ON THE NUMBER OF THE NON-EQUIVALENT KM-SPANNING SUBGRAPHS OF THE COMPLETE GRAPH WITH ORDER MK

Osamu Nakamura

Received August 27, 2002

Abstract. Let m be greater than or equal to 2 and n be a multiple of m. We will call a spanning subgraph whose components are K_m of the complete graph K_n a K_m -spanning subgraph of K_n . The Dihedral group D_n acts on the complete graph K_n naturally. This action of D_n induces the action on the set of the K_m -spanning subgraphs of the complete graph K_n . In [3], we calculated the number of the equivalence classes of the 1-regular spanning subgraphs of the complete graph K_n of even order n by this action by using Burnside's Lemma. This is in the case m = 2. In this paper, we generalize this results and calculate the number of the non-equivalent K_m -spanning subgraphs of K_n for all m and n.

Let m be greater than or equal to 2 and let n be a multiple of m. Let $fv_0; v_1; v_2; \text{ccc}; v_{n_i-1}g$ be the vertices of the complete graph K_n . The action to K_n of the Dihedral group $D_n = fk_0; k_1; \text{ccc}; k_{n_i-1}; k_0; k_1; \text{ccc}; k_{n_i-1}g$ is defined by

$$\begin{split} & \aleph_{i}(v_{k}) = v_{(k+i)} \pmod{n} \text{ for } 0 \cdot i \cdot n_{i} 1; 0 \cdot k \cdot n_{i} 1 \\ & \aleph_{i}(v_{k}) = v_{(n+i_{i},k)} \pmod{n} \text{ for } 0 \cdot i \cdot n_{i} 1; 0 \cdot k \cdot n_{i} 1 \end{split}$$

We call a spanning subgraph whose componenta are K_m of the complete graph K_n a K_m -spanning subgraph of K_n . Let X_n^m be the set of the K_m -spanning subgraphs of K_n . Then the above action induces the action on X_n^m of the Dihedral group D_n .

For example, the equivalence classes of X_6^3 are given with the next ⁻gure.

$$2 + 4$$

The equivalence classes of X_{θ}^{3} are given with the next ⁻gure.

We calculate the number of the equivalence classes by this group action. These computations can be done by using Burnside's lemma. Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S. Then the number of orbits induced on S is given by

$$\frac{1}{jGj} \sum_{M2G}^{M} jfix(M)j$$

where fix(4) = fx 2 Sj4(x) = xg.

Notation 1. An integer function 1(p;q) is de-ned by

$${}^{1}(p;q) = \begin{pmatrix} 1 & \text{if } p \leq 0 \pmod{q} \\ 0 & \text{otherwise} \end{pmatrix}$$

Notation 2. For each integer i such that $0 \cdot i \cdot n_i \ 1$, let d = (n; i) and $R^m_{n; i}$ be $0 \ 1$

$$R_{n;i}^{m} = \frac{\mathbf{X}}{\substack{d = \frac{\mathbf{P}_{i}}{j=1} S_{j} p_{j} \\ S_{j} = 1; p_{j} jm \text{ for } 1 \cdot j \cdot 1}} \left(\frac{\mathbf{d}!}{\mathbf{Y}} \frac{\mathbf{d}!}{(p_{j} !)^{S_{j}} S_{j} !} \frac{\mathbf{Y}}{j=1} \cdot \left(\frac{n}{d}; \frac{m}{p_{j}}\right)^{3} \frac{p_{j} n}{dm} \int_{0}^{1} S_{j} (p_{j} !)^{3} \frac$$

Notation 3. $S^m_{n;i}; 0 \cdot i \cdot n_i$ 1 is given by the following recursive formula: If n is odd then

