
Scientiae Mathematicae Japonicae Online, Vol. 7, (2002), 393{402 393

ON THE APPROXIMATIONS OF SOLUTIONS TO FUZZY

DIFFERENTIAL EQUATIONS�

Xue Xiaoping, Chen Minhao and Fu Yongqiang

Received February 3, 2002; revised June 30, 2002

Abstract. In this paper, the existence and uniqueness of Caratheodory solutions

for fuzzy di�erential equations of one dimension are established. Furthermore, under

some conditions, the approximations of solutions for the above di�erential equations

are disscused.

1 Introduction

The notion of fuzzy number originated from [1] in which fuzzy sets with some properties

on the �eld of real numbers are called fuzzy numbers. Because of their applications on

fuzzy control and fuzzy approximation (see for example [17, 18]), there are more and more

studies on the algebraic structure and analytic property of fuzzy numbers (see for example

[3, 11, 12, 13]). Goetschel and Voxman [5] described fuzzy numbers with the following

reference functions f(a(r); b(r); r) : r 2 [0; 1]g. Later in [10] Wu and Ma got a series of

results on the calculus of fuzzy numbers by embedding fuzzy numbers into the Banach

space �C[0; 1]� �C[0; 1].

Fuzzy di�erential equations were introduced by Kandel and Bytt in [8, 9] and later

applied to fuzzy processes and fuzzy dynamical systems. In [6, 7] Kaleva studied the classical

solutions of Cauchy problem for fuzzy di�erential equations. Recently, Friedman, Ma and

Kandel [4] studied the numerical solutions of fuzzy di�erential equations. In this paper we

study the Caratheodory solutions (which is called C-solutions for the sake of simplicity) for

a class of fuzzy di�erential equations, and obtain more general existence and uniqueness

of C-solutions, and continuous depedence of solutions on initial values and stability of

solutions.

2 Preliminaries

First let us recall some notions and facts about fuzzy numbers and fyzzy functions.

Let R be the �eld of real numbers. Denote E1 = fu : R ! [0; 1]g where u has the

following properties:

(1) u is normal. i. e., there exists an x0 2 R with u(x0) = 1;

(2) u is convex, i. e., u(rx + (1� r)y) � min(u(x); u(y)) whenever x; y 2 R and r 2 [0; 1];

(3) u(x) is upper semicontinuous;

(4) [u]0 = clfx 2 R : u(x) > 0g is a compact set.

For any u 2 E
1, u is called a fuzzy number. Obviously, [u]r is bounded closed interval

for r 2 [0; 1] where [u]r = fx 2 R : u(x) � rg. For u 2 E
1, there are two functions

u; u : [0; 1] ! R such that [u]r = [u(r); u(r)] and the two functions satisfy the following

properties (i)-(iv):
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(i) u is a bounded, left continuous, nondecreasing function;

(ii) u is a bounded, left continuous, nonincreasing function;

(iii) u, u are right continuous at r = 0;

(iv) u(r) � u(r) for 0 � r � 1.

For any u; v 2 E
1 and k > 0 we de�ne the addition u+ v and the multiplication by k

as: (u+ v)(r) = u(r) + v(r), (u+ v) = u(r) + v(r), (ku)(r) = ku(r), (ku)(r) = ku(r).

We call � the null element of E1 if � : R! [0; 1] satis�es:

�(x) =

�
1; if x = 0;

0; otherwise:

De�ne D : E1 �E
1 ! [0;+1) by the following:

D(u; v) = sup
r2[0;1]

max(ju(r) � v(r)j; ju(r) � v(r)j);

then

(a) (E1
;D) is a complete metric space;

(b) D(ku; kv) = kD(u; v) for any u; v 2 E
1 and k > 0;

(c) D(u + w; v + w) = D(u; v) for any u; v;w 2 E
1.

Denote C[0; 1] the set of functions which are bounded, left continuous on [0; 1], and have

right limits for t 2 [0; 1), and are right continuous at t = 0. For f 2 C[0; 1], endow it with

the norm kfk = sup
t2[0;1]

jf(t)j, then C[0; 1] is a Banach space with respect to the above norm.

