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MULTI-SAMPLE PROBLEM FOR ARCH RESIDUAL EMPIRICAL

PROCESSES
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Abstract. This paper gives the asymptotic theory of a class of rank order statistics

fTN;j ; j = 1 : : : ; cg for c-sample problem pertaining to empirical processes based on the

squared residuals from a class of ARCH models. An important aspect is that, unlike the

residuals of ARMA models, the asymptotic distribution depends on those of ARCH volatility

estimators. By an application of the asymptotic results, we propose the c-sample analogues of

Mood's two-sample and Klotz's two-sample normal scores tests. These studies help to high-

light some important features of ARCH residuals in comparison with the i.i.d. or ARMA

settings.

1 Introduction. Traditional time series models assume a constant one-period forecast vari-

ance. In order to overcome this implausible assumption, Engle (1982) introduced a class of

ARCH(p) models, which proved to be extremely useful in analyzing economic time series. Since

then, ARCH related models have become perhaps the most popular and extensively studied �nan-

cial econometric models (Engle (1995), Chandra and Taniguchi (2002), Tsay (2002)). Moreover,

Giraitis et. al (2000) discussed a class of ARCH(1) models, which includes that of ARCH(p)

models as a special case, and established suÆcient conditions for the existence of a stationary

solution and its explicit representation.

For an ARCH(p) model, Horv�ath et. al (2001) derived the asymptotic distribution of the em-

pirical process based on the squared residuals which is considered of fundamental importance for

statistical analysis. Then they showed that, unlike the residuals of ARMA models, these resid-

uals do not behave in this context like asymptotically independent random variables, and the

asymptotic distribution involves a term depending on estimators of the volatility parameters of

the model. Also Lee and Taniguchi (2000) proved the local asymptotic normality for ARCH(1)

models, and discussed the residual empirical process for an ARCH(1) model with stochastic mean.

In the i.i.d. settings, the study of the asymptotic properties based on two-sample rank or-

der statistics is fundamental and essential part of nonparametric statistics. The classical limit

theorem which generated much interest in this area is the celebrated Cherno�-Savage (1958) the-

orem. It is well known that the theorem is widely used to study the asymptotic power and power

eÆciency of a class of two-sample tests. Puri (1964) generalized the situation covered by this

theorem to the c-sample problem. Later, under less stringent conditions on the score generating

functions, Puri and Sen (1993) formulated the Cherno�-Savage theorem for the c-sample prob-

lem. Regarding the two-sample problem for ARCH residual empirical processes, Chandra and

Taniguchi (2002) developed some test procedures.

The present paper discusses the asymptotic theory of the c-sample rank order statistics

fTN;j; j = 1 : : : ; cg for ARCH residual empirical processes based on the techniques of Puri and

Sen (1993), Horv�ath et. al (2001), and Chandra and Taniguchi (2002). Since the asymptotics of

the residual empirical processes are di�erent from those for the usual ARMA case, the limiting
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distribution of fTN;j; j = 1 : : : ; cg is greatly di�erent from that of ARMA case (of course i.i.d.

case). Section 2 gives the setting of fTN;j; j = 1 : : : ; cg pertaining to empirical processes based on

the squared residuals from a class of ARCH(p) models and establishes its asymptotic distribution.

In Section 3, we use this result to propose the c-sample analogues of Klotz's two-sample normal

scores and Mood's two-sample tests. These studies illuminate some interesting characteristics of

ARCH residuals in comparison with the i.i.d. settings.

2 c-sample rank order statistics and results. In this section, we study a c-sample problem

pertaining to a class of rank order statistics based on ARCH residual empirical processes.

Let us consider the c independent random samples from the following ARCH(p) models

Xi;t =

8<
: �i;t"i;t; �

2
i;t = �

0
i +

piP
l=1

�
l
iX

2
i;t�l for t = 1; : : : ; ni;

0 for t = �pi + 1; : : : ; 0; i = 1; : : : ; c;

where the "i;t are i.i.d.(0,1) random variables with corresponding fourth-order cumulants �
(i)
4 ,

�i = (�0i ; �
1
i ; : : : ; �

pi
i )T 2 � � R

pi+1, and "i;t are independent of Xi;s; s < t. It is assumed that

�
0
i > 0, �li � 0 and �1i + : : :+ �

pi
i < 1 for stationarity. Denote by Fi(x) the distribution function

of "2i;t and we assume that fi(x) = F
0

i (x) exists and is continuous on (0;1).

