INFINITESIMAL PROJECTIVE TRANSFORMATIONS ON TANGENT BUNDLES WITH LIFT CONNECTIONS

By Izumi HaSEGaWA and Kazunari YaMAUCHi

Received August 23, 2002

Abstract

Let M be a Riemannian manifold and $T M$ its tangent bundle with (1) horizontal lift connection, (2) complete lift connection, (3) diagonal lift connection or (4) lift connection II+III. We determine the infinitesimal projective transformations on $T M$. Furthermore, if M is complete and $T M$ admits a non-affine infinitesimal projective transformation, then M and $T M$ are locally flat.

1. Introduction

Let M be a differentiable manifold, and ∇ an affine connection on M. A transformation f of M is called a projective transformation if it preserves the geodesics, where each geodesic should be confounded with a subset of M by neglecting its affine parameter. Furthermore, f is called an affine transformation if it preserves the connection. We then remark that an affine transformation may be characterized as a projective transformation which preserves the affine parameter together with the geodesics. Let V be a vector field on M, and let us consider a local one-parameter group $\left\{f_{t}\right\}$ of local transformations of M generated by V. Then V is called an infinitesimal projective transformation if each f_{t} is a local projective transformation. Similarly V is called an infinitesimal affine transformation if each f_{t} is a local affine transformation. Clearly an infinitesimal affine transformation is an infinitesimal projective transformation. The converse is not true in general. Indeed consider the real projective space $P^{n}(\mathbf{R})$ with the standard Riemannian metric, which is the standard projectively flat Riemannian manifold and a space of positive constant curvature. It is known that $P^{n}(\mathbf{R})$ admits a non-affine infinitesimal projective transformation. As a converse problem, the following conjecture is known.

Conjecture. Let M be a complete Riemannian manifold admitting a non-affine infinitesimal projective transformation. Then M is a space of non-negative constant curvature.

Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle. Then we can consider some connections on $T M$, for example, the horizontal lift connection, the complete lift connection, the diagonal lift connection, etc. Let \widetilde{V} be a vector field on $T M$, and $\left\{\widetilde{f}_{t}\right\}$ a local one-parameter group of local transformations of $T M$ generated by \widetilde{V}. Then \widetilde{V} is called an infinitesimal fibre-preserving transformation if each \widetilde{f}_{t} is a local fibre-preserving transformation of $T M$ (i.e., $\widetilde{f_{t}}$ sends each fibre of $T M$ into a fibre).

Recently one of the authors proved the following

[^0]Theorem A ([Y3]). Let (M, g) be a complete Riemannian manifold and $T M$ its tangent bundle with the diagonal lift connection. If $T M$ admits a non-affine infinitesimal fibre-preserving projective transformation, then M is locally flat.

Theorem B ([Y2]). Let (M, g) be a complete Riemannian manifold and $T M$ its tangent bundle with the lift connection II+III. If TM admits a non-affine infinitesimal fibre-preserving projective transformation, then M is locally flat.

We hope to get rid of the assumption "fibre-preserving" in our results. In this paper, we determine the infinitesimal projective transformations on $T M$ (Theorem $1 \sim 4$), and prove the following

Theorem 5. Let (M, g) be a complete Riemannian manifold and TM its tangent bundle. Assume that TM admits a non-affine infinitesimal projective transformation with respect to one of the following lift connections:
(1) the horizontal lift connection.
(2) the complete lift connection.
(3) the diagonal lift connection.
(4) the lift connection II +III .

Then M and $T M$ are locally flat.
Remark. Recently we proved the case (1) in [H-Y]. One of the authors stated the case (2) in [Y1].

In the present paper everything will be always discussed in the C^{∞}-category, and Riemannian manifolds will be assumed to be connected and dimension $n>1$.

2. Preliminaries

Let M be a differentible manifold with an affine connection ∇, and $\Gamma_{j i}{ }^{h}$ the coefficients of ∇, i.e., $\Gamma_{j i}{ }^{a} \partial_{a}:=\nabla_{\partial_{j}} \partial_{i}$, where $\partial_{h}=\frac{\partial}{\partial x^{h}}$ and $\left(x^{h}\right)$ is the local coordinates of M. We define a local frame $\left\{E_{i}, E_{\bar{i}}\right\}$ of $T M$ as follows:

$$
E_{i}:=\partial_{i}-y^{b} \Gamma_{i b}^{a} \partial_{\bar{a}} \quad \text { and } \quad E_{\bar{i}}:=\partial_{\bar{i}},
$$

where $\left(x^{h}, y^{h}\right)$ is the induced coordinates of $T M$ and $\partial_{\bar{i}}:=\frac{\partial}{\partial y^{i}}$, and call this frame $\left\{E_{i}, E_{\bar{i}}\right\}$ the adapted frame of $T M$. Then $\left\{d x^{h}, \delta y^{h}\right\}$ is the dual frame of $\left\{E_{i}, E_{\bar{i}}^{-}\right\}$, where $\delta y^{h}:=$ $d y^{h}+y^{b} \Gamma_{a b}{ }^{h} d x^{a}$.

Then, by straightforward calculation, we have the following
Lemma 1. The Lie brackets of the adapted frame of TM satisfy the following identities:
(1) $\left[E_{j}, E_{i}\right]=y^{b} K_{i j b}{ }^{a} E_{\bar{a}}$,
(2) $\left[E_{j}, E_{\bar{i}}\right]=\Gamma_{j i}{ }^{a} E_{\bar{a}}$,
(3) $\left[E_{\bar{j}}, E_{\bar{i}}\right]=0$,
where $K=\left(K_{k j i}{ }^{h}\right)$ denotes the curvature tensor of (M, ∇) defined by $K_{k j i}{ }^{h}:=$ $\partial_{k} \Gamma_{j i}{ }^{h}-\partial_{j} \Gamma_{k i}{ }^{h}+\Gamma_{j i}{ }^{a} \Gamma_{k a}{ }^{h}-\Gamma_{k i}{ }^{a} \Gamma_{j a}{ }^{h}$.
Lemma 2. Let \tilde{V} be a vector field on $T M$. Then

$$
\begin{align*}
& {\left[\widetilde{V}, E_{i}\right]=-\left(E_{i} \widetilde{V}^{a}\right) E_{a}+\left(\widetilde{V}^{c} y^{b} K_{i c b}^{a}-\widetilde{V}^{b} \Gamma_{b i}^{a}-E_{i} \widetilde{V}^{\bar{a}}\right) E_{\bar{a}}} \tag{1}\\
& {\left[\widetilde{V}, E_{\overline{\bar{j}}}\right]=-\left(\partial_{\bar{V}} \widetilde{V}^{a}\right) E_{a}+\left(\widetilde{V}^{b} \Gamma_{b i}^{a}-\partial_{\bar{i}} \widetilde{V}^{\bar{a}}\right) E_{\bar{a}}} \\
& \text { where }\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right)=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}:=\widetilde{V} .
\end{align*}
$$

We denote by $\mathfrak{T}_{s}^{r}(M)$ the set of all tensor fields of class C^{∞} and of type (r, s) on M. Similarly, we denote by $\boldsymbol{T}_{s}^{r}(T M)$ the corresponding set on $T M$.

Let V be a vector field on M. It is well-known that V is an infinitesimal isometry if and only if $L_{V} g=0$, where L_{V} is the Lie derivation with respect to $V . V$ is an infinitesimal conformal transformation if and only if there exists a function f on M satisfying $L_{V} g=f g$. Especially, if f is constant, then V is called an infinitesimal homothetic transformation.
A vector field V on M is an infinitesimal projective transformation if and only if there exists a 1 -form Ω such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X
$$

for any $X, Y \in \mathfrak{T}_{0}^{1}(M)$. In this case Ω is called the associated 1 -form of V.

