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Abstract. Let m be greater than or equal to 2 and n be a multiple of m. We will
call a spanning subgraph whose components are Km of the complete graph Kn a Km-
spanning subgraph of Kn. The Dihedral group Dn acts on the complete graph Kn

naturally. This action of Dn induces the action on the set of the Km-spanning sub-
graphs of the complete graph Kn . In [3], we calculated the number of the equivalence
classes of the 1-regular spanning subgraphs of the complete graph Kn of even order n
by this action by using Burnside's Lemma. This is in the case m = 2. In this paper,
we generalize this results and calculate the number of the non-equivalent Km-spanning
subgraphs of Kn for all m and n.

Let m be greater than or equal to 2 and let n be a multiple of m. Let fv0; v1; v2; ¢ ¢ ¢ ; vn¡1g
be the vertices of the complete graph Kn. The action to Kn of the Dihedral group
Dn = f½0; ½1; ¢ ¢ ¢ ; ½n¡1; ¾0; ¾1; ¢ ¢ ¢ ; ¾n¡1g is de¯ned by

½i(vk) = v(k+i) (mod n) for 0 · i · n ¡ 1; 0 · k · n ¡ 1

¾i(vk) = v(n+i¡k) (mod n) for 0 · i · n ¡ 1; 0 · k · n ¡ 1

We call a spanning subgraph whose componenta are Km of the complete graph Kn a
Km-spanning subgraph of Kn. Let Xm

n be the set of the Km-spanning subgraphs of Kn.
Then the above action induces the action on Xm

n of the Dihedral group Dn.
For example, the equivalence classes of X3

6 are given with the next ¯gure.

The equivalence classes of X3
9 are given with the next ¯gure.

We calculate the number of the equivalence classes by this group action. These compu-
tations can be done by using Burnside's lemma.
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Theorem 1. (Burnside's lemma) Let G be a group of permutations acting on a set S.
Then the number of orbits induced on S is given by

1
jGj

X

¼2G

jfix(¼)j

where fix(¼) = fx 2 Sj¼(x) = xg.
Notation 1. An integer function ¹(p; q) is de¯ned by

¹(p; q) =

(
1 if p ´ 0 (mod q)
0 otherwise

Notation 2. For each integer i such that 0 · i · n ¡ 1 , let d = (n; i) and Rm
n;i be

Rm
n;i =

X

d =
Pl

j=1 sjpj

sj ¸ 1; pj jm for1 · j · l

0
BBBBB@

d!
lY

j=1

(pj !)sj sj !

lY

j=1

¹(
n
d

;
m
pj

)
³pjn

dm

´sj(pj¡1)

1
CCCCCA

Notation 3. Sm
n;i; 0 · i · n ¡ 1 is given by the following recursive formula:

If n is odd then
Sm

n;k = Sm
n;0 for 1 · k · n ¡ 1.

If n is even then
Sm

n;2k = Sm
n;0 for 1 · k · n

2 ¡ 1 and Sm
n;2k+1 = Sm

n;1 for 1 · k · n
2 ¡ 1.

If m is odd then

Sm
m;0 = 1

Sm
2m;1 = 2m¡1

Sm
n;0 =

µ n¡1
2

m¡1
2

¶
£ Sm

n¡m;1 if n is odd and n ¸ 2m

Sm
n;0 =

µ n¡2
2

m¡1
2

¶
£ Sm

n¡m;0 if n is even and n ¸ 2m

Sm
n;1 =

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 if n is even and n ¸ 3m

If m is even then

Sm
m;0 = Sm

m;1 = 1

Sm
2m;1 = 2m¡1 +

µ 2m¡2
2

m¡2
2

¶

Sm
n;0 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 if n ¸ 2m

Sm
n;1 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 +

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 if n ¸ 3m
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Our main Theorem is the following:

Theorem 2. The number of the non-equivalent Km-spanning subgraphs of the
complete graph Kn is given by the following formula:
If n is odd then

1
2n

f
n¡1X

i=0

Rm
n;i + n £ Sm

n;0g

If n is even then

1
2n

f
n¡1X

i=0

Rm
n;i +

n
2

£ (Sm
n;0 + Sm

n;1)g

We must determine the numbers of the ¯xed points of each permutation ½i and ¾i to
prove the Theorem by using Burnside's Lemma.