 $\begin{array}{l} S_{n;k}^m = S_{n;0}^m \mbox{ for } 1 \cdot k \cdot n_i \ 1. \\ \mbox{If } n \mbox{ is even then} \\ S_{n;2k}^m = S_{n;0}^m \mbox{ for } 1 \cdot k \cdot \frac{n}{2} \ i \ 1 \mbox{ and } S_{n;2k+1}^m = S_{n;1}^m \mbox{ for } 1 \cdot k \cdot \frac{n}{2} \ i \ 1. \\ \mbox{If } m \mbox{ is odd then} \end{array}$

$$\begin{split} S_{m;0}^{m} &= 1 \\ S_{2m;1}^{m} &= 2^{m_{i} 1} \\ \mu_{n;1} &= \frac{1}{2} \\ \mu_{n;2}^{m} &= \frac{1}{2} \\ R_{n;0}^{m} &= \frac{1}{2} \\ R_{n;1}^{m} &= \frac{1}{2}$$

If m is even then

$$S_{m;0}^{m} = S_{m;1}^{m} = 1$$

$$F_{2m;1}^{m} = 2^{m_{i} 1} + \frac{\mu_{2m_{i} 2}}{\frac{m_{i} 2}{2}}$$

$$S_{2m;1}^{m} = 2^{m_{i} 1} + \frac{\mu_{2m_{i} 2}}{\frac{m_{i} 2}{2}}$$

$$F_{2m;1}^{m} = \frac{\mu_{n_{i} 2}}{\frac{m_{i} 2}{2}}$$

Our main Theorem is the following:

Theorem 2. The number of the non-equivalent K_m -spanning subgraphs of the complete graph K_n is given by the following formula: If n is odd then

$$\frac{1}{2n} f_{i=0}^{\mathbf{X}^{1}} R_{n;i}^{m} + n \notin S_{n;0}^{m} g$$

If n is even then

$$\frac{1}{2n}f_{i=0}^{\mathbf{X}^{1}}R_{n;i}^{m} + \frac{n}{2} f(S_{n;0}^{m} + S_{n;1}^{m})g$$

We must determine the numbers of the \bar{x} ed points of each permutation $\frac{1}{4}$ and $\frac{3}{4}$ to prove the Theorem by using Burnside's Lemma.

Lemma 1. The number of the K_m -spanning subgraphs of K_n is

This is the number of the \neg xed points of \aleph_0 .

Proof. Since the number of ways to select m items from a collection of n items is $\frac{\mu_n \eta}{m}$, the number of ways to partition n items into subsets of size m is $\frac{\nu_n \mu_m \eta}{m}$. Then the number of ways to select $\frac{n}{m}$ groups of size m from a collection of n items is $\frac{\frac{i \mp 1}{m} \mu_m i}{\frac{1}{m}!}$. Then we have the results.

Notation 4. Let M_n^m be the union of G_0 ; G_1 ; $\mathfrak{c} \mathfrak{c}$; $G_{n=m_i \ 1}$, where G_j be the complete graph whose vertices are fv_j ; $v_{j+n=m}$; $v_{j+2n=m}$; $\mathfrak{c} \mathfrak{c}$; $v_{j+(m_i \ 1)n=m}g$ for $0 \cdot j \cdot n=m_i \ 1$.

Lemma 2. If (n,i)=1 then the number of the ⁻xed points of \aleph_i is one.