3. Connections on $T M$ (cf. [Y-I])

Horizontal lift connection

Let M be a differentiable manifold with affine connection ∇. Let $X=X^{a} \partial_{a}$ be a vector field on M. Then the vertical lift X^{V} and the horizontal lift X^{H} of X are defined as follows:

$$
\begin{equation*}
X^{H}:=X^{a} E_{a} \quad \text { and } \quad X^{V}:=X^{a} E_{\bar{a}} \tag{3.1}
\end{equation*}
$$

There exists a unique affine connection $\widetilde{\nabla}$ on $T M$ which satisfies

$$
\begin{align*}
& \widetilde{\nabla}_{X^{H}} Y^{H}=\left(\nabla_{X} Y\right)^{H}, \\
& \widetilde{\nabla}_{X^{H}} Y^{V}=\left(\nabla_{X} Y\right)^{V}, \tag{3.2}\\
& \widetilde{\nabla}_{X^{V}} Y^{H}=0, \quad \widetilde{\nabla}_{X^{V}} Y^{V}=0
\end{align*}
$$

for any $X, Y \in \mathfrak{T}_{0}^{1}(M)$. This affine connection is called the horizontal lift connection of ∇ to $T M$. Then we have

$$
\begin{align*}
& \widetilde{\nabla}_{E_{j}} E_{i}=\Gamma_{j i}{ }^{a} E_{a}, \\
& \widetilde{\nabla}_{E_{j}} E_{\bar{i}}=\Gamma_{j i}{ }^{a} E_{\bar{a}}, \tag{3.3}\\
& \widetilde{\nabla}_{E_{\bar{j}}} E_{i}=0, \quad \widetilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{align*}
$$

If M is a Riemannian manifold with metric g, then this lift connection is the metric connection of the complete lift metric $\widetilde{g}=2 g_{b a} d x^{b} \delta y^{a}$ or the lift metric I+II: $\widetilde{g}=g_{b a} d x^{b} d x^{a}+$ $2 g_{b a} d x^{b} \delta y^{a}$.

Complete lift connection

Let $X=X^{a} \partial_{a}$ be a vector field on M. Then the complete lift X^{C} of X is defined as follows:

$$
\begin{equation*}
X^{C}:=X^{a} E_{a}+y^{b} \nabla_{b} X^{a} E_{\bar{a}} \tag{3.4}
\end{equation*}
$$

There exists a unique affine connection $\widetilde{\nabla}$ on $T M$ which satisfies

$$
\begin{equation*}
\tilde{\nabla}_{X}{ }^{C} Y^{C}=\left(\nabla_{X} Y\right)^{C} \tag{3.5}
\end{equation*}
$$

for any $X, Y \in \mathfrak{T}_{0}^{1}(M)$. This affine connection $\widetilde{\nabla}$ is called the complete lift connection of ∇ to $T M$. Then we have

$$
\begin{align*}
& \widetilde{\nabla}_{E_{j}} E_{i}=\Gamma_{j i}{ }^{a} E_{a}+y^{b} K_{b j i}{ }^{a} E_{\bar{a}}, \\
& \widetilde{\nabla}_{E_{j}} E_{\bar{i}}=\Gamma_{j i}^{a} E_{\bar{a}}, \tag{3.6}\\
& \widetilde{\nabla}_{E_{\bar{j}}} E_{i}=0, \quad \widetilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{align*}
$$

If M is a Riemannian manifold with metric g, then this connection is the the Levi-Civita connection of the complete lift metric $\widetilde{g}=2 g_{b a} d x^{b} \delta y^{a}$ or the lift metric I+II: $\widetilde{g}=g_{b a} d x^{b} d x^{a}+$ $2 g_{b a} d x^{b} \delta y^{a}$.

Diagonal lift connection

Let $\widetilde{\nabla}$ be the diagonal lift connection on $T M$ defined as follows:

$$
\begin{align*}
& \widetilde{\nabla}_{E_{j}} E_{i}=\Gamma_{j i}^{a} E_{a}-\frac{1}{2} y^{b} K_{j i b}{ }^{a} E_{\bar{a}}, \\
& \widetilde{\nabla}_{E_{j}} E_{\bar{i}}=\frac{1}{2} y^{b} K_{b i j}{ }^{a} E_{a}+\Gamma_{j i}{ }^{a} E_{\bar{a}}, \tag{3.7}\\
& \widetilde{\nabla}_{E_{\bar{j}}} E_{i}=\frac{1}{2} y^{b} K_{b j i}{ }^{a} E_{a}, \quad \widetilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{align*}
$$

If M is a Riemannian manifold with metric g, then this connection is the the Levi-Civita connection of the diagonal lift metric $\widetilde{g}=g_{b a} d x^{b} d x^{a}+g_{b a} \delta y^{b} \delta y^{a}$ which was originally defined by S. Sasaki [S].

Lift connection II+III

Let $\widetilde{\nabla}$ be a lift connection on $T M$ defined as follows:

$$
\begin{align*}
& \widetilde{\nabla}_{E_{j}} E_{i}=\left\{\Gamma_{j i}{ }^{a}-\frac{1}{2} y^{b}\left(K_{b j i}{ }^{a}+K_{b i j}{ }^{a}\right)\right\} E_{a}+y^{b} K_{b j i}{ }^{a} E_{\bar{a}}, \\
& \widetilde{\nabla}_{E_{j}} E_{\bar{i}}=-\frac{1}{2} y^{b} K_{b i j}{ }^{a} E_{a}+\left(\Gamma_{j i}^{a}+\frac{1}{2} y^{b} K_{b i j}^{a}\right) E_{\bar{a}}, \tag{3.8}\\
& \widetilde{\nabla}_{E_{\bar{j}}} E_{i}=-\frac{1}{2} y^{b} K_{b j i}^{a} E_{a}+\frac{1}{2} y^{b} K_{b j i}{ }^{a} E_{\bar{a}}, \\
& \widetilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{align*}
$$

This affine connection $\tilde{\nabla}$ is called the lift connection II + III. If M is a Riemannian manifold with metric g, then this connection is the Levi-Civita connection of lift metric II+III : $\widetilde{g}=$ $2 g_{b a} d x^{b} \delta y^{a}+g_{b a} \delta y^{b} \delta y^{a}$.

4. Infinitesimal projective transformations on $T M$

Let M be a differentiable manifold and $T M$ its tangent bundle with affine connection $\widetilde{\nabla}$. A vector field \widetilde{V} on $T M$ is an infinitesimal projective transformation if and only if there exists a 1 -form $\widetilde{\Omega}$ such that

$$
\left(L_{\widetilde{V}} \widetilde{\nabla}\right)(\tilde{X}, \tilde{Y})=\widetilde{\Omega}(\tilde{X}) \tilde{Y}+\widetilde{\Omega}(\tilde{Y}) \widetilde{X}
$$

for any $\tilde{X}, \widetilde{Y} \in \mathfrak{T}_{0}^{1}(T M)$. Then we have the following theorems.