In the following, we are concerned with the c-sample problem of testing

(1)

H0 : F1(x) = � � � = Fc(x) for all x against HA : Fi(x) 6= Fj(x) for some x, and i 6= j:

Write Yi;t = X
2
i;t, �i;t = ("2i;t � 1)�2i;t and Zi;t = (1; Yi;t; : : : ; Yi;t�pi+1)

T . Then the autoregressive

representation is given by

Yi;t = �
T
i Zi;t�1 + �i;t:

Note that E[�i;tjBi;t�1] = 0, where Bi;t is the �-�eld generated by fXi;t;Xi;t�1; : : : g. Let us �rst

consider the estimation of �i. Suppose that observed stretches (Yi;1; : : : ; Yi;ni
) are available. Let

Qni
(�i) =

niX
t=2

(Yi;t � �
T
i Zi;t�1)

2
; i = 1; : : : ; c;(2)

be the penalty functions. Then the conditional least squares estimators (see Tj�stheim (1986))

�̂i;ni
of �i; i = 1; : : : ; c, are obtained by minimizing (2) with respect to �i, i = 1; : : : ; c, respectively.

For �̂i;ni
, we assume that

k�̂i;ni
� �ik = Op(n

�1=2
i ); i = 1; : : : ; c;(3)

where k � k denotes the Euclidean norm. Tj�stheim (1986, p. 254-256) gave a set of suÆcient con-

ditions to validate (3), and it is also satis�ed by the pseudo maximum likelihood and conditional

likelihood estimators (see e.g., Gouri�eroux (1997)). The empirical squared residuals are given by

"̂
2
i;t = X

2
i;t=�̂

2
i;t;(4)

where �̂2i;t = �̂
0
i;ni

+
Ppi

l=1 �̂
l
i;ni

X
2
i;t�l, i = 1; : : : ; c.

We begin by setting up our notation and describing our approach in line with Puri and Sen

(1993). Let N =
Pc

i=1 ni and �i;N = ni=N , i = 1; : : : ; c. For (4), the size N is assumed to be

such that 0 < �0 � �1;N ; : : : ; �c;N � 1 � �0 < 1 hold for some �0 � 1=c. Then the combined

distribution is de�ned by

HN (x) =

cX
i=1

�i;NFi(x):
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Likewise, if F̂
(i)
ni (x) denotes the empirical distribution function of "̂2i;t, the corresponding empirical

distribution is

ĤN (x) =

cX
i=1

�i;N F̂
(i)
ni
(x):(5)

Write B̂
(i)
ni (x) = n

1=2
i (F̂

(i)
ni (x) � Fi(x)). Then

B̂
(i)
ni
(x) = n

�1=2
i

niX
t=1

[I("̂2i;t � x) � Fi(x)]; i = 1; : : : ; c;

where I(A) is the indicator function of the event A. From the result by Horv�ath et. al (2001) in

the case of c = 1, we observe that

B̂
(i)
ni
(x) = E (i)

ni
(x) +Aixfi(x) + �

(i)
ni
(x); i = 1; : : : ; c;(6)

where

E (i)
ni

(x) = n
�1=2
i

niX
t=1

[I("2i;t � x) � Fi(x)]; Ai =

piX
l=0

n
1=2
i (�̂li;ni

� �
l
i)�i;l(7)

and supx j�
(i)
ni (x)j = op(1) with �i;0 = E[1=�2i;t] and �i;l = E[�2i;t�l"

2
i;t�l=�

2
i;t], 1 � l � pi. Denote

by F
(i)
ni (x) = n

�1
i

Pni

t=1 I["
2
i;t � x] the usual empirical distribution function of "2i;t. Then, from

(6), the preceding (5) becomes

ĤN (x) = HN (x) +

cX
i=1

n
�1=2
i �i;NAixfi(x) + �N (x);(8)

where HN(x) =
Pc

i=1 �i;NF
(i)
ni (x) and �N(x) =

Pc
i=1 n

�1=2
i �i;N�

(i)
ni (x). The decomposition (8) is

basic and will be used repeatedly in the sequel.