Lemma 1. The number of the Km-spanning subgraphs of Kn is

n=mY

k=1

µ
mk ¡ 1
m ¡ 1

¶

This is the number of the ¯xed points of ½0.

Proof. Since the number of ways to select m items from a collection of n items is
µ

n
m

¶
, the

number of ways to partition n items into subsets of size m is
n=mY

i=1

µ
mi
m

¶
. Then the number

of ways to select
n
m

groups of size m from a collection of n items is
Qn=m

i=1

¡mi
m

¢
¡ n

m

¢
!

. Then we

have the results.

Remark 1. It is easily checked that Rm
n;0 is equal to

n=mY

k=1

µ
mk ¡ 1
m ¡ 1

¶
.

Notation 4. Let Mm
n be the union of G0; G1; ¢ ¢ ¢ ; Gn=m¡1, where Gj be the complete graph

whose vertices are fvj ; vj+n=m; vj+2n=m; ¢ ¢ ¢ ; vj+(m¡1)n=mg for 0 · j · n=m ¡ 1.

Lemma 2. If (n,i)=1 then the number of the ¯xed points of ½i is one.

Proof. Mm
n is a Km-spanning subgraph of Kn and ½i(Mm

n ) = Mm
n . Conversely, let H be

a Km-spanning subgraph of Kn which is ¯xed by ½i and contain a commponent C whose
vertices are fv0; vk1 ; vk2 ; ¢ ¢ ¢ ; vkm¡1g; 0 < k1 < k2 < ¢ ¢ ¢ < km¡1 . Since (n,i)=1, there is an
integer ® such that ®i ´ 1 (mod n). Then ½®k1

i (v0vk1) = vk1v2k1 2 C . If 2k1 is not equal
to k2 then 2k1 must be greater than k2 by the assumption of 0 < k1 < k2 < ¢ ¢ ¢ < km¡1.
Since ½®(k1¡k2)

i (vk1vk2) = v2k1¡k2vk1 2 C and 0 < 2k1 ¡ k2 < k1, this is impossible. Then
we have k2 = 2k1. We assume that kj = jk1 for j · s and prove that ks+1 = (s+1)k1. Since
½®sk1

i (v0vk1) = vksv(s+1)k1 2 C, (s+1)k1 is greater than or equal to ks+1. If (s+1)k1 > ks+1

then ½®(ks¡ks+1)
i (vksvks+1) = v2ks¡ks+1vks 2 C and ks¡1 < 2ks ¡ ks+1 < ks. This is

impossible. Then we have ks+1 = (s + 1)k1. We ¯nally prove that mk1 = n. Since
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½®(m¡1)
i (v0vk1) = vkm¡1vmk1 2 C and km¡1 = (m ¡ 1)k1 < mk1, we have mk1 ¸ n and

0 · mk1 (mod n) < k1. Then we have that mk1 ´ 0 (mod n) and mk1 = n and k1 = n=m.
Then the set of the vertices of C is fv0; vn=m; v2n=m; ¢ ¢ ¢ ; v(m¡1)n=mg. Since H is determined
by C, H must be Mm

n . Then the number of the ¯xed points of ½i is one.

Lemma 3. The ¯xed points of ½i is Rm
n;i.

Proof. Let d = (n; i) and V0 = fv0; vd; v2d; ¢ ¢ ¢ ; vn¡dg; V1 = fv1; vd+1; v2d+1; ¢ ¢ ¢ ; vn¡d+1g,
V2 = fv2; vd+2; v2d+2; ¢ ¢ ¢ ; vn¡d+2g, ¢ ¢ ¢ , Vd¡1 = fvd¡1; v2d¡1; v3d¡1; ¢ ¢ ¢ ; vn¡1g.

Since (n; i) = d, the equation xi ´ m (mod n) has a solution if and only if d divides
m. Then we have ½i(Vk) = Vk for 0 · k · d ¡ 1. Let H be a Km-spanning subgraph
of Kn which is ¯xed by ½i. We assume that each component of H jVk0 [ Vk1 [ ¢ ¢ ¢ [ Vkp¡1

is Km and any component of the restriction to the proper subset of fVk0 ; Vk1 ; ¢ ¢ ¢ ; Vkp¡1g
of H is not Km. Since ½i(Vk) = Vk for 0 · k · d ¡ 1, the vertices of each component
Km must be distributed equally to Vk0 ; Vk1 ; ¢ ¢ ¢ ; Vkp¡1 . Then m ´ 0 (mod p) and n

d ´ 0
(mod m

p ) and each component of HjVj is K m
p
. If we change the name of the vertices of

