ON THE NUMBER OF THE NON-EQUIVALENT KM-SPANNING SUBGRAPHS OF THE COMPLETE GRAPH WITH ORDER MK

O samu Nakamura

Received A ugust 27, 2002

Abstract

Let m be greater than or equal to 2 and n be a multiple of m. We will call a spanning subgraph whose components are K_{m} of the complete graph K_{n} a K_{m} spanning subgraph of K_{n}. The Dihedral group D_{n} acts on the complete graph K_{n} naturally. This action of D_{n} induces the action on the set of the K_{m}-spanning subgraphs of the complete graph K_{n}. In [3], we calculated the number of the equivalence classes of the 1-regular spanning subgraphs of the complete graph K_{n} of even order n by this action by using Burnside's Lemma. This is in the case $m=2$. In this paper, we generalize this results and calculate the number of the non-equivalent K_{m}-spanning subgraphs of K_{n} for all m and n.

Let m be greater than or equal to 2 and let n be a multiple of m. Let $f v_{0} ; v_{1} ; v_{2} ; \Varangle \not \subset \Varangle ; v_{n_{i}} 1 g$ be the vertices of the complete graph K_{n}. The action to K_{n} of the Dihedral group

$$
\begin{aligned}
& 1 / 2\left(v_{k}\right)=v_{(k+i)} \quad(\bmod n) \text { for } 0 \cdot i \cdot n_{i} 1 ; 0 \cdot k \cdot n_{i} 1 \\
& 3 / 4\left(v_{k}\right)=v_{\left(n+i_{i} k\right)} \quad(\bmod n) \text { for } 0 \cdot i \cdot n_{i} 1 ; 0 \cdot k \cdot n_{i} 1
\end{aligned}
$$

We call a spanning subgraph whose componenta are K_{m} of the complete graph K_{n} a K_{m}-spanning subgraph of K_{n}. Let X_{n}^{m} be the set of the K_{m}-spanning subgraphs of K_{n}. Then the above action induces the action on X_{n}^{m} of the Dihedral group D_{n}.

For example, the equivalence classes of X_{6}^{3} are given with the next ${ }^{-}$gure.

The equivalence classes of X_{9}^{3} are given with the next ${ }^{-}$gure.

We calculate the number of the equivalence classes by this group action. These computations can be done by using Burnside's lemma.

Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S. Then the number of orbits induced on S is given by

$$
\frac{1}{j G j}_{1 / 2 G}^{X} j f i x(1 / 4 j
$$

where $\operatorname{fix}^{1}\left(1 / 4=\mathrm{fx} 2 \mathrm{Sj}^{1} / 4 \mathrm{x}\right)=\mathrm{xg}$.
N otation 1. An integer function ${ }^{1}(p ; q)$ is de ${ }^{-}$ned by

$$
{ }^{1}(p ; q)=\begin{array}{ll}
1 & \text { if } p^{\prime} \quad 0 \quad(\bmod q) \\
0 & \text { otherwise }
\end{array}
$$

Notation 2. For each integer i such that $0 \cdot i \cdot n_{i} 1$, let $d=(n ; i)$ and $R_{n ; i}^{m}$ be

$$
0 \quad 1
$$

$$
\begin{aligned}
& R_{n ; i}^{m}= \\
& d=P_{j=1} s_{j} p_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{j}}, 1 ; \mathrm{p}_{\mathrm{j}} \mathrm{jm} \text { forl } \mathrm{l} \text { j } \cdot \mathrm{l} \quad \mathrm{j}=1
\end{aligned}
$$

N otation $3 . \mathrm{S}_{\mathrm{n} ; \mathrm{i}}^{\mathrm{m}} ; 0 \cdot \mathrm{i} \cdot \mathrm{n}_{\mathrm{i}} 1$ is given by the following recursive formula:
If n is odd then

$$
\mathrm{S}_{\mathrm{n} ; \mathrm{k}}^{m}=\mathrm{S}_{\mathrm{n} ; 0}^{m} \text { for } 1 \cdot \mathrm{k} \cdot \mathrm{n}_{\mathrm{i}} 1
$$

