STRONG CONVERGENCE OF ITERATIVE SEQUENCES FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

SACHIKO ATSUSHIBA

Received July 1, 2002

Abstract

In this paper, we deal with an iteration process for an asymptotically nonexpansive mapping and prove a strong convergence theorem for the mapping in Banach spaces, which is a generalization of the recent result of Shioji and Takahashi [12].

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E and let T be a mapping of C into itself. Then, we denote by $F(T)$ the set of fixed points of T. A mapping T of C into itself is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for every $x, y \in C$ and a mapping T of C into itself is said to be asymptotically nonexpansive with Lipschitz constants $\left\{k_{n}\right\}$ if $\underline{\lim }_{n \rightarrow \infty} k_{n} \leq 1$ and $\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|$ for every $x, y \in C$ (see [3]).

Let C be a nonempty closed convex subset of a real Hilbert space H and let T be a nonexpansive mapping of C into itself. Let $x \in C$. Halpern [4] and Reich [9] considered the following iteration process:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T x_{n} \tag{1}
\end{equation*}
$$

for each $n=0,1,2, \ldots$, where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$. Wittmann [15] showed that $\left\{x_{n}\right\}$ defined by (1) converges strongly to the element of $F(T)$ which is nearest to x if $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty, \sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $F(T) \neq \emptyset$. Shioji and Takahashi [10] extended the result of Wittmann [15] to a Banach space.

Let T be an asymptotically nonexpansive mapping of a nonempty bounded closed convex subset C of H and let $x \in C$. Using the concept of mean, Shimizu and Takahashi [13] studied the strong convergence of the following iteration process for an asymptotically nonexpansive mapping:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n} \tag{2}
\end{equation*}
$$

for sufficient large integer n, where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$. Shioji and Takahashi [11] extended the result of [13] to a Banach space. Further, Shioji and Takahashi [12] proved the following theorem by using the results of [11] (see also [14]): Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let C be a nonempty bounded closed convex subset of E. Let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$. Let $\left\{\alpha_{n}\right\}$ be a sequence of real numbers such that $0 \leq$

[^0]$\alpha_{n} \leq 1, \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=0}^{\infty}\left(\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)^{2}-1\right)_{+}<\infty$. Let $x \in C$ and let $\left\{x_{n}\right\}$ be the sequence defined by
\[

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n} \tag{3}
\end{equation*}
$$

\]

for each $n=0,1,2, \ldots$. Then, $\left\{x_{n}\right\}$ converges strongly to $P x$, where P is the sunny nonexpansive retraction from C onto $F(T)$. Mann [6] introduced the following iteration process for approximating fixed points of a nonexpansive mapping T on a nonempty closed convex subset C in a Hilbert space:

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \tag{4}
\end{equation*}
$$

for each $n=0,1,2, \ldots$, where $\left\{\alpha_{n}\right\}$ is a sequence in [0,1]. Later, Reich [8] studied the sequence defined by (4) in a uniformly convex Banach space whose norm is Fréchet differentiable and obtained a weak convergence theorem (see also [1]).

In this paper, we introduce an iteration process for mappings of C into itself by using the ideas of $[1,6,12]$. We prove a strong convergence theorem for an asymptotically nonexpansive mapping, which is a generalization of the result of Shioji and Takahashi [12].

2. Preliminaries

Throughout this paper, E is a real Banach space and E^{*} is the dual space of E. We write $x_{n} \rightarrow x$ (or $\lim _{n \rightarrow \infty} x_{n}=x$) to indicate that the sequence $\left\{x_{n}\right\}$ of vectors converges strongly to x. We also denote by $\left\langle y, x^{*}\right\rangle$ the value of $x^{*} \in E^{*}$ at $y \in E$. We denote by \mathbb{N} the set of all nonnegative integers. We also denote $\max \{a, 0\}$ by $(a)_{+}$for a real number a.