Let S
(j)
N;i = 1, if the ith smallest one in the combined residuals "̂21;1; : : : ; "̂

2
1;n1

; : : : ; "̂
2
c;1; : : : ;

"̂
2
c;nc

is from "̂
2
j;1; : : : ; "̂

2
j;nj

, and otherwise let S
(j)
N;i = 0, i = 1; : : : ;N , j = 1; : : : ; c. Then, for the

testing problem (1), let us consider the rank order statistics of the form

TN;j =
1

nj

NX
i=1

SN;iS
(j)
N;i; j = 1; : : : ; c;

where the SN;i are given constants called weights or scores. The de�nition of TN;j is the one

conventionally used. We shall, however, use its equivalent representation given by

TN;j =

Z
J

�
N

N + 1
ĤN (x)

�
dF̂

(j)
nj

(x); j = 1; : : : ; c;(9)

where SN;i = J(i=(N + 1)), and J(u), 0 < u < 1, is a continuous function.

We now give typical examples of J , which have been reported in Puri and Sen (1993):

(i) Wilcoxon's two-sample test with J(u) = u, 0 < u < 1,

(ii) Van der Waerden's two-sample test with J(u) = ��1(u), 0 < u < 1, where �(x) =

(2�)�1=2
R x
�1

e
�t2=2

dt,
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(iii) Mood's two-sample test with J(u) = (u� 1
2
)2, 0 < u < 1,

(iv) Klotz's normal score test with J(u) = (��1(u))2, 0 < u < 1.

Examples (i) to (ii) are the tests for location, (iii) and (iv) are tests for scale.

In the following,K will denote a generic constant which may depend on J but will not depend

on F1(x); : : : ; Fc(x), n1; : : : ; nc and N .

We now impose the following regularity conditions.

Assumption 1.

(A.1) J(u)

is not constant and has a continuous derivative J 0(u) on (0,1).

(A.2) jJ j � K[u(1� u)]�
1

2
+Æ and jJ 0j � K[u(1� u)]�

3

2
+Æ for some Æ > 0.

(A.3) xfj (x) and xf
0

j (x) are uniformly bounded continuous, and integrable functions on (0;1)

for all j = 1; : : : ; c.

(A.4) There exist constants dj > 0 such that Fj(x) � djfxfj (x)g for all x > 0, j = 1; : : : ; c.

We also require the following regularity condition.

Assumption 2.

E(Y 4
i;t) <1; i = 1; : : : ; c.

SuÆcient conditions to validate this assumption are given by Chen and An (1998) in the case

of c = 1.

In order to elucidate the asymptotics of (9), we require further settings. Recalling (2) and

using the notation �2i;t(�i) = �
0
i + �

1
i Yi;t�1 + � � �+ �

pi
i Yi;t�pi , i = 1; : : : ; c, we notice that

@Qni

@�
0
i

= �2

niX
t=2

("2i;t � 1)�2i;t(�i) � �2

niX
t=2

�i("
2
i;t)#

0
i ;

@Qni

@�
l
i

= �2

niX
t=2

("2i;t � 1)�2i;t(�i)Yi;t�l � �2

niX
t=2

�i("
2
i;t)#

l
i; 1 � l � pi; i = 1; : : : ; c;

where �i(u) = u� 1. Write

Ri = 2E[�4i;t(�i)Zi;t�1Z
T
i;t�1]; and Ui = E[Zi;t�1Z

T
i;t�1];

and #i = (#0i ; : : : ; #
pi
i )

T , i = 1; : : : ; c. Then, using standard arguments, it seen that the lth

component of each �̂i;ni
, i = 1; : : : ; c admits the representation

�̂
l
i;ni

� �
l
i =

1

ni

niX
t=1

U
l
i�i("

2
i;t) + op(n

�1=2
i ); 0 � l � pi;(10)

where U l
i is the lth component of each U�1i #i, i = 1; : : : ; c. Write �li = E(U l

i ), 0 � l � pi and

�i = (�i;0; : : : ; �i;pi)
T , i = 1; : : : ; c (recall (7)). Then, we have the following theorem, whose proof

is given in Section 4.
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Theorem 1. Suppose that Assumptions 1 and 2 hold and that, in addition, �̂i;ni
, i = 1; : : : ; c,

are the respective conditional least squares estimators of �i, i = 1; : : : ; c, satisfying (3). If Ui and

Ri; i = 1; : : : ; c, are positive de�nite matrices with bounded elements, then

N
1=2�

�1=2
N (TN;1 � �N;1; : : : ; TN;c � �N;c)

