycle $<\mathrm{v}_{\mathrm{k}_{0}} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; ~ ¢ \Varangle \Varangle ; \mathrm{v}_{\mathrm{k}_{\mathrm{p}}}=$
 contradicts the fact that H is a Hamilton cycle. Accordingly, H is the Hamiltonian cycle which is the concatenation of the path P from vertex v_{0} to vertex v_{d} through the permutation that took one of each from $f v_{1} ; v_{d+1} g ; f v_{2} ; v_{d+2} g ; 4 \not \subset \& ; f v_{d i} ; v_{m_{i}} g$ with the point symmetric path of P. The number of these Hamiltonian cycles is $\left(d_{i} 1\right)!£ 2^{d_{i}{ }^{1}=2}$.

 Let H be a Hamiltonian cycle of $K_{m}{ }^{-}$xed by $1 / 2$. We assume that $v_{j} v_{p} 2 H$ and $v_{j} 2 V_{s}$
 contains a cycle whose length is less than m . This is contradict the fact that H is a Hamiltonian cycle. If $p^{\prime}(j+m=2)$ mod m then $v_{(s+t d) \operatorname{modm}} v_{(s+t d+m=2) \operatorname{modm} 2 H}$ for all
$0 \cdot t \cdot m=d_{i} 1$ and H is point symmetry. Let $\left\langle v_{j} ; v_{k_{1}} ; v_{k_{2}} ; 4 \not \subset \Phi ; v_{k_{t}}>\right.$ be a shortest path from the vertex v_{j} to the vertex in V_{s} of H which does not pass through the edge $v_{j} v_{p}$. If $v_{k_{t}}=v_{p}$ then $<v_{j} ; v_{k_{1}} ; v_{k_{2}} ; \Varangle \not \subset 屯 ; v_{k_{t}} ; v_{j}>$ is a cycle in H. Since $m=d>2$ and $j v_{s} j>2$, we have that $v_{k_{t}} \in v_{p}$. Here we assume that $f v_{k_{1}} ; v_{k_{2}} ; \Varangle \Phi \Varangle ; v_{k_{t_{i}}} g$ contains the vertices $v_{k_{f}}$ and $v_{k_{g}}$ which belong to same V_{r}. If $f+1=g$ then $v_{k_{g}}=v_{\left(k_{f}+m=2\right) \operatorname{modm}}$ and
 tradiction. If $f+1 G$ gthen let P be the path $<v_{k_{f}} ; v_{k_{f+1}} ; \Varangle \not \subset \Varangle ; \mathrm{v}_{\mathrm{k}_{\mathrm{g}}}>$. Then the union of the pathes $P ; 1 / 2(P) ; 1 \not R(P) ; \Varangle \not \subset ;{ }^{1 / 2}=d_{i}^{1}(P)$ contains a cycle which does not conatain any vertex of V_{s}. Therefore $\mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \Varangle \Varangle \Phi ; \mathrm{V}_{\mathrm{k}_{\mathrm{t}_{\mathrm{i}}}}$ are contained to the di ®erent vertex set V_{r}, respectively.

