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Abstract. In this paper we show the Herglotz-Petrovskii-Leray formula for the bound-

ary value problem, which will be useful for investigating the existence of the lacuna for

the mixed problem.

1. Introduction.

Huygens' principle is one of the properties of the wave eqution. This phenomenon is that

the fundamental solution is identically zero in the propagation cone when the space-time

dimension is even (� 4). One of the generalization of Huygens' principle is the theory

of lacuna. Let L be a maximal connected open set where the fundamental solution is

holomorphic. We say that L is a lacuna when the fundamental solution has C1-extension

to L. In particular, if the fundamental solution is identically 0 in L, we say L is a strong

lacuna. Hence, Huygens' principle means the fundamental solution of the wave equation on

Rn has a strong lacuna in the propagation cone when n is even (� 4). The theory of lacuna

begins with Petrovskii's article, and Leray, Atiyah, Bott and G�arding have developed it. In

case of the initial value problem for homogeneous hyperbolic partial di�erential equations

with constant coeÆcient, the propagation of the singularities and the theory of lacuna has

been almost completed by their works. Wakabayashi investigated the propagation of the

singularities for the mixed problem ([2],[3]). However, in case of the boundary (or mixed)

value problem, the theory of lacuna is untouched untill now.

In this paper we can not establish the theory of lacuna for the boundary value problem,

but we show the Herglotz-Petrovskii-Leray formula for the boundary value problem, which

will be useful for investigating the existence of the lacuna for the mixed problem.

2. Problem and assumptions.

Let us state our problem and assumptions. We owe these to Wakabayashi [2],[3]. We

denote x0 = (x1; : : : ; xn�1) for x = (x1; : : : ; xn) in Rn and consider the boundary value

problem 8<:P (D)Fk0 (x) = 0; x 2 fx 2 Rn ; xn > 0g;

Dj�1
n

Fk0(x)
���
xn=0

= Æjk0Æ(x
0); x0 2 Rn�1; 1 � j � �:

(BP)
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Here k0 (1 � k0 � �) is �xed. P (D) is a homogeneous di�erential operator of n variables

whose order is m. The number � of boundary conditions will be determined later. D means
1
i

@

@x
. We shall assume

(i). P (�) is fanctorized in the form

P (�) = p1(�)
�1 : : : pq(�)

�q ;

where pj(�) (1 � j � q) are di�erent strictly hyperbolic irreducible polynomials with

respect to # = (1; 0; : : : ; 0).

(ii). fx 2 Rn ; xn = 0g is non-characteristic with respect to P (�), that is, P (0; 1) 6= 0D

Fk0(x) expresses the propagation of the wave in case the delta shock is given at fx 2

Rn ; xn = 0g. Next we prepare to describe Fk0(x).

Let �0(P; #) be the section of �(P; #) by f�n = 0g, that is,

�0(P; #) = f�0 2 Rn�1 ; (�0; 0) 2 �(P; #)g:(2.1)

Here �(P; #) denotes the connected component of Rn n f� 2 Rn ; P (�) = 0g which contains

#. �(P; #) is called the hyperbolic cone of P .

If we put

P (�) =

mX
j=0

Pm�j(�
0)�n

j ;(2.2)

then P0(�
0) = P (0; 1) is non-zero constant by assumption (ii). Thus P (�) is a polynomial

of degree m with respect to �n. When � 0 belongs to Rn�1 � i�0(P; #), P (� 0; �) = 0 has no

real roots with respect to �. Therefore we can denote the roots by

�+1 (�
0); : : : ; �+

�
(� 0); ��1 (�

0); : : : ; ��
m��

(� 0);

Im��
k
(� 0) ? 0:

(2.3)

Of course, � is invariable when � 0 belongs to Rn�1 � i�0(P; #). This number � determines

the number of boundary conditions of (BP).