If n is even then
$S_{n ; 2 k}^{m}=S_{n ; 0}^{m}$ for $1 \cdot k \cdot \frac{n}{2} i \quad 1$ and $S_{n ; 2 k+1}^{m}=S_{n ; 1}^{m}$ for $1 \cdot k \cdot \frac{n}{2} ; 1$.
If m is odd then

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}=1 \\
& S_{2 m ; 1}^{m}=2^{m_{i} 1} \\
& S_{n ; 0}^{m}=\int_{\frac{n_{i} 1}{2}}^{\frac{m_{i} 1}{2}} £ S_{n_{i} m ; 1}^{m} \\
& \text { if } n \text { is odd and } n, 2 m
\end{aligned}
$$

If m is even then

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{m} ; 0}^{\mathrm{m}}=\mathrm{S}_{\mathrm{m} ; 1}^{\mathrm{m}}=1 \\
& \begin{aligned}
& S_{2 m ; 1}^{m}=2^{m_{i} 1}+\mu_{\frac{2 m_{i} 2}{2}} \\
& \mu_{n_{i} 2} q
\end{aligned} \\
& S_{n ; 0}^{m}=\frac{\mu_{\frac{n_{i} 2}{2}}}{\frac{m_{i} 2}{2}} £ S_{n_{i} m ; 1}^{m} \text { if } n, 2 m
\end{aligned}
$$

Our main Theorem is the following:
Theorem 2. The number of the non-equivalent K_{m}-spanning subgraphs of the complete graph K_{n} is given by the following formula:
If n is odd then

$$
\frac{1}{2 n} f_{i=0}^{x i l} R_{n ; i}^{m}+n £ S_{n ; 0}^{m} g
$$

If n is even then

$$
\frac{1}{2 n} f_{i=0}^{x i} R_{n ; i}^{m}+\frac{n}{2} £\left(S_{n ; 0}^{m}+S_{n ; 1}^{m}\right) g
$$

We must determine the numbers of the ${ }^{-}$xed points of each permutation $1 / 2$ and $3 / 4$ to prove the Theorem by using Burnside's Lemma.

Lemma 1. The number of the K_{m}-spanning subgraphs of K_{n} is

$$
\begin{aligned}
& { }_{\mathrm{Y}}^{\mathrm{F}} \mathrm{~m}^{\mu} \mathrm{mk}_{\mathrm{m}} \text { 1 }^{\text {I }} \\
& { }_{k=1} \mathrm{~m}_{\mathrm{i}} 1
\end{aligned}
$$

This is the number of the ${ }^{-}$xed points of $1 / 0$.
Proof. Since the number of ways to select m items from a collection of n items is μ_{m}^{μ}, the
 of ways to select $\frac{n}{m}$ groups of size m from a collection of n items is $\frac{i=1}{i=1} \frac{n}{m}!$. Then we have the results.

N otation 4. Let M_{n}^{m} be the union of $G_{0} ; G_{1} ; \phi \Phi \Phi ; G_{n=m_{i} 1}$, where G_{j} be the complete graph