Vj to v0; v1; v2; ¢ ¢ ¢ ; v n
d ¡1 then we have ½ i

d
(H jVj) = H jVj . Since (n; i) = d, we have that

(n
d ; i

d ) = 1. By Lemma 1, we have that HjVj = M
m
p

n
d

. Since the number of components

K m
p

of H jVj is
pn
dm

, the number of the possible arrangements of H jVk0 [ Vk1 [ ¢ ¢ ¢ [ Vkp¡1

is
³ pn

dm

´p¡1
. We divide fV0; V1; V2; ¢ ¢ ¢ ; Vd¡1g into the subsets W1; W2; W3; ¢ ¢ ¢ ; Ws which

are satis¯ed the above conditions. If jWkj is equal to pk; 1 · k · s then the number of

such H is
sY

k=1

³pkn
dm

´pk¡1
. In this case we have that

sX

k=1

pk = d and pk is a divisor of m for

1 · k · s. Let d =
lX

j=1

sjpj be a representation of d as the sum of divisors pj of m. The

number of ways to divide fV0; V1; V2; ¢ ¢ ¢ ; Vd¡1g into s1 pieces of p1-element set, s2 pieces
of p2-element set, s3 pieces of p3-element set, ¢ ¢ ¢ , sl pieces of pl-element set is

d!
lY

j=1

(pj !)sj sj !

:

Accordingly, the number of all the possibilities of H is

X

d =
Pl

j=1 sjpj

sj ¸ 1; pj jm for1 · j · l

0
BBBBB@

d!
lY

j=1

(pj !)sj sj !

lY

j=1

¹(
n
d

;
m
pj

)
³pjn

dm

´sj(pj¡1)

1
CCCCCA

:

This number is Rm
n;i given by Notaion 2. We have the results.

Notation 5. Let Sm
n;i be the number of the ¯xed points of ¾i for Xm

n .

Remark 2. By the following lemmas we will see that Sm
n;i agrees with the one which is

given in Notation 3.

Lemma 4. If n is odd then the number of the ¯xed points of ¾0 is equal to the number of
the ¯xed points of ¾k for all 1 · k · n ¡ 1.
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Proof. We assume that k is even. Let H be a Km-spanning subgraph of Kn ¯xed by
¾0. Then it is easily veri¯ed that ½ k

2
(H) is a Km-spanning subgraph of Kn ¯xed by ¾k.

Conversely, if H is a Km-spanning subgraph of Kn ¯xed by ¾k then ½¡1
k
2

(H) is a Km-
spanning subgraph of Kn ¯xed by ¾0. Next we assume that k is odd. Let H be a Km-
spanning subgraph of Kn ¯xed by ¾0. Then it is easily veri¯ed that ½ n+k

2
(H) is a Km-

spanning subgraph of Kn ¯xed by ¾k. Conversely, if H is a Km-spanning subgraph of Kn
¯xed by ¾k then ½¡1

n+k
2

(H) is a Km-spanning subgraph of Kn ¯xed by ¾0. Then we have the
results.

Similarly, we have the next Lemma.

Lemma 5. If n is even then the number of the ¯xed points of ¾0 is equal to the number of
the ¯xed points of ¾2d for all 1 · d · n=2 ¡ 1 and the number of the ¯xed points of ¾1 is
equal to the number of the ¯xed points of ¾2d+1 for all 1 · d · n=2 ¡ 1.

Lemma 6. If n is odd and m is odd then

Sm
m;0 = 1 and

Sm
n;0 =

µ n¡1
2

m¡1
2

¶
£ Sm

n¡m;1 if n ¸ 2m

Proof. The Km-spanning subgraph of Km is Km and Km is ¯xed by ¾0. Then we have
Sm

m;0 = 1. We assume that n ¸ 2m. Let H be a Km-spanning subgraph of Kn ¯xed by
¾0. Let C be the component of H which contains vertex v0. H ¡ C naturally becomes
Km-spanning subgraph of Kn¡m ¯xed by ¾1 when we change the name of the vertices.
Conversely, let H be a Km-spanning subgraph of Kn¡m ¯xed by ¾1. Since n ¡ m is even,
the axis of the line symmetry is not passing any vertices. If we take one vertex of Km in
the position of v0 of the graph which we will construct and divide the remaining vertices of
Km into halves and distribute them between the vertices of H permitting redundancy and
symmetrically regarding the axis then the resulting graph becomes a Km-spanning subgraph

of Kn ¯xed by ¾0. The number of ways to distribute the vertices of Km is
µ n¡1

2
m¡1

2

¶
. Then

we have the results.

