SELF-ADJOINT INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG \mathcal{L}

Young Soo Jo and Joo Ho Kang

Received December 10, 2001

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for N vectors satisfies the equation $Tx_i = y_i$, for $i = 1, 2, \dots, n$. In this article, we investigate self-adjoint interpolation problems in CSL-Algebra Alg \mathcal{L} .

1. INTRODUCTION

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H} . An *interpolation question* for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that Tx = y. A variation, the 'N-vector interpolation problem', asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The N-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[9]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance[10]: his result was extended by Hopenwasser[4] to the case that \mathcal{U} is a CSL-algebra. Munch[11] obtained conditions for interpolation in case T is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[5] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a Sufficient condition (attributed to S. Power) for interpolation N-vectors, although necessity was not proved in that paper.

In this article, we investigate the self-adjoint interpolation problems in CSL-Algebra Alg \mathcal{L} : Given vectors x and y in a Hilbert space and a commutative subspace lattice \mathcal{L} on \mathcal{H} , when is there a self-adjoint operator A in Alg \mathcal{L} such that Ax = y?

First, we establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be

 $^{2000 \} Mathematics \ Subject \ Classification \ ; \ 47L35$

Key words and phrases ; Self-Adjoint Interpolation Problem, Subspace Lattice, CSL-Algebra Alg \mathcal{L} .

vectors in a Hilbert space. Then $\langle x, y \rangle$ means the inner product of vectors x and y. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

2. Results

Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and I. Then Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of M. Let \mathbf{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

Definition. Let \mathcal{H} be a Hilbert space and let A be an operator acting on \mathcal{H} . Then A is called a self-adjoint operator if $A^* = A$.

Theorem 1. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . If there is an operator A in $Alg\mathcal{L}$ such that Ax = y, A is self-adjoint and every E in \mathcal{L} reduces A, then

$$\sup\left\{\frac{\|\sum_{i=1}^{n}\alpha_{i}E_{i}y\|}{\|\sum_{i=1}^{n}\alpha_{i}E_{i}x\|}:n\in \mathbb{N},\alpha_{i}\in\mathbb{C} \text{ and } E_{i}\in\mathcal{L}\right\}<\infty \text{ and } < Ex,y>=< Ey,x>$$

for every E in \mathcal{L} .

Proof. We can get the first result by Theorem 1 [8] under the given hypothesis. So we need to show that $\langle Ex, y \rangle = \langle Ey, x \rangle$ for every E in \mathcal{L} whenever $A^* = A$. Since AE = EA, $A^*E = EA^*$ for every E in \mathcal{L} . Since $Ax = A^*x = y$, $A^*Ex = AEx = Ey$ for every E in \mathcal{L} . Hence $\langle Ey, x \rangle = \langle A^*Ex, x \rangle = \langle Ex, Ax \rangle = \langle Ex, y \rangle$ for every E in \mathcal{L} .

Let x and y be vectors of a Hilbert space \mathcal{H} . Let

$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \alpha_i E_i x : n \in N, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} \text{ and}$$
$$\mathcal{M}_1 = \left\{ \sum_{i=1}^{n} \alpha_i E_i y : n \in N, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\}.$$

Theorem 2. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Assume that $\mathcal{M}_1 \subset \overline{\mathcal{M}}$. If

$$\sup\left\{\frac{\left\|\sum_{i=1}^{n}\alpha_{i}E_{i}y\right\|}{\left\|\sum_{i=1}^{n}\alpha_{i}E_{i}x\right\|}: n \in N, \alpha_{i} \in \mathbb{C} \text{ and } E_{i} \in \mathcal{L}\right\} < \infty \text{ and } < Ex, y > = < Ey, x >$$

for every E in \mathcal{L} , then there is an operator A in $Alg\mathcal{L}$ such that y = Ax, $A^* = A$ and every E in \mathcal{L} reduces A.

Proof. We can get results except that $A^* = A$ by Theorem 1 [8] under the given hypothesis. So we need to prove that if $\langle Ex, y \rangle = \langle Ey, x \rangle$ for every E in \mathcal{L} , then $A^* = A$. Since

453

 $\langle Ex, y \rangle = \langle Ey, x \rangle$ for every E in \mathcal{L} ,

$$< A(\sum_{i=1}^{n} \alpha_{i} E_{i} x), x > = < \sum_{i=1}^{n} \alpha_{i} E_{i} A x, x >$$
$$= < \sum_{i=1}^{n} \alpha_{i} E_{i} y, x >$$
$$= < \sum_{i=1}^{n} \alpha_{i} E_{i} x, y > .$$

Since $y \in \overline{\mathcal{M}}$, $A^*x = y$. Since EA = AE, $EA^* = A^*E$ for every E in \mathcal{L} . So

$$A^* \left(\sum_{i=1}^n \alpha_i E_i x\right) = \sum_{i=1}^n \alpha_i A^* E_i x$$
$$= \sum_{i=1}^n \alpha_i E_i A^* x$$
$$= \sum_{i=1}^n \alpha_i E_i y.$$

Since $\mathcal{M}_1 \subset \overline{\mathcal{M}}, A^* f = 0$ for every f in $\overline{\mathcal{M}}^{\perp}$. Hence $A^* = A$.