Lemma 2. If $(\mathrm{n}, \mathrm{i})=1$ then the number of the ${ }^{-}$xed points of $1 / 2$ is one.
Proof. M_{n}^{m} is a K_{m}-spanning subgraph of K_{n} and $1 / 2\left(M_{n}^{m}\right)=M_{n}^{m}$. Conversely, let H be a K_{m}-spanning subgraph of K_{n} which is ${ }^{-}$xed by $1 / 2$ and contain a commponent C whose
 integer ${ }^{\circledR}$ such that $\circledR^{\prime} 1(\bmod n)$. Then $1^{2} \gtrless^{2 k_{1}}\left(v_{0} v_{k_{1}}\right)=v_{k_{1}} v_{2 k_{1}} 2 \mathrm{C}$. If $2 \mathrm{k}_{1}$ is not equal to k_{2} then $2 k_{1}$ must be greater than k_{2} by the assumption of $0<k_{1}<k_{2}<\Phi \Phi \Phi<k_{m_{i} 1}$. Since $1 \stackrel{R}{2}_{R}^{R}\left(k_{1 i} k_{2}\right)\left(v_{k_{1}} v_{k_{2}}\right)=v_{2 k_{1 i} k_{2}} v_{k_{1}} 2 \mathrm{C}$ and $0<2 \mathrm{k}_{1} \mathrm{i} k_{2}<\mathrm{k}_{1}$, this is impossible. Then we have $k_{2}=2 k_{1}$. We assume that $k_{j}=j k_{1}$ for j. s and prove that $k_{s+1}=(s+1) k_{1}$. Since $1 \gtrless^{\text {Rs }}{ }^{2}\left(v_{0} v_{k_{1}}\right)=v_{k_{s}} v_{(s+1) k_{1}} 2 \mathrm{C},(\mathrm{s}+1) \mathrm{k}_{1}$ is greater than or equal to $\mathrm{k}_{\mathrm{s}+1}$. If $(\mathrm{s}+1) \mathrm{k}_{1}>\mathrm{k}_{\mathrm{s}+1}$ then $\left.1 \gtrless^{R} k_{s i} k_{s+1}\right)\left(v_{k_{s}} v_{k_{s+1}}\right)=v_{2 k_{s} i k_{s+1}} v_{k_{s}} 2 C$ and $k_{s i}<2 k_{s} i k_{s+1}<k_{s}$. This is impossible. Then we have $k_{s+1}=(s+1) k_{1}$. We ${ }^{-}$nally prove that $m k_{1}=n$. Since
$11^{\circledR\left(m_{i} 1\right)}\left(v_{0} v_{k_{1}}\right)=v_{k_{m i}} v_{m k_{1}} 2 C$ and $k_{m_{i} 1}=(m ; 1) k_{1}<m k_{1}$, we have $m k_{1}$, n and $0 \cdot m k_{1}(\bmod n)<k_{1}$. Then we have that $m k_{1}^{\prime} 0(\bmod n)$ and $m k_{1}=n$ and $k_{1}=n=m$. Then the set of the vertices of C is $f v_{0} ; v_{n=m} ; v_{2 n=m} ; \Varangle \not \subset \Varangle ; v_{(m ; 1) n=m} g$. Since H is determined by C, H must be M_{n}^{m}. Then the number of the ${ }^{-}$xed points of $1 / R$ is one.
Lemma 3. The ${ }^{-}$xed points of $1 / 2$ is $R_{n ; i}^{m}$.
Proof. Let $d=(n ; i)$ and $V_{0}=f v_{0} ; v_{d} ; V_{2 d} ; \Varangle \not \subset \Varangle ; v_{n i} d ; V_{1}=f v_{1} ; v_{d+1} ; v_{2 d+1} ; \Varangle \Varangle \dagger ; v_{n i} d+1 g$,