A Banach space E is said to be strictly convex if $\|x+y\| / 2<1$ for $x, y \in E$ with $\|x\|=\|y\|=1$ and $x \neq y$. In a strictly convex Banach space, we have that if $\|x\|=\|y\|=$ $\|(1-\lambda) x+\lambda y\|$ for $x, y \in E$ and $\lambda \in(0,1)$ then $x=y$. For every ε with $0 \leq \varepsilon \leq 2$, we define the modulus $\delta(\varepsilon)$ of convexity of E by

$$
\delta(\varepsilon)=\inf \left\{\left.1-\frac{\|x+y\|}{2} \right\rvert\,\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \varepsilon\right\}
$$

A Banach space E is said to be uniformly convex if $\delta(\varepsilon)>0$ for every $\varepsilon>0$. If E is uniformly convex, then for r, ε with $r \geq \varepsilon>0$, there exists $\delta\left(\frac{\varepsilon}{r}\right)>0$ such that

$$
\left\|\frac{x+y}{2}\right\| \leq r\left(1-\delta\left(\frac{\varepsilon}{r}\right)\right)
$$

for every $x, y \in E$ with $\|x\| \leq r,\|y\| \leq r$ and $\|x-y\| \geq \varepsilon$. It is well-known that a uniformly convex Banach space is reflexive and strictly convex.

The multi-valued mapping J from E into E^{*} defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} \quad \text { for every } \quad x \in E
$$

is called the duality mapping of E. From the Hahn-Banach theorem, we see that $J(x) \neq \emptyset$ for all $x \in E$. A Banach space E is said to be smooth if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for each x and y in S_{1}, where $S_{1}=\{u \in E:\|u\|=1\}$. The norm of E is said to be uniformly Gâteaux differentiable if for each y in S_{1}, the limit is attained uniformly for x in S_{1}. We know that if E is smooth then the duality mapping is single-valued and norm to weak-star continuous and that if the norm of E is uniformly Gâteaux differentiable then
the duality mapping is single-valued and norm to weak-star uniformly continuous on each bounded subset of E.

Let C be a nonempty convex subset of E and let K be a nonempty subset of C. A mapping P of C onto K is said to be sunny if $P(P x+t(x-P x))=P x$ for each $x \in C$ and $t \geq 0$ with $P x+t(x-P x) \in C$. A mapping P of C onto K is said to be a retraction if $P x=x$ for each $x \in K$. We know from [2, 7] that if E is smooth, then a retraction P of C onto K is sunny and nonexpansive if and only if

$$
\langle x-P x, J(y-P x)\rangle \leq 0 \quad \text { for all } \quad x \in C \quad \text { and } \quad y \in K
$$

Hence, there is at most one sunny nonexpansive retraction of C onto K. If there is a sunny nonexpansive retraction of C onto K, K is said to be a sunny nonexpansive retract of C. The following proposition related to the existence of sunny nonexpansive retractions was proved in [11].
Proposition 2.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$ such that $F(T) \neq \emptyset$. Then, $F(T)$ is a sunny nonexpansive retract of C.

3. Lemmas

Let C be a nonempty closed convex subset of a Banach space E and let T be a mapping of C into itself. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences of real numbers such that $0 \leq \alpha_{n} \leq 1,0 \leq$ $\beta_{n} \leq 1$, and let $x \in C$. Now consider the following iteration process:

$$
\left\{\begin{align*}
x_{0} & \in C \tag{5}\\
x_{n+1} & =\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} y_{n} \\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n}
\end{align*}\right.
$$

for each $n \in \mathbb{N}$. Especially, if $\beta_{n}=1$ for each $n \in \mathbb{N}$, then the sequence $\left\{x_{n}\right\}$ is written by (3). We prove a strong convergence theorem for an asymptotically nonexpansive mapping T on C with Lipschitz constants $\left\{k_{n}\right\}$, which is a generalization of the result of Shioji and Takahashi [12]. Without loss of generality, we may assume $k_{n} \geq 1$ for each $n \in \mathbb{N}$. Since $k_{n} \geq 1$ for each $n \in \mathbb{N}$, we obtain the following lemmas.
Lemma 3.1. Let C be a nonempty closed convex subset of a Banach space E and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$ such that $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be two sequences of real numbers such that $0 \leq \alpha_{n} \leq 1$, $0 \leq \beta_{n} \leq 1$ and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)<\infty \tag{6}
\end{equation*}
$$

where $M_{n}=\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)$. Let $x \in C$, and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be the sequences defined by (5). Then, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Further, $\left\{T^{j} x_{n}\right\}$ and $\left\{T^{j} y_{n}\right\}$ are bounded for each $j \in \mathbb{N}$.
Proof. Let $K_{0}=\sup _{n} k_{n}$. We obtain