Corollary 3. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Assume that \mathcal{M} is dense in \mathcal{H} . If

$$\sup\left\{\frac{\left\|\sum_{i=1}^{n}\alpha_{i}E_{i}y\right\|}{\left\|\sum_{i=1}^{n}\alpha_{i}E_{i}x\right\|}: n \in N, \alpha_{i} \in \mathbb{C} \text{ and } E_{i} \in \mathcal{L}\right\} < \infty \text{ and } < Ex, y > = < Ey, x >$$

for every E in \mathcal{L} , then there is an operator A in $Alg\mathcal{L}$ such that y = Ax, $A^* = A$ and every E in \mathcal{L} reduces A.

If we summarize Theorems 1, 2 and Corollary 3, we can get the following theorem.

Theorem 4. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Assume that $\mathcal{M}_1 \subset \overline{\mathcal{M}}$ or \mathcal{M} is dense in \mathcal{H} . Then the following statements are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that Ax = y, $A^* = A$ and every E in \mathcal{L} reduces A.

(2)
$$\sup\left\{\frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in N, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L}\right\} < \infty \text{ and}$$

 $\langle Ex, y \rangle = \langle Ey, x \rangle$ for every E in \mathcal{L} .

Theorem 5. Let \mathcal{H} be a Hilbert space and \mathcal{L} be a subspace lattice on \mathcal{H} . Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be vectors in \mathcal{H} . If there is an operator A in Alg \mathcal{L} such that $Ax_p = y_p$ for all $p = 1, 2, \dots, n$, $A^* = A$ and every E in \mathcal{L} reduces A,

$$then \sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i\|} : m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C}\right\} < \infty \text{ and}$$
$$< Ex_p, y_j > = < Ey_p, x_j > \text{ for every } E \text{ in } \mathcal{L} \text{ and all } p, j = 1, 2, \cdots, n.$$

Proof. By Theorem 2 [8], we know that

$$\sup\left\{\frac{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_{i}\right\|}:m_{i}\in N, l\leq n, E_{k,i}\in\mathcal{L} \text{ and } \alpha_{k,i}\in\mathbb{C}\right\}<\infty. \text{ Since}$$

 $A^* = A, \langle Ey_p, x_j \rangle = \langle EAx_p, x_j \rangle = \langle AEx_p, x_j \rangle = \langle Ex_p, A^*x_j \rangle = \langle Ex_p, y_j \rangle$ for every E in \mathcal{L} and all $p, j = 1, 2, \dots, n$.

Theorem 6. Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be vectors in \mathcal{H} . Let

$$\mathcal{K} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i \in N, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} \text{ and}$$
$$\mathcal{K}_1 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i : m_i \in N, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\}$$

Assume that $\mathcal{K}_1 \subset \overline{\mathcal{K}}$.

$$If \sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i\|} : m_i \in N, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} < \infty \text{ and}$$

 $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all $p, j = 1, 2, \dots, n$, then there exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ for all $p = 1, 2, \dots, n$, $A^* = A$ and every E in \mathcal{L} reduces A.

Proof. By Theorem 2 [8], there exists an operator A in Alg \mathcal{L} such that $Ax_p = y_p$ for all $p = 1, 2, \dots, n$ and every E in \mathcal{L} reduces A. We want to show that $A^* = A$ if $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all $p, j = 1, 2, \dots, n$. First, we will show that $A^*x_p = y_p$ for all $p = 1, 2, \dots, n$. Since $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for all E in \mathcal{L} and all $p, j = 1, 2, \dots, n$.

$$< A(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}), x_{j} > = < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} A x_{i}, x_{j} >$$
$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_{i}, x_{j} >$$
$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}, y_{j} > .$$

Since $\{y_1, y_2, \dots, y_n\} \subset \overline{\mathcal{K}}, y_j = A^* x_j$ for all $j = 1, 2, \dots, n$. Since $\mathcal{K}_1 \subset \overline{\mathcal{K}}, A^* f = 0$ for every f in $\overline{\mathcal{K}}^{\perp}$. Hence $A^* = A$.

Corollary 7. Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be vectors in \mathcal{H} . Assume that

$$\mathcal{K} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i : m_i \in N, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} \text{ is dense in } \mathcal{H}. \text{ If}$$
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i\|} : m_i \in N, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} < \infty \text{ and}$$

 $\langle Ex_q, y_j \rangle = \langle Ey_q, x_j \rangle$ for every E in \mathcal{L} and all $q, j = 1, 2, \dots, n$, then there exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ for all $p = 1, 2, \dots, n$, $A^* = A$ and every E in \mathcal{L} reduces A.