Proof. M_n^m is a K_m -spanning subgraph of K_n and $\frac{1}{2}_i(M_n^m) = M_n^m$. Conversely, let H be a K_m -spanning subgraph of K_n which is ⁻xed by $\frac{1}{2}_i$ and contain a commponent C whose vertices are $fv_0; v_{k_1}; v_{k_2}; \mathfrak{t}\mathfrak{t}\mathfrak{t}; v_{k_{m_i}} \mathfrak{g}; 0 < k_1 < k_2 < \mathfrak{t}\mathfrak{t} < k_{m_i} \mathfrak{1}$. Since (n,i)=1, there is an integer [®] such that [®]i ⁻ 1 (mod n). Then $\frac{1}{2}_i^{\mathbb{e}_{k_1}}(v_0v_{k_1}) = v_{k_1}v_{2k_1} \mathcal{2} C$. If $2k_1$ is not equal to k_2 then $2k_1$ must be greater than k_2 by the assumption of $0 < k_1 < k_2 < \mathfrak{t}\mathfrak{t} < k_{m_i} \mathfrak{1}$. Since $\frac{1}{2}_i^{\mathbb{e}_{k_1}(k_2)}(v_{k_1}v_{k_2}) = v_{2k_{1i}}k_2v_{k_1} \mathcal{2} C$ and $0 < 2k_{1j}k_2 < k_1$, this is impossible. Then we have $k_2 = 2k_1$. We assume that $k_j = jk_1$ for $j \cdot s$ and prove that $k_{s+1} = (s+1)k_1$. Since $\frac{1}{2}_i^{\mathbb{e}_{k_1}(k_2)}(v_{0}v_{k_1}) = v_{k_s}v_{(s+1)k_1} \mathcal{2} C$, $(s+1)k_1$ is greater than or equal to k_{s+1} . If $(s+1)k_1 > k_{s+1}$ then $\frac{1}{2}_i^{\mathbb{e}_{k_1}(k_{s+1})}(v_{k_s}v_{k_{s+1}}) = v_{2k_{si}k_{s+1}}v_{k_s} \mathcal{2} C$ and $k_{si} \mathcal{1} < 2k_s \mathcal{1} k_{s+1} < k_s$. This is impossible. Then we have $k_{s+1} = (s+1)k_1$. We -nally prove that $mk_1 = n$. Since

 $\begin{array}{l} {\rlap{k}}_{i}^{\circledast(m_{i}\ 1)}(v_{0}v_{k_{1}}) = v_{k_{m_{i}\ 1}}v_{mk_{1}} \ 2\ C \ and \ k_{m_{i}\ 1} = (m_{i}\ 1)k_{1} < mk_{1}, \ we \ have \ mk_{1} \ , \ n \ and \ 0 \cdot mk_{1} \ (mod\ n) < k_{1}. \ Then \ we \ have \ that \ mk_{1}\ \ 0 \ (mod\ n) \ and \ mk_{1} = n \ and \ k_{1} = n = m. \ Then \ the \ set \ of \ the \ vertices \ of \ C \ is \ fv_{0}; \ v_{n=m}; \ v_{2n=m}; \ \ (\ v_{m_{i}\ 1})_{n=mg}. \ Since \ H \ is \ determined \ by \ C, \ H \ must \ be \ M_{n}^{m}. \ Then \ the \ number \ of \ the \ \ vertices \ of \ \ k_{i} \ \ is \ one. \ \Box$

Lemma 3. The \neg xed points of \aleph_i is $\mathsf{R}_{n:i}^m$.

 $\begin{array}{l} \label{eq:proof. Let } \mathsf{d} = (n;i) \text{ and } \mathsf{V}_0 = \mathsf{fv}_0; \mathsf{v}_d; \mathsf{v}_{2d}; \texttt{CC} ; \mathsf{v}_{n_i \ d}g; \mathsf{V}_1 = \mathsf{fv}_1; \mathsf{v}_{d+1}; \mathsf{v}_{2d+1}; \texttt{CC} ; \mathsf{v}_{n_i \ d+1}g, \\ \mathsf{V}_2 = \mathsf{fv}_2; \mathsf{v}_{d+2}; \mathsf{v}_{2d+2}; \texttt{CC} ; \mathsf{v}_{n_i \ d+2}g, \texttt{CC} ; \mathsf{v}_{d_i \ 1} = \mathsf{fv}_{d_i \ 1}; \mathsf{v}_{2d_i \ 1}; \mathsf{v}_{3d_i \ 1}; \texttt{CC} ; \mathsf{v}_{n_i \ d}g. \end{array}$