Theorem $1[\mathrm{H}-\mathrm{Y}]$. Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle with the horizontal lift connection. \widetilde{V} is an infinitesimal projective transformation with the associated 1-form $\widetilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in \mathfrak{T}_{0}^{0}(M), B=\left(B^{h}\right), D=$ $\left(D^{h}\right) \in \mathfrak{T}_{0}^{1}(M), A=\left(A_{i}{ }^{h}\right), C=\left(C_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$ satisfying
(1) $\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}{ }^{h}, D^{h}+y^{a} C_{a}{ }^{h}+y^{a} y^{h} \Phi_{a}\right)$,
(2) $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
(3) $\nabla_{j} \Phi_{i}=0, \quad \nabla_{j} \Psi_{i}=0$,
(4) $\nabla_{j} A_{i}{ }^{h}=\Phi_{i} \delta_{j}^{h}$,
(5) $\nabla_{j} C_{i}{ }^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}$,
(6) $L_{B} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} B^{h}+K_{a j i}{ }^{h} B^{a}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}$,
(7) $\nabla_{j} \nabla_{i} D^{h}=0$,
(8) $K_{k j a}{ }^{h} A_{i}{ }^{a}=0$,
where $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right):=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}=\widetilde{V}, \quad\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right):=\widetilde{\Omega}_{a} d x^{a}+\widetilde{\Omega}_{\bar{a}} \delta y^{a}=\widetilde{\Omega}$.
Theorem 2 (cf. [Y1]). Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle with the complete lift connection. Then \widetilde{V} is an infinitesimal projective transformation with the associated 1-form $\widetilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in \widetilde{T}_{0}^{0}(M), B=$ $\left(B^{h}\right), D=\left(D^{h}\right) \in \mathfrak{T}_{0}^{1}(M), A=\left(A_{i}{ }^{h}\right), C=\left(C_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$ satisfying
(1) $\left(\widetilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}{ }^{h}, D^{h}+y^{a} C_{a}{ }^{h}+y^{a} y^{h} \Phi_{a}\right)$,
(2) $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
(3) $\nabla_{j} \Phi_{i}=0, \quad \nabla_{j} \Psi_{i}=0$,
(4) $\nabla_{j} A_{i}{ }^{h}=\Phi_{i} \delta_{j}^{h}$,
(5) $\nabla_{j} C_{i}{ }^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}$,
(6) $L_{B} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} B^{h}+K_{a j i}{ }^{h} B^{a}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}$,
(7) $L_{D} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} D^{h}+K_{a j i}{ }^{h} D^{a}=0$,
(8) $K_{k j a}{ }^{h} A_{i}{ }^{a}=0$,
(9) $\quad B^{a} \nabla_{a} K_{k j i}{ }^{h}=-K_{a j i}{ }^{h} \nabla_{k} B^{a}-K_{k j a}{ }^{h} \nabla_{i} B^{a}+K_{k j i}{ }^{a} C_{a}{ }^{h}-K_{k a i}{ }^{h} C_{j}{ }^{a}$,
where $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right):=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}=\widetilde{V}$ and $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right):=\widetilde{\Omega}_{a} d x^{a}+\widetilde{\Omega}_{\bar{a}} \delta y^{a}=\widetilde{\Omega}$.
Theorem 3. Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle with the diagonal lift connection. Then \tilde{V} is an infinitesimal projective transformation with the associated 1-form $\widetilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in \mathfrak{T}_{0}^{0}(M), B=\left(B^{h}\right), D=$ $\left(D^{h}\right) \in \mathfrak{T}_{0}^{1}(M), A=\left(A_{i}{ }^{h}\right), C=\left(C_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$ satisfying
(1) $\left(\widetilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}{ }^{h}, D^{h}+y^{a} C_{a}{ }^{h}+y^{a} y^{h} \Phi_{a}\right)$,
(2) $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
(3) $\nabla_{j} \Phi_{i}=0, \quad \nabla_{j} \Psi_{i}=0$,
(4) $\nabla_{j} A_{i}{ }^{h}=\Phi_{i} \delta_{j}^{h}-\frac{1}{2} K_{a i j}{ }^{h} D^{a}$,
(5) $\nabla_{j} C_{i}{ }^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}$,
(6) $L_{B} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} B^{h}+K_{a j i}{ }^{h} B^{a}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}$,
(7) $\nabla_{j} \nabla_{i} D^{h}=\frac{1}{2} K_{j i a}{ }^{h} D^{a}$,
(8) $K_{k j a}{ }^{h} A_{i}{ }^{a}=0$,
(9) $K_{k j i}{ }^{a} \nabla_{a} D^{h}=0$,
(10) $B^{a} \nabla_{a} K_{k j i}{ }^{h}=K_{k j i}{ }^{a} \nabla_{a} B^{h}-K_{k j a}{ }^{h} \nabla_{i} B^{a}-K_{k a i}{ }^{h} C_{j}{ }^{a}-K_{a j i}{ }^{h} C_{k}{ }^{a}$,

$$
\begin{equation*}
D^{a} \nabla_{k} K_{a j i}{ }^{h}=K_{k i j}{ }^{a} A_{a}{ }^{h}-K_{a j k}{ }^{h} \nabla_{i} D^{a}-2 K_{a j i}{ }^{h} \nabla_{k} D^{a}, \tag{11}
\end{equation*}
$$

where $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right):=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}=\widetilde{V}$ and $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right):=\widetilde{\Omega}_{a} d x^{a}+\widetilde{\Omega}_{\bar{a}} \delta y^{a}=\widetilde{\Omega}$.
Theorem 4. Let (M, g) be a Riemannian manifold and $T M$ its tangent bundle with the lift connection II+III. Then \widetilde{V} is an infinitesimal projective transformation with the associated 1-form $\widetilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in \mathbb{T}_{0}^{0}(M), B=\left(B^{h}\right), D=$ $\left(D^{h}\right) \in \mathbb{T}_{0}^{1}(M), A=\left(A_{i}{ }^{h}\right), C=\left(C_{i}{ }^{h}\right) \in \mathbb{T}_{1}^{1}(M)$ satisfying
(1) $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}{ }^{h}, D^{h}+y^{a} C_{a}{ }^{h}+y^{a} y^{h} \Phi_{a}\right)$,
(2) $\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
(3) $\nabla_{j} \Phi_{i}=0, \quad \nabla_{j} \Psi_{i}=0$,
(4) $\nabla_{j} A_{i}{ }^{h}=\Phi_{i} \delta_{j}^{h}+\frac{1}{2} K_{a i j}{ }^{h} D^{a}$,
(5) $\nabla_{j} C_{i}{ }^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}-\frac{1}{2} K_{a i j}{ }^{h} D^{a}$,
(6) $L_{B} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} B^{h}+K_{a j i}{ }^{h} B^{a}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}+\frac{1}{2}\left(K_{a j i}{ }^{h}+K_{a i j}{ }^{h}\right) D^{a}$,
(7) $L_{D} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} D^{h}+K_{a j i}{ }^{h} D^{a}=0$,
(8) $K_{a j i}{ }^{h} A_{k}{ }^{a}=0$,
(9) $K_{k j i}{ }^{a}\left(A_{a}{ }^{h}-\nabla_{a} B^{h}+C_{a}{ }^{h}-\nabla_{a} D^{h}\right)=0$,
(10) $B^{a} \nabla_{a} K_{k j i}{ }^{h}=K_{k j i}{ }^{a}\left(\nabla_{a} B^{h}-A_{a}{ }^{h}\right)-K_{k j a}{ }^{h} \nabla_{i} B^{a}-K_{k a i}{ }^{h} C_{j}{ }^{a}-K_{a j i}{ }^{h} C_{k}{ }^{a}$,

$$
\begin{equation*}
D^{a} \nabla_{k} K_{a j i}{ }^{h}=-2 K_{a j i}{ }^{h}\left(\nabla_{k} B^{a}-C_{k}{ }^{a}+\nabla_{k} D^{a}\right)+K_{k i j}{ }^{a} \nabla_{a} D^{h}-K_{a j k}{ }^{h} \nabla_{i} D^{a}, \tag{11}
\end{equation*}
$$

where $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right):=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}=\widetilde{V}$ and $\left(\tilde{\Omega}_{i}, \widetilde{\Omega}_{\bar{\imath}}\right):=\widetilde{\Omega}_{a} d x^{a}+\widetilde{\Omega}_{\bar{a}} \delta y^{a}=\widetilde{\Omega}$.
Theorem 3 and 4 are proved with similar technics, so we prove only Theorem 4.
Proof of Theorem 4. Here we prove only the necessary condition because it is easy to prove the sufficient condition.

Let \widetilde{V} be an infinitesimal projective transformation with the associated 1-form $\widetilde{\Omega}$ on $T M$.
Step 1: By virtue of Lemma 2 and (3.8), we have

$$
\begin{aligned}
\left(L_{\widetilde{V}} \tilde{\nabla}\right)\left(E_{\bar{j}}, E_{\bar{i}}\right) & =\left[\tilde{V}, \widetilde{\nabla}_{E_{\bar{j}}} E_{\overline{\bar{z}}}\right]-\widetilde{\nabla}_{\left[\widetilde{V}, E_{\overline{\bar{j}}}\right]} E_{\bar{i}}-\widetilde{\nabla}_{E_{\bar{j}}}\left[\tilde{V}, E_{\bar{i}}\right] \\
& =\left\{\partial_{j} \partial_{\bar{i}} \widetilde{V}^{a}-\frac{1}{2} y^{c}\left(K_{c i b}{ }^{a} \partial_{j} \widetilde{V}^{b}+K_{c j b}{ }^{a} \partial_{\bar{i}} \widetilde{V}^{b}\right)\right\} E_{a}+\{\cdots\} E_{\bar{a}} .
\end{aligned}
$$

From $\left(L_{\widetilde{V}} \tilde{\nabla}\right)\left(E_{\bar{j}}, E_{\bar{i}}\right)=\widetilde{\Omega}_{\bar{j}} E_{\bar{i}}+\widetilde{\Omega}_{\bar{i}} E_{\bar{j}}$, we obtain

$$
\begin{equation*}
\partial_{j} \partial_{i} \widetilde{V}^{h}-\frac{1}{2} y^{a}\left(K_{a i b}{ }^{h} \partial_{j} \widetilde{V}^{b}+K_{a j b}{ }^{h} \partial_{i} \widetilde{V}^{b}\right)=0 . \tag{4.1}
\end{equation*}
$$