In [10], Wu and Ma obtained the following Theorem:

Theorem 2.1 For u 2 E
1, denote j(u) = (u; u), then j(E1) is a closed convex cone with

vertex � in C[0; 1]� C[0; 1] and j : E1 ! C[0; 1]�C[0; 1] satis�es statements (a) and (b).

(a) For any u; v 2 E
1
; s; t � 0, j(su+ tv) = sj(u) + tj(v);

(b) D(u; v) = kj(u)�j(v)k for any u; v 2 E
1, that is to say, j is an isometric isomorphism

embedding from E
1 to C[0; 1]�C[0; 1] where C[0; 1]�C[0; 1] is endowed with the norm

k(f; g)k = maxfkfk; kgkg.

Denote T = [a; b]. F : T ! E
1 is measurable if 8r 2 [0; 1] the set-valued mapping

F
� = [F (�)]r : T ! PKC(R) is measurable where PKC(R) is the set of bounded closed

convex sets in R. And F is integrably bounded if F is measurable and there exists an

integrable function h : T ! [0;+1) such that for each x 2 [F (t)]0, jxj � h(t). For each

integrably bounded function F de�ne its integral as:

[

Z
T

F (t)dt]r = f

Z
T

f(t)dt : f(t) 2 [F (t)]r is a measurable selectorg:

Now there exists u 2 E
1 such that [u]r = [

R
T
F (t)dt]r , r 2 [0; 1], then F is integrable on T

and
R
T
F (t)dt = u.

We refer to [6, 10, 14, 15, 16] for the measurability and properties of the integrals of

fuzzy mappings.
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Let u; v 2 E
1. If there exists w 2 E

1 such that u = v + w, then we call w the H-

di�erence of x and y and denote it by u�v.We call a mapping F : [a; b]! E
1 di�erentiable

at t0 2 [a; b], if there exists F 0(t0) 2 E
1 such that the following limits

lim
h!0+

F (t0 + h)� F (t0)

h
and lim

h!0+

F (t0)� F (t0 � h)

h

exist and equal F 0(t0) where the limits are taken in (E1
;D). The above de�nition is due to

Puri and Ralescu [14].

Remark 2.1 That the function F : T ! E
1 is integrable does not guarantee that j Æ F is

Bochner integrable (See Note 1 in Part II of [10]). For the function F : T ! CE
1, where

CE
1 = fu 2 E

1 : u; u are continuous on [0; 1]g, from Theorem 5.3 in Part II of [10], F is

integrable i� j Æ F is Bochner integrable. Therefore the di�erential equations in this paper

are discussed on CE
1. By Theorem 2.1, j(CE1) � C[0; 1]�C[0; 1] (C[0; 1] denotes the set

of continuous functions on [0; 1]).

3 Main Results

We consider the following Cauchy problem of di�erential equations:

(3:1)

�
_x = F (t; x(t)); t 2 [a; b];

x(a) = x0; x0 2 CE
1
:

Suppose that F (t; u) : [a; b]� CE
1 ! CE

1 satis�es:

(A) For each u 2 CE
1, F (t; u) is measurable with respect to t;

(B) There exists integrable function m 2 L([a; b];R) such that

D(F (t; u); F (t; v)) � m(t)D(u; v);

(C) There exist integrable functions �; � 2 L([a; b];R) such that for u 2 CE
1

D(F (t; u); �) � �(t) + �(t)D(u; �):

Remark 3.1 Let a be a Lebesgue integrable function on [a; b] and f : [a; b] � R ! R be

de�ned by

f(t; x) =

�
a(t); x � 0;
a(t)

1+x2
; x > 0:

For each u 2 CE
1, denote

v(t; r) = minff(t; x) : x 2 [u]rg; r 2 [0; 1];

v(t; r) = maxff(t; x) : x 2 [u]rg; r 2 [0; 1];

then the r level set of F (t; u) is [F (t; u)]r = [v(t; r); v(t; r)], which means that F (t; u) :

[a; b] � CE
1 ! CE

1 satis�es (A)-(C).