We now de�ne the Lopatinskii determinant R(� 0) for (BP). We put

R(� 0) = detL(� 0);(2.4)

L(� 0) =

�
1

2�i

I
�j+k�2P+(�

0; �)�1 d�

�
j;k=1;:::;�

;(2.5)

P+(�
0; �) =

�Y
j=1

(� � �+
j
(� 0))(2.6)

for � 0 2 Rn�1 � i�0(P; #). Here the path of integration in (2.5) is a Jordan curve which

encloses all roots of P+(�
0; �) = 0 in complex plain with respct to �. (In our problem (BP),

R(� 0) � 1.) Then the forward fundamental solution Fk0(x) is written in the form

Fk0(x) = (2�)�ni�1
�X

j=1

Z
Rn�i�

eix�Rjk0(�
0)�j�1

n
P+(�)

�1 d�; � 2 �0(P; #) �R:(2.7)

Here Rjk0(�
0) is the (k0; j)-cofactor of L(� 0) and homogeneous of degree � � k0 � j + 1.

Rn � i� is oriented by d� > 0. Fk0(x) is interpreted in the distribution sense with respect
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to x. That is

hFk0(�); 'i = i�1
�X

j=1

Z
Rn

Rjk0(�
0 � i�0)(�n � i�n)

j�1

� P+(� � i�)�1F�1'(� � i�) d�

(2.8)

for ' 2 C10 (fxn > 0g). F�1'(� � i�) denotes (2�)�n
R
eix(��i�)'(x) dx. The word \for-

ward" means

suppFk0(x) � fx 2 Rn ; x# � 0g:(2.9)

The formula (2.8) of Fk0(x) is not suitable for investigating the existence of lacuna.

Therefore, we shall change (2.8) into suitable form, Herglotz-Petrovskii-Leray formula.

Herglotz-Petrovskii-Leray formula immediately gives suÆcient condition for Fk0 to have

lacuna. Hence, our aim is to transform (2.8) into the Herglotz-Petrovskii-Leray formula for

the boundary value problem.

3. The vector field v.

In case of the initial value problem, we have to deform the integral path, keeping away

from the characteristics of P (�) when we derive the Herglotz-Petrovskii-Leray formula from

the integral formula of the fundamental solution. However, in case of the boundary value

problem, P+(�) in integrand may have the branch point when it is analytically continued

to a wider domain than Rn � i�0(P; #). So we have to keep away from not only the

characteristics but also the branch set of P+(�). Paying attention to this point, let us de�ne

the local hyperbolic cone ��(P+; #) of P+ (due to Wakabayashi) and de�ne a vector �eld v

such that v(�) 2 ��(P+; #) for all �.

First we give the de�nition of the localization P�(�) of homogeneous hyperbolic polyno-

mial P (�) and the local hyperbolic cone.

De�nition 3.1. The localization P�(�) of the homogeneous hyperbolic polynomial P (�) is

de�ned by the �rst non-vanishing homogeneous term in Taylor expansion

P (� + ��) = �pP�(�) +O(�p+1) as � ! +0:(3.1)

The local hyperbolic cone ��(P; #) is de�ned by the connected component of Rn n f� 2

Rn ; P�(�) = 0g which contains #.

Then, we can get the following lemma by the lower semi-continuity of the local hyperbolic

cone.

Lemma 3.2. Let �0 2 Rn n f0g and let M be a compact set in ��0(P; #). Then there exist

a conic neighborhood � of �0 and a positive number t0 such that

P (� � itj�j�) 6= 0 for � 2 �; � 2M; 0 < t � t0:(3.2)

Let �0 2 Rn�1 be arbitrarily �xed and let fjkg1�k�r1be the set of suÆxes such that

pjk (�
0; �) = 0 has a real multiple root �k. Then we put

_��0 �R =

r1\
k=1

�(�0;�k)(pjk ; #):(3.3)

When r1 = 0, we put _��0 = Rn�1. _��0 corresponds to the local hyperbolic cone of the

branch set.

P+ is holomorphic in Rn � i�0(P; #). However, we can analytically continue P+ to a

wider domain.
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Lemma 3.3. Let �0
0
2 Rn�1 n f0g and let M be a compact set in _��00 . Then there exist a

conic neighborhood � of �0
0
and positive numbers C; t0 such that P+(�) is holomorphic in

� 2 ��C, where

� = f� 0 = �0 � itj�0j�0 ; �0 2 �; �0 2M; 0 < t � t0g:(3.4)

RemarkF� � Rn�1� i�0(P; #). Therefore, P+ is analytically continued to a wider domain

��C.

Proof. We follow the proof of Lemma 3.2 in Wakabayashi[3].