T d
�! N (0; I) as N !1;

where

�N;j =

Z
J [HN(x)]dFj (x) and �N = ((�N;jk))

with �N;jj = �1N;jj + �2N;jj + �3N;jj + 
N;jj , where

�1N;jj = 2

� cX
i=1
i 6=j

�i;N

ZZ
x<y

Ai;N (x; y)dFj (x)dFj (y) +
1

�N;j

cX
i=1
i 6=j

�
2
i;N

ZZ
x<y

Aj;N (x; y)dFi(x)dFi(y)

�

+
1

�N;j

cX
i;k=1

i 6=k;i6=j;k 6=j

�i;N�k;N

�ZZ
x<y

Aj;N (x; y)dFi(x)dFk(y) +

ZZ
y<x

Aj;N (y; x)dFi(x)dFk(y)

�
;

�2N;jj = !
T
j;NU

�1
j RjU

�1
j !j;N ; �3N;jj =

cX
i=1
i6=j

�
T
i;NU

�1
i RiU

�1
i �i; and


N;jj = 2

� cX
i=1
i 6=j

piX
l=0

�i;N�i;l

ZZ
h
l
i(x) i;N (x; y)dFj (x)dFj (y)

+
1

�N;j

cX
i=1
i6=j

pjX
l=0

�
2
i;N�j;l

ZZ
h
l
j(x) j;N (x; y)dFi(x)dFi(y)

�
;

and �N;jj0 = �1N;jj0 + �2N;jj0 , j 6= j
0
with

�1N;jj0 = �

cX
i=1

�i;N

�ZZ
x<y

Aj;N (x; y)dFi(x)dFj0 (y) +

ZZ
y<x

Aj;N (y; x)dFi(x)dFj0 (y)

�

�

cX
i=1

�i;N

�ZZ
x<y

Aj0 ;N(x; y)dFi(x)dFj (y) +

ZZ
y<x

Aj0 ;N(y; x)dFi(x)dFj (y)

�

+

cX
i=1

�i;N

�ZZ
x<y

Ai;N (x; y)dFj (x)dFj0 (y) +

ZZ
y<x

Ai;N (y; x)dFj (x)dFj0 (y)

�
; and

�2N;jj0 = �

cX
i=1

�i;N

� pjX
l=0

�j;l

ZZ
h
l
j(x) j;N (x; y)dFi(x)dFj0 (y)

+

pj0X
l=0

�j0;l

ZZ
h
l
j0 (x) j0 ;N (x; y)dFi(x)dFj (y)

+

pjX
l=0

�j;l

ZZ
h
l
j(y) j;N (y; x)dFi(x)dFj0 (y)

+

pj0X
l=0

�j0;l

ZZ
h
l
j0 (y) j0 ;N (y; x)dFi(x)dFj (y)

�
;(11)
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where

Aj;N (u; v) = Fj(u)[1� Fj(v)]J
0[HN (u)]J

0[HN (v)];

!j;N = ��
�1=2
N;j

cX
i=1
i 6=j

�i;N

Z
xfj (x)J

0[HN (x)]dFi(x) � �j;

�i;N = �
1=2
i;N

Z
xfi(x)J

0[HN (x)]dFj (x) � �i;

 j;N (u; v) = vfj(v)J
0[HN (u)]J

0[HN (v)];

h
l
j(v) = �

l
j

Z v

0

�j(u)fj (u)du:

Remark 1. Observe that the terms �2N;jj , �3N;jj , 
N;jj and �2N;jj0 depend on the volatility

estimators �̂i;ni
, i = 1; : : : ; c. Hence, the asymptotics of fTN;j; i = 1; : : : ; cg are greatly di�erent

from those for i.i.d. case.

Remark 2. As an application of Theorem 1 in the two-sample testing problem for scale, Chan-

dra and Taniguchi (2002) studied the asymptotic performance of fTN;j; j = 1; c = 2g, like the

con�dence intervals, asymptotic relative eÆciency and ARCH a�ection for some ARCH residual

distributions via numerical illustrations. The results for the score function J(u) = u, 0 < u < 1

show that the Wilcoxon test fT �N;j; j = 1; c = 2g is preferable if the underlying distribution is

logistic.