De�nition 3.1 x(t) : [a; b] ! CE
1 is absolutely continuous if 8" > 0 there exists Æ > 0

such that whenever
nP
i=1

(bi � ai) < Æ we have
nP
i=1

D(x(bi); x(ai)) < " where f(ai; bi)gni=1 are

disjoint open subintervals of [a; b].
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De�nition 3.2 x(t) : [a; b] ! CE
1 is called a Caratheodory solution of (3.1) if x(t) is

absolutely continuous, and di�erentiable a. e. on [a; b], and x(a) = x0, x
0(t) = F (t; x(t))

a.e..

Denote L([a; b]; CE1) the set of integrably bounded functions x : [a; b] ! CE
1. Let m

be a nonnegative function and m 2 L([a; b];R). For x; y 2 L([a; b]; CE1) we introduce the

following metric:

d(x; y) =

Z
b

a

D(x(t); y(t))d�

where � is an absolutely continuous measure on [a; b] and we de�ne d� = e
�2h(t)

dt, h(t) =R
t

a
m(s)ds.

Lemma 3.1 j(CE1) is closed in C[0; 1]� C[0; 1].

Proof Suppose that uk 2 CE
1 satis�es that j Æ uk ! f is in C[0; 1] � C[0; 1]. Then

fukg is a Cauchy sequence in (CE1
;D). As (E1

;D) is complete, there exists u 2 E
1 such

that D(uk; u) ! 0, or sup
r2[0;1]

juk(r) � u(r)j ! 0, sup
r2[0;1]

juk(r) � u(r)j ! 0. In view of

uk; uk 2 C[0; 1], we know that u; u 2 C[0; 1] and further u 2 CE
1, or f = j Æ u 2 j(CE1).

�

Lemma 3.2 (see Wu and Ma [10]) If x : [a; b] ! CE
1, then the following conditions are

equivalent:

(1) x 2 L([a; b]; CE1);

(2) j Æ x is Bochner integrable;

(3) For any r 2 [0; 1], x(�)(r); x(�)(r) are all Lebesgue integrable functions. Furthermore,

for t 2 [a; b] we have

[

Z
t

a

x(s)ds]r = [(L)

Z
t

a

x(s)(r)ds; (L)

Z
t

a

x(s)(r)ds] r 2 [0; 1]:

Lemma 3.3 L([a; b]; CE1) is complete with respect to the metric d.

Proof Let fxng be a Cauchy sequence in L([a; b]; CE1). As

d(xn; xm) =
R
b

a
D(xn(t); xm(t))d�

=
R
b

a
kj Æ xn(t)� j Æ xm(t)kd�;

fj Æ xng is a Cauchy sequence in the Bochner integrable function space L�([a; b]; C[0; 1] �
C[0; 1]) where L�([a; b]; C[0; 1]�C[0; 1]) is a Banach space of all Bochner integrable functions
f : [a; b]! C[0; 1]� C[0; 1] endowed with the following norm

kfk =

Z
b

a

kf(t)kd�:

Then there exists f 2 L�([a; b]; C[0; 1]�C[0; 1]) such that

(3:2)

Z
b

a

kj Æ xn(t)� f(t)kd�! 0:
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Further there exists a subsequence fj Æxnkg such that j Æxnk ! f a. e. in C[0; 1]�C[0; 1].

By Lemma 3.1, there exists x : [a; b] ! CE
1 such that f = j Æx. As f is Bochner integrable,

by Lemma 3.2, x 2 L([a; b]; CE1). Finally by (3.2), we have

d(xn; x) =

Z
b

a

kj Æ xn(t) � f(t)kd�! 0: �

For simplicity, denote the complete metric space formed by L([a; b]; CE1) with respect

to the metric d by L�([a; b]; CE
1).