Since $(\mathrm{n} ; \mathrm{i})=\mathrm{d}$, the equation $\mathrm{xi}{ }^{\prime} \mathrm{m}(\bmod \mathrm{n})$ has a solution if and only if d divides m . Then we have $1 / 2\left(\mathrm{~V}_{\mathrm{k}}\right)=\mathrm{V}_{\mathrm{k}}$ for $0 \cdot \mathrm{k} \cdot \mathrm{d}_{\mathrm{i}}$ 1. Let H be a K_{m}-spanning subgraph of K_{n} which is ${ }^{-}$xed by $1 / 2$. We assume that each component of $H j V_{k_{0}}$ [$V_{k_{1}}$ [$\$ \Varangle \&\left[V_{k_{p_{1}}}\right.$ is K_{m} and any component of the restriction to the proper subset of $f V_{k_{0}} ; V_{k_{1}} ; \Varangle \Varangle \Varangle ; V_{\mathrm{k}_{\mathrm{p}}} \mathrm{g}$ of H is not K_{m}. Since $1 / 2\left(V_{k}\right)=V_{k}$ for $0 \cdot k \cdot d_{i} 1$, the vertices of each component K_{m} must be distributed equally to $\mathrm{V}_{\mathrm{k}_{0}} ; \mathrm{V}_{\mathrm{k}_{1}} ; \Varangle \Varangle \Varangle ; \mathrm{V}_{\mathrm{k}_{\mathrm{p}_{1} 1}}$. Then $\mathrm{m}^{\prime} 0(\bmod \mathrm{p})$ and $\frac{\mathrm{n}}{\mathrm{d}}{ }^{\prime} 0$ (mod $\frac{m}{\mathrm{p}}$) and each component of $\mathrm{HjV}_{\mathrm{j}}$ is $\mathrm{K}_{\frac{\mathrm{m}}{\mathrm{p}}}$. If we change the name of the vertices of V_{j} to $v_{0} ; v_{1} ; V_{2} ; \Varangle \not \subset 屯 ; V_{\frac{n}{d} i}$ then we have $\frac{1}{\frac{2}{d}}\left(H j V_{j}\right)=H j V_{j}$. Since $(n ; i)=d$, we have that $\left(\frac{n}{d} ; \frac{i}{d}\right)=1$. By Lemma 1, we have that $H j V_{j}=M_{\frac{n}{d}}^{\frac{m}{p}}$. Since the number of components

 are satis ${ }^{-}$ed the above conditions. If $j W_{k} j$ is equal to $p_{k} ; 1 \cdot k \cdot s$ then the number of such H is ${ }_{k=1}^{y^{s}} \frac{p_{k} n}{d m}{ }^{p_{k i} 1}$. In this case we have that ${ }_{k=1}^{X^{5}} p_{k}=d$ and p_{k} is a divisor of m for $1 \cdot k \cdot s$. Let $d={ }_{j=1}^{X} s_{j} p_{j}$ be a representation of d as the sum of divisors p_{j} of m. The number of ways to divide $f V_{0} ; V_{1} ; V_{2} ; \Varangle \Varangle \Varangle ; V_{d_{i}} g$ into s_{1} pieces of p_{1}-element set, s_{2} pieces of p_{2}-element set, s_{3} pieces of p_{3}-element set, $\Phi \not \subset \$_{1} s_{1}$ pieces of p_{1}-element set is

Accordingly, the number of all the possibilities of H is
0

This number is $R_{n}^{m} ; i$ given by Notaion 2. We have the results.
N otation 5. Let $S_{n ; i}^{m}$ be the number of the ${ }^{-}$xed points of $3 / \nmid$ for X_{n}^{m}.
Remark 2. By the following lemmas we will see that $S_{n} ; \mathrm{i}$ agrees with the one which is given in Notation 3.
Lemma 4. If n is odd then the number of the ${ }^{-}$xed points of $3 / \otimes$ is equal to the number of the ${ }^{-}$xed points of $3 / k$ for all $1 \cdot k \cdot n_{i} 1$.

Proof. We assume that k is even. Let H be a K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 8$. Then it is easily veri ${ }^{-}$ed that $\frac{1}{2}(H)$ is a K_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / k$. Conversely, if H is a K_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 /{ }_{k}$ then $1 / 2^{1}(H)$ is a $K_{m}{ }^{-}$ spanning subgraph of K_{n} - xed by $3 / 0$. Next we assume that k is odd. Let H be a $K_{m}{ }^{-}$ spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 6$. Then it is easily veri ed that $1 / \frac{1 / 2}{2}(H)$ is a K_{m} spanning subgraph of K_{n} - xed by $3 /\left\{\right.$. Conversely, if H is a K_{m}-spanning subgraph of K_{n} ${ }^{-}$xed by $3 / k$ then $1 / \frac{1}{\frac{1 k}{2}}(\mathrm{H})$ is a K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 6$. Then we have the results.