 the edge that joins the vertices of V_{j} does not exist in H . Let Q be a shortest path $<\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \Varangle \not \subset \Phi ; \mathrm{v}_{\mathrm{k}_{\mathrm{p}}}>$ from v_{0} to the vertex of V_{0} such that $\mathrm{v}_{0} \in \mathrm{v}_{\mathrm{k}_{\mathrm{p}}}$ and $\mathrm{v}_{\mathrm{k}_{\mathrm{p}}} 2 \mathrm{~V}_{0}$. Here we assume that $f v_{k_{1}} ; v_{k_{2}} ; \llbracket \not \subset 屯 ; v_{k_{p_{1}}} g$ contains the vertices $v_{k_{f}}$ and $v_{k_{g}}$ which belong to same V_{r}. Let P be the path $<v_{k_{f}} ; v_{k_{f+1}} ; \$ \not \subset \& ;{v_{k g}}>$. Then the union of the pathes $P ; 1 / 2(P) ; 1 / 2(P) ; \Varangle \not \subset \Varangle ; 1_{2}^{m=d_{i}^{1}}(P)$ contains a cycle which does not conatain any vertex of V_{0}. If there is V_{r} whose vertex does not belong to Q then the union of the pathes $\mathrm{Q} ;{ }^{1 / R(Q)} \boldsymbol{1}^{1 / R}(\mathrm{Q}) ; \Varangle \not \subset 4 ; 1_{2}^{m}=d_{i}^{1}(\mathrm{Q})$ contains a cycle which does not conatain any vertex of V_{r}. Therefore, Q contains one and only one vertex of $V_{1} ; V_{2} ; \$ \Phi \$; V_{d_{i}}$, respectively. The union of the pathes $\mathrm{Q} ;{ }^{1 / 2}(\mathrm{Q}) ; \mathbb{R}_{\gtrless}(\mathrm{Q}) ; \Varangle \Varangle \Varangle ; 1_{i}^{m} \mathrm{~d}_{\mathrm{i}}^{1}(\mathrm{Q})$ becomes generally the sum of cycles and it becomes the Hamiltonian cycle if and only if ($m ; k_{p}=d$) is equal to one. Therefore, these H is generated by the path that begins with v_{0} and ends with the vertex $v_{d k}$ such that $(m ; k)=1$ and passes through the vertices which are the permutation that took one of each from $V_{1} ; V_{2} ; \Varangle \Varangle \Phi ; V_{d_{i} 1}$. Therefore, the number of such H is

$$
\frac{m}{d}^{3}{ }^{d_{i}}{ }^{1} £ A ́\left(\frac{m}{d}\right) £\left(d_{i} 1\right)!=2
$$

Then we have the results.
Lemma 4. If m is odd then the number of the ${ }^{-} x e d$ points of $3 / \pm$ is equal to the number of the ${ }^{-}$xed points of $3 /$ for all $1 \cdot \mathrm{k} \cdot \mathrm{m}_{\mathrm{i}} 1$.

Proof. We assume that k is even. Let H be a Hamiltonian cycle of $K_{m}{ }^{-}$xed by $3 / \otimes$. Then it is easily veri ${ }^{-}$ed that $1 / \frac{8}{2}(H)$ is a Hamiltonian cycle of $K_{m}{ }^{-}$xed by $3 /$. Conversely, if H is a Hamiltonian cycle of $K_{m}{ }^{-}$xed by $3 /{ }_{k}$ then ${ }^{1 / \frac{2}{2}}(\mathrm{H})$ is a Hamiltonian cycle of $K_{n}{ }^{-}$xed by $3 / 0$. Next we assume that k is odd. Let H be a^{2} Hamiltonian cycle of $K_{m}{ }^{-}$xed by $3 / 0$. Then it is easily veri ${ }^{-}$ed that $\frac{1 / 2+k}{2}(H)$ is a Hamiltonian cycle of $K_{m}{ }^{-}$xed by $3 / k$. Conversely, if H is a Hamiltonian cycle of K_{m} - xed by $3 /{ }_{k}$ then $\frac{1 / \frac{n^{+k}}{1}}{1}(H)$ is a Hamiltonian cycle of K_{n} ${ }^{-}$xed by $3 / 4$. Then we have the results.

Similarly, we have the next Lemma.
Lemma 5. If m is even then the number of the ${ }^{-}$xed points of $3 / \otimes$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 d$ for all $1 \cdot d \cdot m=2 ; 1$ and the number of the ${ }^{-}$xed points of $3 / 4$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 \mathrm{~d}+1$ for all $1 \cdot \mathrm{~d} \cdot \mathrm{~m}=2 \mathrm{i} 1$.

Lemma 6. If m is odd then the number of the ${ }^{-}$xed points of $3 / \notin$ is

$$
2^{\frac{m_{i} 3}{2}} £ \frac{\mu}{m_{i} 1}{ }^{\text {l }}!:
$$

Proof. Let H be a Hamiltonian cycle of $\mathrm{K}_{\mathrm{m}}{ }^{-}$xed by $3 / 0$. Since m is odd, the axis of the
 Then, by the symmetry, there is another path $\left\langle\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{m}_{\mathrm{i}} \mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{m}_{\mathrm{i}} \mathrm{k}_{2}} ; \pitchfork \Phi \Phi ; \mathrm{v}_{\left.\mathrm{m}_{\mathrm{i}} \mathrm{k}_{\left(m_{i}\right)}\right)=2}\right\rangle$ in H .
 Therefore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_{1}=f v_{1} ; v_{m_{i} 1} g ; V_{2}=f v_{2} ; v_{m_{i}} 2 g ; q \not q ¢ ; V_{\left(m_{i}\right)=2}=$ $f v_{\left(m_{i} 1\right)=2} ; v_{(m+1)=2} g$ is $2 \frac{m_{i} 1}{2}$ and the number of its permutations is $\frac{m_{i} 1}{2}!$. Additionally,