Since (n; i) = d, the equation xi f m (mod n) has a solution if and only if d divides m. Then we have $\frac{1}{k_i}(V_k) = V_k$ for $0 \cdot k \cdot d_i$ 1. Let H be a K_m-spanning subgraph of K_n which is f xed by $\frac{1}{k_i}$. We assume that each component of HjV_{ko} [V_{k1} [ttt [V_{kpi 1} is K_m and any component of the restriction to the proper subset of FV_{ko}; V_{k1}; ttt ; V_{kpi 1} of H is not K_m. Since $\frac{1}{k_i}(V_k) = V_k$ for $0 \cdot k \cdot d_i$ 1, the vertices of each component K_m must be distributed equally to V_{ko}; V_{k1}; ttt ; V_{kpi 1}. Then m f 0 (mod p) and $\frac{n}{d} f$ 0 (mod $\frac{m}{p}$) and each component of HjV_j is K_m. If we change the name of the vertices of V_j to v₀; v₁; v₂; ttt; v_{mi 1} then we have $\frac{1}{k_i}(HjV_j) = HjV_j$. Since (n; i) = d, we have that ($\frac{n}{d}$; $\frac{1}{d}$) = 1. By Lemma 1, we have that HjV_j = M_m^m. Since the number of components K_m of HjV_j is $\frac{pn}{dm}$, the number of the possible arrangements of HjV_{ko} [V_{k1} [ttt [V_{kpi 1} is $\frac{pn}{dm}$ is divide fV₀; V₁; V₂; ttt; V_{di 1}g into the subsets W₁; W₂; W₃; ttt; W_s which are satisfied the above conditions. If jW_k is equal to p_k; 1 · k · s then the number of such H is k=1

 $1 \cdot k \cdot s$. Let $d = \sum_{j=1}^{k} s_j p_j$ be a representation of d as the sum of divisors p_j of m. The

j

O

Accordingly, the number of all the possibilities of H is

$$\mathbf{X}_{\substack{d = \sum_{j=1}^{l} S_{j} p_{j} \\ S_{j} \downarrow 1; p_{j} jm \text{ for } 1 \cdot j \cdot | j = 1}} \left\{ \frac{d!}{\mathbf{Y}}_{(p_{j} !)^{S_{j}} S_{j} !} \mathbf{Y}_{j=1}^{1} (\frac{n}{d}; \frac{m}{p_{j}})^{3} \frac{p_{j} n}{dm} \int_{s}^{s_{j} (p_{j} i)^{-1}} \mathbf{X}_{s}^{1} \right\}$$

This number is $R_{n,i}^{m}$ given by Notaion 2. We have the results.

Notation 5. Let $S_{n;i}^m$ be the number of the \bar{x} points of $\frac{3}{4}_i$ for X_n^m .

Remark 2. By the following lemmas we will see that $S^m_{n;i}$ agrees with the one which is given in Notation 3.

Lemma 4. If n is odd then the number of the \bar{x} ed points of $\frac{3}{4}_0$ is equal to the number of the \bar{x} ed points of $\frac{3}{4}_k$ for all $1 \cdot k \cdot n_i$ 1.

1

Proof. We assume that k is even. Let H be a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_0}$. Then it is easily veri⁻ed that $\frac{3}{k_{\underline{k}}}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$ then $\frac{3}{k_{\underline{k}}}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_0}$. Next we assume that k is odd. Let H be a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_0}$. Then it is easily veri⁻ed that $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Then $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Then $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Conversely, if H is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Then $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Then $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$. Then $\frac{3}{2}(H)$ is a K_m-spanning subgraph of K_n ⁻xed by $\frac{3}{4_k}$.

Similarly, we have the next Lemma.

Lemma 5. If n is even then the number of the \bar{x} ed points of $\frac{3}{0}$ is equal to the number of the \bar{x} ed points of $\frac{3}{2d}$ for all $1 \cdot d \cdot n=2$; 1 and the number of the \bar{x} ed points of $\frac{3}{1}$ is equal to the number of the \bar{x} ed points of $\frac{3}{2d+1}$ for all $1 \cdot d \cdot n=2$; 1.