(4.1) is rewritten as follows:

$$
\begin{equation*}
2 \partial_{j} \partial_{i} \widetilde{V}^{h}=\partial_{j}\left(y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right)+\partial_{i}\left(y^{b} K_{b j a}{ }^{h} \widetilde{V}^{a}\right), \tag{4.2}
\end{equation*}
$$

from which we have

$$
\begin{align*}
2 \partial_{\bar{k}} \partial_{j} \partial_{\bar{i}} \widetilde{V}^{h} & =\partial_{\bar{k}} \partial_{\bar{j}}\left(y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right)+\partial_{\bar{k}} \partial_{\bar{i}}\left(y^{b} K_{b j a}{ }^{h} \widetilde{V}^{a}\right) \\
& =\partial_{\bar{j}} \partial_{\bar{i}}\left(y^{b} K_{b k a}{ }^{h} \widetilde{V}^{a}\right)+\partial_{\bar{j}} \partial_{\bar{k}}\left(y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right) \tag{4.3}\\
& =\partial_{\bar{i}} \partial_{\bar{k}}\left(y^{b} K_{b j a}{ }^{h} \widetilde{V}^{a}\right)+\partial_{\bar{i}} \partial_{j}\left(y^{b} K_{b k a}{ }^{h} \widetilde{V}^{a}\right) .
\end{align*}
$$

Therefore we obtain $\partial_{\bar{k}} \partial_{\bar{j}}\left(\partial_{\bar{i}} \widetilde{V}^{h}-y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right)=0$, hence we can put

$$
\begin{equation*}
\partial_{j}\left(\partial_{i} \widetilde{V}^{h}-y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right)=: P_{j i}{ }^{h} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{i} \widetilde{V}^{h}-y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}=: A_{i}{ }^{h}+y^{a} P_{a i}{ }^{h}, \tag{4.5}
\end{equation*}
$$

where $A_{i}{ }^{h}$ and $P_{j i}{ }^{h}$ are certain functions which depend only on the variables x^{h}. The coordinate transformation rule implies that $A=\left(A_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$ and $P=\left(P_{j i}{ }^{h}\right) \in \mathfrak{T}_{2}^{1}(M)$.

From (4.1), we have

$$
P_{j i}{ }^{h}+P_{i j}{ }^{h}=2 \partial_{j} \partial_{i} \widetilde{V}^{h}-y^{a}\left(K_{a i b}{ }^{h} \partial_{j} \widetilde{V}^{b}+K_{a j b}{ }^{h} \partial_{i} \widetilde{V}^{b}\right)=0,
$$

from which

$$
-\partial_{j}\left(y^{b} K_{b i a}{ }^{h} \widetilde{V}^{a}\right)+\partial_{i}\left(y^{b} K_{b j a}{ }^{h} \widetilde{V}^{a}\right)=P_{j i}{ }^{h}-P_{i j}{ }^{h}=2 P_{j i}{ }^{h} .
$$

Thus we have

$$
\begin{align*}
2 y^{a} P_{a i}{ }^{h} & =-y^{a} \partial_{\bar{a}}\left(y^{b} K_{b i c}{ }^{h} \widetilde{V}^{c}\right)+y^{a} \partial_{i}\left(y^{b} K_{b a c}{ }^{h} \widetilde{V}^{c}\right) \\
& =-2 y^{a} K_{a i b}{ }^{h} \widetilde{V}^{b}-y^{b} y^{a} K_{a i c}{ }^{h} \partial_{\bar{b}} \widetilde{V}^{c} . \tag{4.6}
\end{align*}
$$

From (4.5) and (4.6), we have

$$
\begin{equation*}
\partial_{i} \tilde{V}^{h}+\frac{1}{2} y^{b} y^{a} K_{a i c}{ }^{h} \partial_{b} \tilde{V}^{c}=A_{i}{ }^{h}, \tag{4.7}
\end{equation*}
$$

from which

$$
\begin{equation*}
y^{a} \partial_{\bar{a}} \widetilde{V}^{h}=y^{a} A_{a}{ }^{h} . \tag{4.8}
\end{equation*}
$$

Therefore, substituting (4.8) into (4.7), we have

$$
\begin{equation*}
\partial_{\bar{i}} \widetilde{V}^{h}=A_{i}{ }^{h}-\frac{1}{2} y^{b} y^{a} K_{a i c}{ }^{h} A_{b}{ }^{c}, \tag{4.9}
\end{equation*}
$$

from which

$$
\begin{equation*}
\partial_{j} \partial_{\bar{i}} \widetilde{V}^{h}=-\frac{1}{2} y^{a}\left(K_{a i b}{ }^{h} A_{j}^{b}+K_{j i b}{ }^{h} A_{a}^{b}\right) . \tag{4.10}
\end{equation*}
$$

On the other hand, substituting (4.9) into (4.1), we have

$$
\begin{align*}
\partial_{j} \partial_{i} \widetilde{V}^{h}= & \frac{1}{2} y^{a}\left(K_{a i b}{ }^{h} A_{j}^{b}+K_{a j b}{ }^{h} A_{i}^{b}\right) \tag{4.11}\\
& -\frac{1}{4} y^{c} y^{b} y^{a}\left(K_{c i d}{ }^{h} K_{b j e}{ }^{d} A_{a}^{e}+K_{c j d}{ }^{h} K_{b i e}{ }^{d} A_{a}^{e}\right)
\end{align*}
$$

Comparing (4.10) with (4.11), we get

$$
2 K_{k i a}{ }^{h} A_{j}^{a}+K_{j i a}{ }^{h} A_{k}^{a}+K_{k j a}{ }^{h} A_{i}^{a}=0,
$$

from which, changing the roles of j and i, and adding together, we obtain

$$
K_{k j a}{ }^{h} A_{i}{ }^{a}+K_{k i a}{ }^{h} A_{j}{ }^{a}=0 .
$$

Furthermore we obtain

$$
\begin{equation*}
K_{k j a}{ }^{h} A_{i}^{a}=0 \tag{4.12}
\end{equation*}
$$

In fact, by virtue of the first Bianchi identity,

$$
\begin{aligned}
& 0=\left(K_{a i j k}+K_{a k i j}+K_{a j k i}\right) A^{h a} \\
&=-K_{a i j}{ }^{h} A_{k}{ }^{a}-K_{a k i}{ }^{h} A_{j}{ }^{a}-K_{a j k}{ }^{h} A_{i}^{a} \\
&\left(\begin{array}{l}
\\
=K_{i j a}{ }^{h} A_{k}{ }^{a}+K_{j a i}{ }^{h} A_{k}{ }^{a}+K_{a k j}{ }^{h} A_{i}{ }^{a}-K_{a j k}{ }^{h} A_{i}{ }^{a} \\
\end{array}\right) \\
&=-K_{k j a}{ }^{h} A_{i}{ }^{a}+K_{a k j}{ }^{h} A_{i}^{a} \\
&=3 K_{i j a}{ }^{h}{ }^{h} A_{k}{ }^{a}-K_{i k i a}{ }^{a} A_{j}^{a}-K_{j k a}{ }^{h} A_{i}{ }^{a}
\end{aligned}
$$

where $A^{i h}:=g^{i a} A_{a}{ }^{h}$ and $K_{k j i h}:=K_{k j i}{ }^{a} g_{a h}$.
From (4.9) and (4.12), we have

$$
\partial_{i} \widetilde{V}^{h}=A_{i}{ }^{h}
$$

Hence we can put

$$
\begin{equation*}
\tilde{V}^{h}=B^{h}+y^{a} A_{a}{ }^{h} \tag{4.13}
\end{equation*}
$$

where B^{h} are certain functions which depend only on x^{h}. We can see that $B=\left(B^{h}\right) \in$ $\mathfrak{T}_{0}^{1}(M)$. Here, substituting (4.13) into (4.4) and using (4.12),

$$
\begin{equation*}
P_{j i}{ }^{h}=-K_{j i a}{ }^{h} B^{a} . \tag{4.14}
\end{equation*}
$$

Substituting (4.12) and (4.13) into $\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{\bar{j}}, E_{\bar{i}}\right)=\widetilde{\Omega}_{\bar{j}} E_{\bar{i}}+\widetilde{\Omega}_{\bar{i}} E_{\bar{j}}$,

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{i} \widetilde{V}^{\bar{h}}=\widetilde{\Omega}_{\bar{j}} \delta_{i}^{h}+\widetilde{\Omega}_{\bar{i}} \delta_{j}^{h} \tag{4.15}
\end{equation*}
$$