Similarly, we have the next Lemma.
Lemma 5. If n is even then the number of the ${ }^{-x} x$ points of $3 / 8$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 d$ for all $1 \cdot d \cdot n=2 ; 1$ and the number of the ${ }^{-}$xed points of $3 / 4$ is equal to the number of the ${ }^{-}$xed points of $3 / 2 d+1$ for all $1 \cdot d \cdot n=2 ; 1$.
Lemma 6. If n is odd and m is odd then

$$
\begin{array}{lr}
S_{m ; 0}^{m}=r^{\mu} & \text { and } \\
S_{n ; 0}^{m}=\frac{n_{i 1} 1}{2} \\
\frac{m_{i 1}}{2} & \text { if } n, 2 m
\end{array}
$$

Proof. The K_{m}-spanning subgraph of K_{m} is K_{m} and K_{m} is ${ }^{-}$xed by $3 / 0$. Then we have $S_{m ; 0}^{m}=1$. We assume that $n, 2 m$. Let H be a K_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 8$. Let C be the component of H which contains vertex $\mathrm{v}_{0} . \mathrm{H} ; \mathrm{C}$ naturally becomes K_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a K_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of the line symmetry is not passing any vertices. If we take one vertex of K_{m} in the position of v_{0} of the graph which we will construct and divide the remaining vertices of K_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanning sishograph of $K_{n}{ }^{-}$xed by $3 / \otimes$. The number of ways to distribute the vertices of K_{m} is $\frac{n_{i} 1}{2} \frac{m_{i} 1}{2}$. Then we have the results.

Lemma 7. If n is even and m is odd then

$$
\mathrm{S}_{n ; 0}^{m}=\mu_{\frac{n_{n_{i} 2}^{2}}{}}^{\frac{m_{i 1}}{2}} £ \mathrm{~S}_{n_{i}^{m} m ; 0}^{m}
$$

Proof. Let H be a K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 /$. Since n is even, the axis of $3 / \otimes$ passes v_{0} and $\mathrm{v}_{\frac{\mathrm{n}}{2}}$. Let C be the component of H which contains vertex $\mathrm{v}_{\frac{\mathrm{n}}{2}}$. Since m is odd, C does not contain the vertex $\mathrm{v}_{0} . \mathrm{H}_{\mathrm{i}}$ C naturally becomes K_{m}-spanning subgraph of $K_{n i m}{ }^{-}$xed by $3 / \otimes$ when we change the name of the vertices. Conversely, let H be a K_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / \otimes$. Since $n_{i} m$ is odd, the axis of $3 / \otimes$ passes the vertex v_{0}. If we take one vertex of K_{m} in the position of $v_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of K_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanning qubgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 6$. The number of ways to distribute the vertices of K_{m} is

Then we have the results.