 cycle. Then the number of the ${ }^{-}$xed points of $3 / \otimes$ is $\frac{m_{i} 1}{2}!£ 2^{\frac{m_{i 1}}{2}} \Rightarrow$ Then we have the results.
Lemma 7. If m is even then the number of the ${ }^{-} x e d$ points of $3 / 8$ is

$$
2^{\frac{m_{i} 4}{2}} \ddagger{\frac{m_{i}}{2}}^{2}!:
$$

Proof. Let H be a Hamiltonian cycle of $\mathrm{K}_{\mathrm{m}}{ }^{-}$xed by $3 / \mathrm{Q}_{\text {. Since }} \mathrm{m}$ is even, the axis of the line symmetry is passing vertices v_{0} and $\mathrm{v}_{\mathrm{m}=2}$. Let $\left\langle\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \$ \not \subset ¢ ; \mathrm{v}_{\mathrm{k}_{\mathrm{m}}=2}>\right.$ be a path in H. Then, by the symmetry, there is another path $\left\langle v_{0} ; v_{m_{i} k_{1}} ; v_{m_{i} k_{2}} ; \phi \not \subset \phi ; v_{k_{m i} m=2}\right\rangle$
 fore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_{1}=f v_{1} ; v_{m_{i} 1} g ; V_{2}=f v_{2} ; v_{m_{i}} 2 ; q \not \subset \not \subset ; V_{\left(m_{i}\right)}=2=$ $f v_{\left(m_{i} 2\right)=2} ; v_{(m+2)=2} g$ is $2 \frac{m_{i} 2}{2}$ and the number of its permutations is ${ }^{\prime} \frac{m_{i} 2}{2}!$. Additionally,

 Hamiltonian cycle. Then the number of the ${ }^{-}$xed points of $3 / 4$ is $\frac{m_{i} 2}{2}!£ 2^{\frac{m_{i} 2}{2}}=$. Then we have the results.

Lemma 8. If m is even then the number of the ${ }^{-} x$ xed points of $3 / 4$ is

$$
2^{\frac{m_{i} 4}{2}} \pm{ }^{\mu_{3}} \frac{m}{2}!+{\frac{m_{i} 2}{2}}_{\mu^{\prime} \text { ๆ }}^{!}:
$$

Proof. Let H be a Hamiltonian cycle of $\mathrm{K}_{\mathrm{m}}{ }^{-}$xed by $3 / 4$. Since m is even, the axis of the line symmetry is not passing any vertices. We assume that $\mathrm{v}_{\mathrm{j}} \mathrm{V}_{\left(\mathrm{m}+\mathrm{i}_{\mathrm{j}}\right) \mathrm{modm}} 2 \mathrm{H}$ for some 1 . j. $m=2$. Let $\left\langle\mathrm{v}_{\mathrm{j}} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \Varangle \not \subset \dagger ; \mathrm{v}_{\mathrm{k}_{(m ; 2)}=2}\right\rangle$ be a path in H . Then, by the symmetry, there is

$\left.\left.V_{(m+1 i} k_{2}\right) \operatorname{modm} ; V_{\left(m+1_{i}\right.} k_{1}\right) \bmod m ; V_{\left(m+1_{i} j\right) \bmod m} ; V_{j}>$. Therefore, the number of H is able to calculate in the following manner. The number of the ways to choose one vertex
 $f v_{m=2} ; v_{(m+2)=2} g$ is $2 \frac{m}{2}$ and the number of its permutations is ${ }^{1} \frac{m}{2}!$. Additionally, the cycle