Step 2: $\operatorname{From}\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{\tilde{j}}, E_{i}\right)=\widetilde{\Omega}_{\bar{j}} E_{i}+\widetilde{\Omega}_{i} E_{\bar{j}}$, using (4.12), (4.13) and (4.14), we obtain

$$
\begin{align*}
\widetilde{\Omega}_{\bar{j}} \delta_{i}^{h}= & \nabla_{i} A_{j}{ }^{h}-\frac{1}{2} \widetilde{V}^{\bar{a}} K_{a j i}{ }^{h}-\frac{1}{2} y^{a} K_{a b i}{ }^{h} \partial_{j} \widetilde{V}^{\bar{b}} \\
& -\frac{1}{2} y^{a}\left(K_{a j i}{ }^{b} A_{b}{ }^{h}+B^{b} \nabla_{b} K_{a j i}{ }^{h}\right. \tag{4.16}\\
& \left.\quad-K_{a j i}{ }^{b} \nabla_{b} B^{h}+K_{a j b}{ }^{h} \nabla_{i} B^{b}\right) \\
& -\frac{1}{2} y^{b} y^{a}\left(A_{b}{ }^{c} \nabla_{c} K_{a j i}{ }^{h}-K_{a j i}{ }^{c} \nabla_{c} A_{b}{ }^{h}+K_{a j c}{ }^{h} \nabla_{i} A_{b}{ }^{c}\right) .
\end{align*}
$$

Contracting i and h in (4.15), we have $n \widetilde{\Omega}_{\bar{j}}=\nabla_{a} A_{j}{ }^{a}$. Therefore we have

$$
\begin{equation*}
\widetilde{\Omega}_{\bar{i}}=\Phi_{i}, \tag{4.17}
\end{equation*}
$$

where $\Phi_{i}:=\frac{1}{n} \nabla_{a} A_{i}{ }^{a}$.
From (4.15) and (4.17), we have

$$
\partial_{i} \tilde{V}^{\bar{h}}=C_{i}^{h}+y^{h} \Phi_{i}+y^{a} \Phi_{a} \delta_{i}^{h}
$$

and

$$
\begin{equation*}
\tilde{V}^{\bar{h}}=D^{h}+y^{a} C_{a}{ }^{h}+y^{a} y^{h} \Phi_{a}, \tag{4.18}
\end{equation*}
$$

where D^{h} and $C_{i}{ }^{h}$ are certain functions which depend only on x^{h}. We can see that $D=$ $\left(D^{h}\right) \in \mathfrak{T}_{0}^{1}(M)$ and $C=\left(C_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$.

From (4.16), (4.17) and (4.18), we get

$$
\begin{align*}
& \nabla_{j} A_{i}{ }^{h}=\Phi_{i} \delta_{j}^{h}+\frac{1}{2} K_{a i j}{ }^{h} D^{a}, \tag{4.19}\\
& B^{a} \nabla_{a} K_{k j i}{ }^{h}= K_{k j i}{ }^{a}\left(\nabla_{a} B^{h}-A_{a}{ }^{h}\right) \tag{4.20}\\
&-K_{k j a}{ }^{h} \nabla_{i} B^{a}-K_{k a i}{ }^{h} C_{j}{ }^{a}-K_{a j i}{ }^{h} C_{k}{ }^{a}
\end{align*}
$$

and

$$
\begin{aligned}
A_{l}{ }^{a} \nabla_{a} K_{k j i}{ }^{h}+A_{k}{ }^{a} \nabla_{a} K_{l j i}{ }^{h}= & K_{k j i}{ }^{a} \nabla_{a} A_{l}{ }^{h}+K_{l j i}{ }^{a} \nabla_{a} A_{k}{ }^{h} \\
& -K_{k j a}{ }^{h} \nabla_{i} A_{l}{ }^{a}-K_{l j a}{ }^{h} \nabla_{i} A_{k}{ }^{a} \\
& -2 \Phi_{l} K_{k j i}{ }^{h}-2 \Phi_{k} K_{l j i}{ }^{h} .
\end{aligned}
$$

The last one of these equations is an identity equation. From (4.19), we have

$$
\begin{equation*}
\Phi_{i}=\frac{1}{n} \nabla_{a} A_{i}{ }^{a}=\nabla_{i} A_{a}{ }^{a}+\frac{1}{2} R_{a i} D^{a}\left(=\nabla_{a} A_{i}^{a}-\frac{1}{2} R_{a i} D^{a}\right) . \tag{4.21}
\end{equation*}
$$

Step 3: $\operatorname{From}\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{\bar{j}}, E_{i}\right)=\widetilde{\Omega}_{\bar{j}} E_{i}+\widetilde{\Omega}_{i} E_{\bar{j}}$, using (4.12), (4.13), (4.14) and (4.18), we obtain

$$
\begin{align*}
\widetilde{\Omega}_{i} \delta_{j}^{h}= & \nabla_{i} C_{j}{ }^{h} \\
& +K_{a i j}{ }^{h} B^{a}+\frac{1}{2} K_{a j i}{ }^{h} D^{a} \\
& +\frac{1}{2} y^{a}\left(B^{b} \nabla_{b} K_{a j i}{ }^{h}+K_{a j b}{ }^{h} \nabla_{i} B^{b}\right. \\
& +K_{b j i}{ }^{h} C_{a}{ }^{b}+K_{a b i}{ }^{h} C_{j}{ }^{b}-K_{a j i}{ }^{b} C_{b}{ }^{h} \tag{4.22}\\
& \left.\quad+K_{a j i}{ }^{b} \nabla_{b} D^{h}+2 \delta_{a}^{h} \nabla_{i} \Phi_{j}+2 \delta_{j}^{h} \nabla_{i} \Phi_{a}\right) \\
& +\frac{1}{2} y^{b} y^{a}\left(A_{b}{ }^{c} \nabla_{c} K_{a j i}{ }^{h}+K_{b j c}{ }^{h} \nabla_{i} A_{a}{ }^{c}-K_{a j i}{ }^{d} K_{d c b}{ }^{h} B^{c}\right. \\
& \left.\quad+K_{a j i}{ }^{c} \nabla_{c} C_{b}{ }^{h}+K_{b j i}{ }^{h} \Phi_{a}-\delta_{b}^{h} K_{a j i}{ }^{c} \Phi_{c}\right) \\
& +\frac{1}{2} y^{c} y^{b} y^{a} \delta_{c}^{h} K_{b j i}{ }^{d} \nabla_{d} \Phi_{a} .
\end{align*}
$$

Contracting j and h in (4.22), we get

$$
\begin{gather*}
\widetilde{\Omega}_{i}=\Psi_{i}+\frac{1}{2 n} y^{a}\left\{-B^{b} \nabla_{b} R_{a i}-R_{b a} \nabla_{i} B^{b}-R_{b i} C_{a}^{b}\right. \\
\left.+K_{a b i}{ }^{c} \nabla_{c} D^{b}+2(n+1) \nabla_{i} \Phi_{a}\right\} \tag{4.23}\\
-\frac{1}{2 n} y^{b} y^{a}\left(A_{b}{ }^{c} \nabla_{c} R_{a i}+R_{c b} \nabla_{i} A_{a}^{c}+K_{a c i}{ }^{d} K_{d e b}{ }^{c} B^{e}\right. \\
\\
\left.\quad-K_{a c i}{ }^{d} \nabla_{d} C_{b}{ }^{c}+R_{b i} \Phi_{a}\right)
\end{gather*}
$$

where $\Psi_{i}:=\frac{1}{n}\left(\nabla_{i} C_{a}{ }^{a}-\frac{1}{2} R_{a i} D^{a}\right)$ and $R=\left(R_{j i}\right)$ is the Ricci tensor of M defined by $R_{j i}:=K_{a j i}{ }^{a}$. Then, from (4.23), we obtain

$$
\begin{equation*}
\nabla_{j} C_{i}^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}-\frac{1}{2} K_{a i j}{ }^{h} D^{a}, \tag{4.24}
\end{equation*}
$$

and

$$
\begin{align*}
& 2 n \delta_{k}^{h} \nabla_{i} \Phi_{j}-2 \delta_{j}^{h} \nabla_{i} \Phi_{k} \\
&=n\left(-B^{a} \nabla_{a} K_{k j i}{ }^{h}-K_{k j a}{ }^{h} \nabla_{i} B^{a}\right. \tag{4.25}\\
&\left.\quad-K_{a j i}{ }^{h} C_{k}{ }^{a}-K_{k a i}{ }^{h} C_{j}{ }^{a}+K_{k j i}{ }^{a} C_{a}{ }^{h}-K_{k j i}{ }^{a} \nabla_{a} D^{h}\right) \\
&-\delta_{j}^{h}\left(B^{a} \nabla_{a} R_{k i}+R_{a k} \nabla_{i} B^{a}+R_{a i} C_{k}{ }^{a}+K_{a k i}{ }^{b} \nabla_{b} D^{a}\right) .
\end{align*}
$$