$$
1 \leq \beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right) \leq K_{0}
$$

for each $n \in \mathbb{N}$. Set $M_{n}=\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)$. Then, we obtain $1 \leq M_{n} \leq K_{0}^{2}$ for each $n \in \mathbb{N}$. Let $z \in F(\mathcal{S})$. Then, it follows from (5) that

$$
\begin{align*}
\left\|y_{n}-z\right\| & =\left\|\beta_{n}\left(x_{n}-z\right)+\left(1-\beta_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n}\left(T^{j} x_{n}-z\right)\right\| \\
& \leq \beta_{n}\left\|x_{n}-z\right\|+\left(1-\beta_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n}\left\|T^{j} x_{n}-z\right\| \\
& \leq\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)\left\|x_{n}-z\right\| \tag{7}\\
& \leq K_{0}\left\|x_{n}-z\right\| \tag{8}
\end{align*}
$$

for each $n \in \mathbb{N}$. By (5), we also obtain

$$
\begin{align*}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}(x-z)+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n}\left(T^{j} y_{n}-z\right)\right\| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n}\left\|T^{j} y_{n}-z\right\| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left\|y_{n}-z\right\| \tag{9}\\
& \leq\|x-z\|+K_{0}\left\|y_{n}-z\right\| \tag{10}
\end{align*}
$$

for each $n \in \mathbb{N}$. Since $F(T) \neq \emptyset$, from (8) and (10), we see that $\left\{x_{n}\right\}$ is bounded if and only if $\left\{y_{n}\right\}$ is bounded.

By (7) and (9), for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \| x_{n+1}-z \| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)\left\|x_{n}-z\right\| \\
& \text { 11) } \quad=\alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right) M_{n}\left\|x_{n}-z\right\| .
\end{aligned}
$$

Set $h_{n}=\left(\left(1-\alpha_{n}\right) M_{n}-1\right)_{+}$. Since $h_{n}=\left(\left(1-\alpha_{n}\right) M_{n}-1\right)_{+} \leq\left(1-\alpha_{n}\right)\left(M_{n}-1\right)$ for each $n \in \mathbb{N}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}<\infty \tag{12}
\end{equation*}
$$

by (6). By (11), for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\| x_{n+1}- & z \| \\
\leq & \left(1-\left(1-\alpha_{n}\right)\right)\|x-z\|+\left(1-\alpha_{n}\right) M_{n}\left\|x_{n}-z\right\| \\
\leq & \left\{1+\left(1-\alpha_{n}\right)\left(M_{n}-1\right)-\left(1-\alpha_{n}\right) M_{n}\left(1-\alpha_{n-1}\right)\right\}\|x-z\| \\
& +\left(1-\alpha_{n}\right) M_{n}\left(1-\alpha_{n-1}\right) M_{n-1}\left\|x_{n-1}-z\right\| \\
\leq & \left\{1+\left(1-\alpha_{n}\right)\left(M_{n}-1\right)+\left(1-\alpha_{n}\right) M_{n}\left(1-\alpha_{n-1}\right)\left(M_{n-1}-1\right)\right. \\
& \quad-\left(1-\alpha_{n}\right) M_{n}\left(1-\alpha_{n-1}\right) M_{n-1}\left(1-\alpha_{n-2}\right\}\|x-z\| \\
& +\left(1-\alpha_{n}\right) M_{n}\left(1-\alpha_{n-1}\right) M_{n-1}\left(1-\alpha_{n-2}\right) M_{n-2}\left\|x_{n-2}-z\right\| \\
& \quad \vdots \\
\leq & \left\{1+\left(1-\alpha_{n}\right)\left(M_{n}-1\right)+\sum_{i=1}^{n-1}\left\{\left(1-\alpha_{i}\right)\left(M_{i}-1\right) \prod_{j=i+1}^{n}\left[\left(1-\alpha_{j}\right) M_{j}\right]\right\}\right. \\
\leq & \left.\quad-\left(1-\alpha_{0}\right) \prod_{j=1}^{n}\left[\left(1-\alpha_{j}\right) M_{j}\right]\right\}\|x-z\|+\prod_{j=0}^{n}\left[\left(1-\alpha_{j}\right) M_{j}\right]\left\|x_{0}-z\right\| \\
& \left.+\left(1-\alpha_{n}\right)\left(M_{n}-1\right)+\sum_{i=1}^{n-1}\left\{\left(1-\alpha_{i}\right)\left(M_{i}-1\right) \prod_{j=i+1}^{n}\left(1+h_{j}\right)\right\}\right\}\|x-z\| \\
& +\prod_{j=0}^{n}\left(1+h_{j}\right)\left\|x_{0}-z\right\| \\
\leq & \prod_{j=0}^{n}\left(1+h_{j}\right)\left\{\left[1+\sum_{i=1}^{n}\left(1-\alpha_{i}\right)\left(M_{i}-1\right)\right]\|x-z\|+\left\|x_{0}-z\right\|\right\} \\
\leq & \exp \left(\sum_{j=0}^{\infty} h_{j}\right)\left\{\left[1+\sum_{i=1}^{\infty}\left(1-\alpha_{i}\right)\left(M_{i}-1\right)\right]\|x-z\|+\left\|x_{0}-z\right\|\right\}
\end{aligned}
$$