Lemma 3.4 Let x : [a; b] ! CE
1 be integrably bounded. Denote y(t) =

R
t

a
x(s)ds. Then

y : [a; b] ! CE
1 is absolutely continuous and di�erentiable a. e. on [a; b], and y

0(t) = x(t)

a. e..

Proof For t1; t2 2 [a; b]; t1 < t2, y(t2) = y(t1) +
R
t2

t1
x(s)ds, then

D(y(t2); y(t1)) = D(y(t1) +
R
t2

t1
x(s)ds; y(t1))

= D(
R
t2

t1
x(s)ds; �)

=
R
t2

t1
D(x(s); �)ds:

By the Lebesgue integrability of D(x(s); �), y is absolutely continuous on [a; b]. For h > 0,

D(
y(t+h)�y(t)

h
; x(t)) = D( 1

h

R
t+h

t
x(s)ds; x(t))

= D( 1
h

R
t+h

t
x(s)ds; 1

h

R
t+h

t
x(t)ds)

� 1
h

R
t+h

t
D(x(s); x(t))ds

= 1
h

R
t+h

t
kj Æ x(s) � j Æ x(t)kds:

As j Æ x is Bochner integrable, by [2, P. 49, Theorem 9] we get

lim
h!0+

1

h

Z
t+h

t

kj Æ x(s) � j Æ x(t)kds! 0 a. e..

Therefore lim
h!0+

D(
y(t+h)�y(t)

h
; x(t)) = 0 a. e.. Similarly we can obtain lim

h!0+
D(

y(t)�y(t�h)

h
; x(t)) =

0. Thus y is di�erentiable a. e. on [a; b] and y
0(t) = x(t) a. e.. �

Remark 3.2 In the Proof of Lemma 3.4, 1
h

R
t+h

t
x(t)ds = x(t). See the result of Example

4.1 in [6] for it.

Theorem 3.1 If F (t; u) satis�es conditions (A)-(C), then there exists unique C-solution

to (3.1).

Proof Existence. For x 2 L�([a; b]; CE
1) de�ne a mapping by (Tx)(t) = F (t; x0 +R

t

a
x(s)ds). Denote y(t) = x0 +

R
t

a
x(s)ds, then y : [a; b] ! CE

1 is continuous and

there exists a sequence of simple functions fyng such that yn ! y uniformly. Here

y0 = y, yn = T
n(y0) = T (Tn�1(y0)) for n = 1; 2; � � � . According to condition (B),

F (t; y(t)) = lim
n!1

F (t; yn(t)). Further by condition (A) and Lemma 3.2, F (�; y(�)) is mea-

surable. In view of condition (C),

D(F (t; y(t)); �) � �(t) + �(t)D(y(t); �)

� �(t) + �(t)M
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where M = max
t2[a;b]

D(y(t); �). Then F (�; y(�)) is integrably bounded and T is a mapping

from L�([a; b]; CE
1) to L�([a; b]; CE

1). Next we prove that T is a contraction mapping. In

fact, for x1; x2 2 L�([a; b]; CE
1), by condition (B) we have

d(Tx1; Tx2) =
R
b

a
D((Tx1)(t); (Tx2)(t))d�

=
R
b

a
D(F (t; x0 +

R
t

a
x1(s)ds); F (t; x0 +

R
t

a
x2(s)ds))d�

�
R
b

a
m(t)D(

R
t

a
x1(s)ds;

R
t

a
x2(s)ds)d�

�
R
b

a
m(t)(

R
t

a
D(x1(s); x2(s))ds)d�

= �1
2

R
b

a
(
R
t

a
D(x1(s); x2(s))ds)de

�2h(t)
:

Integrating by parts, we get

�1
2

R
b

a
(
R
t

a
D(x1(s); x2(s))ds)de

�2h(t)

= (�1
2

R
t

a
D(x1(s); x2(s))ds)e

�2h(t)jb
a
+ 1

2

R
b

a
D(x1(t); x2(t))e

�2h(t)
dt

= �1
2
e
�2h(b)

R
b

a
D(x1(s); x2(s))ds +

1
2
d(x1; x2)

� 1
2
d(x1; x2):

By Lemma 3.3 and the contraction principle, there exists x�(t) 2 L�([a; b]; CE
1) such that

Tx� = x�, or

(3:3) x� = F (t; x0 +

Z
t

a

x�(s)ds) a. e..