The last part of right hand side in (4.23) vanishes by means of (4.12), (4.19), (4.24) and the second Bianchi identity. In fact

$$
\begin{aligned}
& -\frac{1}{2 n} y^{b} y^{a}\left(A_{b}{ }^{c} \nabla_{c} R_{a i}+R_{c b} \nabla_{i} A_{a}{ }^{c}+K_{a c i}{ }^{d} K_{d e b}{ }^{c} B^{e}-K_{a c i}{ }^{d} \nabla_{d} C_{b}{ }^{c}+R_{b i} \Phi_{a}\right) \\
& =-\frac{1}{2 n} y^{b} y^{a}\left\{A_{b}{ }^{c}\left(\nabla_{i} R_{c a}+\nabla_{d} K_{c i a}{ }^{d}\right)+R_{c a} \nabla_{i} A_{b}{ }^{c}+\frac{1}{2} K_{a e i}{ }^{d} K_{c b d}{ }^{e} D^{c}+R_{b i} \Phi_{a}\right\} \\
& =\frac{1}{4 n} y^{b} y^{a}\left(K_{e a i}{ }^{d}+K_{e i a}{ }^{d}\right) K_{c b d}{ }^{e} D^{c} \\
& =0 .
\end{aligned}
$$

Contracting k and h in (4.25), we have

$$
\begin{equation*}
-2(n-1) \nabla_{i} \Phi_{j}=B^{a} \nabla_{a} R_{j i}+R_{a j} \nabla_{i} B^{a}+R_{a i} C_{j}^{a}+K_{a j i}^{b} \nabla_{b} D^{a} \tag{4.26}
\end{equation*}
$$

from which (4.23) and (4.25) are rewitten as follows:

$$
\begin{equation*}
\widetilde{\Omega}_{i}=\Psi_{i}+2 y^{a} \nabla_{i} \Phi_{a} \tag{4.27}
\end{equation*}
$$

and

$$
\begin{align*}
& 2\left(\delta_{j}^{h} \nabla_{i} \Phi_{k}-\delta_{k}^{h} \nabla_{i} \Phi_{j}\right) \\
& =B^{a} \nabla_{a} K_{k j i}{ }^{h}+K_{k j a}{ }^{h} \nabla_{i} B^{a}+K_{a j i}{ }^{h} C_{k}{ }^{a} \tag{4.28}\\
& \quad+K_{k a i}{ }^{h} C_{j}^{a}-K_{k j i}{ }^{a} C_{a}{ }^{h}+K_{k j i}{ }^{a} \nabla_{a} D^{h} .
\end{align*}
$$

Step 4: $\operatorname{From}\left(L_{\widetilde{V}} \widetilde{\nabla}\right)\left(E_{j}, E_{i}\right)=\widetilde{\Omega}_{j} E_{i}+\widetilde{\Omega}_{i} E_{j}$, using (4.12), (4.13) and (4.18), we obtain

$$
\begin{align*}
& \widetilde{\Omega}_{j} \delta_{i}^{h}+\widetilde{\Omega}_{i} \delta_{j}^{h} \\
& =L_{B} C_{j i}{ }^{h}-\frac{1}{2}\left(K_{a j i}{ }^{h}+K_{a i j}{ }^{h}\right) D^{a} \\
& \quad+\frac{1}{2} y^{a}\left\{2 \nabla_{j} \nabla_{i} A_{a}{ }^{h}-2 K_{a j i}{ }^{b} A_{b}{ }^{h}\right. \\
& \quad-B^{b}\left(\nabla_{b} K_{a j i}{ }^{h}+\nabla_{b} K_{a i j}{ }^{h}\right)+\left(K_{a j i}{ }^{b}+K_{a i j}{ }^{b}\right) \nabla_{b} B^{h} \\
& \quad \quad-\left(K_{a i b}{ }^{h}+K_{a b i}{ }^{h}\right) \nabla_{j} B^{b}-\left(K_{a j b}{ }^{h}+K_{a b j}{ }^{h}\right) \nabla_{i} B^{b} \\
& \left.\quad \quad-\left(K_{b j i}{ }^{h}+K_{b i j}{ }^{h}\right) C_{a}{ }^{b}-K_{a b i}{ }^{h} \nabla_{j} D^{b}-K_{a b j}{ }^{h} \nabla_{i} D^{b}\right\} \tag{4.29}\\
& -\frac{1}{2} y^{b} y^{a}\left\{\left(K_{b j i}{ }^{h}+K_{b i j}{ }^{h}\right) \Phi_{a}+A_{b}{ }^{c}\left(\nabla_{c} K_{a j i}{ }^{h}+\nabla_{c} K_{a i j}{ }^{h}\right)\right. \\
& \quad \quad-\left(K_{b j i}{ }^{c}+K_{b i j}{ }^{c}\right) \nabla_{c} A_{a}{ }^{h}+\left(K_{b i c}{ }^{h}+K_{b c i}{ }^{h}\right) \nabla_{j} A_{a}{ }^{c} \\
& \quad \\
& \quad+\left(K_{b j c}{ }^{h}+K_{b c j}{ }^{h}\right) \nabla_{i} A_{a}{ }^{c}+K_{b c i}{ }^{h} K_{d j a}{ }^{c} B^{d} \\
& \\
& \left.\quad+K_{b c j}{ }^{h} K_{d i a}{ }^{c} B^{d}+K_{b c i}{ }^{h} \nabla_{j} C_{a}{ }^{c}+K_{b c j}{ }^{h} \nabla_{i} C_{a}{ }^{c}\right\}
\end{align*}
$$

and

$$
\begin{align*}
& 0= L_{D} \\
& \Gamma_{j i}{ }^{h} \\
&+y^{a}\left\{\nabla_{j} \nabla_{i} C_{a}{ }^{h}+K_{b j i}{ }^{h} C_{a}{ }^{b}-K_{a j i}{ }^{b} C_{b}{ }^{h}\right. \\
&+\nabla_{j}\left(K_{b i a}{ }^{h} B^{b}\right)+B^{b} \nabla_{b} K_{a j i}{ }^{h}+K_{a b i}{ }^{h} \nabla_{j} B^{b} \\
&+K_{a j b}{ }^{h} \nabla_{i} B^{b}+\frac{1}{2} K_{a b i}{ }^{h} \nabla_{j} D^{b} \\
&\left.+\frac{1}{2} K_{a b}{ }^{h} \nabla_{i} D^{b}+\frac{1}{2}\left(K_{a j i}{ }^{b}+K_{a i j}{ }^{b}\right) \nabla_{b} D^{h}\right\} \tag{4.30}\\
&+\frac{1}{2} y^{b} y^{a}\left\{2 \delta_{b}^{h}\left(\nabla_{j} \nabla_{i} \Phi_{a}-K_{a j i}{ }^{c} \Phi_{c}\right)+2 A_{b}{ }^{c} \nabla_{c} K_{a j i}{ }^{h}\right. \\
&+2 K_{b c i}{ }^{h} \nabla_{j} A_{a}{ }^{c}+2 K_{b j c}{ }^{h} \nabla_{i} A_{a}{ }^{c} \\
& \quad-\left(K_{b j i}{ }^{d}+K_{b i j}{ }^{d}\right) K_{d c a}{ }^{h} B^{c} \\
&-K_{c j b}{ }^{d} K_{d a i}{ }^{h} B^{c}-K_{c i b}{ }^{d} K_{d a j}{ }^{h} B^{c} \\
&+\left(K_{b j i}{ }^{c}+K_{b i j}{ }^{c}\right) \nabla_{c} C_{a}{ }^{h} \\
&\left.\quad-K_{c b i}{ }^{h} \nabla_{j} C_{a}{ }^{c}-K_{c b j}{ }^{h} \nabla_{i} C_{a}{ }^{c}\right\} \\
&+\frac{1}{2} y^{c} y^{b} y^{a}\left(K_{c j i}{ }^{d}+K_{c i j}{ }^{d}\right) \delta_{b}^{h} \nabla_{d} \Phi_{a} .
\end{align*}
$$