Hence by (6) and (12), we obtain that $\left\{\left\|x_{n}-z\right\|\right\}$ is bounded. Therefore, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded.

Let $L_{0}=\sup _{n}\left\{\left\|x_{n}-z\right\|\right\}$. Then, it follows from (8) that

$$
\left\|T^{j} x_{n}-z\right\| \leq k_{j}\left\|x_{n}-z\right\| \leq K_{0} L_{0}
$$

and

$$
\left\|T^{j} y_{n}-z\right\| \leq k_{j}\left\|y_{n}-z\right\| \leq K_{0} \cdot K_{0} L_{0}=K_{0}^{2} L_{0}
$$

for each $j, n \in \mathbb{N}$. Hence, $\left\{T^{j} x_{n}\right\}$ and $\left\{T^{j} y_{n}\right\}$ are also bounded for each $j \in \mathbb{N}$.
Lemma 3.2 and Proposition 3.3 were proved by Shioji and Takahashi [11].
Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$ such that $F(T) \neq \emptyset$. Then, for each $r>0$,

$$
\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} \sup _{y \in C \cap B_{r}}\left\|\frac{1}{n+1} \sum_{j=0}^{n} T^{j} y-T^{m}\left(\frac{1}{n+1} \sum_{j=0}^{n} T^{j} y\right)\right\|=0
$$

where $B_{r}=\{z \in E:\|z\| \leq r\}$.

Proposition 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$ such that $F(T) \neq \emptyset$ and let P be the sunny nonexpansive retraction from C onto $F(T)$. Let $\left\{d_{n}\right\}$ be a sequence of real numbers such that $0<d_{n} \leq 1, \lim _{n \rightarrow \infty} d_{n}=0$ and

$$
\varlimsup_{n \rightarrow \infty} \frac{\frac{1}{n+1} \sum_{j=0}^{n} k_{j}-1}{d_{n}}<1
$$

Let $x \in C$ and let z_{n} be the unique point of C which satisfies

$$
\begin{equation*}
z_{n}=d_{n} x+\left(1-d_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} z_{n} \tag{14}
\end{equation*}
$$

for $n \geq m_{0}$, where m_{0} is a sufficiently large integer. Then, $\left\{z_{n}\right\}$ converges strongly to $P x$.
Remark 3.4. The inequality

$$
\varlimsup_{n \rightarrow \infty} \frac{\frac{1}{n+1} \sum_{j=0}^{n} k_{j}-1}{d_{n}}<1
$$

yields

$$
\left(1-d_{n}\right) \cdot \frac{1}{n+1} \sum_{j=0}^{n} k_{j}<1
$$

for all sufficiently large integer n. So for such n, there exists a unique point z_{n} of C satisfying $z_{n}=d_{n} x+\left(1-d_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} z_{n}$, since the mapping T_{n} from C into itself defined by $T_{n} u=d_{n} x+\left(1-d_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} u$ is a contraction, that is,

$$
\left\|T_{n} u-T_{n} v\right\| \leq\left(1-d_{n}\right) \cdot \frac{1}{n+1} \sum_{j=1}^{n} k_{j}\|u-v\|
$$

for each $u, v \in C$.