If we summarize Theorems 5, 6 and Corollary 7, we can get the following theorem.

Theorem 8. Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be vectors in \mathcal{H} . Assume that $\mathcal{K}_1 \subset \overline{\mathcal{K}}$ or \mathcal{K} is dense in \mathcal{H} . Then the following statements are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that $Ax_p = y_p$ for all $p = 1, \dots, n$, $A^* = A$ and every E in \mathcal{L} reduces A.

(2)
$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}: m_i \in N, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C}\right\} < \infty$$

and $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all $p, j = 1, 2, \cdots, n$.

If we modify proofs of Theorems 5, 6, 7 and 8 a little bit, we can prove the following theorems. So we will omit their proofs.

Theorem 9. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . If there is an operator A in Alg \mathcal{L} such that $Ax_n = y_n$ for all $n = 1, 2, \dots, A^* = A$ and every E in \mathcal{L}

reduces A, then
$$\sup\left\{\frac{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_{i}\right\|}:m_{i}, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C}\right\} <$$

 ∞ and $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all $p, j = 1, 2, \cdots$.

Theorem 10. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . Let

$$\mathcal{U} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} \text{ and}$$
$$\mathcal{U}_1 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\}.$$

Assume that $\mathcal{U}_1 \subset \overline{\mathcal{U}}$.

$$If \sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i\|} : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} < \infty$$

and $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all p, j, then there is an operator A in $Alg\mathcal{L}$ such that $Ax_n = y_n$ for all $n = 1, 2, \dots, A^* = A$ and every E in \mathcal{L} reduces A.

Corollary 11. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . Let

$$\mathcal{U} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\}. \text{ Assume that } \mathcal{U} \text{ is dense}$$

in $\mathcal{H}.$ If $\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i\|} : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} < \infty$

and $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all p, j, then there is an operator A in $Alg\mathcal{L}$ such that $Ax_n = y_n$ for all $n = 1, 2, \dots, A^* = A$ and every E in \mathcal{L} reduces A.

Theorem 12. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} .

$$Let \mathcal{U} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} \text{ and } let$$
$$\mathcal{U}_1 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i : m_i, l \in N, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\}. \text{ Assume that } \mathcal{U}_1 \subset \overline{\mathcal{U}}$$

or \mathcal{U} is dense in \mathcal{H} . Then the following statements are equivalent.

(1) There is an operator A in Alg \mathcal{L} such that $Ax_j = y_j$ for all $j = 1, 2, \dots, A^* = A$ and every E in \mathcal{L} reduces A.

(2)
$$\sup\left\{\frac{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_{i}\right\|}:m_{i}, l \in N, E_{k,i} \in \mathcal{L} and \alpha_{k,i} \in \mathbb{C}\right\} < \infty and$$

 $\langle Ex_p, y_j \rangle = \langle Ey_p, x_j \rangle$ for every E in \mathcal{L} and all p, j.

From Theorem 2, we can get the following theorem.

Theorem 13. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x_1, \dots, x_n and y be vectors in \mathcal{H} .

If
$$\sup\left\{\frac{\|\sum_{i=1}^{m} \alpha_i E_i y\|}{\sum_{k=1}^{n} \|\sum_{i=1}^{m} \alpha_i E_i x_k\|} : m \in N, E_i \in \mathcal{L} \text{ and } \alpha_i \in \mathbb{C}\right\} < \infty$$
 and

 $\langle Ex_p, y \rangle = \langle Ey, x_p \rangle$ for every E in \mathcal{L} and all $p = 1, 2, \dots, n$, then there are operators A_1, \dots, A_n in $Alg\mathcal{L}$ such that $y = \sum_{k=1}^n A_k x_k$, $A_l^* = A_l$ and every E in \mathcal{L} reduces A_l for all $l = 1, 2, \dots, n$.

References

- 1. Arveson, W. B., Interpolation problems in nest algebras, J. Functional Analysis, 3 (1975), 208-233.
- 2. Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
- 3. Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.
- 4. Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126.
- Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4), 33 (1989), 657-672.
- 6. Jo, Y. S., Isometries of Tridiagonal Algebras, Pacific Journal of Mathematics 140, No.1 (1989), 97-115.
- 7. Jo, Y. S. and Choi, T. Y., *Isomorphisms of AlgL*_n and $AlgL_{\infty}$, Michigan Math. J. **37** (1990), 305-314.
- 8. Jo, Y. S. and Kang J. H., Interpolation problems in CSL-Algebras AlgL, to appear in Rocky Mountain Journal of Math.
- 9. Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
- 10. Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.
- 11. Munch, N., Compact causal data interpolation, Aarhus University reprint series 1986-1987.

Young Soo Jo Dept. of Math., Keimyung University Taegu, Korea

ysjo@kmu.ac.kr

Joo Ho Kang Dept. of Math., Taegu University Taegu, Korea jhkang@taegu.ac.kr