 H is $\frac{m}{2}!f 2^{\frac{m}{2}}=4$. Next we assume that $\left.v_{j} v_{\left(m+1_{i}\right.} j\right) \operatorname{modm} H$ for all $1 \cdot j \cdot \frac{m}{2}$. Let
$<\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \Varangle \not \subset 屯 ; \mathrm{v}_{\mathrm{k}_{\mathrm{s}}} ; \mathrm{v}_{1}>$ be a path in H. Then, by the symmetry, there is another path

 a cycle, we have $\mathrm{s}=\left(\mathrm{m}_{\mathrm{i}} 2\right) \Rightarrow 2$ and therefore H must be $<\mathrm{v}_{0} ; \mathrm{v}_{\mathrm{k}_{1}} ; \mathrm{v}_{\mathrm{k}_{2}} ; \$ \not \subset 4 ; \mathrm{v}_{\mathrm{k}_{\left(\mathrm{m}_{i}\right)=2}} ; \mathrm{v}_{1}$;
 H is able to calculate in the following manner. The number of the ways to choose one vertex from each $V_{2}=f v_{2} ; v_{m_{i}} g ; 4 \not \subset \Varangle ; V_{\left(m_{i}\right)=2}=f v_{\left(m_{i}\right)}{ }_{2}=2 ; v_{(m+4)=2} g ; V_{m=2}=f v_{m=2} ; v_{(m+2)=2} g$ is $2^{\frac{m_{i} 2}{2}}$ and the number of its permutations is $\frac{m_{i} 2}{2}$!. Additionally, the cycle $<v_{0} ; v_{k_{1}}$; $v_{k_{2}}$;

 tonian cycle. Then the number of such H is $\frac{m_{i} 2}{2}!£ 2^{\frac{m_{i} 2}{2}}=2$. Then we have the results.

The analysis of Hamiltonian cycles of K_{m} has been completed. Next we do the analysis of general C_{m}-spanning subgraphs of K_{n}.

Lemma 9. The number of the C_{m}-spanning subgraphs of K_{n} is

This is the number of the ${ }^{-}$xed points of $1 / 8$.
Proof. The number of ways to select $\frac{n}{m}$ groups of size m from a collection of n items is

mil
$\mathrm{i}=1$
$(\mathrm{~m}$
i
l
1)
$\frac{\left(\mathrm{m}_{\mathrm{i}} 1\right)!}{2}$. Then we have the results.

Lemma 10. The ${ }^{-}$xed points of $1 / R$ for each $0<i<n$ is $R_{n ; 0}^{m}$.

Since $(\mathrm{n} ; \mathrm{i})=\mathrm{d}$, the equation $\mathrm{xi}{ }^{\prime} \mathrm{m}(\bmod \mathrm{n})$ has a solution if and only if d divides m . Then we have $1 / \mathrm{R}\left(\mathrm{V}_{\mathrm{k}}\right)=\mathrm{V}_{\mathrm{k}}$ for $0 \cdot \mathrm{k} \cdot \mathrm{d}_{\mathrm{i}}$ 1. Let H be a C_{m}-spanning subgraph of K_{n} which is ${ }^{-}$xed by $1 / 2$ and let G be a K_{m}-spanning subgraph of K_{n} which change each component C_{m} of H into K_{m}. Then G is also ${ }^{-}$xed by $1 / 2$. We divide $f V_{0} ; V_{1} ; V_{2} ; \phi \Phi \Phi ; V_{d_{i}} g$ into the subsets $W_{1} ; W_{2} ; W_{3} ; \$ \Varangle \Varangle ; W_{s}$ in the following manner:
 and any component of the restriction to the proper subset of W_{j} of G is not K_{m} for each 1 - j • s.

By the proof of Lemma 3 in [4] we have that $m^{\prime} 0\left(\bmod p_{k}\right)$ and $\frac{n}{d}{ }^{\prime} 0\left(\bmod \frac{m}{p_{k}}\right)$ for $1 \cdot k \cdot s$ and the number of such G is $Y^{S^{3}} \frac{p_{k} n^{\prime}}{d m}{ }^{p_{k i} 1}$. Each component C_{m} of
$H j V_{0}^{j}\left[V_{1}^{j}\left[\$ \measuredangle \measuredangle\left[V_{p i l}^{j}\right.\right.\right.$ is ${ }^{-x e d}$ by $1 / \beta$ when we change the name of vertices properly. $H j V_{0}^{j}\left[V_{1}^{j}\right.$ [$\Varangle \measuredangle Ф\left[V_{p_{j} i}^{j}\right.$ is $^{-} x e d$ by $1 / \beta_{j}$ when we change the name of vertices properly.