4. Strong Convergence Theorems

Our main result is the following, which is a generalization of Shioji and Takahashi's result [12]:
Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be an asymptotically nonexpansive mapping on C with Lipschitz constants $\left\{k_{n}\right\}$ such that $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences of real numbers such that $0 \leq \alpha_{n} \leq 1,0 \leq \beta_{n} \leq 1$,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)<\infty \tag{15}
\end{equation*}
$$

where $M_{n}=\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)$. Let $x \in C$ and let $\left\{x_{n}\right\}$ be the sequence defined by

$$
\left\{\begin{align*}
x_{0} & \in C \tag{16}\\
x_{n+1} & =\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} y_{n} \\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n}
\end{align*}\right.
$$

for each $n \in \mathbb{N}$. Then, $\left\{x_{n}\right\}$ converges strongly to $P x$, where P is the sunny nonexpansive retraction from C onto $F(T)$.

Proof. Set $M_{n}=\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)$ and set $K_{0}=\sup _{n} k_{n}$. Since $F(T) \neq \emptyset$ and $\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)<\infty$, from Lemma 3.1, we see that $\left\{x_{n}\right\},\left\{y_{n}\right\}$, $\left\{T^{j} x_{n}\right\}$ and $\left\{T^{j} y_{n}\right\}$ are bounded for each $j \in \mathbb{N}$.

Since $\varlimsup_{n \rightarrow \infty} k_{n} \leq 1$, we can choose a sequence $\left\{d_{n}\right\}$ of real numbers such that $d_{n}>$ $0, \lim _{n \rightarrow \infty} d_{n}=0$,

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\frac{1}{n+1} \sum_{j=0}^{n} k_{j}-1}{d_{n}}<1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)^{2} \leq 1+d_{n}^{2} \tag{18}
\end{equation*}
$$

for each $n \in \mathbb{N}$ (see also [13]). By the reason in Remark 3.4, there exists the unique point z_{m} of C satisfying $z_{m}=d_{m} x+\left(1-d_{m}\right) \frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}$ for all sufficiently large integer m. Without loss of generality, we may assume that $d_{m} \leq 1 / 2$ for all $m \in \mathbb{N}$ and z_{m} is defined for all $m \in \mathbb{N}$. We know that $\left\{z_{n}\right\}$ converges strongly to $P x$ by Proposition 3.3. From (16),
for each $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n+1}-x_{n+1}\right\| \\
& \leq\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n+1}-\frac{1}{m+1} \sum_{j=0}^{m} T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)\right\| \\
& \quad+\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\|+\left\|\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}-x_{n+1}\right\| \\
& \leq\left(\frac{1}{m+1} \sum_{j=0}^{m} k_{j}+1\right)\left\|x_{n+1}-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\| \\
& \quad+\frac{1}{m+1} \sum_{j=0}^{m}\left\|T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\| \\
& \leq \\
& \quad\left(K_{0}+1\right) \cdot \alpha_{n}\left\|x-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\| \\
& \quad+\frac{1}{m+1} \sum_{j=0}^{m}\left\|T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\| \\
& \leq\left(K_{0}+1\right) \cdot \alpha_{n}\left(\|x\|+\sup _{j, n}\left\|T^{j} y_{n}\right\|\right) \\
& \quad+\frac{1}{m+1} \sum_{j=0}^{m}\left\|T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\|
\end{aligned}
$$

It follows from Lemma 3.2 that

$$
\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} \frac{1}{m+1} \sum_{j=0}^{m}\left\|T^{j}\left(\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right)-\frac{1}{n+1} \sum_{l=0}^{n} T^{l} y_{n}\right\|=0
$$

Hence by $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have

$$
\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n+1}-x_{n+1}\right\|=\varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|=0
$$