Let � 0 2 Cn�1. We represent the roots of pj(�
0; �) = 0 as continuous functions of � 0 by

�+
j1(�

0); : : : ; �+
jl
+

j

(� 0); ��
j1(�

0); : : : ; ��
jl
�

j

(� 0);(3.5)

where

Im��
jk
(� 0) ? 0; (� 0 2 Rn�1 � i�0(P; #)):(3.6)

Of course, l+
j
; l�
j
is invariable when � 0 2 Rn�1 � i�0(P; #). It suÆces to prove that

f�+
jk
(� 0)g

k=1;:::;l
+

j

\ f��
jk
(� 0)g

k=1;:::;l
�

j

= ?; for � 0 2 �:(3.7)

Let 1 � h � l+
j
be �xed. If �+

jh
(�0

0
) is a imaginary root or a simple real root of pj(�

00; �) = 0,

it follows that

�+
jh
(� 0) 6= ��

jk
(� 0); 1 � k � l�

j
; for � 0 2 �(3.8)

when t0(> 0) is small enough. So we investigate the case where �+
jh
(�0

0
) is a real multiple

root of pj(�
00; �) = 0.

Let ~M be a compact set in _��00 � R. Then there exist a conic neighborhood ~� and a

positive number t0 such that

pj(� � itj�j�) 6= 0 for � 2 ~�; � 2 ~M; 0 < t � t0(3.9)

by virtue of _��00 �R � �
(�00;�

+

jh
(�00))

(pj ; #) and Lemma 3.2. If we choose ~M = M � f0g,

then we have

pj(�
0 � itj�0j�0; �n) 6= 0 for � 2 ~�; � 2M; 0 < t � t0:(3.10)

Therefore, it follows that

Im��
jk
? 0 when � 0 2 �(3.11)

for any k.

Now we give the de�nition of the localization of P+.

De�nition 3.4. Let � be an open connected cone in RnCand let f be a homogeneous holo-

morphic function in Rn � i�. Then the localization f�0 of f at �0 2 Rn is de�ned by the

�rst non-vanishing homogeneous term in Puiseux expansion

f(�0 + t�) = tpf�0(�) + o(tp) as t! +0(3.12)

for � 2 Rn � i�.

When we put � = �0(P; #)�R in De�nition 3.4, we can localize P+ and de�ne the local

hyperbolic cone ��(P+; #) of P+. This de�nition is due to Wakabayashi and so is the proof

of localizationability of P+. Put

(3.13) ��(P+; #) = the connected component of f� 2 _��0 �R ; P+�(�i�) 6= 0g

which contains #:
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We de�ne the dual cone �Æ
�
(P+; #) of ��(P+; #) by

�Æ
�
(P+; #) = fx 2 Rn ; x� � 0 for all � 2 ��(P+; #)g:(3.14)

Proposition 3.5. Let Fk0(x) be the forward fundamental solution of (BP). Then, we have

sing supp
A
Fk0 �

[
�2Rnnf0g

�Æ
�
(P+; #):(3.15)

Proof. Let x0 62 [�2Rnnf0g�
Æ

�
(P+; #), and let �0 2 Rn n f0g. Then there exist a conic

neighborhood � of �0, a neighborhood U of x0, � 2 ��0(P+; #), and positive numbers Æ; t0
such that

x� < 0 when x 2 U;(3.16)

jP+(� � itj�j�)j � Æj�j� when � 2 �; 0 < t � t0:(3.17)

In fact, by the de�nition of �Æ
�
(P+; #) there exist � 2 ��0 (P+; #) and U which satis�es

(3.16). Since P+�0(�) 6= 0 and P+ is homogeneous of degree � and continuous, (3.17) holds.

Let �l (0 � l � N) be closed proper convex cones which satisfy Rn =
S
N

l=0�l and that

the measure of �k\�l (k 6= l) equals to 0. Here �0 is a conic neighborhood of �
0 satisfying

�0 � �. Let � 2 �0(P; #) �R, and let

Fk0;l(x) = (2�)�ni�1
�X

j=1

Z
�l�i�

eix�Rjk0 (�
0)�j�1

n
P+(�)

�1 d�:(3.18)

Then Fk0(x) =
P

N

l=0 Fk0;l(x), and Fk0;l(x) for l � 1 can be analytically continued in

Rn + i�Æ

l
.