Lemma 6. If n is odd and m is odd then

$$\begin{split} S^m_{m;0} &= 1 & \text{and} \\ S^m_{n;0} &= \frac{\mu_{\frac{n_i - 1}{2}} \P}{\frac{m_i - 1}{2}} \ \pounds \ S^m_{n_i \ m;1} & \text{if } n_{\downarrow} \ 2m \end{split}$$

Proof. The K_m-spanning subgraph of K_m is K_m and K_m is ⁻xed by ³/₄₀. Then we have $S_{m;0}^{m} = 1$. We assume that n $_{,}$ 2m. Let H be a K_m-spanning subgraph of K_n $_{,}$ xed by ³/₄₀. Let C be the component of H which contains vertex v₀. H $_{i}$ C naturally becomes K_m-spanning subgraph of K_{nim} $_{,}$ xed by ³/₄₁ when we change the name of the vertices. Conversely, let H be a K_m-spanning subgraph of K_{nim} $_{,}$ xed by ³/₄₁. Since n $_{i}$ m is even, the axis of the line symmetry is not passing any vertices. If we take one vertex of K_m in the position of v₀ of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n $_{,}$ xed by ³/₄₀. The number of ways to distribute the vertices of K_m is $\frac{n_{i}}{2}$. Then we have the results.

Lemma 7. If n is even and m is odd then

$$S_{n;0}^{m} = \frac{\mu_{\frac{n_{i} 2}{2}}}{\frac{m_{i} 1}{2}} f S_{n_{i} m;0}^{m}$$

Proof. Let H be a K_m-spanning subgraph of K_n ¯xed by $\frac{3}{40}$. Since n is even, the axis of $\frac{3}{40}$ passes v₀ and v_{$\frac{n}{2}$}. Let C be the component of H which contains vertex v_{$\frac{n}{2}$}. Since m is odd, C does not contain the vertex v₀. H_i C naturally becomes K_m-spanning subgraph of K_{nim} ¯xed by $\frac{3}{40}$ when we change the name of the vertices. Conversely, let H be a K_m-spanning subgraph of K_{nim} ¯xed by $\frac{3}{40}$. Since n_i m is odd, the axis of $\frac{3}{40}$ passes the vertex v₀. If we take one vertex of K_m in the position of v_{$\frac{n}{2}$} of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n ¯xed by $\frac{3}{40}$. The number of ways to distribute the vertices of K_m is $\frac{n_i}{\frac{2}{m_i}}$. Then we have the results.

Lemma 8. If n is even and m is odd then

$$S_{2m;1}^{m} = 2 \overset{m_{i} \ 1}{A} \xrightarrow{\mathbf{A}_{r_{i}}} \frac{i_{\frac{n_{i} \ 2}{2}} \overset{\mathbf{c}}{!}}{k! (m_{i} \ k_{i} \ 1)! (\frac{n_{i} \ 2m}{2})!} \stackrel{\mathbf{i}}{\in} S_{n_{i} \ 2m;1}^{m} \qquad \text{and}$$

Proof. We assume that n = 2m. If we take one vertex of K_m in the position of $v_{\frac{n}{2}+1}$ and one vertex of another K_m in the position of $v_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two K_m to both sides of the perpendicular bisector of $v_{\frac{n}{2}i}$ and $v_{\frac{n}{2}i}$ permitting redundancy and symmetrically regarding the line then the resulting graph becomes a K_m -spanning subgraph of K_{2m} -xed by $\frac{3}{1}$. The number of \mathbf{X}^1 (m : 1)!