The number of the way to taking of such C_{m} is $R_{m ; p_{j}}^{m}$. Then the number of such H is $Y^{s} \mu_{3} \frac{p_{k} n^{\prime}}{d m}{ }^{p_{k i} 1} \not \mathrm{~m}_{m ; p_{k}}^{m}$. In this case we have that $X_{k=1}^{s} p_{k}=d$ and p_{k} is a divisor of m $\mathrm{k}=1$
and $\frac{\mathrm{n}}{\mathrm{d}}$

Let $d={ }_{j=1}^{X_{j}} s_{j} p_{j}$ be a representation of d as the sum of divisors p_{j} of m. The number of ways to divide $f V_{0} ; V_{1} ; V_{2} ; \Varangle \measuredangle \Phi ; V_{d_{i}} g$ into s_{1} pieces of p_{1}-element set, s_{2} pieces of p_{2}-element set, s_{3} pieces of p_{3}-element set, $\$ \not \subset \Phi, s_{1}$ pieces of p_{1}-element set is

$$
\frac{d!}{\left(p_{j}!\right)^{s_{j}} s_{j}!}
$$

Accordingly, the number of all the possibilities of H is
0 1

$s_{j}, 1 ; p_{j} j m$ for $1 \cdot j \cdot l \quad j=1$
We have the results.
N otation 5. Let $S_{n ; i}^{m}$ be the number of the ${ }^{-}$xed points of $3 / 4$ for X_{n}^{m}.
Remark 2. By the following lemmas we will see that $S_{n} ; \mathrm{i}$ agrees with the one which is given in Notation 4.
Lemma 11. If n is odd then the number of the ${ }^{-} x$ ped points of $3 / \otimes$ is equal to the number of the ${ }^{-}$xed points of $3 / k$ for all $1 \cdot k \cdot n_{i} 1$.
Proof. We assume that k is even. Let H bea C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \theta$. Then it is easily veri- ed that $\frac{1 / \frac{2}{2}}{(H)}$ is a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 2$. Conversely, if H is a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 /{ }_{k}$ then $1_{\frac{k}{2}}{ }^{1}(H)$ is a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \theta$. Next we assume that k is odd. Let ${ }^{2} H$ be a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \otimes$. Then it is easily veri ${ }^{-}$ed that $\frac{1 / \frac{\partial+k}{2}(H)}{}\left(H a_{m}\right.$-spanning subgraph of K_{n} ${ }^{-}$xed by $3 / \&$. Conversely, if H is a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 /\left\{\right.$ then $1 / \frac{2_{+k}^{2}}{1}(H)$ is a C_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / \otimes$. Then we have the results.

Similarly, we have the next Lemma.
Lemma 12. If n is even then the number of the ${ }^{-}$xed points of $3 / \otimes$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 d$ for all $1 \cdot d \cdot n=2 ; 1$ and the number of the ${ }^{-}$xed points of $3 / 4$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 d+1$ for all $1 \cdot d \cdot n=2 ; 1$.
Lemma 13. If n is odd and m is odd then

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}=2^{\frac{m_{i} 3}{2}} £{\frac{\mathrm{~m}_{\mathrm{i}} 1}{2}}^{\text {ๆ }} \text { ! } \\
& \text { and } \\
& S_{n ; 0}^{m}=\frac{\mu_{\frac{n_{i} 1}{}}^{2} \text { q }}{\frac{m_{i} 1}{2}} £ S_{n_{i m ; 1}^{m}}^{m} £ S_{m ; 0}^{m} \quad \text { if } n, 2 m:
\end{aligned}
$$

Proof. By Lemma 6 we have that

$$
\mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}=2^{\frac{m_{i} 3}{2}} £{\frac{\mathrm{~m}_{\mathrm{i}} 1}{2}}^{\text {q }} \text { !: }
$$

We assume that $n, 2 m$. Let H be a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 0$. Let C be the component of H which contains vertex $\mathrm{v}_{0} . \mathrm{H}_{\mathrm{i}} \mathrm{C}$ naturally becomes C_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a C_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$. Since $n ; m$ is even, the axis of the line symmetry is not passing any vertices. If we take one vertex of C_{m} in the position of v_{0} of the graph which we will construct and divide the remaining vertices of C_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / \otimes$ when we join the vertices of $\mu_{n_{m} 1}$ shf 2 ch that it is ${ }^{-}$xed by $3 / \otimes$. The number of ways to distribute the vertices of C_{m} is $\frac{\frac{n_{i} 1}{2} 1}{2}$ and the number of the way of joinning of new vertices is $\mathrm{S}_{\mathrm{m} ; 0}^{m}$. Then we have the results.