Then, we may also assume that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\| \leq d_{m}^{2} \tag{19}
\end{equation*}
$$

for each $m \in \mathbb{N}$. Set $R=\sup \left(\left\{\left\|T^{j} z_{m}\right\|: j, m \in \mathbb{N}\right\} \cup\left\{\left\|T^{j} x_{n}\right\|: j, n \in \mathbb{N}\right\}\right)$. From

$$
\left(1-d_{m}\right)\left(\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-x_{n}\right)=\left(z_{m}-x_{n}\right)-d_{m}\left(x-x_{n}\right),
$$

we obtain

$$
\begin{aligned}
\left(1-d_{m}\right)^{2}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-x_{n}\right\|^{2} & \geq\left\|z_{m}-x_{n}\right\|^{2}-2 d_{m}\left\langle x-x_{n}, J\left(z_{m}-x_{n}\right)\right\rangle \\
& =\left\|z_{m}-x_{n}\right\|^{2}-2 d_{m}\left\langle x-z_{m}+z_{m}-x_{n}, J\left(z_{m}-x_{n}\right)\right\rangle \\
& =\left(1-2 d_{m}\right)\left\|z_{m}-x_{n}\right\|^{2}+2 d_{m}\left\langle x-z_{m}, J\left(x_{n}-z_{m}\right)\right\rangle
\end{aligned}
$$

for each $m, n \in \mathbb{N}$. Then, it follows from (18) that

$$
\begin{aligned}
& \left\langle x-z_{m}, J\left(x_{n}-z_{m}\right)\right\rangle \\
& \leq \frac{1}{2 d_{m}}\left(\left(1-d_{m}\right)^{2}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-x_{n}\right\|^{2}-\left(1-2 d_{m}\right)\left\|z_{m}-x_{n}\right\|^{2}\right) \\
& =\frac{1-2 d_{m}}{2 d_{m}}\left(\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-x_{n}\right\|^{2}-\left\|z_{m}-x_{n}\right\|^{2}\right)+\frac{d_{m}}{2}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-x_{n}\right\|^{2} \\
& \leq \frac{1-2 d_{m}}{2 d_{m}}\left(\left\{\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}\right\|+\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|\right\}^{2}\right. \\
& \left.\quad-\left\|z_{m}-x_{n}\right\|^{2}\right)+2 R^{2} d_{m} \\
& \leq \frac{1}{2 d_{m}}\left(\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} z_{m}-\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}\right\|^{2}+2 \cdot 2 R\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|\right. \\
& \left.\leq \frac{1}{m} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\left\|^{2}-\right\| z_{m}-x_{n} \|^{2}\right)+2 R^{2} d_{m} \\
& \leq \frac{1}{2 d_{m}}\left(\left\{\left(\frac{1}{m+1} \sum_{j=0}^{m} k_{j}\right)^{2}-1\right\}\left\|z_{m}-x_{n}\right\|^{2}+6 R\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|\right)+2 R^{2} d_{m} \\
& \leq \frac{1}{2 d_{m}}\left(d_{m}^{2}\left\|z_{m}-x_{n}\right\|^{2}+6 R\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|\right)+2 R^{2} d_{m} \\
& \leq 4 R^{2} d_{m}+\frac{3 R}{d_{m}}\left\|\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}-x_{n}\right\|
\end{aligned}
$$

for each $m, n \in \mathbb{N}$. Hence by (19), we have

$$
\varlimsup_{n \rightarrow \infty}\left\langle x-z_{m}, J\left(x_{n}-z_{m}\right)\right\rangle \leq\left(4 R^{2}+3 R\right) d_{m}
$$

for each $m \in \mathbb{N}$. Since $\left\{z_{m}\right\}$ converges strongly to $P x$ and the norm of E is uniformly Gâteaux differentiable, we have

$$
\varlimsup_{n \rightarrow \infty}\left\langle x-P x, J\left(x_{n}-P x\right)\right\rangle \leq 0 .
$$

Let $\varepsilon>0$. Then, there exists $n_{0} \in \mathbb{N}$ such that $\left\langle x-P x, J\left(x_{n}-P x\right)\right\rangle<\frac{\varepsilon}{2}$ for each $n \geq n_{0}$. From

$$
\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} T^{j} y_{n}-P x\right)=\left(x_{n+1}-P x\right)-\alpha_{n}(x-P x)
$$

we also obtain

$$
\begin{equation*}
\left\|x_{n+1}-P x\right\|^{2} \leq 2 \alpha_{n}\left\langle x-P x, J\left(x_{n+1}-P x\right)\right\rangle+\left(1-\alpha_{n}\right)^{2}\left\|\frac{1}{n+1} \sum_{j=0}^{n} T^{j} y_{n}-P x\right\|^{2} \tag{20}
\end{equation*}
$$