Next, by using (3.17) we can transform the chain of integration of Fk0;0 as follows.

Fk0;0(x) = (2�)�ni�1
�X

j=1

Z
�0�i�

eix�Rjk0(�
0)�j�1

n
P+(�)

�1 d�

= (2�)�ni�1
�X

j=1

Z
�0�i�

eix�Rjk0 (�
0)�j�1

n
P+(�)

�1 d�

+ (2�)�ni�1
�X

j=1

Z
C

eix�Rjk0(�
0)�j�1

n
P+(�)

�1 d�;

(3.19)

where

C = f� 2 Cn ; � = � � i(t� + (1� t)�); � 2 @�0; 0 � t � 1g;(3.20)

� belongs to ��0(P+; #) and satis�es (3.16),(3.17). Dividing C into closed convex cones, we

have

Fk0(x) =

N
0X

j=0

Gj(x) + (2�)�ni�1
�X

j=1

Z
�0�i�

eix�Rjk0(�
0)�j�1

n
P+(�)

�1 d�(3.21)

by (3.18),(3.19). Here Gj(x) (0 � j � N 0) are holomorphic functions in Rn + iUj , and Uj

are open convex cone in Rn satisfying

Uj \ fy 2 R
n ; �0y < 0g 6= ?:(3.22)

Since the second term of right-hand side of (3.21) is holomorphic in U by virtue of (3.16),

it follows that

(x0; �0) 62WFA(Fk0):(3.23)
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�0 is arbitrarily �xed. Therefore we have

x0 62 sing suppAFk0 :(3.24)

We can prove the following corollary in the same way as Lemma 6.7 in Atiyah-Bott-

G�arding[1] replacing a by P+.

Corollary 3.6. When x 62 [�2Rnnf0g�
Æ

�
(P+; #), there exists a C1 real vector �eld v(�)

which satis�es next conditions.

� When � 2 R n f0g,

v(��) = j�jv(�):(3.25)

� For any � 2 Rn n f0g,

v(�) 2 ��(P+; #) \ f� 2 R
n ; x� = 0g:(3.26)

� When � 2 Rn n f0g; 0 < t � 1,

P+(� � itv(�)) 6= 0:(3.27)

We denote the family of the C1 real vector �elds satisfying (3.25),(3.26),(3.27) by

V (P+;X).

4. The Herglotz-Petrovskii-Leray formula.

Now we de�ne the function �s(z) which appeared in Atiyah-Bott-G�arding[1].

Let z; s 2 C (0 < arg z < �) and put

�s(z) = �(�s)e��iszs; s 6= 0; 1; : : : :(4.1)

When s = 0; 1; : : : , we put

�s(z) =
d

dt
ft�s+t(z)g

���
t=0

= zs(log z�1 + cs + �i)=s!;

(4.2)

where cs = �0(1) +
P

s

k=1 k
�1 (s 6= 0); c0 = �0(1). �s(z) satis�es

d

dz
�s(z) = �s�1(z) for all

s. When Re s < 0, �s(z) is i
�s times the Fourier-Laplace transform of ��s�1+ , that is,

�s(z) = i�s
Z 1

0

��s�1ei�z d�;(4.3)

where we choose i�sjs=�1 = i. Since �s(z) is holomorphic in fIm z > 0g for all s, the

distributions limy!+0 �s(x+ iy) exist. We denote limy!+0 �s(x+ iy) by �s(x+ i0). When

we put

�q(x) = (2�i)�1f�q(x + i0)� (�1)q�q(�x+ i0)g; q = 0;�1;�2; : : : ;(4.4)

we have

�q(x) =

(
2�1(sgnx)xq=q!; q = 0; 1; : : : ;

Æ(�q�1)(x); q = �1;�2; : : : :
(4.5)

Making use of one of v in V (P+;X) and �s, let us transform Fk0 in (2.7).
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Theorem 4.1. Let x =2 [�2Rnnf0g�
Æ

�
(P+; #) [ fx# < 0g. Then Fk0(x) is holomorphic and

transformed in the form

(4.6) Fk0(x) = (2�)1�n
�X

j=1

iq
Z
(�)=1

2�1(sgnx�)
(x�)q

q!
Rjk0(�

0)�j�1
n

P+(�)
�1 !(�);