Denote y�(t) = x0 +
R
t

a
x�(s)ds, then y�(a) = x0. By (3.3) and Lemma 3.4, y� is a solution

to (3.1).

Uniqueness. Let y1 be a solution of (3.1), then y
0

1 is integrably bounded. Denote

z(t) = x0 +
R
t

a
y
0

1(s)ds. By Lemma 3.2, for each r 2 [0; 1] we have

(3:4) [x0 +

Z
t

a

y
0

1(s)ds]
r = [x0(r) + (L)

Z
t

a

y
0

1(s)(r)ds; x0(r) + (L)

Z
t

a

y
0

1(s)(r)ds]:

By the properties of Lebesgue integrals and y1(a) = x0, we know

(3:5)

x0(r) + (L)
R
t

a
y
0

1(s)(r)ds = y1(t)(r);

x0(r) + (L)
R
t

a
y
0

1(s)(r)ds = y1(t)(r):

From (3.4) and (3.5), it is immediate that [y1(t)]
r = [z(t)]r , or y1(t) = z(t); t 2 [a; b].

Therefore (Ty01)(t) = F (t; y1(t)), that is to say, y01 is a �xed point of T . By the uniqueness

of �xed point of T , y01(t) = x�(t) a. e., or y(t) = y�(t) (t 2 [a; b]). �

Theorem 3.2 If F satis�es conditions (A)-(C), then corresponding to any initial values

x0; y0 2 CE
1 respectively, the solutions y(�; x0); y(�; y0) of (3.1) satisfy

D(y(t; x0); y(t; y0)) � e
2h(b)

D(x0; y0)

for each t 2 [a; b].

Proof Let x0; y0 2 L�([a; b]; CE
1). De�ne two mappings Tx0 ; Ty0 as the following:

(Tx0u)(t) = F (t; x0 +
R
t

a
u(s)ds);

(Ty0u)(t) = F (t; y0 +
R
t

a
u(s)ds):
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According to the Proof of Theorem 3.1, Tx0 ; Ty0 are contraction mappings and have �xed

points x�; y� respectively. Then

x�(t) = F (t; x0 +
R
t

a
x�(s)ds);

y�(t) = F (t; y0 +
R
t

a
y�(s)ds):

As
d(x�; y�)

=
R
b

a
D(F (t; x0 +

R
t

a
x�(s)ds); F (t; y0 +

R
t

a
y�(s)ds))d�

�
R
b

a
m(t)D(x0 +

R
t

a
x�(s)ds; y0 +

R
t

a
y�(s)ds)d�

�
R
b

a
m(t)[D(x0; y0) +D(

R
t

a
x�(s)ds;

R
t

a
x�(s)ds)]d�

� (
R
b

a
m(t)e�2h(t)dt)D(x0; y0) +

R
b

a
m(t)(

R
t

a
D(x�(s); y�(s))ds)e

�2h(t)
dt;

integrating by parts we have

R
b

a
m(t)(

R
t

a
D(x�(s); y�(s))ds)e

�2h(t)
dt

= �1
2
e
�2h(b)

R
b

a
D(x�(t); y�(t))dt +

1
2

R
b

a
D(x�(t); y�(t))e

�2h(t)
dt

� 1
2
d(x�; y�):

Therefore

d(x�; y�) �
1

2
(1 � e

�2h(b))D(x0; y0) +
1

2
d(x�; y�);

or

d(x�; y�) � (1� e
�2h(b))D(x0 ; y0):

Now the two solutions of (3.1) corresponding to initial values x0; y0 can be respectively

written as

y(t; x0) = x0 +
R
t

a
x�(s)ds;

y(t; y0) = y0 +
R
t

a
y�(s)ds:

So for t 2 [a; b], we get, by (c) in Section 2,

D(y(t; x0); y(t; y0))

= D(x0 +
R
t

a
x�(s)ds; y0 +

R
t

a
y�(s)ds)

� D(x0; y0) +
R
t

a
D(x�(s); y�(s))ds

� D(x0; y0) + e
2h(b)

R
b

a
D(x�(s); y�(s))e

�2h(s)
ds

= D(x0; y0) + e
2h(b)

d(x�; y�)

� D(x0; y0) + e
2h(b)(1� e

�2h(b))D(x0; y0)

= e
2h(b)

D(x0; y0):�

Theorem 3.3 Suppose that fFn(t; u)g and F (t; u) satisfy the following conditions:

(A') For each u 2 CE
1, Fn(t; u); F (t; u) are measurable with respect to t;

(B') There exists integrable function m 2 L([a; b];R) such that for all u; v 2 CE
1 and

G 2 fFng
S
fFg,

D(G(t; u); G(t; v)) � m(t)D(u; v);

(C') There exist integrable functions �; � 2 L([a; b];R) such that for G 2 fFng
S
fFg,

D(G(t; u); �) � �(t) + �(t)D(u; �);
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(D') For (t; u) 2 [a; b]� CE
1,

lim
n!1

D(Fn(t; u); F (t; u)) = 0:

Then the solutions yn to

(3:6)

�
_y(t) = Fn(t; y(t));

y(a) = x0

and the solution y to

(3:7)

�
_y = F (t; y(t));

y(a) = x0

satisfy

lim
n!1

D(yn(t); y(t)) = 0

uniformly for t 2 [a; b].

Proof On L�([a; b]; CE
1) de�ne the mappings Tn; T as the following:

(Tnx)(t) = Fn(t; x0 +
R
t

a
x(s)ds);

(Tx)(t) = F (t; x0 +
R
t

a
x(s)ds):

Denote the �xed points of Tn; T by xn; x respectively. Then

(Tnxn)(t) = Fn(t; x0 +
R
t

a
xn(s)ds);

(Tx)(t) = F (t; x0 +
R
t

a
x(s)ds):

As
d(xn; x) = d(Tnxn; Tx)

� d(Tnxn; Tnx) + d(Tnx; Tx)

� 1
2
d(xn; x) + d(Tnx; Tx);

we have

(3:8) d(xn; x) � 2d(Tnx; Tx):

Next we consider

(3:9) d(Tnx; Tx) =

Z
b

a

D(Fn(t; x0 +

Z
t

a

x(s)ds); F (t; x0 +

Z
t

a

x(s)ds))d�:

Denote y(t) = x0 +
R
t

a
x(s)ds. By condition (C'),we get

D(Fn(t; y(t)); F (t; y(t)))

� D(Fn(t; y(t)); �) +D(F (t; y(t)); �)

� 2�(t) + 2�(t)D(y(t); �)

� 2�(t) + 2�(t)M

where M = max
t2[a;b]

D(y(t); �). From condition (D') we know

lim
n!1

D(Fn(t; y(t)); F (t; y(t))) = 0;
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further by Dominated Convergence Theorem we have

lim
n!1

Z
b

a

D(Fn(t; y(t)); F (t; y(t)))d� = 0:

In view of (3.9) we conclude

lim
n!1

d(Tnx; Tx) = 0:

Denote yn(t) = x0 +
R
t

a
xn(s)ds. By (3.8) we obtain

D(yn(t); y(t))

= D(x0 +
R
t

a
xn(s)ds; x0 +

R
t

a
x(s)ds)

� D(
R
t

a
xn(s)ds;

R
t

a
x(s)ds)

�
R
t

a
D(xn(s); x(s))ds

� e
2h(b)

R
b

a
D(xn(s); x(s))d�

= e
2h(b)

d(xn; x)

� 2e2h(b)d(Tnx; Tx):

Therefore

lim
n!1

D(yn(t); y(t)) = 0

uniformly with respect to t 2 [a; b]. �
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