Lemma 8. If n is even and m is odd then

Proof. We assume that $n=2 m$. If we take one vertex of K_{m} in the position of $v_{\frac{n}{2}}$ and one vertex of another K_{m} in the position of $\mathrm{V}_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two K_{m} to both sides of the perpendicular bisector of $V_{n_{1}} 1$ and $V_{\frac{n}{2}}{ }_{1}$ permitting redundancy and symmetrically regarding the line then the resulting graph becomes a K_{m}-spanning subgraph of $\mathrm{K}_{2 \mathrm{~m}}{ }^{-}$xed by $3 / 4$. The number of ways to distribute the vertices of two K_{m} is ${ }^{n x^{1}{ }^{1}} \frac{\left(m_{i} 1\right)!}{k!\left(m_{i} k_{i} 1\right)!}=2^{m_{i}{ }^{1}}$. We assume that $n, 4 m$. Let H be a K_{m}-Spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$. Since n is even, the axis of $3 / 4$ does not pass any vertices. Since m is odd, there is no component which contains both v_{n} and $v_{\frac{n}{2}+1}$. Let C_{0} be a component which contains vertex $v_{\frac{n}{2}}$ and C_{1} be a component which
 - xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a K_{m}-spanning subgraph of $K_{n_{i} 2 m}{ }^{-}$xed by $3 / 4$. Since $n_{i} 2 m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take one vertex of K_{m} in the position of $\mathrm{V}_{\frac{n}{2}}$ and one vertex of another K_{m} in the position of $v_{\frac{n}{2}}+1$ of the graph which we will construct and distribute the remaining vertices of two K_{m} between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{fn}}{ }^{-}$xed by $3 / 4$. The number of ways to distribute the vertices of two K_{m} is $_{k=0}^{k_{i} 1} \frac{i_{\frac{n_{i} 2}{2}!}^{2}!\left(m_{i} \mathrm{ki}_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)!}{\text { m }}$. Then we have the results.

Lemma 9. If n is even and m is even then

$$
\begin{array}{lr}
S_{m ; 0}^{m}=1 & \text { and } \\
S_{n ; 0}^{m}=\frac{n_{i 2} q}{\frac{m_{i 2}}{2}} £ S_{n_{i j} m ; 1}^{m} \quad \text { if } n, 2 m
\end{array}
$$

Proof. The K_{m}-spanning subgraph of K_{m} is K_{m} and K_{m} is ${ }^{-}$xed by $3 / 6$. Then we have $S_{m ; 0}^{m}=1$. We assume that $n, 2 m$. Let H be a K_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 0$. Since n is even, the axis of $3 / \otimes$ passes v_{0} and $v_{\frac{n}{2}}$. Let C be the component of H which contains vertex v_{0} and $\mathrm{v}_{\frac{\mathrm{n}}{}}$. H i C naturally becomes K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n} i} \mathrm{~m}$ ${ }^{-}$xed by $3 / 4$ when we change the name of the vertices. Conversely, let H be a K_{m}-spanning subgraph of $K_{n i m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take two vertices of K_{m} in the positions of v_{0} and $v_{\frac{n}{2}}$ of the graph which we will construct and divide the remaining vertices of K_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanjing subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 0$. The number of ways to distribute the vertices of K_{m} is $\frac{\frac{n_{i}{ }^{2}}{2}}{\frac{m_{i 2}}{2}}$. Then we have the results.

Lemma 10. If n is even and m is even then

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{m} ; 1}^{\mathrm{m}}=1 \text { and } \\
& S_{2 m ; 1}^{m}=2^{m_{i} 1}+\frac{\mu_{2 m_{i} 2}^{2}}{\frac{m_{i 2}}{2}}
\end{aligned}
$$

Proof. The K_{m}-spanning subgraph of K_{m} is K_{m} and K_{m} is ${ }^{-}$xed by $3 / 4$. Then we have $\mathrm{S}_{\mathrm{m} ; 1}^{\mathrm{m}}=1$. We assume that $\mathrm{n}, 3 \mathrm{~m}$. We study two kinds of constitutions that compose K_{m}-spanning subgraphs of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed by $3 / 4$ inductively.

The ${ }^{-}$rst method is the following:
Let H be a K_{m}-spanning subgraph of $K_{n_{i} m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take two vertices of K_{m} in the positions of $V_{\frac{n}{2}}$ and $V_{\frac{n}{2}+1}$ of the graph which we will construct and divide the remaining vertices of K_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanning subgraph of $\mathrm{K}_{\mathrm{n}}{ }^{-}$xed
 two vertices of K_{m} in the positions of v_{0} and v_{1} of the graph which we will construct and divide the remaining vertices of K_{m} into halves and distribute them between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m}-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$. The number of ways to distribute the vertices of K_{m} is $\frac{i \frac{n_{i} 2}{m_{i 2}}}{\frac{1}{2}}$. Accordingly, it is possible $2 £ \frac{i \frac{n_{i} 2}{m_{i} 2}}{\frac{n_{2}}{2}} £ S_{n_{i} m ; 1}^{m} K_{m}$-spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$ as a whole with these constitutions.