Lemma 7. If n is even and m is odd then

Sm
n;0 =

µ n¡2
2

m¡1
2

¶
£ Sm

n¡m;0

Proof. Let H be a Km-spanning subgraph of Kn ¯xed by ¾0. Since n is even, the axis of
¾0 passes v0 and v n

2
. Let C be the component of H which contains vertex v n

2
. Since m is

odd, C does not contain the vertex v0. H ¡ C naturally becomes Km-spanning subgraph
of Kn¡m ¯xed by ¾0 when we change the name of the vertices. Conversely, let H be a
Km-spanning subgraph of Kn¡m ¯xed by ¾0. Since n ¡ m is odd, the axis of ¾0 passes the
vertex v0. If we take one vertex of Km in the position of v n

2
of the graph which we will

construct and divide the remaining vertices of Km into halves and distribute them between
the vertices of H permitting redundancy and symmetrically regarding the axis then the
resulting graph becomes a Km-spanning subgraph of Kn ¯xed by ¾0. The number of ways

to distribute the vertices of Km is
µ n¡2

2
m¡1

2

¶
. Then we have the results.
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Lemma 8. If n is even and m is odd then

Sm
2m;1 = 2m¡1 and

Sm
n;1 =

Ã
m¡1X

k=0

¡ n¡2
2

¢
!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 if n ¸ 4m

Proof. We assume that n = 2m. If we take one vertex of Km in the position of v n
2

and
one vertex of another Km in the position of v n

2 +1 of the graph which we will construct
and distribute the remaining vertices of two Km to both sides of the perpendicular bisector
of v n

2 ¡1 and v n
2 ¡1 permitting redundancy and symmetrically regarding the line then the

resulting graph becomes a Km-spanning subgraph of K2m ¯xed by ¾1. The number of

ways to distribute the vertices of two Km is
m¡1X

k=0

(m ¡ 1)!
k!(m ¡ k ¡ 1)!

= 2m¡1. We assume that

n ¸ 4m. Let H be a Km-spanning subgraph of Kn ¯xed by ¾1. Since n is even, the axis of
¾1 does not pass any vertices. Since m is odd, there is no component which contains both v n

2

and v n
2 +1. Let C0 be a component which contains vertex v n

2
and C1 be a component which

contains vertex v n
2 +1. H ¡ C0 ¡ C1 naturally becomes Km-spanning subgraph of Kn¡2m

¯xed by ¾1 when we change the name of the vertices. Conversely, let H be a Km-spanning
subgraph of Kn¡2m ¯xed by ¾1. Since n ¡ 2m is even, the axis of ¾1 does not pass any
vertices. If we take one vertex of Km in the position of v n

2
and one vertex of another Km

in the position of v n
2 +1 of the graph which we will construct and distribute the remaining

vertices of two Km between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Km-spanning subgraph of Kn ¯xed by

¾1. The number of ways to distribute the vertices of two Km is
m¡1X

k=0

¡ n¡2
2

¢
!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

.

Then we have the results.

Lemma 9. If n is even and m is even then

Sm
m;0 = 1 and

Sm
n;0 =

µ n¡2
2

m¡2
2

¶
£ Sm

n¡m;1 if n ¸ 2m

Proof. The Km-spanning subgraph of Km is Km and Km is ¯xed by ¾0. Then we have
Sm

m;0 = 1. We assume that n ¸ 2m. Let H be a Km-spanning subgraph of Kn ¯xed by
¾0. Since n is even, the axis of ¾0 passes v0 and v n

2
. Let C be the component of H which

contains vertex v0 and v n
2
. H ¡ C naturally becomes Km-spanning subgraph of Kn¡m

¯xed by ¾1 when we change the name of the vertices. Conversely, let H be a Km-spanning
subgraph of Kn¡m ¯xed by ¾1. Since n ¡ m is even, the axis of ¾1 does not pass any
vertices. If we take two vertices of Km in the positions of v0 and v n