for each $n \in \mathbb{N}$. So, we get

$$
\begin{align*}
& \left\|x_{n+1}-P x\right\|^{2} \\
& \leq \alpha_{n} \varepsilon+\left(1-\alpha_{n}\right)^{2}\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)^{2}\left\|y_{n}-P x\right\|^{2} \\
& \leq \alpha_{n} \varepsilon+\left(1-\alpha_{n}\right)^{2}\left(\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)^{2}\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)^{2}\left\|x_{n}-P x\right\|^{2}\right. \tag{21}\\
& =\alpha_{n} \varepsilon+\left(1-\alpha_{n}\right)^{2} M_{n}^{2}\left\|x_{n}-P x\right\|^{2}
\end{align*}
$$

for each $n \geq n_{0}$. Set $p_{n}=\left\|x_{n}-P x\right\|^{2}, L_{n}=M_{n}{ }^{2}$ and $c_{n}=\left(\left(1-\alpha_{n}\right) L_{n}-1\right)_{+}$. Then, for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
c_{n} & =\left(\left(1-\alpha_{n}\right) L_{n}-1\right)_{+} \leq\left(1-\alpha_{n}\right)\left(L_{n}-1\right) \\
& =\left(1-\alpha_{n}\right)\left(M_{n}+1\right)\left(M_{n}-1\right) \leq\left(K_{0}^{2}+1\right)\left(1-\alpha_{n}\right)\left(M_{n}-1\right)
\end{aligned}
$$

Hence by (15), $\sum_{i=0}^{\infty} c_{i}<\infty$. Let $n \in \mathbb{N}$ with $n \geq n_{0}$. Then, for each $m \in \mathbb{N}$, we have

$$
\begin{aligned}
p_{n+m} \leq & \alpha_{n+m-1} \varepsilon+\left(1-\alpha_{n+m-1}\right)^{2} L_{n+m-1} p_{n+m-1} \\
\leq & \left\{\alpha_{n+m-1}+\left(1-\alpha_{n+m-1}\right)^{2} L_{n+m-1} \alpha_{n+m-2}\right\} \varepsilon \\
& +\left(1-\alpha_{n+m-1}\right)^{2} L_{n+m-1}\left(1-\alpha_{n+m-2}\right)^{2} L_{n+m-2} p_{n+m-2} \\
\vdots & \\
\leq & \left\{\alpha_{n+m-1}+\sum_{j=n}^{n+m-2}\left(\alpha_{j} \prod_{i=j+1}^{n+m-1}\left[\left(1-\alpha_{i}\right)^{2} L_{i}\right]\right)\right\} \varepsilon+\left(\prod_{i=n}^{n+m-1}\left[\left(1-\alpha_{i}\right)^{2} L_{i}\right]\right) p_{n} \\
\leq & \prod_{i=n+1}^{n+m-1}\left(1+c_{i}\right)\left\{\alpha_{n+m-1}+\sum_{j=n}^{n+m-2}\left(\alpha_{j} \prod_{i=j+1}^{n+m-1}\left(1-\alpha_{i}\right)\right)\right\} \varepsilon \\
& +\prod_{i=n}^{n+m-1}\left(1+c_{i}\right) \cdot \prod_{i=n}^{n+m-1}\left(1-\alpha_{i}\right) \cdot p_{n} \\
\leq & \prod_{i=n+1}^{n+m-1}\left(1+c_{i}\right)\left(1-\prod_{i=n}^{n+m-1}\left(1-\alpha_{i}\right)\right) \varepsilon+\prod_{i=n}^{n+m-1}\left(1+c_{i}\right) \cdot \prod_{i=n}^{n+m-1}\left(1-\alpha_{i}\right) \cdot p_{n} \\
\leq & \varepsilon \cdot \exp \left(\sum_{i=n+1}^{n+m-1} c_{i}\right)+\exp \left(\sum_{i=n}^{n+m-1} c_{i}\right) \cdot \exp \left(-\sum_{i=n}^{n+m-1} \alpha_{i}\right) \cdot p_{n} \\
\leq & \exp \left(\sum_{i=0}^{\infty} c_{i}\right)\left\{\varepsilon+\exp \left(-\sum_{i=n}^{n+m-1} \alpha_{i}\right) \cdot p_{n}\right\} .
\end{aligned}
$$