The second method is the following:
Let H be a K_{m}-spanning subgraph of $K_{n_{i} 2 m}{ }^{-}$xed by $3 / 4$. Since $n_{i} m$ is even, the axis of $3 / 4$ does not pass any vertices. If we take one vertex of K_{m} in the position of $V_{\frac{n}{2}}$ and one vertex of another K_{m} in the position of $V_{\frac{n}{2}+1}$ of the graph which we will construct and distribute the remaining vertices of two $\mathrm{K}_{\mathrm{m}}^{2}$ between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m} spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$. The number of ways to distribute the vertices of two K_{m} is $P{ }_{m_{i} 1} \frac{\left(\frac{n_{i}}{2}\right)!}{k!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)!}$. Similarly, if we take one vertex of K_{m} in the position of v_{0} and one vertex of another K_{m} in the position of v_{1} of the graph which we will construct and distribute the remaining vertices of two K_{m} between the vertices of H permitting redundancy and symmetrically regarding the axis then the resulting graph becomes a K_{m} spanning subgraph of $K_{n}{ }^{-}$xed by $3 / 4$. The number of ways to distribute the vertices of two K_{m} is $\mathrm{P}_{\mathrm{m}=0}^{m_{i} 1} \frac{\left(\frac{n_{i} 2}{2}\right)!}{\mathrm{k}!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i}}{2} \frac{2 m}{2}\right)!}$. Therefore, by this construction, we can construct $2 £^{\text {mi }_{i} 1} \frac{\left(\frac{n_{i} 2}{2}\right)!}{k!\left(m_{i} k_{i} 1\right)!\left(\frac{n_{i} 2 m}{2}\right)!} . K_{m}$-spanning subgraph of $K_{n}-x e d$ by $3 / 4$. By these two constructions, we can construct
K_{m}-spanning subgraphs of K_{n} - xed by $3 / 4$. Clearly there are doubling two pieces of each. Also, it is clear to be able to compose all the K_{m}-spanning subgraphs of $K_{n}{ }^{-}$xed by $3 / 4$
by these methods. We assume that n is equal to 2 m . Then we can similarly construct all K_{m}-spanning subgraphs of $\mathrm{K}_{2 \mathrm{~m}}{ }^{-}$xed by $3 / 4$ by these two constructions if we set H be a empty graph in the case of the second constitution. We have the results.

Then we completely proved Theorem 2.
Remark 3. We calculated the non-equivarent K_{4}-spanning subgraphs of $K_{n}, n \cdot 16$ by computer. The numbers agreed with the numbers that are given by Theorem 2. The results is as follows:

$\mathrm{n}=4$	1
$\mathrm{n}=8$	7
$\mathrm{n}=12$	297
$\mathrm{n}=16$	83488
R ef er ences	

[1] J onathan Gross and J ay Yellen, Graph Theory and Its Applications, CRC Press, B oca Raton, 1999
[2] C. L. Liu, Introduction to Combinatorial M athematics, M cGraw-Hill B ook Company, New Y ork J apanese translation: K youritu Publishing Co., Tokyo, 1972.
[3] Osamu Nakamura, On the number of the non-equivalent 1-regular spanning subgraphs of the complete graphs of even order, to appear in SCMJ

Department of M athematics
, Faculty of Education
K ochi University
AKEBONOCHO 2-5-1
KOCHI, JAPAN
osamu@cc:kochi-u:ac:j p