2
of the graph which

we will construct and divide the remaining vertices of Km into halves and distribute them
between the vertices of H permitting redundancy and symmetrically regarding the axis then
the resulting graph becomes a Km-spanning subgraph of Kn ¯xed by ¾0. The number of

ways to distribute the vertices of Km is
µ n¡2

2
m¡2

2

¶
. Then we have the results.
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Lemma 10. If n is even and m is even then

Sm
m;1 = 1 and

Sm
2m;1 = 2m¡1 +

µ 2m¡2
2

m¡2
2

¶
and

Sm
n;1 =

µ n¡2
2

m¡2
2

¶
Sm

n¡m;1 +

Ã
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1 if n ¸ 3m

Proof. The Km-spanning subgraph of Km is Km and Km is ¯xed by ¾1. Then we have
Sm

m;1 = 1. We assume that n ¸ 3m. We study two kinds of constitutions that compose
Km-spanning subgraphs of Kn ¯xed by ¾1 inductively.

The ¯rst method is the following:
Let H be a Km-spanning subgraph of Kn¡m ¯xed by ¾1. Since n¡m is even, the axis of ¾1
does not pass any vertices. If we take two vertices of Km in the positions of v n

2
and v n

2 +1
of the graph which we will construct and divide the remaining vertices of Km into halves
and distribute them between the vertices of H permitting redundancy and symmetrically
regarding the axis then the resulting graph becomes a Km-spanning subgraph of Kn ¯xed
by ¾1. The number of ways to distribute the vertices of Km is

¡ n¡2
2

m¡2
2

¢
. Similarly, if we take

two vertices of Km in the positions of v0 and v1 of the graph which we will construct and
divide the remaining vertices of Km into halves and distribute them between the vertices
of H permitting redundancy and symmetrically regarding the axis then the resulting graph
becomes a Km-spanning subgraph of Kn ¯xed by ¾1. The number of ways to distribute
the vertices of Km is

¡ n¡2
2

m¡2
2

¢
. Accordingly, it is possible 2 £

¡ n¡2
2

m¡2
2

¢
£ Sm

n¡m;1 Km-spanning
subgraph of Kn ¯xed by ¾1 as a whole with these constitutions.

The second method is the following:
Let H be a Km-spanning subgraph of Kn¡2m ¯xed by ¾1. Since n ¡ m is even, the axis
of ¾1 does not pass any vertices. If we take one vertex of Km in the position of v n

2
and

one vertex of another Km in the position of v n
2 +1 of the graph which we will construct

and distribute the remaining vertices of two Km between the vertices of H permitting
redundancy and symmetrically regarding the axis then the resulting graph becomes a Km-
spanning subgraph of Kn ¯xed by ¾1. The number of ways to distribute the vertices of two
Km is

Pm¡1
k=0

( n¡2
2 )!

k!(m¡k¡1)!( n¡2m
2 )!

. Similarly, if we take one vertex of Km in the position of
v0 and one vertex of another Km in the position of v1 of the graph which we will construct
and distribute the remaining vertices of two Km between the vertices of H permitting
redundancy and symmetrically regarding the axis then the resulting graph becomes a Km-
spanning subgraph of Kn ¯xed by ¾1. The number of ways to distribute the vertices of
two Km is

Pm¡1
k=0

( n¡2
2 )!

k!(m¡k¡1)!( n¡2m
2 )!

. Therefore, by this construction, we can construct

2 £
m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

. Km-spanning subgraph of Kn ¯xed by ¾1. By these two

constructions, we can construct

2 £
µ n¡2

2
m¡2

2

¶
Sm

n¡m;1 + 2 £
Ã

m¡1X

k=0

(n¡2
2 )!

k!(m ¡ k ¡ 1)!(n¡2m
2 )!

!
£ Sm

n¡2m;1

Km-spanning subgraphs of Kn ¯xed by ¾1. Clearly there are doubling two pieces of each.
Also, it is clear to be able to compose all the Km-spanning subgraphs of Kn ¯xed by ¾1
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by these methods. We assume that n is equal to 2m. Then we can similarly construct all
Km-spanning subgraphs of K2m ¯xed by ¾1 by these two constructions if we set H be a
empty graph in the case of the second constitution. We have the results.

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent K4-spanning subgraphs of Kn, n · 16 by
computer. The numbers agreed with the numbers that are given by Theorem 2. The results
is as follows:

n=4 1
n=8 7
n=12 297
n=16 83488
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