By $\sum_{i=0}^{\infty} \alpha_{i}=\infty$, we get

$$
\varlimsup_{m \rightarrow \infty} p_{m}=\varlimsup_{m \rightarrow \infty} p_{n+m} \leq \varepsilon \cdot \exp \left(\sum_{i=0}^{\infty} c_{i}\right)
$$

Since $\exp \left(\sum_{i=0}^{\infty} c_{i}\right)<\infty$ and $\varepsilon>0$ is arbitrary, $\left\{x_{n}\right\}$ converges strongly to $P x \in F(T)$.
Remark 4.2. $\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)<\infty$ yields $\sum_{n=0}^{\infty} c_{n}<\infty$. So, by the proofs of Lemma 3.1 and Theorem 4.1, we see the following: Let E, C, T, x and $\left\{k_{n}\right\}$ be as in Theorem 4.1. Let $\left\{\alpha_{n}\right\}$ be a sequence of real numbers such that $0 \leq \alpha_{n} \leq 1, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$, and let $\left\{\beta_{n}\right\}$ be a sequence of real numbers such that $0 \leq \beta_{n} \leq 1$. Assume

$$
\sum_{n=0}^{\infty}\left(\left(1-\alpha_{n}\right) M_{n}^{2}-1\right)_{+}<\infty
$$

where $M_{n}=\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\left(\beta_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}\right)\right)$. Let $\left\{x_{n}\right\}$ be the sequence defined by (16). Then, $\left\{x_{n}\right\}$ converges strongly to a fixed point of T if and only if $\left\{x_{n}\right\}$ is bounded.

Since $\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}-1\right)<\infty$ yields $\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)<\infty$, we get the following.

Corollary 4.3. Let E, C, T, x and $\left\{k_{n}\right\}$ be as in Theorem 4.1. Let $\left\{\alpha_{n}\right\}$ be a sequence of real numbers such that $0 \leq \alpha_{n} \leq 1, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$, and let $\left\{\beta_{n}\right\}$ be any sequence of real numbers such that $0 \leq \beta_{n} \leq 1$. Assume

$$
\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(\frac{1}{n+1} \sum_{j=0}^{n} k_{j}-1\right)<\infty
$$

Let $\left\{x_{n}\right\}$ be the sequence defined by (16). Then, $\left\{x_{n}\right\}$ converges strongly to $P x$, where P is the sunny nonexpansive retraction from C onto $F(T)$.

In the case when T is nonexpansive, by $\sum_{n=0}^{\infty}\left(1-\alpha_{n}\right)\left(M_{n}-1\right)=0$, we can directly obtain the following.

Theorem 4.4. Let E be a uniformly convex Banach space whose norm is uniformly $G \hat{a} t e a u x$ differentiable and let C be a nonempty closed convex subset of E. Let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$ be a sequence of real numbers such that $0 \leq \alpha_{n} \leq 1, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$, and let $\left\{\beta_{n}\right\}$ be a sequence of real numbers such that $0 \leq \beta_{n} \leq 1$. Let $x \in C$ and let $\left\{x_{n}\right\}$ be the sequence defined by (16). Then, $\left\{x_{n}\right\}$ converges strongly to $P x$, where P is the sunny nonexpansive retraction from C onto $F(T)$.

References

[1] S. Atsushiba and W. Takahashi, Approximating common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc., 57 (1998), 117-127.
[2] R. E. Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc., 76 (1970), 384-386.
[3] K. Goebel, W.A.kirk, A fixed point theorems for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
[4] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
[5] N. Hirano and W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J., 2 (1979), 11-25.
[6] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
[7] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44 (1973), 57-70.
[8] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274-276.
[9] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287-292.
[10] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.
[11] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approximation Theory, 97 (1999), 53-64.
[12] N. Shioji and W. Takahashi, A Strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math., 72 (1999), 354-359.
[13] T. Shimizu and W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal., 26 (1996), 265-272.
[14] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211 (1997), 71-83.
[15] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486491.
(S. Atsushiba) Department of Mathematics, Shibaura Institute of Technology, Fukasaku, Saitama-City, Saitama $330-8570$, Japan

E-mail address: atusiba@sic.shibaura-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47H09, 49M05.
 Key words and phrases. Fixed point, iteration, nonexpansive mapping, asymptotically nonexpansive mapping, strong convergence.