ways to distribute the vertices of two K_m is $\frac{m^2}{k=0} \frac{(m_i 1)!}{k!(m_i k_i 1)!} = 2^{m_i 1}$. We assume that n 4m. Let H be a K_m -spanning subgraph of K_n fixed by $\frac{3}{4}$. Since n is even, the axis of

n _ 4m. Let H be a K_m-spanning subgraph of K_n ¯xed by $\frac{3}{4}_1$. Since n is even, the axis of $\frac{3}{4}_1$ does not pass any vertices. Since m is odd, there is no component which contains both $v_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$. Let C₀ be a component which contains vertex $v_{\frac{n}{2}}$ and C₁ be a component which contains vertex $v_{\frac{n}{2}+1}$. Let C₀ be a component which contains vertex $v_{\frac{n}{2}}$ and C₁ be a component which contains vertex $v_{\frac{n}{2}+1}$. H i C₀ i C₁ naturally becomes K_m-spanning subgraph of K_{ni} 2m ¯ xed by $\frac{3}{4}_1$ when we change the name of the vertices. Conversely, let H be a K_m-spanning subgraph of K_{ni} 2m ¯ xed by $\frac{3}{4}_1$. Since n i 2m is even, the axis of $\frac{3}{4}_1$ does not pass any vertices. If we take one vertex of K_m in the position of $v_{\frac{n}{2}}$ and one vertex of another K_m in the position of $v_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two K_m between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n ¯ xed by

regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_m⁻ xed by $\frac{1}{3}$. The number of ways to distribute the vertices of two K_m is $\frac{1}{k=0} \frac{\frac{1}{2} \frac{1}{2}!}{k!(m_i k_i 1)!(\frac{n_i 2m}{2})!}$. Then we have the results.

Lemma 9. If n is even and m is even then

$$\begin{split} S^m_{m;0} &= 1 & \text{and} \\ \mu_{\frac{n_i \cdot 2}{2}} \P \\ S^m_{n;0} &= \frac{\mu_{\frac{n_i \cdot 2}{2}}}{\frac{m_i \cdot 2}{2}} \text{ ff } S^m_{n_i \ m;1} & \text{if } n \ \text{gm} \end{split}$$

Proof. The K_m-spanning subgraph of K_m is K_m and K_m is ¯xed by ¾₀. Then we have $S_{m;0}^m = 1$. We assume that n $_{2}$ 2m. Let H be a K_m-spanning subgraph of K_n ¯xed by ¾₀. Since n is even, the axis of ¾₀ passes v₀ and v_{$\frac{n}{2}$}. Let C be the component of H which contains vertex v₀ and v_{$\frac{n}{2}$}. H₁ C naturally becomes K_m-spanning subgraph of K_{n1} m ¯xed by ¾₁ when we change the name of the vertices. Conversely, let H be a K_m-spanning subgraph of K_{n1} m ¯xed by ¾₁. Since n₁ m is even, the axis of ¾₁ does not pass any vertices. If we take two vertices of K_m in the positions of v₀ and v_{$\frac{n}{2}$} of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n ¯xed by ¾₀. The number of ways to distribute the vertices of K_m is $\frac{n_{12}^2}{m_{12}^2}$. Then we have the results.

Lemma 10. If n is even and m is even then

$$\begin{split} S^m_{m;1} &= 1 & \text{and} \\ S^m_{2m;1} &= 2^{m_i \ 1} + \frac{\mu_{\frac{2m_i \ 2}{2}}}{\frac{m_i \ 2}{2}} \P & \text{and} \\ S^m_{n;1} &= \frac{\mu_{\frac{n_i \ 2}{2}}}{\frac{m_i \ 2}{2}} S^m_{n_i \ m;1} + \frac{\tilde{A}}{k=0} \frac{\tilde{A}}{k! (m_i \ k_i \ 1)! (\frac{n_i \ 2}{2})!} & \text{£} \ S^m_{n_i \ 2m;1} & \text{if } n_{\ s} \ 3m \end{split}$$

Proof. The K_m-spanning subgraph of K_m is K_m and K_m is ⁻xed by $\frac{3}{1}$. Then we have $S_{m;1}^m = 1$. We assume that n $\frac{1}{2}$ 3m. We study two kinds of constitutions that compose K_m-spanning subgraphs of K_n ⁻xed by $\frac{3}{1}$ inductively.