3 Some applications. The c-sample testing problem considered in Section 2 can be applied

to many situations in time series analysis. In the following, we propose the c-sample analogues

of Mood's two-sample and Klotz's two-sample normal scores tests.

Recall that Fi(x), i = 1; : : : ; c, are the distribution functions of "2i;t, t = 1; : : : ; ni, i = 1; : : : ; c,

respectively. Let us now consider the scale problem in the case of Fi(x) = F (Æix), for all i =

1; : : : ; c, where the Æi are real constants. Henceforth, it is assumed that F is arbitrary and has

�nite variance �2F . The c-sample testing problem for scale can be described as follows;

H0 : Æ1 = � � � = Æc = 1 against HA : Æi 6= Æj for at least one i 6= j:

By virtue of Theorem 1, we propose the following test statistic de�ned as

LN = NT T
N ��1N TN ;

where TN = (TN;1 � �N;1; : : : ; TN;c � �N;c)
T . For LN to be practically useful, it is necessary to

replace �N which depends on several unknown parameters and functions by a consistent estimatorb�N . Observe that �li, h
l
i(v) and �i; i = 1; : : : ; c, are expected values and can be consistently

estimated by the corresponding averages. Note also that U�1i RiU
�1
i is the asymptotic covariance

matrix of n
1=2
i (�̂i;ni

� �i) and its estimation is discussed in Gouri�eroux (1997). Then, we can

propose

L̂N = NT T
N
b��1N TN ;

for the testing problem H0 against HA. Here, we may take the following J :

(a) Mood's c-sample test with J(u) = (u� 1
2
)2, 0 < u < 1.

(b) Klotz's normal score c-sample test with J(u) = [��1(u)]2, 0 < u < 1.
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4 Proof. In this section we provide the proof of Theorem 1. Write dF̂
(j)
nj = d(F̂

(j)
nj � Fj + Fj)

and

J

�
N

N + 1
ĤN

�
= J [HN ] + (ĤN �H)J 0[HN ]�

ĤN

N + 1
J
0[HN ]

+

�
J

�
N

N + 1
ĤN

�
�J [HN ]�

�
N

N + 1
ĤN �H

�
J
0[HN ]

�
;

Then the statistics (9) after a little simpli�cation becomes

TN;j = �N;j +B1N;j +B2N;j +

3X
i=1

CiN;j;

where

B1N;j =

Z
J [HN ]d(F̂

(j)
nj
� Fj)(x);

B2N;j =

Z
(ĤN (x) �HN (x))J

0[HN ]dFj(x);

C1N;j = �
1

N + 1

Z
ĤN (x)J

0[HN ]dF̂
(j)
nj

(x);

C2N;j =

Z
(ĤN (x) �HN (x))J

0[HN ]d(F̂
(j)
nj
� Fj)(x);

C3N;j =

Z �
J

�
N

N + 1
ĤN (x)

�
�J [HN ]

�

�
N

N + 1
ĤN (x) �HN (x)

�
J
0[HN ]

�
dF̂

(j)
nj

(x):

To prove this theorem, we are required to show that (i) B1N;j+B2N;j has a limiting Gaussian

distribution, and (ii) the C� terms are of higher order.

First, we show the statement (i). From (6), we observe that

B1N;j =

Z
J [HN ]d(F

(j)
nj

� Fj)(x) + n
�1=2
j Aj

Z
J [HN ]d[xfj (x)] + lower order terms:(12)

Then, integrating B2N;j by parts, and adding it to (12), we obtain

N
1=2(B1N;j +B2N;j)

= N
1=2

�
�

cX
i=1
i6=j

�i;N

Z
Bj(x)d(F

(i)
ni
� Fi)(x)

+

Z
fJ [HN ]� �jBj(x)gd(F

(j)
nj

� Fj)(x)

�n
�1=2
j Aj

cX
i=1
i6=j

�i;N

Z
xfj(x)J

0[HN ]dFi(x)

+

cX
i=1
i6=j

�i;Nn
�1=2
i Ai

Z
xfi(x)J

0[HN ]dFj(x)

��

+ lower order terms

= aN;j + bN;j + cN;j + dN;j + lower order terms; (say);(13)
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where Bj(x) =
R x
x0
J
0[HN (y)]dFj (y) with x0 determined somewhat arbitrarily, say by HN (x0) =

1=2.