Lemma 14. If n is even and m is odd then

$$
S_{n ; 0}^{m}=\frac{\mu_{\frac{n_{i} 2}{2}}}{\frac{m_{i 1}}{2}} £ S_{n_{i} m ; 0}^{m} £ S_{m ; 0}^{m} \text {. }
$$

Proof. Let H be a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \otimes$. Since n is even, the axis of $3 / \otimes$ passes v_{0} and $v_{\frac{n}{2}}$. Let C be the component of H which contains vertex $v_{\frac{n}{2}}$. Since m is odd, C does not contain the vertex $v_{0} . \mathrm{H}_{\mathrm{i}} \mathrm{C}$ naturally becomes C_{m}-spanning subgraph of $\mathrm{K}_{n_{i} m}$ ${ }^{-}$xed by $3 / \otimes$ when we change the name of the vertices. Conversely, let H be a C_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / \otimes$. Since $n_{i} m$ is odd, the axis of $3 / \otimes$ passes the vertex v_{0}. If we take one vertex of C_{m} in the position of $V_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of C_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \otimes$ when we join the vertices $\mu_{n_{i} 2} C_{n q}$ such that it is ${ }^{-}$xed by $3 / 0$. The number of ways to distribute the vertices of C_{m} is $\frac{m_{i} 1}{2}$ the number of the way of joining of new vertices is $\mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}$. T hen we have the results. ${ }^{2}$.

Lemma 15. If n is even and m is odd then

$$
\begin{aligned}
& S_{2 m ; 1}^{m}=2_{\tilde{A}_{i 1}}^{m_{i}} £ \frac{\left(m_{i} 1\right)!}{2} \\
& S_{n ; 1}^{m}=i_{k=0} \frac{n_{n_{i} 2}}{} \notin! \\
& k!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)! \text { and } \\
&
\end{aligned}
$$

Proof. We assume that $n=2 m$. If we take one vertex of C_{m} in the position of $V_{\frac{n}{2}}$ and one vertex of another C_{m} in the position of $v_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two C_{m} to both sides of the perpendicular bisector of $\mathrm{V}_{\frac{n}{2} ; 1}$ and $\mathrm{V}_{\frac{n}{2} i_{1}}$ permitting redundancy and symmetrically regarding the perpendicular bisector then the resulting graph becomes a C_{m}-spanning subgraph of $\mathrm{K}_{2 \mathrm{~m}}{ }^{-}$xed by $3 / 4$ when we join the vertices of two C_{m} as it becomes symmetric regarding the perpendicular bisector of $V_{\frac{n}{2} i}$ and $V_{\frac{n}{2} i 1}$. The number of ways to distribute the vertices of two C_{m} is
$x_{i} \frac{\left(m_{i} 1\right)!}{k!\left(m_{i} k_{i} 1\right)!}=2^{m_{i} 1}$ and the number of the way to joining the vertices of two C_{m} is
$\frac{\left(m_{i} 1\right)!}{2}$. Then we have that

$$
\mathrm{S}_{2 \mathrm{~m} ; 1}^{m}=2^{\mathrm{m}_{\mathrm{i}} 1} £ \frac{\left(\mathrm{~m}_{\mathrm{i}} 1\right)!}{2}:
$$