From (4.27) and (4.29), we obtain

$$
\begin{equation*}
L_{B} \Gamma_{j i}{ }^{h}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}+\frac{1}{2}\left(K_{a j i}{ }^{h}+K_{a i j}{ }^{h}\right) D^{a} \tag{4.31}
\end{equation*}
$$

and

$$
\begin{align*}
2 \nabla_{k} \nabla_{j} A_{i}{ }^{h}= & 2 K_{i k j}{ }^{a} A_{a}{ }^{h}+B^{a}\left(\nabla_{a} K_{i k j}+\nabla_{a} K_{i j k}{ }^{h}\right) \\
& +\left(K_{i j a}{ }^{h}+K_{i a j}{ }^{h}\right) \nabla_{k} B^{a}++\left(K_{i k a}{ }^{h}+K_{i a k}{ }^{h}\right) \nabla_{j} B^{a} \\
& -\left(K_{i k j}{ }^{a}+K_{i j k}{ }^{a}\right) \nabla_{a} B^{h}+\left(K_{a k j}{ }^{h}+K_{a j k}{ }^{h}\right) C_{i}{ }^{a} \tag{4.32}\\
& +K_{i a j}^{h} \nabla_{k} D^{a}+K_{i a k}{ }^{h} \nabla_{j} D^{a} \\
& +4 \delta_{k}^{h} \nabla_{j} \Phi_{i}+4 \delta_{j}^{h} \nabla_{k} \Phi_{i} .
\end{align*}
$$

Substituting (4.19) into (4.32), we have

$$
\begin{align*}
& 4 \delta_{k}^{h} \nabla_{j} \Phi_{i}+2 \delta_{j}^{h} \nabla_{k} \Phi_{i} \\
&= 2 K_{k i j}{ }^{a} A_{a}^{h}-B^{a}\left(\nabla_{a} K_{i k j}^{h}+\nabla_{a} K_{i j k}^{h}\right) \\
&-\left(K_{i j a}^{h}+K_{i a j}^{h}\right) \nabla_{k} B^{a}-\left(K_{i k a}{ }^{h}+K_{i a k}^{h}\right) \nabla_{j} B^{a} \tag{4.33}\\
&+\left(K_{i k j}^{a}+K_{i j k}{ }^{a}\right) \nabla_{a} B^{h}-\left(K_{a k j}^{h}+K_{a j k}{ }^{h}\right) C_{i}{ }^{a} \\
&+D^{a} \nabla_{k} K_{a i j}{ }^{h}+K_{a i k}{ }^{h} \nabla_{j} D^{a}+2 K_{a i j}{ }^{h} \nabla_{k} D^{a} .
\end{align*}
$$

Contracting j and h in (4.33), and comparing this with (4.26),

$$
\begin{equation*}
\nabla_{j} \Phi_{i}=0 \tag{4.34}
\end{equation*}
$$

Substituting (4.20) and (4.34) in (4.33),

$$
\begin{align*}
& \nabla_{k}\left(K_{a j i}{ }^{h} D^{a}\right) \\
& =-K_{k i j}{ }^{a} A_{a}{ }^{h}-K_{a j i}{ }^{h}\left(\nabla_{k} B^{a}-C_{k}{ }^{a}+\nabla_{k} D^{a}\right) \tag{4.35}\\
& \quad-K_{a j k}{ }^{h}\left(\nabla_{i} B^{a}-C_{i}{ }^{a}+\nabla_{i} D^{a}\right) .
\end{align*}
$$

From (4.27) and (4.34),

$$
\begin{equation*}
\widetilde{\Omega}_{i}=\Psi_{i} \tag{4.36}
\end{equation*}
$$

From (4.20), (4.28) and (4.34),

$$
\begin{equation*}
K_{k j i}^{a}\left(A_{a}^{h}-\nabla_{a} B^{h}+C_{a}^{h}-\nabla_{a} D^{h}\right)=0 . \tag{4.37}
\end{equation*}
$$

Contracting j and h in (4.29), and using (4.12) and (4.18),

$$
\begin{aligned}
(n+1) \widetilde{\Omega}_{i}= & \nabla_{i} \nabla_{a} B^{a}+\frac{1}{2} R_{a i} D^{a} \\
& +\frac{1}{2} y^{a}\left(2 n \nabla_{i} \Phi_{a}+B^{b} \nabla_{b} R_{a i}+R_{b a} \nabla_{i} B^{b}+R_{b i} C_{a}^{b}+K_{b a i}{ }^{c} \nabla_{c} D^{b}\right) \\
& +\frac{1}{2} y^{b} y^{a}\left(2 R_{b i} \Phi_{a}+A_{b}{ }^{c} \nabla_{c} R_{a i}-K_{b c i}{ }^{e} K_{d e a}{ }^{c} B^{d}\right. \\
& \left.\quad-K_{b c i}{ }^{d} \nabla_{d} C_{a}{ }^{c}+\frac{1}{2} R_{c b} K_{d a i}{ }^{c} D^{d}\right) .
\end{aligned}
$$

Comaring this with (4.23),

$$
\begin{equation*}
\Psi_{i}=\frac{1}{n}\left(\nabla_{i} C_{a}^{a}-\frac{1}{2} R_{a i} D^{a}\right)=\frac{1}{n+1}\left(\nabla_{i} \nabla_{a} B^{a}+\frac{1}{2} R_{a i} D^{a}\right) \tag{4.38}
\end{equation*}
$$

We put $\varphi:=A_{a}{ }^{a}-\frac{n}{2 n+1} \nabla_{a} B^{a}+\frac{n+1}{2 n+1} C_{a}{ }^{a}$ and $\psi:=\frac{1}{2 n+1}\left(\nabla_{a} B^{a}+C_{a}{ }^{a}\right)$. Then we get

$$
\begin{equation*}
\Phi_{i}=\partial_{i} \varphi \quad \text { and } \quad \Psi_{i}=\partial_{i} \psi \tag{4.39}
\end{equation*}
$$

by virtue of (4.21) and (4.38).

From (4.30),

$$
\begin{equation*}
L_{D} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} D^{h}+K_{a j i}{ }^{h} D^{a}=0 \tag{4.40}
\end{equation*}
$$

and

$$
\begin{align*}
2 \nabla_{k} \nabla_{j} C_{i}{ }^{h}= & 2 K_{k a j}{ }^{h} C_{i}^{a}-2 K_{k i j}{ }^{a} C_{a}{ }^{h} \\
& -2 \nabla_{k}\left(K_{a j i}{ }^{h} B^{a}\right)+2 B^{a} \nabla_{a} K_{k i j}{ }^{h} \\
& +2 K_{a i j}{ }^{h} \nabla_{k} B^{a}+2 K_{k i a}{ }^{h} \nabla_{j} B^{a} \tag{4.41}\\
& +K_{a i j}{ }^{h} \nabla_{k} D^{a}+K_{a i k}{ }^{h} \nabla_{j} D^{a} \\
& -\left(K_{i k j}{ }^{a}+K_{i j k}{ }^{a}\right) \nabla_{a} D^{h} .
\end{align*}
$$

Substituting (4.20), (4.24) and (4.37) into (4.41),

$$
\begin{align*}
2 \delta_{i}^{h} \nabla_{k} \Psi_{j}= & 2 K_{a i j}{ }^{h} \nabla_{k} B^{a}-2 K_{a i j}{ }^{h} C_{k}^{a} \\
& +\nabla_{k}\left(K_{a i j}{ }^{h} D^{a}\right)+K_{a i j}{ }^{h} \nabla_{k} D^{a} \tag{4.42}\\
& +K_{a i k}{ }^{h} \nabla_{j} D^{a}-K_{k j i}{ }^{a} \nabla_{a} D^{h} .
\end{align*}
$$

Contracting j and h in (4.42),

$$
\begin{equation*}
2 \nabla_{k} \Psi_{i}=\left(K_{a k i}^{b}+K_{a i k}^{b}\right) \nabla_{b} D^{a} \tag{4.43}
\end{equation*}
$$

Using (4.19), (4.34) and the Ricci identity,

$$
\begin{align*}
& \nabla_{b}\left(K_{a i j}{ }^{b} D^{a}\right) \\
& =\nabla_{a}\left(2 \Phi_{i} \delta_{j}^{a}+K_{b i j}{ }^{a} D^{b}\right)-2 n \nabla_{j} \Phi_{i} \tag{4.44}\\
& =2\left(\nabla_{a} \nabla_{j} A_{i}{ }^{a}-\nabla_{j} \nabla_{a} A_{i}^{a}\right) \\
& =0
\end{align*}
$$

Contracting k and h in (4.42), and using (4.12), (4.37), (4.43) and (4.44),

$$
\begin{aligned}
2 \nabla_{i} \Psi_{j}= & 2 K_{a i j}{ }^{b}\left(\nabla_{b} B^{a}-C_{b}^{a}+\nabla_{b} D^{a}\right) \\
& +\nabla_{b}\left(K_{a i j}{ }^{b} D^{a}\right)-\left(K_{a j i}^{b}+K_{a i j}^{b}\right) \nabla_{b} D^{a} \\
= & -2 \nabla_{i} \Psi_{j}
\end{aligned}
$$

from which

$$
\begin{equation*}
\nabla_{j} \Psi_{i}=0 \tag{4.45}
\end{equation*}
$$

Substituting (4.45) into (4.42), we get

$$
\begin{align*}
D^{a} \nabla_{k} K_{a j i}{ }^{h}= & -2 K_{a j i}{ }^{h}\left(\nabla_{k} B^{a}-C_{k}{ }^{a}+\nabla_{k} D^{a}\right) \\
& -K_{a j k}{ }^{h} \nabla_{i} D^{a}+K_{k i j}{ }^{a} \nabla_{a} D^{h} \tag{4.46}
\end{align*}
$$

Q.E.D.