The ⁻rst method is the following:

Let H be a K_m-spanning subgraph of K_{nim} xed by $\frac{3}{4_1}$. Since n_i m is even, the axis of $\frac{3}{4_1}$ does not pass any vertices. If we take two vertices of K_m in the positions of v_m and v_{m+1} of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n xed by $\frac{3}{4_1}$. The number of ways to distribute the vertices of K_m is $\frac{n_1 - 2}{m_1 - 2}$. Similarly, if we take two vertices of K_m in the positions of v₀ and v₁ of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the positions of v₀ and v₁ of the graph which we will construct and divide the remaining vertices of K_m into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n xed by $\frac{3}{4_1}$. The number of ways to distribute the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_m-spanning subgraph of K_n xed by $\frac{3}{4_1}$. The number of ways to distribute the vertices of K_m is $\frac{i \frac{n_1 - 2}{m_1 - 2}}{m_1 - 2}$. Accordingly, it is possible $2 \pm \frac{i \frac{n_1 - 2}{m_1 - 2}}{m_1 - 2} \pm S_{n_1 - m_1}^m K_m$ -spanning subgraph of K_n xed by $\frac{3}{4_1}$ as a whole with these constitutions.

The second method is the following:

Let H be a K_m-spanning subgraph of K_{ni} _{2m} -xed by ¾₁. Since n_i m is even, the axis of ¾₁ does not pass any vertices. If we take one vertex of K_m in the position of v_n and one vertex of another K_m in the position of v_{n+1} of the graph which we will construct and distribute the remaining vertices of two K_m between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_mspanning subgraph of K_n -xed by ¾₁. The number of ways to distribute the vertices of two K_m is $\prod_{k=0}^{m_i -1} \frac{(\frac{n_i - 2}{k!(m_i - k_i - 1)!(\frac{n_i - 2m_i}{2m_i - 2m_i - 2m_i$

 $2 \pm \frac{\sqrt{2}}{k!(m_i k_i 1)!(\frac{n_i 2m}{2})!}$. Km-spanning subgraph of Kn⁻xed by $\frac{3}{1}$. By these two constructions, we can construct

$$2 \pm \frac{\mu_{\frac{n_{i}}{2}}}{\frac{m_{i}}{2}} S^{m}_{n_{i}} _{m;1} + 2 \pm \frac{\tilde{A}_{n_{i}}}{k_{e0}} \frac{1}{k!(m_{i} + k_{i} - 1)!(\frac{n_{i}}{2})!} \pm S^{m}_{n_{i}} _{2m;1}$$

 K_m -spanning subgraphs of K_n \bar{x} ed by $\frac{3}{1}$. Clearly there are doubling two pieces of each. Also, it is clear to be able to compose all the K_m -spanning subgraphs of K_n \bar{x} ed by $\frac{3}{1}$

Osamu NAKAMURA

by these methods. We assume that n is equal to 2m. Then we can similarly construct all K_m -spanning subgraphs of K_{2m} -xed by $\frac{3}{41}$ by these two constructions if we set H be a empty graph in the case of the second constitution. We have the results.

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent K₄-spanning subgraphs of K_n, $n \cdot 16$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

n=4	1
n=8	7
n=12	297
n=16	83488

References

- Jonathan Gross and Jay Yellen, Graph Theory and Its Applications, CRC Press, Boca Raton, 1999
- [2] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill Book Company, New York Japanese translation: Kyouritu Publishing Co., Tokyo, 1972.
- [3] Osamu Nakamura, On the number of the non-equivalent 1-regular spanning subgraphs of the complete graphs of even order, to appear in SCMJ

Department of Mathematics , Faculty of Education Kochi University AKEBONOCHO 2-5-1 KOCHI, JAPAN osamu@cc:kochi-u:ac:jp