We assume that $n, 4 m$. Let H be a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$. Since n is even, the axis of $3 / 4$ does not pass any vertices. Since m is odd, there is no component which contains both $V_{\frac{n}{2}}$ and $V_{\frac{n}{2}}+1$. Let L_{0} be the component which contains vertex $V_{\frac{n}{2}}$ and L_{1} be the component which contains vertex $V_{\frac{n}{2}+1}$. H i L_{0} i L_{1} naturally becomes C_{m}-spanning subgraph of $\mathrm{K}_{n_{i} 2 m}{ }^{-}$xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a C_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}_{\mathrm{i}} 2 \mathrm{~m}}{ }^{-}$xed by $3 / 4$. Since $\mathrm{n}_{\mathrm{i}} 2 \mathrm{~m}$ is even, the axis of $3 / 4$ does not pass any vertices. If we take one vertex of C_{m} in the position of $V_{\frac{n}{2}}$ and one vertex of another C_{m} in the position of $V_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two C_{m}^{2} between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a Cm_{m} spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$ when we join the vertices of two C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_{m} is ${ }_{k=0} \frac{i_{n_{i} 2}^{2}!}{k!\left(m_{i} k_{i} 1\right)!\left(\frac{\left(n i_{i} 2 m\right.}{2}\right)!}$ and the number of the ways to joining the vertices of two C_{m} is $\frac{\left(m_{i} 1\right)!}{2}$. Then we have the results.

Lemma 16. If n is even and m is even then

$$
\begin{aligned}
& S_{n ; 0}^{m}={\frac{\mu}{\frac{n_{i} 2}{2} q}}_{\frac{m_{i} 2}{2}}^{q} £ S_{n_{i} m ; 1}^{m} £ S_{m ; 0}^{m} \quad \text { if } n, 2 m:
\end{aligned}
$$

Proof. By Lemma 7 we have that

$$
\mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}=2^{\frac{m_{i} 4}{2}} £{\frac{\mathrm{~m}_{\mathrm{i}} 2^{\|}}{2}}_{!}^{\text {I }}
$$

We assume that $n, 2 m$. Let H be a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \oplus$. Since n is even, the axis of $3 / \otimes$ passes v_{0} and $v_{\frac{n}{2}}$. Let C be the component of H which contains vertex v_{0} and $\mathrm{v}_{\frac{n}{2}}$. H i C naturally becomes C_{m}-spanning subgraph of $\mathrm{K}_{n_{i}}{ }^{-}$xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a C_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take two vertices of C_{m} in the positions of v_{0} and $v_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of C_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / \otimes$ when we join the vertices of C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_{m} is $\frac{\frac{m_{i} 2}{2}}{2}$ and the number of the ways to joining the vertices of C_{m} is $S_{m ; 0}^{m}$. Then we have the results.

Lemma 17. If n is even and m is even then

$$
\begin{aligned}
& S_{m ; 1}^{m}=2^{\frac{m_{i} 4}{2}} £ \frac{m}{2}_{\mu_{3}}^{m^{\prime}}+{\frac{m_{i} 2^{\text {q }}}{2}}_{\text {! }}^{\text {! }} \\
& S_{2 m ; 1}^{m}=2^{m_{i} 1} £ \frac{\left(m_{i} 1\right)!}{2}+\frac{\mu_{\frac{2 m_{i} 2}{2}}^{q^{n}}}{\frac{m_{i}}{2}} £ S_{m ; 1}^{m} £ S_{m ; 1}^{m}
\end{aligned}
$$

Proof. By Lemma 8 we have that

$$
\mathrm{S}_{\mathrm{m} ; 1}^{\mathrm{m}}=2^{\frac{m_{i} 4}{2}} £ \frac{\mu_{3}}{\frac{\mathrm{~m}}{2}}!+{\frac{\mathrm{m}_{\mathrm{i}} 2}{2}}_{!}^{\text {ๆी }} \text { ! : }
$$

We assume that $n, 3 m$. We study two kinds of constitutions that compose C_{m}-spanning subgraphs of $K_{n}{ }^{-}$xed by $3 / 4$ inductively.