Therefore we now have the following

Corollary (cf. [Y2, Y3]). Let (M, g) be a Riemannian manifold and TM its tangent bundle with (1) horizontal lift connection, (2) complete lift connection, (3) diagonal lift connection or (4) lift connection II+III. If TM admits an infinitesimal fibre-preserving projective transformation \widetilde{V} with the associated 1 -form $\widetilde{\Omega}$, then there exist $\psi \in \mathcal{T}_{0}^{0}(M), B=$ $\left(B^{h}\right), D=\left(D^{h}\right) \in \mathfrak{T}_{0}^{1}(M)$ and $C=\left(C_{i}{ }^{h}\right) \in \mathfrak{T}_{1}^{1}(M)$ satisfying
(1) $\left(\widetilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}, D^{h}+y^{a} C_{a}{ }^{h}\right)$,
(2) $\widetilde{\Omega}=\left(\partial_{a} \psi\right) d x^{a}=\Psi_{a} d x^{a}$,
(3) $\nabla_{j} \Psi_{i}=0$,
(4) $\nabla_{j} C_{i}{ }^{h}=\Psi_{j} \delta_{i}^{h}-K_{a j i}{ }^{h} B^{a}$,
(5) $L_{B} \Gamma_{j i}{ }^{h}=\nabla_{j} \nabla_{i} B^{h}+K_{a j i}{ }^{h} B^{a}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}$,
(6) $L_{D} \Gamma_{j i}{ }^{h}=0$,
where $\left(\widetilde{V}^{h}, \widetilde{V}^{\bar{h}}\right):=\widetilde{V}^{a} E_{a}+\widetilde{V}^{\bar{a}} E_{\bar{a}}=\widetilde{V}$.

Using these theorems, we at last come to the following
Theorem 5. Let (M, g) be a complete Riemannian manifold and $T M$ its tangent bundle. Assume that TM admits a non-affine infinitesimal projective transformation with respect to one of the following lift connections:
(1) the horizontal lift connection.
(2) the complete lift connection.
(3) the diagonal lift connection.
(4) the lift connection II + III.

Then M and $T M$ are locally flat.
Proof. Here we prove only case (4) because other cases are proved with same technics as case (4). We put $X^{h}:=A_{a}{ }^{h} \dot{\Phi}^{a}$. Then, using (4.19) and (4.34), we have

$$
\begin{align*}
L_{X} g_{j i} & =\nabla_{j} X_{i}+\nabla_{i} X_{j} \\
& =\left(\nabla_{j} A_{a i}\right) \Phi^{a}+\left(\nabla_{i} A_{a j}\right) \Phi^{a} \tag{4.47}\\
& =\left(\Phi_{a} g_{j i}-\frac{1}{2} K_{b a j i} D^{b}\right) \Phi^{a}+\left(\Phi_{a} g_{j i}-\frac{1}{2} K_{b a i j} D^{b}\right) \Phi^{a} \\
& =2\left(\Phi_{a} \Phi^{a}\right) g_{j i} .
\end{align*}
$$

Similarly we put $Y^{h}:=\left(\nabla_{a} B^{h}-C_{a}{ }^{h}\right) \Psi^{a}$. Then, using (4.24), (4.31) and (4.45),

$$
\begin{align*}
L_{Y} g_{j i}= & \left(\nabla_{j} \nabla_{a} B_{i}-\nabla_{j} C_{a i}\right) \Psi^{a}+\left(\nabla_{i} \nabla_{a} B_{j}-\nabla_{i} C_{a j}\right) \Psi^{a} \\
= & \left\{\left(-K_{b j a i} B^{b}+\Psi_{j} g_{a i}+\Psi_{a} g_{j i}\right)-\left(\Psi_{j} g_{a i}-K_{b j a i} B^{b}\right)\right\} \Psi^{a} \tag{4.48}\\
& \quad+\left(\Psi_{a} g_{j i}\right) \Psi^{a} \\
= & 2\left(\Psi_{a} \Psi^{a}\right) g_{j i}
\end{align*}
$$

Therefore X and Y are infinitesimal homothetic transformations.
To prove Theorem 5, we need the following well-known

Lemma 3 [K1]. If a complete Riemannian manifold M admits a non-isometric infinitesimal homothetic transformation, then M is locally flat.

Therefore M is locally flat by virtue of Lemma 3. In this case the lift connection coincides with the horizontal lift conection, and $T M$ is also locally flat. In fact

$$
\begin{aligned}
& \left.\widetilde{K}\left(E_{k}, E_{j}\right) E_{i}=\widetilde{\nabla}_{E_{k}} \widetilde{\nabla}_{E_{j}} E_{i}-\widetilde{\nabla}_{E_{j}} \widetilde{\nabla}_{E_{k}} E_{i}-\widetilde{\nabla}_{\left[E_{k}\right.}, E_{j}\right] E_{i}=K_{k j i}{ }^{a} E_{a}=0, \\
& \widetilde{K}\left(E_{k}, E_{j}\right) E_{\bar{i}}=\widetilde{\nabla}_{E_{k}} \widetilde{\nabla}_{E_{j}} E_{\bar{i}}-\widetilde{\nabla}_{E_{j}} \widetilde{\nabla}_{E_{k}} E_{\overline{\overline{ }}}-\widetilde{\nabla}_{\left[E_{k},\right.}, E_{j} E_{\bar{i}}=K_{k j i}{ }^{a} E_{\bar{a}}=0, \\
& \widetilde{K}\left(E_{k}, E_{\bar{j}}\right) E_{i}=\widetilde{K}\left(E_{k}, E_{\bar{j}}\right) E_{\bar{i}}=\widetilde{K}\left(E_{\bar{k}}, E_{\bar{j}}\right) E_{i}=\widetilde{K}\left(E_{\bar{k}}, E_{\bar{j}}\right) E_{\bar{i}}=0 .
\end{aligned}
$$

Q.E.D.

References

[H-Y] I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on the tangent bundles with the horizontal lift connection, Journal of Hokkaido Univ. of Education 52 (2001), 1-5.
[K1] S. Kobayashi, A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. J. 9 (1955), 39-41.
[K2] , Transformation Groups in Differential Geometry (1972), Springer.
$[\mathrm{S}] \quad \mathrm{S}$. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338—354.
[Y1] K. Yamauchi, On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J. 16 (1987), 115-125.
[Y2] \qquad , On infinitesimal projective transformations of tangent bundles with the metric II + III, Ann. Rep. Asahikawa Med. Coll. 20 (1999), 67-72.
[Y3] - On infinitesimal projective transformations of tangent bundles over Riemannian manifolds, Math. Japonica 49 (1999), 433-440.
[Y-I] K.Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.

Izumi HASEGAWA
Department of Mathematics, Sapporo Campus, Hokkaido University of Education, 5-3-1-5, Ainosato, Kita-ku, Sapporo, 002-8502 JAPAN

E-mail address: hasegawa@sap.hokkyodai.ac.jp

Kazunari YamaUCHI
Department of Mathematics, Asahikawa Medical College,
2-1-1-1, Midorigaoka-Higashi, Asahikawa, 078-8510 JAPAN
E-mail address: yamauchi@asahikawa-med.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 53C20, Secondary 53C22.
 Keywords: infinitesimal projective transformation, infinitesimal affine transformation, infintesimal homothetic transformation, Lie derivation, tangent bundle.