Let us �rst compute the variance of (13). From the result by Puri and Sen (1993), we obtain

�1N;jj = V ar(aN;j + bN;j):(14)

Similarly, we can compute the same for cN;j and dN;j by �rst noting the result of Tj�stheim

(1986) that

V ar(n
1=2
i (�̂i;ni

� �i)) = U
�1
i RiU

�1
i ; i = 1; : : : ; c:

Thus, from (7) and (13), we obtain

V ar(cN;j) = �2N;jj and V ar(dN;j) = �3N;jj :(15)

As a part of the main diagonal terms, we have only to evaluate

K1N;j = 2E[aN;jdN;j] and K2N;j = 2E[bN;jcN;j];

since Xi;1; : : : ;Xi;ni
, i = 1; : : : ; c, are mutually independent samples. From (13), we obtain

K1N;j = 2

cX
i=1
i6=j

�i;N

ZZ
E[(n

1=2
i (F (i)

ni
� Fi)(x))Ai] i;N (x; y)dFj (x)dFj (y);

for which, it is necessary to �nd E[�]. Using the result by Horv�ath et. al (2001), it follows from

(7) and (10) that

E[n
1=2
i (F (i)

ni
(x) � Fi(x))Ai] =

piX
l=0

�i;lh
l
i(x):

Thus,

K1N;j = 2

cX
i=1
i6=j

piX
l=0

�i;N�i;l

ZZ
h
l
i(x) i;N (x; y)dFj (x)dFj (y);(16)

and analogously

K2N;j =
2

�N;j

cX
i=1
i6=j

pjX
l=0

�
2
i;N�j;l

ZZ
h
l
j(x) j;N (x; y)dFi(x)dFi(y):(17)

Adding (16) and (17) yields 
N;jj.

To compute the covariance terms, let us �rst rewrite (13) as

N
1=2(B1N;j +B2N;j)

= N
1=2

cX
i=1

�i;N

�
�

Z
[F (j)

nj
(x) � Fj(x)]J

0[HN ]dFi(x)

+

Z
[F (i)

ni
(x) � Fi(x)]J

0[HN ]dFj(x) � n
�1=2
j Aj

Z
xfj (x)J

0[HN ]dFi(x)

+n
�1=2
i Ai

Z
xfi(x)J

0[HN ]dFj(x)

�
+ lower order terms

= a1N;j + b1N;j + c1N;j + d1N;j + lower order terms; (say):
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Using again, the result by Puri and Sen (1993), it follows that

Cov(a1N;j + b1N;j; a1N;j0 + b2N;j0)

= E(a1N;jb1N;j0) +E(b1N;ja1N;j0) +E(b1N;jb1N;j0) = �1Njj0 ; j 6= j
0

:(18)

Moreover, by independence of Xi;1; : : : ;Xi;ni
, i = 1; : : : ; c, we have only to evaluate, for j 6= j

0,

the followings:

L1N;jj0 = E(a1N;jd1N;j0) +E(d1N;ja1N;j0) and L2N;jj0 = E(b1N;jc1N;j0) +E(c1N;jb1N;j0):

By the above arguments, we have

L1N;jj0 = �

cX
i=1

�i;N

� pjX
l=0

�j;l

ZZ
h
l
j(x) j;N (x; y)dFi(x)dFj0 (y)

+

pj0X
l=0

�j0;l

ZZ
h
l
j0(x) j0 ;N(x; y)dFi(x)dFj (y)

�
; and(19)

L2N;jj0 = �

cX
i=1

�i;N

� pjX
l=0

�j;l

ZZ
h
l
j(y) j;N (y; x)dFi(x)dFj0 (y)

+

pj0X
l=0

�j0;l

ZZ
h
l
j0(y) j0 ;N (y; x)dFi(x)dFj (y)

�
:(20)

Adding (19) and (20) yields �2N;jj0 de�ned in (11).

Hence, using (11), (14), (15), (18), the term 
N;j and central limit theorems given by Horv�ath

et. al (2001), and Tj�stheim (1986), we may conclude that

N
1=2�

�1=2
N (B1N;1 +B2N;1; : : : ; B1N;c +B2N;c)

T d
�! N (0; I) as N !1:

Since the statement (ii) can be shown in the same way as in Chandra and Taniguchi (2002),

the proof is omitted. The details are given in Chandra (2002), which can be obtained from the

author on request. 2
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