The ${ }^{-}$rst method is the following:
Let H be a C_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take two vertices of C_{m} in the positions of $V_{\frac{n}{2}}$ and $V_{\frac{n}{2}}+1$ of the graph which we will construct and divide the remaining vertices of C_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$ when we join the vertices of C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_{m} is $\frac{i_{i} n_{2}}{\frac{m_{i}}{2}} 4$ and the number of the ways to joining the vertices of C_{m} is $S_{m ; 1}^{m}$. Similarly, if we take two vertices of C_{m} in the positions of v_{0} and v_{1} of the graph which we will construct and divide the remaining vertices of C_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$ when we join the vertices of C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of C_{m} is $\frac{i_{n_{i}} C_{i}}{\frac{m_{i}^{2}}{2}}$ and the number of the ways to joining the vertices of C_{m} is $S_{m ; 1}^{m}$. A ccordingly, it is possible $2 £ \frac{i n_{i} 2}{\frac{m_{i 2}^{2}}{2}} £ S_{n_{i} m ; 1}^{m} £ S_{m ; 1}^{m}$ C_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$ as a whole with these constitutions.

The second method is the following:
Let H be a C_{m}-spanning subgraph of $K_{n_{i} 2 m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take one vertex of C_{m} in the position of $V_{\frac{n}{2}}$ and one vertex of another C_{m} in the position of $V_{\frac{n}{2}}+1$ of the graph which we will construct and distribute the remaining vertices of two C_{m} between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$ when we join the vertices of two C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_{m} is $\mathrm{P}_{\mathrm{m}=0} \mathrm{~m}_{\mathrm{i}} \frac{\left(\frac{n_{i} 2}{2}\right)!}{\mathrm{k}!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)!}$ and the number of the ways to joining the vertices of two C_{m} is $\frac{\left(m_{i} 1\right)!}{2}$. Similarly, if we take one vertex of C_{m} in the position of v_{0} and one vertex of another C_{m} in the position of v_{1} of the graph which we will construct and distribute the remaining vertices of two C_{m} between the vertices of H permitting redundancy and symmetrically regarding the axis
then the resulting graph becomes a C_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$ when we join the vertices of two C_{m} as it becomes symmetric regarding the axis. The number of ways to distribute the vertices of two C_{m} is $\left.\mathrm{P}_{\mathrm{m}=0} \frac{\left(n_{i} 2\right.}{2}\right)!\left(m_{i} k_{i} 1\right)!\left(\frac{n i_{i}^{2 m}}{2}\right)!$ and the number of the ways to joining the vertices of two C_{m} is $\frac{\left(m_{i} 1\right)!}{2}$. Therefore, by this construction, we can construct $2 £{ }_{k=0}^{n x_{i} 1} \frac{\left(\frac{n_{i} 2}{2}\right)!}{k!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)!} £ \frac{\left(m_{i} 1\right)!}{2} C_{m}$-spanning subgraph of $K_{n}-x$ xed by $3 / 4$. By these two constructions, we can construct

C_{m}-spanning subgraphs of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$. Clearly there are doubling two pieces of each. Also, it is clear to be able to compose all the C_{m}-spanning subgraphs of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$ by these methods. Next we assume that n is equal to 2 m . Then we can similarly construct all C_{m}-spanning subgraphs of $\mathrm{K}_{2 \mathrm{~m}}{ }^{-}$xed by $3 / 4$ by these two constructions if we set H be a empty graph in the case of the second constitution. We have the results.

Then we completely proved T heorem 2.
Remark 3. We calculated the non-equivarent Hamiltonian cycles of $K_{m}, m \cdot 11$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

$n=3$	1
$n=4$	2
$n=5$	4
$n=6$	12
$n=7$	39
$n=8$	202
$n=9$	1219
$n=10$	9468
$n=11$	83435

Remark 4. We calculated the non-equivalent C_{4}-spanning subgraphs of $K_{n}, n \cdot 12$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

$n=4$	2
$n=8$	39
$n=12$	7003
R ef er ences	

[1] J onathan Gross and J ay Yellen, Graph Theory and Its Applications, CRC Press, B oca Raton, 1999
[2] C. L. Liu, Introduction to Combinatorial Mathematics, M cGraw-Hill B ook Company, New Y ork J apanese translation: K youritu Publishing Co., Tokyo, 1972.
[3] Osamu Nakamura, On the number of the non-equivalent 1-regular spanning subgraphs of the complete graphs of even order, to appear in SCMJ
[4] Osamu Nakamura, On the number of the non-equivalent K_{m}-spanning subgraphs of the complete graphs with order km, to appear in SCMJ

Department of M athematics
Faculty of Education
K ochi University
AKEBONOCHO 2-5-1
KOCHI, JAPAN
osamu@cc:kochi-u:ac:j p