� = � � iv(�)

when q = k0 � n � 0 and

(4.7) Fk0(x) = (2�)1�n
�X

j=1

iq
Z
(�)=1

Æ(�q�1)(x�)Rjk0 (�
0)�j�1

n
P+(�)

�1 !(�);

� = � � iv(�)

when q = k0�n < 0. Here (�) is a C1 function satisfying (��) = j�j(�) for � 2 R and

d j=1 6= 0. f(�) = 1g is oriented by !(�) > 0. !(�) is the Kronecker form, that is,

!(�) =

nX
j=1

(�1)j�1�jd�1 ^ � � � ^ cd�j ^ � � � ^ d�n:(4.8)

RemarkFThe Herglotz-Petrovskii-Leray formula is represented by integration over certain

homology class in projective space. f(�) = 1g can represent all chains which is homologous

to (n � 1)-dimensional sphere fj�j = 1g in (Rn n f0g)=R+. Therefore, we employ (�).

Proof. When x =2 [�2Rnnf0g�
Æ

�
(P+; #), we can transform the chain Rn � i� of integration

in (2.7) into one of f� � i(v(�) � "j�j#) ; v 2 V (P+;X)g by Stokes' formula. So we have

(4.9) Fk0(x) = (2�)�ni�1
�X

j=1

Z
Rn

eix�Rjk0(�
0)�j�1

n
P+(�)

�1 d�;

� = � � i(v(�) � "j�j#):

Here "(> 0) is small enough to satisfy P+(� � i(v(�) � "j�j#)) 6= 0 when � 2 Rn n f0g.

Take � > 0 and � such that � = ��; (�) = 1, and consider (�; �) a system of coordinates

of Rn n f0g. Since Rjk0(�
0) and P+(�) are homogeneous of degree � � k0 � j + 1 and �

respectively, it follows that

(4.10) Fk0(x) = (2�)�ni�1
�X

j=1

Z
1

0

Z
(�)=1

��k
0+n�1ei�x�Rjk0(�

0)�j�1
n

P+(�)
�1 d� ^ !(�);

� = � � i(v(�) � "j�j#):

By using (4.2) and (4.3), and making radial integration, we have

(4.11) Fk0(x) = (2�)�ni�1
�X

j=1

ik
0
�n

Z
(�)=1

�k0�n(x�)Rjk0 (�
0)�j�1

n
P+(�)

�1 !(�);

� = � � i(v(�) � "j�j#):
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Here f(�) = 1g has the orientaion !(�) > 0 induced by d� > 0. Since x =2 fx# < 0g,

Fk0(�x) = 0 by (2.9). Therefore we obtain

Fk0(x) = Fk0(x) � (�1)k
0
�nFk0(�x)

= (2�)�n
�X

j=1

ik
0
�n�1

nZ
(�)=1

�k0�n(x�)Rjk0 (�
0)�j�1

n
P+(�)

�1 !(�)

� (�1)k
0
�n

Z
(�)=1

�k0�n(�x��)Rjk0(��
0)��j�1

n
P+(��)

�1 !(��)
o
;

� = � � i(v(�) � "j�j#); �� = � � i(v(�) + "j�j#):

(4.12)

Considering the integral of the right-hand side in the distribution sense and taking the

limit as "! +0, by using (4.4) we obtain

(4.13) Fk0(x) = (2�)1�n
�X

j=1

ik
0
�n

Z
(�)=1

�k0�n(x�)Rjk0 (�
0)�j�1

n
P+(�)

�1 !(�);

� = � � iv(�):

Thus we have (4.6),(4.7) by (4.5).

The Herglotz-Petrovskii-Leray formula given in [1] is transformed into the integration

over certain homology class. But in this paper, we can not investigate to which homology

group the chain f��iv(�) ; (�) = 1g should belong. Probably, the chain f��iv(�) ; (�) =

1g is a cycle of the (
Q

q

j=1 deg pj)-sheeted covering of

Cn n

8<:� 2 Cn ;

qY
j=1

�j(�) = 0

9=; ;(4.14)

where �j(�) is the resultant of pj(�) and
@pj

@�n
(�) with respect to �n.
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